
Universität des Saarlandes

U
N

IV
E R S IT

A
S

S
A

R
A V I E

N

S
I
S

Fachrichtung 6.1 – Mathematik

Preprint Nr. 365

Morphological Counterparts of Linear
Shift-Invariant Scale-Spaces

Martin Schmidt and Joachim Weickert

Saarbrücken 2016





Fachrichtung 6.1 – Mathematik Preprint No. 365
Universität des Saarlandes submitted: September 26, 2015

revised: February 10, 2016

Morphological Counterparts of Linear
Shift-Invariant Scale-Spaces

Martin Schmidt

Mathematical Image Analysis Group,
Faculty of Mathematics and Computer Science,

Saarland University, Campus E1.7, 66041 Saarbrücken, Germany
schmidt@mia.uni-saarland.de

Joachim Weickert

Mathematical Image Analysis Group,
Faculty of Mathematics and Computer Science,

Saarland University, Campus E1.7, 66041 Saarbrücken, Germany
weickert@mia.uni-saarland.de



Edited by
FR 6.1 – Mathematik
Universität des Saarlandes
Postfach 15 11 50
66041 Saarbrücken
Germany

Fax: + 49 681 302 4443
e-Mail: preprint@math.uni-sb.de
WWW: http://www.math.uni-sb.de/



Abstract

It is well-known that there are striking analogies between linear
shift-invariant systems and morphological systems for image analysis.
So far, however, the relations between both system theories are
mainly understood on a pure convolution / erosion level. A formal
connection on the level of differential or pseudodifferential equations
and their induced scale-spaces is still missing. The goal of our
paper is to close this gap. We present a simple and fairly general
dictionary that allows to translate any linear shift-invariant evolution
equation into its morphological counterpart and vice versa. It is
based on a scale-space representation by means of the symbol of
its (pseudo)differential operator. Introducing a novel transformation,
the Cramér–Fourier transform, puts us in a position to relate the
symbol to the structuring function of a morphological scale-space of
Hamilton–Jacobi type. As an application of our general theory, we
derive the morphological counterparts of many linear shift-invariant
scale-spaces, such as the Poisson scale-space, α-scale-spaces, summed
α-scale-spaces, relativistic scale-spaces, and their anisotropic variants.
Our findings are illustrated by experiments.

1 Introduction

Linear system theory and mathematical morphology are two successful
and widely-used concepts in signal and image processing, and attempts
to establish connections between these paradigms are undergoing since
about three decades [43]. It is well-known that any linear shift-invariant
system can be described as a convolution that can be computed elegantly
as multiplication in the Fourier domain [40, 46]. On the other hand,
morphological systems are based on erosions (or dilations) with a concave
structuring function, which comes down to additions in the slope domain
[42, 16]. An explanation for the quasi-logarithmic connection between both
worlds has been obtained by Burgeth and Weickert [12]: While linear system
theory uses the classical algebra (R, ·,+), they showed that mathematical
morphology is a system theory in the min-plus algebra (R∪ {+∞},+,min).
Moreover, they described this relation by means of the Cramér transform. In
the context of decision theory, this connection has been analysed by Akian
et al. [2]. However, since their formulation would lead to divergent integrals
we have to persue a different strategy.

Both linear and morphological systems are used for constructing so called
scale-spaces. They embed an image into a family of gradually smoother
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representations [26, 63]. Studying the hierarchy over scale (deep structure)
within such a scale-space allows to pass from a pure pixel-based description
to a more semantic reasoning about the actual image content [45]. Moreover,
scale-space ideas build the backbone of widely-used feature descriptors such
as SIFT [39]. Alvarez et al. [3] have shown that under a reasonable set
of axioms, scale-spaces are governed by evolution equations. Often they
can be expressed as continuous-scale descriptions of linear or morphological
systems in terms of partial differential equations (PDEs). For example,
Gaussian convolution comes down to a homogeneous diffusion equation,
whose evolution in time creates the so-called Gaussian scale-space [26, 63, 34].
More recently, linear scale-spaces based on pseudodifferential operators have
attracted attention, such as the Poisson scale-space [20], α-scale-spaces
[19], summed α-scale-spaces [14], and relativistic scale-spaces [11]. Also
regularisation methods and related concepts can be interpreted as scale-
spaces by considering their Euler-Lagrange equations, both in the linear
and the nonlinear setting [50, 44, 53, 10, 13]. Since Gaussian scale-space
can be described by a linear diffusion equation, it is natural to generalise
it also to nonlinear diffusion scale-spaces [49, 60]. On the morphological
side, continuous-scale versions of erosions are given by hyperbolic PDEs
[3, 6, 9, 59]. Parabolic morphological PDEs comprise mean curvature
motion [4, 33] which can be derived from iterated median filtering [23].
It is also possible to construct affine invariant morphological scale-spaces
[3, 52]. Moreover, morphological variants of linear and nonlinear diffusion
scale-spaces can be created by embedding these scale-spaces into a counter-
harmonic framework [5].

An interesting equivalence between Gaussian scale-space and morphological
erosion with a quadratic structuring function has been discovered by
van den Boomgaard [58]: While Gaussians are the only separable and
rotationally invariant convolution kernels [47], quadratic functions are the
only separable and rotationally invariant structuring functions. This has
also triggered Florack et al. [22] and Welk [62] to consider evolutions that
combine both scale-spaces. However, other formal equivalences between
the (pseudo)differential operators governing linear shift-invariant scale-spaces
and morphological scale-spaces are not known so far.

Goal of the Paper. The goal of our paper is to address this problem. We
establish a general theory that allows to transform a scale-space evolution
from one of these worlds to the other world. On the one hand, this
framework extends the results of Burgeth and Weickert [12] to differential
and pseudodifferential operators. On the other hand, it allows to transfer

2



the results of Akian et al. [2] to a scale-space and image processing setting.
In particular, it enables us to derive the morphological counterparts of the
Poisson scale-space, α-scale-spaces, summed α-scale-spaces, relativistic scale-
spaces, and anisotropic variants of them. To this end, we characterise
linear shift-invariant scale-spaces by their symbol. There is a one-to-one
relation between the symbol and its corresponding convolution kernel. On
the other hand, we express morphological scale-spaces by Hamilton-Jacobi
equations whose viscosity solution is given by an infimal convolution with
a suitable structuring function. Introducing a novel transformation that we
call Cramér–Fourier transform allows us to connect convolutions and infimal
convolutions and therefore also linear and morphological scale-spaces. We
will see that this is most easily done on the level of their evolution equations,
where we come up with a very simple and general dictionary.

The present paper relies on our SSVM 2015 conference paper [54]. Apart from
more detailed explanations and more references, it extends the conference
paper in several important aspects:

• Compared to [54], our theory is completely revised. Formulations based
on the symbol, Hamilton-Jacobi equations, and infimal convolutions are
not present in [54]. They allow a simpler, more transparent and more
general theory.

• Simplicity is reflected by the fact that our dictionary allows to translate
results between the linear and the morphological world directly on the
level of evolution equations via the symbol. In [54], we had to achieve
this goal in an indirect and more cumbersome way by computing the
infinitesimal generator of a structuring function.

• Transparency is improved e.g. by introducing clear formal definitions
of morphological counterparts of linear shift-invariant evolutions, both
on a convolution / infimal convolution level and an evolution equation
level.

• To illustrate greater generality, we cover additional scale-spaces that
have not been discussed in [54], such as summed α-scale-spaces and
anisotropic variants of Gaussian and Poisson scale-space.

Paper Structure. Sections 2 and 3 reinterpret relevant concepts behind
linear shift-invariant scale-spaces and morphological scale-spaces in a way
that allows us to derive our general framework in Section 4. The fifth Section
applies our theory to various scale-spaces. Experiments in Section 6 illustrate
their behaviour. Our paper is concluded with a summary in Section 7.
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2 Linear Shift-Invariant Scale-Spaces

The goal of this section is to provide a general framework for linear
shift-invariant scale-spaces in terms of an evolution that is steered by a
pseudodifferential operator. This operator also induces a corresponding
convolution kernel. We will see that the so-called symbol carries the essential
information of both scale-space representation.

2.1 Scale-Spaces as Pseudodifferential Evolutions

Throughout this paper, let us consider some bounded greyscale image
f : R2 → R. A scale-space representation of f embeds this image into
a family u(., t) of gradually smoother versions, where the scale parameter
(“time”) t determines the amount of smoothing or image simplification:
t = 0 yields u(., 0) = f , and larger values for t correspond to simpler
versions of f with less structure. Reasonable scale-spaces have to satisfy
a number of architectural properties, simplification qualities, and invariances
[3]. Typically their evolutions w.r.t. the scale-parameter t can be expressed
in terms of differential or pseudodifferential equations.

To define pseudodifferential operators mathematically we follow [56].
However, we use a different convention for the Fourier transform of an
image u:

û(ξ) := F [u](ξ) :=

∫
R2

u(x) e−2πi〈ξ,x〉 dx (1)

where i2 = −1 and 〈., .〉 denotes the Hermitian inner product. The Fourier
backtransform is given by

u(x) = F−1 [ û ] (x) :=

∫
R2

û(ξ) e2πi〈x,ξ〉 dξ . (2)

For a multi-index α = (α1, α2) ∈ N2 and some vector v ∈ R2 we define
|α| := α1 + α2 and vα := vα1

1 vα2
2 . Then differentiation yields

∇αu(x) =

∫
R2

(2πi ξ)α û(ξ) e2πi〈x,ξ〉 dξ (3)

where ∇ denotes the spatial gradient (∂x, ∂y)
>. For a differential operator

P (x,∇) =
∑
|α|≤k

cα(x)∇α (4)

4



this implies

P (x,∇)u(x) =

∫
R2

p (x, 2π ξ) û(ξ) e2πi〈x,ξ〉 dξ , (5)

where the polynomial

p(x, ξ) =
∑
|α|≤k

cα(x)(i ξ)α (6)

is called the symbol of P (x,∇). If p is not a polynomial, Equation (5)
can be used to define so called pseudodifferential operators. Since we are
interested in shift-invariant systems, we focus on pseudodifferential equations
with constant coefficients. In this case, p does not depend on x. Therefore,
we drop the first argument and write p(ξ) and P (∇). Then the scale-space
evolutions are given by

∂tu(x, t) = P (∇)u(x, t)

u(x, 0) = f(x) .

(7)

(8)

We call linear shift-invariant (LSI) evolutions of this type LSI scale-spaces.
As we shall see below, they comprise many well-known linear scale-spaces.

2.2 Interpretation as Convolution Scale-Spaces

Let us now interpret LSI scale-spaces in terms of convolutions with
appropriate kernels. Since Equation (7) is linear, it can be described by a
multiplication in the Fourier domain where the factor is given by the symbol.
To see this, we apply the Fourier transform to (5) and obtain

F [P (∇)u(·, t) ] (ξ) = p(2π ξ)û(ξ, t) . (9)

Therefore, (7)–(8) simplifies under the Fourier transform to the initial value
problem

∂tû(ξ, t) = p(2π ξ)û(ξ, t) , (10)

û(ξ, 0) = f̂(ξ) . (11)

Its solution is given by

û(ξ, t) = f̂(ξ) exp (p(2π ξ) t) . (12)
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Applying the inverse Fourier transform translates the result to the spatial
domain again:

u(x, t) =
(
f ∗ F−1 [ exp (p(2π ·) t) ]

)
(x) . (13)

This shows the importance of the symbol p: We can use it to characterise
the solution of (7)–(8) as a convolution of the initial image f(x) with an
appropriate kernel k(x, t):

u(x, t) = (f ∗ k(·, t)) (x),

k(x, t) = F−1 [ exp (p(2π ·) t) ] (x).

(14)

(15)

2.3 Examples of LSI Scale-Spaces

In order to illustrate that the family of LSI scale-spaces is fairly rich, let us
investigate five examples in more detail.

1. Gaussian Scale-Space. It computes smoothed versions u(x, t) of
f(x) as solutions of the initial value problem

∂tu = ∆u on R2 × (0,∞), (16)

u(x, 0) = f(x) on R2, (17)

where ∆ = ∂xx + ∂yy denotes the spatial Laplacian. Gaussian scale-
space goes back to Iijima [26, 61]. It became popular in the western
world by the work of Witkin [63], Koenderink [34], Lindeberg [36],
Florack [21], and many others; see e.g. [55] and the references therein.

2. α-Scale-Spaces. These evolutions replace the homogeneous diffusion
equation (16) by the pseudodifferential equation

∂tu = −(−∆)αu (18)

with some parameter α ∈ (0,∞). While such processes can already be
found implicitly in Iijima’s early work [26] and more explicitly e.g. in a
publication by Pauwels et al. [48], they became popular as scale-spaces
due to the work of Duits et al. [19]. Gaussian scale-space is recovered
for α = 1, while α = 1

2
gives the so-called Poisson scale-space

∂tu = −
√
−∆u (19)

of Felsberg and Sommer [20]. If one renounces a maximum–minimum
principle, one can also study scale-spaces for α > 1, comprising e.g.
the biharmonic scale-space for α = 2 [14].
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3. Summed α-Scale-Spaces. Didas et al. [14] discuss finite linear
combinations of fractional Laplacians:

∂tu = −
m∑
k=1

λk(−∆)αku (20)

with fractional derivative orders α1, . . . , αm > 0 and weights
λ1, . . . , λm > 0. Interestingly they can satisfy a maximum–minimum
principle even if some terms with α > 1 are present, as long as they
are dominated by terms with α < 1.

The special case of a linear combination of one Gaussian and one
Poisson kernel is used in [32] to approximate α-scale-spaces.

4. Relativistic Scale-Spaces. Burgeth et al. [11] have advocated a
generalisation of the Poisson scale-space by considering the evolution
equations

∂tu = −
(√

m2 −∆ −m
)
u (21)

with m ≥ 0. We see that this family contains the Poisson scale-space
for m = 0.

5. Anisotropic Scale-Spaces. Formally one can construct anisotropic
versions of any of the preceding scale-spaces by replacing their
Laplacian by ∇>D∇ with some symmetric positive definite matrix
D ∈ R2×2. In the case of Gaussian scale-space, this leads to the
anisotropic Gaussian scale-spaces

∂tu = div (D∇u) . (22)

They have been derived axiomatically by Iijima [27, 28] and later on by
Lindeberg [36, 37]. Scale-space properties of nonlinear variants where
the diffusion tensorD is a function of the local structure of the evolving
image are investigated in [60].

Although these scale-spaces differ w.r.t. decay behaviour in Fourier space,
separability, extremum principle, nonenhancement of local extrema and scale
invariance, the pseudodifferential operators P (∇) and their corresponding
kernels k(x, t) can be computed following the strategy in Subsections
2.1 and 2.2. The results are summarised in Table 1. Note that the
symbol representation allows simple formulas even in those cases where the
corresponding kernels do not have a closed form representation. Therefore,
we will also use it later on for establishing correspondences to morphological
scale-spaces.
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Table 1: Specific LSI scale-spaces, their evolution equations, symbols, and
convolution kernels. Γ denotes the gamma function, and Kν is the modified
Bessel function of the third kind [1].

LSI scale-space evolution equation symbol kernel

alpha ∂tu = −(−∆)αu p(ξ) = −|ξ|2α no closed formula

Gaussian ∂tu = ∆u p(ξ) = −|ξ|2 k(x, t) =
1

4πt
exp

(
−|x|

2

4t

)
Poisson ∂tu = −

√
−∆u p(ξ) = −|ξ| k(x, t) =

Γ(3
2
)

π3/2

t

(t2 + |x|2)3/2

summed alpha ∂tu = −
m∑
k=1

λk(−∆)αku p(ξ) = −
m∑
k=1

λk|ξ|2αk no closed formula

relativistic ∂tu =
(
m−

√
m2−∆

)
u p(ξ) = m−

√
m2 + |ξ|2 k(x, t) =

(m
2π

)3
2 2t etm

(t2 + |x|2)3/4
K3

2

(
m
√
t2 + |x|2

)
anis. Gaussian ∂tu = div(D∇u) p(ξ) = −〈ξ,Dξ〉 k(x, t) =

1

4πt detD
exp

(
−x

>D−1x

4t

)

3 Morphological Scale-Spaces

In this section we want to introduce another class of scale-spaces, called
morphological scale-spaces. To emphasise the similarities and differences to
the linear scale-spaces from Section 2, we keep the general structure as similar
as possible.

3.1 Morphological Scale-Spaces as Evolution
Equations

Mathematical morphology is a system theory where the classical algebra
(R,×,+) that is used within linear system theory is replaced by the
morphological min-plus algebra Rmin := (R ∪ {+∞},+,min). For more
details we refer to [12]. In the last decades, min-plus and max-plus algebras
have become very fruitful tools in applications such as discrete event systems
[7], and they have been studied also from a more theoretical perspective in
fields like tropical geometry [41].
Following Heijmans and Maragos [25], we consider Hamilton-Jacobi equations
of type

∂tv = −H(∇v),

v(x, 0) = f(x)

(23)

(24)

as evolutions that lead to morphological scale-spaces. In the sequel, we will
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assume that f is bounded and lower semi-continuous (lsc), i.e.

f(x0) ≤ lim
x→x0

inf f(x) for all x0, (25)

and the function H is convex and coercive, i.e.

lim
|x|→∞

H(x)

|x|
=∞ . (26)

Under these conditions, the initial value problem (23)–(24) has a unique
viscosity solution [38].
For our morphological systems, the problem (23)–(24) plays the same role as
problem (7)–(8) does for LSI systems.

3.2 Interpretation as Infimal Convolution Scale-Spaces

As described e.g. in [24], the unique viscosity solution of (23)–(24) is given
by the Hopf-Lax formula

v(x, t) = min
y∈R2

{
f(y) + tH∗

(
x− y
t

)}
(27)

where H∗ denotes the the convex conjugate of H:

s(x) = H∗(x) := sup
y∈R2

{〈y,x〉 −H(y)}. (28)

We define the structuring function (SF)

s(x, t) := tH∗
(x
t

)
= (tH)∗(x) (29)

and use the notation of an infimal convolution

(f � g)(x) = inf
y∈R2
{f(y) + g(x− y)} . (30)

Then the solution of our morphological evolution is given by

v(x, t) = (f � s(·, t))(x) ,

s(x, t) = (tH)∗(x) .

(31)

(32)
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3.3 Examples of Morphological Scale-Spaces

In a similar way as our LSI framework covers a large family of linear scale
spaces, the Hamilton-Jacobi formulation comprises also many morphological
scale-spaces. We illustrate this by a number of examples.

1. Dilation and Erosion Scale-Spaces

Usually mathematical morphology is expressed in terms of dilations
and erosions. The dilation ⊕ resp. erosion 	 of an image f with some
structuring function b : R2 → R ∪ {−∞} is defined as

(f ⊕ b)(x) := sup
y∈R2

{f(y) + b(x−y)} , (33)

(f 	 b)(x) := inf
y∈R2

{
f(y) + b̄(x−y)

}
(34)

where the bar notation denotes b̄(x) := −b(−x).
Dilations and erosions are related to the infimal convolution by

f 	 b = f � b̄ , (35)

−(f ⊕ b) = (−f) � (−b) . (36)

Therefore, infimal convolutions behave essentially like erosions.
Dilations can be obtained by applying an infimal convolution with the
negative of the structuring function to the negative of the signal.

For these reasons, results for dilations and erosions are equivalent to
results for infimal convolutions.

2. Quadratic Structuring Function Scale-Space. Taking
s(x) = 1

4
|x|2 as structuring function, equation (28) implies that

H(x) = |x|2. In this case, the infimal convolution

v(x, t) = (f � s(·, t)) (x) (37)

is the viscosity solution of the evolution process

∂tv = −|∇v|2 , (38)

v(0) = f . (39)

Van den Boomgaard has shown that quadratic structuring functions
such as

s(x) = 1
4
|x|2 (40)
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are the only structuring functions that are rotationally invariant and
separable [58]. This has motivated him to regard (38)–(39) as the
morphological equivalent of Gaussian scale-space, since the latter one
is the only scale-space with a rotationally invariant and separable
convolution kernel [47, 61].

3. Scale-Spaces with Flat Disc Structuring Functions. If one uses
as structuring function a flat disc

s(x) =

{
0 for |x| ≤ 1,

∞ else,
(41)

it has been shown in [3, 6, 9] that one arrives at

∂tv = −|∇v|. (42)

Evolutions of this type can be interpreted in many ways as scale-spaces;
see [3, 59, 31] for more details.

4. Structuring Functions of Arbitrary Power. Jackway [29] as well
as Diop and Angulo [15] have investigated morphological processes that
can be described by evolution equations of type

∂tv = −|∇v|β (43)

with arbitrary powers β > 1. Their corresponding structuring functions
are given by the poweroids

s(x) = (β − 1) |x/β|β/(β−1) . (44)

5. Anisotropic Structuring Functions. So far, all our morphological
scale-spaces use isotropic structuring functions that do not favour
specific directions. Depending on the application, it can make sense
to consider also anisotropic structuring functions that are adapted to
directions of special interest.
An early anisotropic morphological PDE model goes back to Arehart
et al. [6]: They have used ellipse-shaped flat structuring functions

s(x) =

{
0 x>D−1x ≤ 1,

∞ else
(45)
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with some positive definite symmetric matrix D. This leads to
evolutions of type

∂tv = −|D∇v| . (46)

Later on, Breuß et al. [8] have adapted D to the underlying local image
structure.
Evolutions with anisotropic quadratic structuring functions

s(x) =
1

4
x>D−1x (47)

can be described by
∂tv = −∇>vD∇v. (48)

Such processes go back to van den Boomgaard [57] and Jackway [30] in
a space-invariant setting. More recently, Landström [35] has considered
space-adaptive generalisations.

Table 2 gives a compact representation of the morphological examples that
we have discussed.

Table 2: Specific morphological scale-spaces of Hamilton-Jacobi type and
their structuring functions (SFs).

morphological scale-space evolution equation structuring function

quadratic SF ∂tv = −|∇v|2 s(x, t) = 1
4t
|x|2

flat disk SF ∂tv = −|∇v| s(x, t) =

{
0 |x| ≤ t,

∞ else

poweroid SF ∂tv = −|∇v|β s(x, t) = t (β − 1)
∣∣∣ xt β ∣∣∣β/(β−1)

flat ellipse-shaped SF ∂tv = −|D∇v| s(x, t) =

{
0 x>D−1x ≤ t2,

∞ else

anisotropic quadratic SF ∂tv = −∇>vD∇v s(x, t) = 1
4t
x>D−1x

4 Morphological Counterparts of Linear

Scale-Spaces

In Section 2 we have seen that linear pseudodifferential equations with
constant coefficients can be solved by means of convolutions. On the other
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hand, in Section 3 we have emphasised infimal convolutions as a tool for
solving morphological PDEs. The goal of this section is to connect both
worlds, first on a convolution / infimal convolution level and afterwards on
the level of evolution equations. To this end, it is useful to introduce a novel
transformation, the Cramér–Fourier transform.

4.1 Connections between Convolutions and Infimal
Convolutions

Burgeth and Weickert [12] have explained connections between linear and
morphological systems by considering the Cramér transform

C [ f ] :=
(

logL [ f ]
)∗
, (49)

which relies on the (double sided) Laplace transform

L [ f ] (x) =

∫
R2

f(y)e〈x,y〉 dy. (50)

Unfortunately, the Laplace transform is only finite for functions with
exponential decay, which limits its applicability in image processing.

As a remedy, we propose a variant of the Cramér transform that is based on
the Fourier transform. This allows a wider applicability. We call our novel
transformation the Cramér-Fourier transform and define it as follows:

Definition 1. Let f be a function with a real-valued and nonnegative Fourier
transform. Then its Cramér-Fourier transform is given by

CF [ f ] :=
(
− logF [ f ]

( ·
2π

) )∗
. (51)

This definition fits well to our kernels in Table 1: Their Fourier transform is
real-valued (due to the kernel symmetry) and positive.

First we prove that the Cramér-Fourier transform benefits from the same
key property as the classical Cramér transform considered in [12]: It maps
convolutions to infimal convolutions.

Theorem 1 (Convolution Property of the Cramér-Fourier transform).
Assume that two functions f and g are proper, lower semi-continuous, and
have convex Cramér-Fourier transforms. Then the following holds true:

CF [ f ∗ g ] = CF [ f ] � CF [ g ] . (52)
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Proof. Our proof uses several results from convex analysis (see e.g. [51]).
Since CF [ f ] and CF [ g ] are lsc, proper and convex, also their convex
conjugates CF [ f ]∗ and CF [ g ]∗ share these properties. Moreover, it follows
that CF [ f ]∗ = − logF [ f ]. Therefore, a direct computation gives

CF [ f ∗ g ] =
(
− logF [ f ∗ g ]

( ·
2π

))∗
=
(
(− logF [ f ]

( ·
2π

)
) + (− logF [ g ]

( ·
2π

)
)
)∗

= (− logF [ f ]
( ·
2π

)
)∗ � (− logF [ g ]

( ·
2π

)
)∗

= CF [ f ] � CF [ g ] (53)

where we have applied the convolution theorem

F [ f ∗ g ] = F [ f ] F [ g ] (54)

for the Fourier transform and the well known property

(f + g)∗ = f ∗ � g∗ (55)

of the convex conjugate. �

Taking a delta peak with x0 fixed

δ(x) =

{
1 for x = 0

0 else
(56)

as f , and the convolution kernel k of an LSI space-space as g, Theorem 1
shows that we obtain a morphological scale-space with structuring function
CF [ k ] and morphological delta peak

χ(x) =

{
0 for x = 0

∞ else
. (57)

as initial value. The morphological delta peak is the neutral element for
infimal convolutions in the same way as a delta peak is the neutral element
for convolutions.
For applications in image processing, we use the convolution kernels and these
obtained structuring functions to create linear and morphological scale-spaces
with the same initial image f .

Definition 2. For some LSI scale-space

u(x, t) = (f ∗ k(·, t))(x) (58)
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with convolution kernel

k(x, t) = F−1 [ exp (p(2π ·) t) ] (x) (59)

and initial image f , the structuring function s(x, t) for a corresponding
morphological scale-space

v(x, t) = (f � s(·, t))(x) (60)

is obtained by applying the Cramér–Fourier transform to k(x, t):

s(x, t) = CF [ k(·, t) ] (x) = (−t p(·))∗ (x). (61)

4.2 Connections between Linear and Morphological
Evolutions

Interestingly, we can also use the Cramér-Fourier transform on the level of
evolution equations. This enables us to prove the following theorem which
constitutes our main theoretical result.

Theorem 2 (Main Theorem). Let u(x, t) be the solution of the LSI scale-
space evolution

∂tu(x, t) = p (∇)u(x, t) on R2 × (0,∞) (62)

u(x, 0) = δ(x) on R2 (63)

where p(ξ) denotes the symbol of the pseudodifferential operator P (∇) with
constant coefficients.
If p is proper, lower semi-continuous and convex, the Cramér-Fourier
transform of u, denoted by v, is the unique viscosity solution of the
morphological scale-space evolution

∂tv(x, t) = p (∇v(x, t)) on R2 × (0,∞) (64)

v(x, 0) = χ(x) on R2 . (65)

A similar theorem using the Cramér transform is proved by Akian et al.
[2]. While their proof could be modified to our setting, using the previous
obtained results is much simpler.

Proof. The discussion in Section 2.1 shows that the solution of (62)-(63) is
given b which

u(x, t) = (δ ∗ k(·, t))(x) (66)
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with k(x, t) = F−1 [ exp(p(2π·)t) ] (x). Since p is proper, lower semi-
continuous and convex, applying Theorem 1 shows that v(x, t) =
CF [u(·, t) ] (x) is given by

v(x, t) = (χ� s(·, t))(x) (67)

with s(x, t) = (−t p(·)∗(x)). Following the discussion in Section 3.2 with
H = −p, this is the Hopf-Lax formula for the unique viscosity solution of
(64)-(65).

This motivates us to introduce the following definition that is the counterpart
of Definition 2 in terms of evolution equations.

Definition 3. Let an LSI scale-space evolution be given by

∂tu = P (∇)u , (68)

u(x, 0) = f(x) . (69)

Then its corresponding morphological scale-space evolution satisfies

∂tv = p (∇v) , (70)

v(x, 0) = f(x) . (71)

Note that for computing the corresponding morphological scale-space, only
the symbol p of the LSI scale-space is required. In particular, no closed form
kernel representation is necessary.

Figure 1 summarises our main theoretical findings. We observe that we
have obtained a simple dictionary that allows to translate results between
linear and morphological scale-spaces, both in terms of convolutions / infimal
convolutions and evolution equations.

5 Application to Specific Scale-Spaces

Now we are in a position to apply our theory to a number of linear scale-
spaces in order to derive their morphological counterparts.

5.1 Gaussian Scale-Space

Table 1 specifies the symbol of Gaussian scale-space as

p(ξ) = −|ξ|2 . (72)
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LSI evolution

∂tu = P (∇)u,

morphological evolution

∂tv = p(∇v),

convolution with kernel

k(x, t) = F−1 [ exp(t p(2π ·)) ] (x)

infimal convolution

with structuring function

s(x, t) = (−t p(·))∗ (x)

morphological counterpart

Definition 3

Section 3.2
solves Hamilton-

Jacobi equation
solution in

Fourier domain
Section 2.2

Cramér-Fourier transform

Definition 2

Figure 1: General dictionary that allows to translate results between LSI
scale-spaces and morphological scale-spaces, both on the level of evolution
equations (top) and the level of convolutions / infimal convolutions (bottom).

According to Definition 3, its morphological counterpart is given by

∂tv = −|∇v|2 , (73)

which coincides with van den Boomgaard’s result [58]. According to our
framework, the corresponding structuring function can be computed as

s(x) = (− p (·))∗ (x) = 1
4
|x|2, (74)

which again confirms van den Boomgaard’s result. This shows that our
framework reproduces the only connection between linear and morphological
scale-spaces that is known so far. Thus, we can focus now on establishing
novel connections.

5.2 α-Scale-Spaces

In the same way as above, one can show that the morphological equivalents
for the α-scale-spaces are given by

∂tv = −|∇v|2α. (75)

We observe that this is exactly the class of morphological evolutions that are
studied by Jackway [29] and by Diop and Angulo [15].

Interestingly, (75) also proves that for α = 1
2
, the linear counterpart of the

widely-used morphological scale-space

∂tv = −|∇v|, (76)
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which describe erosion with a flat disc of radius t, is given by the Poisson
scale-space

∂tu = −
√
−∆u . (77)

To our knowledge, this connection has not been stated before.

As a didactic example, let us now confirm that our computations
also reproduce the structuring functions of [15]. Knowing the symbol
p(x) = −|x|2α, we can use (28) again to compute sα :

sα(x) = (−p (·))∗ (x) = (| · |2α)∗(x)

= (2α−1)
∣∣∣ x
2α

∣∣∣ 2α
2α−1

, (78)

since (see e.g. [51]), p. 106)(
1
b
| · |b

)∗
(x) = b−1

b
|x|

b
b−1 for b > 1 . (79)

This coincides with the result from [15] stated in (44). Although this formula
only holds for α > 1

2
, we can compute the pointwise limit

lim
α→ 1

2

+
sα(x) =

{
0 |x| ≤ 1,

∞ else.
(80)

As expected, this is a flat disc of radius 1.

5.3 Summed α-Scale-Spaces

We know that summed α-scale-spaces have the symbol

p(ξ) = −
m∑
k=1

λk|ξ|2αk . (81)

This yields

∂tu = −
m∑
k=1

λk|∇u|2αk (82)

as morphological counterpart of

∂tu = −
m∑
k=1

λk(−∆)αk u . (83)

In a similar way as before, its structuring function can be derived as

s(x) =
m

�
k=1

λk(2αk−1)

∣∣∣∣ x

2αk λk

∣∣∣∣
2αk

2αk−1

. (84)
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5.4 Relativistic Scale-Spaces

From Table 1 we see that relativistic scale-spaces are characterised by the
symbol

p(ξ) = m−
√
|ξ|2 +m2 . (85)

This gives
∂tv = m−

√
|∇v|2 +m2 (86)

as morphological counterparts. The structuring function sr,m can be
computed as before as the convex conjugate of the negative symbol:

sr,m(x) =
(√
| · |2 +m2 −m

)∗
(x) (87)

= sup
y∈R2

(
〈x,y〉+m−

√
|y|2 +m2

)
. (88)

If |x| ≤ 1, the solution for y is given by

y =
xm

1− |x|2
. (89)

Thus, it follows that

sr,m(x) =

{
m
(

1−
√

1− |x|2
)
|x| ≤ 1,

∞ else.
(90)

For m→ 0, the structuring function sr,m converges to a flat disc of radius 1.
This is expected from the results from the last section, since the relativistic
scale-spaces converge to the Poisson scale-space for m→ 0.

5.5 Anisotropic Scale-Spaces

The symbol for anisotropic Gaussian scale-space is

p(ξ) = −〈ξ,Dξ〉 . (91)

This allows to compute the morphological counterpart of

∂tu = div(D∇u) (92)

as

∂tv = −〈∇v,D∇v〉 . (93)
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As already mentioned, this morphological evolution has been studied by van
den Boomgaard [57] and by Jackway [30].

So far we have always started with LSI scale-spaces and derived their
corresponding morphological scale-space. The only morphological evolution
that we could not derive in this way was the anisotropic differential equation
of Arehart et al. [6]:

∂tv = −|D∇v| = −
√
∇>vD2∇v . (94)

This is a good opportunity to show that our theoretical framework provides
us with a dictionary that can be used also in the reverse direction. Obviously
(94) can be expressed as

∂tv = p(∇v) (95)

with symbol
p(ξ) = −

√
ξ>D2 ξ . (96)

This gives rise to an anisotropic Poisson scale-space

∂tu = −
√
−∇>D2∇ u (97)

that has not been described in the literature before.

Table 3 summarises the results of Section 5. We observe that we have derived
many correspondences between known LSI scale-spaces and morphological
ones. Moreover, we have also managed to come up with novel scale-spaces.

Table 3: Specific LSI scale-spaces and their morphological equivalents.

LSI scale-space LSI evolution morphological evolution morphological scale-space

Gaussian ∂tu = ∆u ∂tv = −|∇v|2 quadratic SF

Poisson ∂tu = −
√
−∆u ∂tv = −|∇v| flat disk SF

alpha ∂tu = −(−∆)αu ∂tv = −|∇v|2α poweroid SF

summed alpha ∂tu = −
∑m

k=1 λk(−∆)αku ∂tv = −
∑m

k=1 λk|∇v|2αk morphological summed alpha

relativistic ∂tu =
(
m−

√
m2−∆

)
u ∂tv = m−

√
m2 + |∇v|2 morphological relativistic

anisotropic Gaussian ∂tu = div(D∇u) ∂tv = −∇>vD∇v anisotropic quadratic SF

anisotropic Poisson ∂tu = −
√
−∇>D2∇ u ∂tv = −|D∇v| flat ellipse-shaped SF

6 Experiments

Although our paper is of theoretical nature, we would like to illustrate
some of the discussed scale-spaces and their correspondences by experiments.

20



(a) morphological (b) morphological (c) morphological
α-scale-space relativistic scale-space Gaussian and relativistic

scale-space

Figure 2: Structuring functions for one-dimensional morphological scale-
spaces.

The implementation for the linear scale-spaces uses a multiplication in the
Fourier domain. For the morphological scale-spaces, we compute the infimal
convolution over the image domain.

In Figure 2, we plot structuring functions of the morphological counterparts
of various alpha- and relativistic scale-spaces. First of all, we observe the
convexity of all structuring functions. Fig. 2(a) shows that for α→ 0.5, the
structuring function of the morphological α-scale-space converges to a flat
structuring function. A similar behaviour can be observed for morphological
relativistic scale-spaces when m → 0; see Fig. 2(b). On the other hand,
Fig. 2(c) shows that for m = 0.4, the morphological relativistic scale-space
gives a good approximation to the morphological equivalent of Gaussian
scale-space.

Figure 3 shows the two-dimensional linear α-scale-space for α = 0.75 together
with its morphological infimal convolution counterpart which corresponds to
an erosion process. To enable comparisons, we have chosen the same Mona
Lisa image as in [12]. Moreover, for the sake of completeness, we also depict
the corresponding dilation scale-space.

Figure 4 compares the linear and morphological relativistic scale-space for
m = 0.1. Since this m value is fairly close to the limit m → 0, the linear
evolution resembles Poisson scale-space, and its morphological counterpart
approximates erosion with disc-shaped structuring functions. The latter is
well visible.

The last example in Figure 5 shows that the anisotropy of the convolution
kernel carries over to the structuring function. For this experiment we take
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(a) t = 0 (b) t = 5 (c) t = 15 (d) t = 50

(e) t = 0 (f) t = 1 (g) t = 3 (h) t = 10

(i) t = 0 (j) t = 1 (k) t = 3 (l) t = 10

Figure 3: Top: Linear α-scale-space with α = 0.75. Middle: Morphological
α-scale-space with α = 0.75. Bottom: Corresponding dilation scale-space.

the matrix

D =

(
5 1
1 1

)
(98)

and compare the convolution kernel of the anisotropic Poisson scale-space
to its corresponding flat, ellipse-shaped structuring function (45) with the
inverse matrix

D−1 =
1

4

(
1 −1
−1 5

)
. (99)

7 Conclusions and Future Work

We have established a mathematical dictionary that allows to translate any
linear shift-invariant scale-space evolution into its morphological counterpart
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(a) t = 0 (b) t = 1 (c) t = 5 (d) t = 20

(e) t = 0 (f) t = 1 (g) t = 5 (h) t = 20

Figure 4: Top: Linear relativistic scale-space with m = 0.1. Bottom:
Morphological relativistic scale-space with m = 0.1.

(a) t = 3 (b) t = 10

Figure 5: Left: Convolution kernel for linear anisotropic Poisson scale-space.
Right: Corresponding structuring function.

of Hamilton-Jacobi type and vice versa. In contrast to previous work
on structural similarities between linear and morphological systems, we
have achieved these equivalences in the terminology of differential or
pseudodifferential operators. It turned out that the symbol p is a very
simple and powerful concept: It allows to transform the linear evolution
equation ∂tu = P (∇)u into its morphological counterpart ∂tv = p(∇v). By
considering specific examples of linear or morphological scale-spaces we have
discovered hitherto unexplored relations between known scale-spaces, such
as the Poisson scale-space and morphology with a disc-shaped structuring
element of increasing size. Moreover, novel scale-spaces have been introduced
that have not been studied before, e.g. anisotropic Poisson scale-spaces and
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morphological relativistic scale-spaces.

There are numerous ways to extend our findings in interesting directions.
Obviously, these new scale-spaces should be explored further in order to
identify promising applications. On the other hand, it is also challenging
to extend the current applications and limitations of our dictionary, e.g. by
considering to Lie group versions of linear scale-spaces [17, 18]. So far, our
framework requires evolutions that adhere to a semi-group property. This
excludes its application to scale-spaces that do not satisfy this requirement,
e.g. regularisation scale-spaces [13, 44, 50, 53] and the closely related Bessel
scale-space [10]. We will investigate if our concepts can be extended to
handle also these processes. Another current limitation is the restriction
to linearity on the classical scale-space side due to the involvement of the
Fourier transform. If we can overcome this limitation, also nonlinear scale-
spaces such as nonlinear diffusion [49, 60] and curvature-based morphological
evolutions [3, 4, 33, 52] can be studied. These are topics of our ongoing
research.
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