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Kurzzusammenfassung – Short Abstract

Kurzzusammenfassung – Deutsch

In dieser Arbeit werden die auf den ersten Blick vollkommen voneinander unabhängig er-
scheinenden Bereiche Bildkompression, 3D-Posenschätzung und Halbtonverfahren behandelt
und im Bereich der Videokompression sinnvoll zusammengeführt. Unser erster Beitrag ist ein
Bildkompressionsalgorithmus, der auf einem rechteckigen Unterteilungsschema basiert. Die-
ser Algorithmus speichert nur eine kleine Teilmenge der im Bild vorhandenen Punkte, wäh-
rend die restlichen Punkte mittels partieller Differentialgleichungen rekonstruiert werden. Da-
nach stellen wir ein Posenschätzverfahren vor, welches die 3D-Position und Ausrichtung von
mehreren Objekten anhand von Bilddaten gleichzeitig verfolgen kann. Unser Verfahren funk-
tioniert bei verrauschten Videos und im Falle von Objektüberlagerungen. Auch Verdeckungen
innerhalb einer kinematischen Kette werden natürlich behandelt. Unser dritter Beitrag ist ein
Halbtonverfahren, das auf elektrostatischen Prinzipien beruht. Durch eine Reihe von Erweite-
rungen kann dieses Verfahren flexibel an verschiedene Szenarien angepasst werden. So ist es
beispielsweise möglich, verschiedene Punktgrößen zu verwenden oder Schraffuren zu erzeu-
gen. Der letzte Teil der Arbeit zeigt, wie man unseren Bildkompressionsalgorithmus, unser
Posenschätzverfahren und unser Halbtonverfahren zu neuen Videokompressionsalgorithmen
kombinieren kann. Die für jeden der vier Themenbereiche entwickelten Verfahren erzielen
hervorragende Resultate, welche die Ergebnisse anderer moderner Verfahren übertreffen.

Short Abstract – English

In this thesis, we discuss image compression, pose tracking, and halftoning. Although these
areas seem to be unrelated at first glance, they can be connected through video coding as
application scenario. Our first contribution is an image compression algorithm based on a
rectangular subdivision scheme which stores only a small subsets of the image points. From
these points, the remained of the image is reconstructed using partial differential equations.
Afterwards, we present a pose tracking algorithm that is able to follow the 3-D position and
orientation of multiple objects simultaneously. The algorithm can deal with noisy sequences,
and naturally handles both occlusions between different objects, as well as occlusions occur-
ring in kinematic chains. Our third contribution is a halftoning algorithm based on electrostatic
principles, which can easily be adjusted to different settings through a number of extensions.
Examples include modifications to handle varying dot sizes or hatching. In the final part of
the thesis, we show how to combine our image compression, pose tracking, and halftoning
algorithms to novel video compression codecs. In each of these four topics, our algorithms
yield excellent results that outperform those of other state-of-the-art algorithms.
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Zusammenfassung

In der vorliegende Arbeit werden Algorithmen aus vier anspruchsvollen Forschungsgebieten
betrachtet: Zunächst führen wir ein Bildkompressionsverfahren ein, das nur einige wenige
Punkte des Bildes speichert und die restlichen Bildpunkte mittels einer partiellen Differen-
tialgleichung (PDE) rekonstruiert. Zur Reduktion des zur Speicherung der Punktpositionen
nötigen Speicherbedarfs werden die Punkte mittels einer adaptiven Unterteilung des Bildes in
Rechtecke bestimmt. Unter anderem werden verschiedene PDEs, Methoden die gespeicher-
ten Punkte zu wählen und Entropiekodierer evaluiert. Durch eine Reihe weiterer behutsamer
Optimierungen ist es somit möglich, den Speicherbedarf eines Bildes deutlich zu reduzieren.
Experimente mit Standard-Testbildern zeigen, dass dieser Ansatz bessere Kompressionsraten
als JPEG erreicht und sogar dessen Nachfolger JPEG 2000 übertrifft.

Unser zweiter Beitrag ist ein Algorithmus zur Verfolgung der sogenannten Pose sich be-
wegender Objekte. Bei der Pose handelt es sich dabei um Lage, Ausrichtung und eventuell
vorhandene interne Parameter, wie beispielsweise Gelenkwinkel. Die Pose wird durch die Mi-
nimierung eines Energiefunktionals gefunden, das direkt auf den Poseparametern arbeitet. Un-
ser Posenschätzverfahren kann mehrere unterschiedliche Objekte gleichzeitig verfolgen und
dabei sowohl Selbstverdeckungen als auch Verdeckungen durch andere Objekte bewältigen.
Obwohl verschiedene Erweiterung das Einbringen von Vorwissen ermöglichen, liefert unser
Verfahren auch ohne solche a priori Informationen gute Ergebnisse. Beispiele für mögliches
Vorwissen sind bekannte Hintergrundbilder oder Einschränkungen der möglichen Posen.

Wir haben unser Posenschätzverfahren mittels einer Vielzahl von Sequenzen evaluiert, die
insgesamt aus über 15000 Bilder und mehr als einem Dutzend verschiedener Objekte bestehen.
Ein darunter befindlicher standardisierter Vergleichstest zeigt, dass die Ergebnisse unseres
Verfahrens zu den Besten der Literatur gehören.

Im dritten Teil dieser Arbeit beschäftigen wir uns mit sogenannten Halbtonverfahren, wel-
che Bilder mit kontinuierlichen Grautönen durch schwarze Punkte auf einem weißen Hin-
tergrund annähern. Solche Verfahren werden insbesondere bei Druckern und Fax-Maschinen
verwendet, die nur rein schwarze Punkte auf weißes Papier erstellen können.

Das von uns entwickelte Halbtonverfahren basiert auf der Idee, schwarze Punkte durch
elektrisch geladene Partikel zu modellieren, die sich in einem vom Bild bestimmten Kraftfeld
bewegen. Durch eine geschickte Kombination der abstoßenden Kräfte zwischen verschiede-
nen Partikeln und der durch das Bild gegebenen anziehenden Kräfte verteilen sich die Partikel
derart, dass eine gute Näherung des Eingabebildes erreicht wird. Außerdem stellen wir eine
Reihe von Erweiterungen dieses einfachen und flexiblen Ansatzes vor, um optimale Ergebnis-
se für verschiedene Anwendungen zu erhalten. Diese erlauben unter anderem die Behandlung
von Punkten mit unterschiedlichen Größen oder auch von Linien.

Schließlich demonstrieren wir, wie unsere Verfahren der Themenbereiche Bildkompressi-
on, 3D-Posenschätzung, sowie unser Halbtonverfahren zu verschiedenen Videokompressions-
verfahren vereint werden können. Moderne Videokompressionsverfahren der MPEG- oder
H.26x-Familie verwenden zur Kompression der Videodaten Bewegungskompensation und
Bildkompressionsverfahren, die auf Bildtransformationen beruhen. Da unser Verfahren auf

v



Zusammenfassung

Anwendungen mit nahezu statischem Hintergrund spezialisiert ist, verwenden wir jedoch eine
andere Herangehensweise, in der Vorder- und Hintergrund eines Videos unabhängig vonein-
ander gespeichert werden. Dieses Verfahren eignet sich für praktische Anwendungen in vielen
Bereichen, beispielsweise bei Videokonferenzen oder der Verkehrs- und Sicherheitsüberwa-
chung.

Unser Videokompressionsverfahren verfolgt zunächst die sich bewegenden Vordergrundob-
jekte. Aus den so gewonnenen Posen und dem komprimierten Hintergrundbild wird zusammen
mit weiteren Informationen wie den 3D-Modellen der Objekte und der Projektionsmatrix der
Kamera das ursprüngliche Video näherungsweise wiederhergestellt.

Die Qualität des resultierenden Videos ist allerdings oft unbefriedigend, da es aus ver-
schiedene Gründen zu deutlich sichtbaren Fehlern kommen kann. Solche Fehler entstehen
beispielsweise durch ungenaue Modelle, falsche Posenchätzungen oder Beleuchtungsände-
rungen. Um solche Fehler zu kompensieren, wird zusätzlich der Unterschied zwischen dem
ursprünglichem Video und seiner Rekonstruktion durch Informationen in ausgewählten Bild-
punkten gespeichert. Ähnlich zur Speicherung des Hintergrundes wird hierzu das Differenz-
bild mittels partieller Differentialgleichungen aus diesen einzelnen Bildpunkten erzeugt. Un-
ser Halbtonverfahren liefert hierbei passende Punktpositionen. Obwohl die Entwicklung der
vorgestellten Videokompressionsverfahren gerade erst begonnen hat, liefern erste Experimen-
te bereits jetzt Ergebnisse, die mit dem aktuellen Stand der Technik vergleichbar sind.

Somit führen wir in dieser Arbeit Bildkompressions-, 3D-Posenschätzungs- und Halbton-
verfahren ein, und zeigen, dass sich diese zu Videokompressionsalgorithmen zusammenführen
lassen. Die von uns für die vier betrachteten Themengebiete entwickelten Verfahren können
nicht nur mit modernen Verfahren konkurrieren, sondern übertreffen diese sogar in vielerlei
Hinsicht.
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Abstract

This thesis deals with algorithms for four challenging research topics. First, we introduce
an image compression algorithm which saves only a small set of the points in the image
and reconstructs the remainder of the image using a partial differential equation (PDE). To
reduce the amount of memory necessary to store the positions of these points, all points are
determined from an adaptive rectangular subdivision of the original image. Among other
things, we evaluate different PDEs, ways how to choose the saved points, and entropy coders.
Using these and a number of other careful optimisations, the space required to store images is
reduced significantly. Experiments on standard test images illustrate that this approach yields
much higher compression ratios than JPEG, and even outperforms JPEG 2000.

Our second contribution is an algorithm to follow the so-called poses of moving objects
within a video sequence, whereby the pose consists of the 3-D position, orientation, and any
internal parameters – such as angles between joints – that might be present. This tracking step
is achieved by minimising an energy functional that directly depends on the pose parameters.
It can simultaneously follow the movement of multiple objects while being robust against both
self-occlusions as well as occlusions between different objects. Even though various exten-
sions allow to use prior knowledge, e.g. about the background image or positional constraints,
our algorithm works well even if no such knowledge is available.

We evaluate our tracking algorithm using a large number of sequences consisting of more
than 15000 images and more than a dozen different objects. This includes a sequence of a
standard benchmark which shows that the results of our algorithm are among the best found
in the literature.

In the third part of this thesis, we deal with halftoning, which is the task to approximate
images with continuous grey values using black dots on a white background. Such algorithms
are well-known from printers and fax machines, which can only generate pure black dots on
white paper.

The halftoning algorithm we developed is based upon the idea to model black points as
charged particles in a force field, which is created from the image. Using a mixture of repulsive
forces between particles and attractive forces stemming from the image, the particles distribute
in such a way that a good approximation of the original image is obtained. We also introduce
a number of extensions to this simple and flexible approach to handle specific applications.
Thus, we can create results containing varying dot sizes, different colours, or lines, among
others.

Finally, we illustrate that our algorithms from the three topics image compression, 3-D pose
tracking, and dithering can be combined to several video compression algorithms. Recent
video compression algorithms, such as the members of the MPEG or H.26x family, use image
transformations to store individual frames, and motion compensation between (not necessarily
successive) frames. The video codec presented here is specialised for applications with static
backgrounds, i.e. for applications such as traffic or security surveillance, or video conferenc-
ing. Hence, we can use an approach which stores fore- and background independently of each
other.
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Abstract

Our video compression algorithm first tracks the moving foreground objects. Using the ob-
tained poses and a compressed version of the background image, as well as other information
such as 3-D object models and a projection matrix, an approximation of the original video
is reconstructed. However, due to imprecise 3-D models, tracking failures, lighting changes,
and other problems, the quality of the reconstructed video is often unsatisfying. Thus, an ad-
ditional step is applied that accounts for these problems by storing an approximation of the
difference image between the original frame and its reconstruction. Similar to our approach to
store the background image, we save only a small set of points and reconstruct the remainder
using a PDE. To this end, we use our halftoning algorithm to find appropriate point positions.
Although the presented video compression algorithm is only at the beginning of its develop-
ment, first experiments already show that the quality of videos compressed with this approach
can yield a significantly improved quality compared to those obtained from state-of-the-art
algorithms such as MPEG-4.

To recapitulate, we introduce algorithms for image compression, pose tracking, and halfton-
ing, and combine these methods to video compression algorithms. Furthermore, we illustrate
that the results of our methods do not only keep up with modern algorithms, but outperform
them in many aspects.
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1 Introduction

“People often say that motivation doesn’t last.
Well, neither does bathing – that’s why we recommend it daily.”

Hilary Hinton “Zig” Ziglar (∗1926)

In image processing, visual computing, and computer vision, there are a huge number of un-
solved problems. In this thesis, we discuss four of these problems, namely 3-D pose tracking,
halftoning, as well as image and video compression.

We start with lossy image compression, which is the task to store an image using as few data
as possible without deteriorating the image. Due to the huge amount and increasing resolution
of images that are being created and viewed each day, image compression is still a topic of
ongoing research. For example, more than 250 million photos are uploaded to the website
“Facebook” on an average day [76].

In the closely related task of video compression, the amount of data necessary to represent
a sequence of images is reduced. Only considering the website “YouTube”, about two bil-
lion videos are watched each day, and 24 hours of video data is uploaded to this page every
minute [302]. These numbers clearly indicate that there is a need for good image and video
compression algorithms, as the amount of images and videos that can be stored and viewed
simultaneously depends on their size.

The task occurring in 3-D pose tracking, namely to follow an object in a video sequence, is
present in many applications ranging from object grasping in robotics over human computer
interaction and content-based video retrieval, to traffic or security surveillance. However,
due to the large variety of possible problems such as occlusions or changing illumination
conditions, it is still a topic of ongoing research.

In halftoning, or in the closely related areas of sampling, stippling, and dithering, the task is
to distribute points or other objects according to a given density distribution. This is necessary

Figure 1.1.: Illustration of the different steps occurring in one of our video compression algo-
rithms. From left to right: Initial image, compressed background image (compression ratio:
20 : 1), projected object model in tracked pose, and final result when using information from
2000 additional points where the locations are obtained by dithering.
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1. Introduction

in applications such as object placement, ray-tracing, or geometry processing. More example
scenarios from tracking and halftoning are given in Chapter 4 and 9, respectively.

Let us now briefly sketch our algorithms, whose results are illustrated in Figure 1.2, 1.3,
and 1.4 using the two example images shown in Figure 1.5.

Figure 1.2.: Compression results with com-
pression ratios of 47:1 (left) and 95:1 (right).

Our image compression algorithm is based
upon the idea already used in [88]: Store
only a small subset of the pixels in the origi-
nal image and reconstruct the remainder of
the image using partial differential equa-
tions. To allow an efficient encoding of the
pixel locations, only pixels on an adaptive
regular grid are considered in our approach.
Compared to [88], we introduced a number
of new ideas and improvements including a
novel brightness optimisation, an optimisa-

tion of free parameters occurring in the partial differential equations, and improved entropy
coding schemes. More enhancements, details, and comparisons are given in Chapter 3.

Figure 1.3.: 3-D pose tracking results illus-
trated by projecting the object in the estimated
pose into the image.

The tracking algorithm we developed uses
an uncoloured 3-D object model as input
data. This model is projected onto the input
image to segment the image into foreground
and background region. By adapting the 2-
D–3-D point correspondences obtained by
this projection, we change the 3-D object po-
sition and orientation in such a way that the
appearances of fore- and background differ
as much as possible, or match known appear-
ances estimated in previous frames. We ex-
plain various extensions, such as extensions
to simultaneous tracking of multiple objects consisting of multiple internal parts, or new local
ways to model the appearance of the background region.

Figure 1.4.: Halftoning results with 10000
(left) and 3000 (right) dots.

Our halftoning algorithm is based upon
the idea of electrostatic interactions of
charged particles in an attractive force field
computed from the input image. Thereby,
each particle corresponds to one dot in the fi-
nal image. This intuitive and flexible idea au-
tomatically binds the correct number of par-
ticles to each image region, independent of
the size or shape of the region, and indepen-
dent on the size of the dots in the output im-
age. We further introduce several extensions

of the simple but efficient idea to use electrostatic forces, which allow to adapt the algorithm
to specific applications.
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Figure 1.5.: Input images used for the illustrations in this chapter.

Our video compression algorithm is a so-called model-based coding scheme. These meth-
ods, which were introduced in [81], analyse the movement of one or several moving objects
in the video sequence. The obtained information is then used to reconstruct an approximation
of the video stream. Since object motions can typically be represented with few bytes, this
approach allows very high compression ratios.

Thus, we first track objects moving in the video to reconstruct their 3-D position and orien-
tation. This way, each image is split into fore- and background, which are compressed inde-
pendently. We assume that the background remains approximately constant over the complete
sequence. Thus, it is sufficient to compress the background once. To reconstruct the fore-
ground region, the object model is projected onto the image using the pose determined by the
tracking algorithm.

Additionally, we account for reconstruction inaccuracies due to inexact tracking, imprecise
object models, shadows, or similar problems . This can be done by encoding the difference
between original and reconstruction by a small set of image points whose positions slowly
change from frame to frame. From this set, the complete difference image is reconstructed
using image inpainting with homogeneous diffusion. To find the locations of the points in
this set, we dither the magnitude of the Laplacian of the difference image. This choice was
theoretically justified by Belhachmi et al. in [20]. An overview over the effects of these three
parts is given in Figure 1.1.

As can be seen, our video compression approach combines our image compression, 3-D
pose tracking, and dithering algorithms, which seemed unrelated at first glance. Detailed de-
scriptions of our algorithms, as well as discussions of previous works, are given in the follow-
ing chapters. Furthermore, we will present detailed evaluations which demonstrate that each
of our novel methods yields results that are comparable to other state-of-the-art algorithms,
and often even outperform them.
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1. Introduction

1.1. Outline
“A goal without a plan is just a wish.”

Antoine de Saint-Exupery (1900 – 1944)

This thesis is organised as follows:
In Chapter 2, we introduce some background knowledge that is necessary to understand

later chapters. The topics discussed in this chapter include PDE-based diffusion and image
inpainting methods, the transformation of object models with Lie Groups and Lie algebras, an
intuitive introduction to statistics, and a derivation of electrostatic forces in a pure 2-D plane.

As a first contribution, we present a detailed description of our compression algorithm for
still images in Chapter 3. Thereby, we evaluate a number of different ways to select the stored
points and test different inpainting operators, quantisation levels and entropy coders. As ex-
plained above, the algorithm we devised is based upon the ideas presented in [88], but clearly
outperforms this approach by using several improvements discussed in detail in Chapter 3.

The next chapters deal with 3-D pose tracking. As our tracking algorithm uses many of
the concepts introduced by Rosenhahn, Brox, and Weickert [219], we start by explaining their
segmentation and tracking approaches in Chapter 4. The basic version of our novel pose
tracker is introduced in Chapter 5, where we also sketch a number of extensions and show first
experiments.

Chapter 6 extends this simple tracking approach such that a simultaneous tracking of multi-
ple objects is possible. Since this allows to handle occlusions, tracking multiple objects even
improves tracking results if only the 3-D position of one object is desired.

The ideas introduced in Chapter 6 are developed further in Chapter 7 to multiple parts of the
same object model. The enhanced tracking algorithm uses internal object regions to improve
tracking of single objects. This is especially useful when tracking kinematic chains.

As a last improvement to our tracking approach, we introduce a new region model in Chap-
ter 8 to model locally varying appearances by using a mixture of densities. Our new model is
spatially varying and uses a partitioning step guided by the tracking results. In particular when
the background is unknown or moves, this model remarkably stabilised our tracking approach.

Chapter 9 introduces the novel halftoning algorithms we developed. They allow an accurate
representation of a grey-scale image by few black dots on a white background. Although the
algorithm is best suited for situations without restrictions on the locations of these dots, we
will see that it also yields excellent results if such restrictions are present.

The algorithms described up to Chapter 9 are combined in Chapter 10 to three closely
related video compression algorithms. Chapter 11 concludes this thesis and gives an outlook
on possible directions of future research.

In addition, this thesis has two appendixes. Appendix A gives a detailed introduction to
statistics. It accounts for the fact that this topic is not handled in detail in Section 2.7, where
only an intuitive introduction is present. Appendix B contains a complete list of publications.

Finally, we have also added an index containing the most important terms, a glossary which
can be used to look up the meaning of symbols, terms, and operators, and a list of figures.
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2 Mathematical and Physical Foundations

“The mathematics is not there till we put it there.”

Sir Arthur Eddington, English astronomer (1882 – 1944)
in The Philosophy of Physical Science

In this chapter, we introduce the mathematical and physical background necessary to under-
stand the remainder of the thesis. We start by explaining diffusion and inpainting with partial
differential equations, which will be used in our compression algorithm for single images.
Then, the electrostatic particle interactions in a 2-D plane needed for our halftoning algorithm
are derived in Section 2.2. After introducing the concepts of Lie groups and Lie algebras
in Section 2.3, we illustrate in Section 2.4 how the movement of points can be described by
elements of specific Lie groups and Lie algebras. This concept is extended to rigid objects
and kinematic chains. Next, Section 2.5 give the representation of lines and planes used in
this thesis. Finally, we introduce the camera model used throughout the thesis in Section 2.6,
and illustrate the basic statistics necessary to explain how image regions are modelled in Sec-
tion 2.7.

2.1. Diffusion and Inpainting With PDEs
“1050 is a long way from infinity.”

Daniel Shanks (1917 – 1996)
in Solved and Unsolved Problems in Number Theory

Diffusion is a widely-known everyday process responsible for balancing density or concen-
tration differences, which occurs in a multitude of different branches of physics. Two often
cited examples are the facts that a drop of ink added to a glass of water eventually colours the
whole water, and that heat is distributed in a room or an object. However, one should be aware
that convection has a stronger influence than diffusion in the first example, and that the second
example illustrates heat conduction, which is described by the same equations as diffusion.
More complex examples of diffusion include atomic diffusion or photon diffusion. The first
is the process that allows helium atoms to travel through the walls of a balloon, resulting in
a deflation of the balloon, while the second accounts for the fact that milk and chalk look
different due to subsurface scattering.

Diffusion is also widely used in image processing: Here, we identify grey values in an
image with concentrations. Given an initial image f with image domain Ω⊂ R2, we apply a
diffusion process to compute the transport between different pixels, and thus new images.
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2. Mathematical and Physical Foundations

Formally, we introduce a time variable t, and denote the image as a time-dependent function
u(x, t): Ω × R+

0 7→ R. This function is initialised as u(x, 0) = f(x), and diffusion is
performed using some operator L. That is, the complete diffusion process is given by the
partial differential equation (or PDE)

∂tu = Lu, u(x, 0) = f(x), (2.1)

where L denotes some differential operator. In the simplest case, an isotropic linear diffusion
operator Lu = ∆u is used. We will discuss this and many other differential operators later
this section.

A related problem is given by inpainting or interpolation. In this scenario, the image is only
given at some points while the missing parts of the image are to be reconstructed. One can
imagine this scenario by a room in which some air conditioning units are placed. Given that
each air conditioner heats or cools the surrounding air to a certain temperature, the task is to
compute the temperature in each point in the room.

Again, let f : Ω→ R be the original image to be reconstructed from a subset K ⊂ Ω of the
image. The set K is called the interpolation mask. The task is to compute a reconstruction u
of f such that u is equal to f in K,

u(x) = f(x) ∀ x ∈ K, (2.2)

and such that u is regular in some sense. For example, u can be required to be smooth. Both
conditions are met by using the PDE

(1− cK)Lu− cK (u− f) = 0 (2.3)

for reconstruction with reflecting (i.e. homogeneous Neumann) boundary conditions. Again,
L denotes some differential operator that ensures the requested smoothness properties, and cK
is the characteristic function of K, i.e. a function that is 1 at the specified pixel set K, and 0
elsewhere:

cK(x) :=

{
1 if x ∈ K
0 else

. (2.4)

Note that this PDE always keeps the given pixels fixed. Thus, the PDE in Equation (2.3) can
also be written as the simplified PDE

Lu = 0 (2.5)

on Ω\K, with Dirichlet boundary conditions (2.2) on K, and homogeneous Neumann bound-
ary conditions on the boundary of Ω.

To solve Equation (2.5), we again introduce an artificial time parameter t and compute the
steady state of the evolution equation

∂tu = Lu. (2.6)

Note one important difference between PDE-based diffusion and inpainting: In diffusion,
we are interested in the result after a finite time. For inpainting, however, we are looking for
the steady-state obtained for t→∞.
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2.1. Diffusion and Inpainting With PDEs

It is also possible to derive Equation 2.3 as a generalisation of spline interpolation and
variational regularisation. Details can be found in [290].

In the remainder of this section, we introduce several differential operators L that have been
proposed in image processing. Each of these operators can also be used for image interpolation
using the framework explained above.

2.1.1. Linear Isotropic Diffusion Operator
The simplest differential operator L that can be used for diffusion and inpainting is the linear
operator already given as example in the last section. It is based on the Laplacian ∆u:

Lu = ∆u = ∂2
x1
u+ ∂2

x2
u = div(∇u), (2.7)

and was originally introduced in [119] in the context of scale-space evolutions [289]. It is
well-known [108, 202] that diffusion with this operator corresponds to smoothing the initial
image with a 2-D Gaussian Kσ with standard deviation σ=

√
2t and mean µ= 0:

Kσ(x) :=
1√

2πσ2
exp

(
−|x− µ|

2

2σ2

)
(2.8)

Consequently, this diffusion process is linear, i.e. the diffusion strength is independent of
the image brightness, and isotropic, i.e. no direction is preferred. Due to these properties,
this process is called linear isotropic diffusion. Another name often used in this setting is
homogeneous diffusion.

This diffusion scheme is not only simple, but also fulfils useful properties the most impor-
tant of which is the maximum-minimum principle:

inf
y∈Ω

f(y) ≤ u(x, t) ≤ sup
y∈Ω

f(y) ∀x ∈ Ω, t ∈ R+. (2.9)

For inpainting, this means that the reconstructed image has pixels whose brightness values are
between those of the specified data:

inf
y∈K

f(y) ≤ u(x) ≤ sup
y∈K

f(y) ∀x ∈ Ω. (2.10)

This maximum-minimum principle is a strong stability result, since it guarantees that no over-
and undershoots will appear.

2.1.2. Polyharmonic Operators
The linear operator explained in the last section can easily be extended to order p:

Lu = (−1)p+1∆pu. (2.11)

The two higher-order representatives most widely used are the biharmonic operator

Lu = −∆2u, (2.12)

7



2. Mathematical and Physical Foundations

one obtains for p = 2, and the triharmonic operator

Lu = ∆3u (2.13)

with p = 3. These two operators can be regarded as rotationally invariant multidimensional
generalisations of cubic and quintic spline interpolation [68], respectively. Their correspond-
ing Green’s functions belong to the family of radial basis functions [42].

One big disadvantage of polyharmonic operators is the fact that they violate the maximum-
minimum principle for p ≥ 2. This is a typical observation for higher order differential
operators.

2.1.3. Nonlinear Isotropic Diffusion

Homogeneous diffusion does not differentiate between different image parts. This space-
invariance is a principal problem, since semantically important edges and the interior of a
region are treated in the same way. Thus, it was proposed in [201] to reduce the diffusion
at the edges of the developing image, i.e. where |∇u| is large. This is accomplished by
multiplying ∇u in Equation (2.7) with g(|∇u|2) before the divergence operator is applied.
Here, g is a so-called diffusivity function, which is a monotonically decreasing function in its
argument |∇u|2 and satisfies g(0) = 1.

As a result, one obtains the following operator:

Lu = div(g(|∇u|2)∇u). (2.14)

Here, we always use the Charbonnier diffusivity [48] given by

g(s2) :=
1√

1 + s2

λ2

=
λ√

λ2 + s2
, (2.15)

where λ> 0 is a contrast parameter, and call the corresponding interpolation operator Char-
bonnier diffusion. There are other diffusivity functions that can be used, but in the interpo-
lation settings used in this thesis, the Charbonnier diffusivity works best. Note that for small
λ, the Charbonnier diffusivity is a scaled approximation to the total variation (TV) diffusiv-
ity [228] given by:

g(s2) :=
1

|s|
. (2.16)

Thus, interpolation with the Charbonnier diffusivity approximates TV interpolation.
In some settings, including those used in this thesis, it is beneficial to regularise the Char-

bonnier operator by considering

Lu = div(g(|∇uσ|2)∇u), (2.17)

where uσ := Kσ ∗ u is a smoothed version of the image u, obtained by convolving u with a
Gaussian Kσ with standard deviation σ. We call Equation (2.17) the regularised Charbonnier
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2.1. Diffusion and Inpainting With PDEs

operator. This regularisation was first introduced in [44] in the context of diffusion filtering
to stabilise the Perona-Malik filter [201] under noise, and to make this filter well-posed.

The operators given in Equations (2.14) and (2.17) are isotropic and nonlinear, i.e. they
depend nonlinearly on the evolving image. Thus, they belong to the class of nonlinear isotropic
diffusion filters, as they are space-variant but direction-invariant. As in the case of linear
isotropic diffusion, the maximum-minimum principle is fulfilled for these filters.

2.1.4. Edge-Enhancing Anisotropic Diffusion (EED)

The isotropic nonlinear operators described in the last section adapt to image structures by
changing the amount of diffusion at image edges. However, they still perform the same amount
of diffusion in all directions. This is no longer the case for the anisotropic filter introduced
in [287]. This filter, which is called edge-enhancing (anisotropic) diffusion (or EED) replaces
the scalar-valued diffusivity g(|∇uσ|2) in Equation (2.17) by the matrix-valued diffusion ten-
sor g(∇uσ∇u>σ ). Again, we use the Charbonnier diffusivity given in Equation (2.15) because
of its favourable performance, especially for interpolation tasks. The resulting operator is
given by:

Lu = div(g(∇uσ∇u>σ )∇u). (2.18)

Since∇uσ∇u>σ is a symmetric 2× 2 matrix, applying the function g only changes the eigen-
values of the matrix: The first eigenvalue |∇uσ|2, which corresponds to the eigenvector par-
allel to the edge ∇uσ, becomes g(|∇uσ|2), resulting in little diffusion across the edge. The
second eigenvalue 0 corresponding to an eigenvalue orthogonal to the edge becomes 1, re-
sulting in full diffusion along the edge. Consequently, EED is designed in such a way that it
also regards the direction of edges, and not only their location. Also note that EED fulfils the
maximum-minimum principle in the continuous setting.

When EED is used for interpolation tasks, the anisotropy is even propagated to the neigh-
bourhood of the given data. We will see shortly that this leads to improved interpolation
results.

2.1.5. Absolute Minimal Lipschitz Extension (AMLE)

As a last operator, we introduce the absolute minimal Lipschitz extension (or AMLE) intro-
duced in [10] and given by

Lu = uηη, (2.19)

where η denotes the normalised gradient:

η =
∇u
|∇u| . (2.20)

This operator is anisotropic, as it diffuses only in the direction of the gradient. Although it was
axiomatically justified for interpolation tasks in [43] and also fulfils the maximum-minimum
principle, we will see that it usually gives worse results than the other operators.
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Original

Homogeneous Diffusion

Biharmonic Smoothing

Triharmonic Smoothing

Figure 2.1.: Evolution of a partially noisy and partially blurred image under different diffusion
operators. First row: Initial image. Second row: Homogeneous diffusion, t = 3, 10, 20.
Third row: Biharmonic smoothing, t = 1.2, 6, 30. Forth row: Triharmonic smoothing,
t = 0.12, 0.6, 6.
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Charbonnier Diffusion

Regularised Charbonnier Diffusion

EED

AMLE

Figure 2.2.: Evolution of a partially noise and partially blurred image under different diffusion
operators. The initial image is shown in Figure 2.1. First row: Charbonnier diffusion, λ =
0.8, t = 8, 40, 100. Second row: Regularised Charbonnier diffusion, λ = 0.8, σ = 2.0,
t = 8, 40, 100. Third row: Edge enhancing diffusion, λ = 3.0, σ = 0.8, t = 2, 10, 20 . Forth
row: Absolute minimal Lipschitz extension, t = 2, 10, 20.
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Figures 2.1 and 2.2 illustrate the effects of the different operators with different stopping
times on a synthetic test image. The right part of the image is blurred, while noise was added
to the upper part of the original image after blurring. Thus, it can be seen how the different
operators handle noise, as well as sharp and blurry image regions.

2.2. Electrostatic Interactions in 2-D

“All science is either physics or stamp collecting.”

Sir Ernest Rutherford (1871 – 1937)

It is common knowledge that a charged particle creates an electric field which exerts forces on
other charged particles in this field. As the French physicist C. Coulomb published in 1783,
the force acting on a charge q1 at position p1 due to a particle q2 at position p2 is given by

F =
1

4πε0

q1q2(p2 − p1)

‖p2 − p1‖3 =
1

4πε0

q1q2

‖p2 − p1‖2e2,1, (2.21)

where e2,1 is the unit vector from p2 to p1,

e2,1 :=
p1 − p2

‖p1 − p2‖
, (2.22)

and where ε0 is the electric constant, which can be derived from the magnetic constant µ0=
4π · 10−7H

m
and the speed of light in vacuum c0 as

ε0 =
1

µ0c2
0

≈ 8.85 · 10−12F

m
. (2.23)

According to Equation (2.21), the magnitude of the force is inversely proportional to the
square of the distance between the particle. As always in physics, it is unclear if this really
holds in the real world, as it cannot be proven to be true, but can only be observed by (repeated)
experiments. For the real world, it was shown that the exponent lies in the interval [2 − 0.4 ·
10−16, 2 + 5.8 · 10−16] [296], indicating that 2 is at least a very good approximation to the
actual behaviour.

However, all this is only true for a 3-D world. In the remainder of this section, we will
derive the interaction between two charged particles in a pure 2-D world.

First of all, we consider the electric field generated by the first particle, i.e. by a particle with
charge q2 and position p2 and compute the flux Φ of an electric field E generated through a
circular curve cr of radius r [173]:

Φ =

∮
cr

EdA (2.24)
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2.2. Electrostatic Interactions in 2-D

whereE is the electrical field andA is a surface vector pointing outwards. SinceE is parallel
toA at each point on the circle, their scalar product is equal to the product of their magnitudes.
Thus, we have:

Φ =

∮
cr

EdA =

∮
cr

|E|d|A| = |E|
∮
cr

d|A| = 2πr|E|, (2.25)

Furthermore, by the theorem of Gauß-Ostrogradski [173], this electric flux is also equal to

Φ =
q2

ε0

. (2.26)

Combing the last two equations leads to

|E| = q2

2πε0r
. (2.27)

Using the fact that the distance between the two particles is r, we can compute the repulsive
force Fr,1,2 acting on the first particle as:

|Fr,1,2| = q1|E| =
q1q2

2πε0r
=

kq1q2

‖p2 − p1‖
, (2.28)

where we use k := 1
2πε0

as abbreviation. Note that k equals twice Coulomb’s constant. Fur-
thermore, we know that this force acts in direction e2,1 = −e1,2. Thus, we get:

Fr,1,2 = − k · q1 · q2

‖p2 − p1‖
e1,2. (2.29)

The negative sign is used to stress the repulsive character of this force. Note the difference
to the 3-D world: In 3-D, we must use a sphere with surface area O3(r) := 4πr2 in Equa-
tion (2.25), while a circle with “surface area” O2(r) := 2πr (both with radius r) must be used
in 2-D. This results in a linear instead of a quadratic dependency on the distance and a factor
of 2, since O3(r)/O2(r) = 2r.

Obviously, it is impossible to check if the strength of the forces between charged particles is
really given by Equation (2.29) in a pure 2-D world. However, the same equation can also be
derived in 3-D when regarding infinitely long, thin, charged cylinders aligned parallel to each
other. In such a scenario, the same forces act on each point of each cylinder. Thus, the cylin-
ders will always stay parallel. Furthermore, it can easily be computed that the forces acting on
the cylinders are given by Equation (2.29). Since the described 2-D scenario corresponds to a
plane perpendicular to the cylinders, this alternative derivation shows that Equation (2.29) is
sound.
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2.3. Lie Groups and Lie Algebras
“In mathematics you don’t understand things. You just get used to them.”

Johann von Neumann (1903 – 1957)

Next, we give a short introduction to Lie groups and Lie algebras. For more detailed intro-
ductions, we refer to [183] and [242].

To introduce these advanced concepts, we need some additional definitions. We start with
the definition of a group, which is well-known in mathematics. Nevertheless, we will repeat
this very basic concept for the sake of completeness:

Definition 2.A: (Group) A group (G, ·) is a set G together with a binary
operation · : G×G 7→ G that fulfils the following axioms:

• Associativity: ∀ a, b, c ∈ G : (a · b) · c = a · (b · c)

• Existence of an identity element: ∃ e ∈ G ∀ a ∈ G : e · a = a · e = a

• Existence of inverse elements: ∀ a ∈ G ∃ b ∈ G : a · b = b · a = e, where e is the
identity element.

A manifold is a more complex mathematical concept. Although we will use manifolds,
we only give an intuitive “definition” here because the details are not of importance in the
remainder of this thesis. However, manifolds are necessary to define Lie groups and their
corresponding Lie algebras (see below).

Explanation 2.B: (Manifold) An n-dimensional manifold is a mathematical space in which
every point has a neighbourhood that resembles the Euclidean space Rn.

Lines and circles are examples for 1-dimensional manifolds, and the surface of any number
of non-intersecting spheres is an example of a 2-dimensional manifold, because the surround-
ing of each surface point of each sphere can be mapped to a disk. Obviously, the Euclidean
space R3 is a 3-dimensional manifold.

Now, we can define Lie groups:

Definition 2.C: (Lie group) A Lie group is a group that is also a smooth (infinitely differ-
entiable) manifold in which the multiplication and inversion operators are smooth.

When dealing with a Lie group, one often considers the associated Lie algebra:

Definition 2.D: (Lie algebra) A Lie algebra g is a vector space over a field F , together
with a binary operation (usually denoted with brackets [·, ·] and called the Lie bracket or com-
mutator) with the following properties:
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• Bilinearity: ∀ X, Y, Z ∈ g, a, b ∈ F :
[aX + bY, Z] = a[X,Z] + b[Y, Z], [Z, aX + bY ] = a[Z,X] + b[Z, Y ]

• Skew-symmetry1 (or Anticommutativity): ∀ X, Y ∈ g : [X, Y ] = −[Y,X]

• Jacobi identity: ∀ X, Y, Z ∈ g : [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0

Although every Lie group has an associated Lie algebra, we will only describe how to
construct those algebras corresponding to Lie groups G that are also matrix groups, since we
will only consider such Lie algebras. In this case, the Lie algebra g consists of all matricesX
for which the property exp(θX) ∈ G holds for all real numbers θ:

g = {X : ∀ θ ∈ R exp(θX) ∈ G} (2.30)

In this thesis, we will only consider two specific Lie groups, namely the group of rotation
matrices SO(3) and the group of rigid transformations SE(3). Those two Lie groups are
defined as follows:

Definition 2.E: (SO(3) and SE(3)) The Lie groups SO(3) and SE(3) are given by

SO(3) := {R ∈ R3×3 : det(R) = 1} (2.31)

and

SE(3) :=

{
M :=

(
R3×3 t3×1

01×3 1

)
∈ GL(4,R) : R ∈ SO(3), t ∈ R3

}
. (2.32)

Elements of these groups can be used to describe rotations (SO(3)) and affine movements
(SE(3)) in 3-D space. Thus, the movement of a 3-D point – and therefore also the movement
of a rigid 3-D object – can be completely described by an element ξ of SE(3). The Lie
algebras corresponding to these two Lie groups are given in the following theorem:

Theorem 2.F: (SO(3) and se(3)) For the two Lie groups SO(3) and SE(3), the corre-
sponding Lie algebras are

so(3) := {A ∈ R3×3|A> = −A}, (2.33)

and
se(3) := {(ν,ω)|ν ∈ R3,ω ∈ so(3)}, (2.34)

respectively. The elements of se(3) are called twists.

1This condition must be replaced by the stronger condition ∀X ∈ g : [X,X] = 0 if the characteristic of the
field F is 2. However, this will never be the case in this thesis.
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2. Mathematical and Physical Foundations

Depending on the situation, we will write the elements of these two algebras either as vec-
tors ω = (ω1, ω2, ω3) ∈ so(3), ξ = (v,ω) = (v1, v2, v3, ω1, ω2, ω3) ∈ se(3) or we transform
them to matrices by applying the so-called wedge operator ∧:

ω∧ = ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ∈ so(3), (2.35)

ξ∧ = ξ̂ =

(
ω̂ v

01×3 0

)
=


0 −ω3 ω2 v1

ω3 0 −ω1 v2

−ω2 ω1 0 v3

0 0 0 0

 ∈ se(3), (2.36)

Note that, for all a ∈ so(3), b ∈ R3, the property a × b = âb holds. Here, × denotes the
cross product of two vectors.

The transformation from matrix to vector notation is done by the vee operator ∨. Thus,
(ω̂)∨ = ω for all ω in so(3) or se(3). Note that the vee operator is only defined for the special
types of matrices shown in Equations (2.35) and (2.36).

As elements of SO(3) denote rotations, it is not surprising that an element ω ∈ so(3) can
be thought of as a rotation as well; For ω = (0, 0, 0), we have the identity. For ω 6= (0, 0, 0),
the unit vector ω

‖ω‖ corresponds to the rotation axis and the scalar ‖ω‖ to the magnitude of the
rotation in radians. Thus, multiplying any ω ∈ so(3) with a (not necessarily positive) multiple
of 2π yields a new element corresponding to the same rotation.

Similarly, twists denote affine motions, i.e. rotations and translations. Thus, the movement
of a rigid object can be described by a twist.

2.3.1. Conversion between Lie Groups and Lie Algebras

As stated above, it is necessary to compute the exponential of a matrix to convert elements
of a Lie algebra to elements of the corresponding Lie group. Evaluating the exponential of a
matrix is often cumbersome, though. For the Lie groups we are interested in, however, there
are efficient formulas to evaluate this exponential function.

Formula 2.G: (Rodriguez formula) For all ω ∈ so(3), the Rodriguez formula [183] states
that

exp(ω̂) =

{
I + ω̂

‖ω‖ sin ‖ω‖+ ω̂2

‖ω‖2 (1− cos ‖ω‖) for ω 6= 0

I else,
(2.37)

where I is the 3 × 3 identity matrix. Similarly, for elements ξ = (v,ω) of the Lie algebra
se(3), it can be shown that
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exp(ξ̂) =



(
exp(ω̂)

(
(I − exp(ω̂))ω̂ + ω>ω

)
v
‖ω‖2

01×3 1

)
for ω 6= 0(

I v

01×3 1

)
else.

(2.38)

To compute the length ‖ω‖, we use the standard L2-norm in R3, i.e.

‖(w1, w2, w3)‖ =
√
w2

1 + w2
2 + w2

3 .

The back transform ofR ∈ SO(3), given by the inverse logarithm, can be computed as:

log(R) =


(

φ
2 sinφ

(R−R>)
)∨

for tr(R) ∈ (−1, 3)

(0, 0, 0) for tr(R) = 3⇔ R = I
π
2

(diag(R) + (1, 1, 1)) for tr(R) = −1

(2.39)

where tr(R) is the trace of the matrix R, diag(R) is a vector containing the diagonal entries
of the matrixR, and φ ∈ R is a scalar with cosφ = tr(R)−1

2
and |φ| < π. Note that, sinceR is

a rotation matrix, tr(R) ∈ [−1, 3].

For elements M =

(
R3×3 v3×1

01×3 1

)
of SE(3) with R ∈ SO(3),v ∈ R3, the back-

transform log : SE(3)→ se(3) is given by

log(M)=

{( (
−ω̂ sin ‖ω‖ − ω̂2(1− cos ‖ω‖)ω̂ + ω>ω

)−1 ‖ω‖2v,ω
)

for ω 6= 0

(v,ω) for ω = 0
(2.40)

where ω = log(R) is computed using Equation (2.39).
This concludes our introduction to Lie groups and Lie algebras. In the next section, we will

show how to use these groups (and algebras) to store the 3-D pose and motion of rigid objects.

2.4. Object Models and Their Transformations
“Nothing is more revealing than movement.”

Martha Graham (1894 – 1991)

In this section, we shortly explain how the object models we use for tracking are built up, and
how they can be transformed using twists. This is first introduced for rigid objects. Afterwards,
this concept is extended to kinematic chains.
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(a) (b)

Figure 2.3.: Illustrations of a model that uses a patch representation (left) and of a model given
as triangle mesh (right).

2.4.1. Rigid Models

This section deals with rigid objects, which are objects with an inflexible surface that cannot
be deformed in any way. The complete information about the pose of such an object is given
by its position and orientation in 3-D space. This can be stored in a single twist, since a twist
corresponds to a rotation followed by a translation.

Note that the position and orientation of the model can always be changed by transforming
each point of the model. Thus, the transformation needed to move a rigid object from its
initial pose to any position is given by an element of the Lie group SE(3) or a twist ξ ∈ se(3),
respectively.

Hence, we start by explaining how to transform a single point X ∈ R3 using a twist
ξ ∈ se(3) to its new position X ′. For this transformation, we assume the point is given
in homogeneous coordinates, i.e.X = (x, y, z, 1)>. Then, it can be moved by first converting
the twist to an element of the Lie Algebra SO(3) (by computing exp(ξ̂) using the Rodriguez
formula (2.G)), followed by a simple matrix vector multiplication:

X ′ = exp(ξ̂)X (2.41)

The transformed point is also given in homogeneous coordinates.
In order to use a rigid object, we first have to model it in some way. While algebraic

expressions can be used for simple models, they are not suitable for complex ones. Thus, a
general description by patches or triangle meshes will be used in this thesis.

In the patch representation (see Figure 2.3(a)), the model consists of some patches each of
which consists of a 2-D array of points. Neighbouring points are connected such that strips of
quadrangles are formed. If the first and last points in a row or column are identical, the strip
is closed.

In the triangle representation (see Figure 2.3(b)), the model consists of a set of points and
a set of triangles where every triangle is saved as a triple of points. In this representation, any
object can be approximated arbitrarily well using a sufficiently large amount of triangles.
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2.4. Object Models and Their Transformations

Figure 2.4.: Illustration of a model given as kinematic chain. In the left image, the object is in
its initial pose while the right image illustrates the same model with different joint angles. The
red lines illustrates the position and orientation of the joints. In these images, the triangles the
model consists of have been lit such that the human is visible more clearly.

Other descriptions than those used in this thesis are also possible. For example, Dambreville
et al., who perform tracking by minimising an energy function nearly identical to one of the
energy functions used in this thesis, uses point clouds in [58], amongst others.

For all representations, we will call a point on the surface of the 3-D model a vertex.

2.4.2. Kinematic Chains

The advantage of rigid objects is that six parameters are sufficient to describe its pose. Unfor-
tunately, the object to be tracked is not always rigid. Thus, we will explain in this section the
more general concept of kinematic chains, and give details how to model and transform them.

A kinematic chain is a system of n + 1 rigid bodies which are connected by n joints and
represented in a tree structure, as explained in [29, 178]. Each joint is modelled as a twist with
known rotation axis, but unknown rotation angle. Thus, there is one additional parameter that
must be estimated for each joint in the model. We will denote the known rotation axis of the
i-th joint by ξi, the unknown joint angle by θi, and the vector containing all joint angles by
Θ:= (θ1, . . . , θn). This vector is also called joint configuration.

In case of objects modelled with kinematic chains, the pose sought after in tracking no
longer consists of a single twist ξ ∈ se(3), but of a vector χ:= (ξ,Θ) = (ξ, θ1, . . . , θn)
containing the global rigid body motion and the joint configuration.

When using kinematic chains, each vertex is assigned to one of the rigid bodies. Conse-
quently, a patch or triangle may belong to more than one rigid object in the kinematic chain,
and the length of the line between points on different subobjects might be stretched or shrunk.
A human modelled as kinematic chain is illustrated in Figure 2.4, which shows the human with
two different joint configurations. Note that the joints have to be added manually in complex
models created by first scanning the object using a 3-D scanner. Thus, there is often no clear

19
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boundary between neighbouring rigid objects.
In order to transform a vertex X on a kinematic chain, one has to consider to which rigid

part of the model the point belongs. If the point is on the rigid object at the root of the tree that
describes the kinematic chain, it is transformed exactly as before (see Equation (2.41)). If the
point lies on a rigid object which is connected to the root by the joints ξi1 , . . . , ξij with angles
θi1 , . . . θi,j , where the index i1 denotes the first joint as seen from the root of the kinematic
chain, the transformation is given by

X ′ = exp
(
ξ̂
)

exp
(
θi1 ξ̂i1

)
exp

(
θi2 ξ̂i2

)
. . . exp

(
θij ξ̂ij

)
X, (2.42)

as the relative movement of each rigid part must be considered.

2.5. Representing Lines and Planes

“One geometry cannot be more true than another; it can only be more
convenient. Geometry is not true, it is advantageous.”

Robert M. Pirsig (∗1928)

As we will show later, 3-D lines will be used in the estimation of the pose by our tracking
approach. However, there are different ways how to represent lines in 3-D space. This section
will introduce the representation used in our tracking approach, and also explains the related
representation of planes necessary for the extension introduced in Section 5.4.3.

2.5.1. Plücker Lines

For the point-based pose estimation algorithm introduced later, 3-D lines will be used. There
are different ways to represented 3-D lines, e.g. by two points on the line or by one point and
a direction. Here, we will use the Plücker form [245], as it simplifies some computations.

A 3-D line in Plücker form L= (n,m) is given by a normalised vector n∈ R3 (pointing in
the direction of the line) and a momentum m∈ R3 that can be computed as m := y × n for
any point y on the line. Note that the momentum is independent of the choice of y: If y and
y′ are two points on the line L (see Figure 2.5) with

y1 := y′ − y = λn (2.43)

for some λ ∈ R, it follows that
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Figure 2.5.: Left:Identifiers used in the proofs that the momentum is independent of the point
y chosen, and that the distance between a point x and a Plücker line L = (n,m) is given by
‖x× n−m‖. Right: Identifiers used in the corresponding proofs for planes.

y′ × n = (y + y1)× n
= (y + λn)× n
= y × n+ λn× n︸ ︷︷ ︸

=0

(2.44)

= y × n .

Thus, the momentum is unique, i.e. well-defined. Since there are two possible normalised
vectorsn to a given line, there are always exactly two ways to represent a line in Plücker form.

One advantage of the Plücker form is that the distance of a point x to a line L = (n,m)
given in Plücker form can easily be computed as ‖x× n−m‖. To understand this, we write
x as sum of y, the vector y1 = λn, which is parallel to n, and a vector y2 perpendicular to n,
i.e. x = y + y1 + y2 (see Figure 2.5). Then, we have

‖x× n−m‖ = ‖(y + λn+ y2)× n−m‖
= ‖y × n︸ ︷︷ ︸

=m

+λn× n︸ ︷︷ ︸
=0

+y2 × n−m‖ (2.45)

= ‖y2 × n‖
= ‖y2‖.

This equation also shows that x ∈ L is equivalent to ‖x× n−m‖ = 0, i.e. a point x lies
on the line L = (n,m) if and only if x× n = m.

2.5.2. Hessian Form of a Plane

Similarly to lines, there are different ways how to encode a plane, e.g. by three points, or by a
point and two (linearly independent) vectors in the plane.
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Figure 2.6.: Left: Schematic illustration of the pinhole camera model. Right: The image of
the woodcut “Man drawing a Lute” from Albrecht Dürer, drawn in 1525, illustrates the idea
behind the pinhole camera with a virtual image plane.

In this thesis, we use planes in the Hessian form. That is, a plane is implicitly given by
the pair (D, d) consisting of a normalised vector D∈ R3, the normal of the plane, and the
(signed) distance d∈ R of the plane to the origin, which can be computed as d = −a ·D for
a point a on the plane.

It is easy to show that d is independent of the choice of a: If a′ is another point in the plane,
i.e. the vector c1 = a1 − a is in the plane (see Figure 2.5), we have:

−a′ ·D = −(a+ c1) ·D
= −a ·D − c1 ·D︸ ︷︷ ︸

=0

(2.46)

= −a ·D

If the additional constraint d ≥ 0 is added, we get the Hessian normal form of the plane.
Although there are exactly two different normals, the requirement d ≥ 0 makes the Hessian
normal form unique.

To compute the distance of a point b to the plane P= (D, d), the following formula can be
used:

dist(b,P ) = |b ·D + d|. (2.47)

Especially, the point b is on the plane (D, d) if this distance is zero,i.e. b ∈ P ⇔ b·D+d = 0.
Again, the proof is easy (see Figure 2.5):

‖b ·D + d‖ = ‖(a+ c1 + c2) ·D + d‖
= ‖a ·D︸ ︷︷ ︸

=−d

+ c1 ·D︸ ︷︷ ︸
=0

+c2 ·D + d‖
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= ‖c2 ·D‖ = ‖c2‖ ‖D‖︸︷︷︸
=1

| cos(θ)︸ ︷︷ ︸
=±1

| (2.48)

= ‖c2‖

Here, θ is the angle between c2 and the normal vectorD of the plane P , which is zero or 180
degrees by construction of a′. Thus, the sign of the term x ·D + d determines the half-space
in which the point lies: If it is positive, θ is zero, i.e. the point lies in the half-space determined
by the directionD.

2.6. Pinhole Camera Model

“Science is nothing but perception.”

Plato (≈ 428/427 – 348/347 BC)

In Section 2.4, we explained how to describe 3-D models as set of points with some under-
lying structure. In order to show these models in 2-D images, we have to project them in the
same way a camera projects parts of the real world. There are different ways to model such
a camera, ranging from a simple orthographic projection to models that incorporate different
aberrations such as spherical aberrations or barrel/pincushion distortion.

In this thesis, we use the pinhole camera model, which is probably the most common camera
model. It performs a perspective projection without any aberrations. The remainder of this
section gives a short introduction about this camera model. More detailed introductions can
be found in [78] or [107].

The basic idea behind the pinhole camera model is that each 3-D object pointO is projected
to an image position o computed as intersection point between the image plane (or retinal
plane) R and the line through O and the so-called optical centre (also focal point or simply
camera centre) C, as illustrated in Figure 2.6. The line passing through C that is orthogonal
to the image plane is called the optical axis. The intersection point between the optical axis
and the image plane is denoted by c. This point is called principal point, and the distance of
c and C, i.e. the distance between the point C and the plane R is called the focal length (or
focal distance) f> 0.

One drawback of this camera model is that the orientation of the image is flipped. That is,
an arrow pointing upwards in the real world will point downwards after projecting it. This
problem can be “fixed” by using a virtual image plane in front of the optical centre, as shown
in the right image in Figure 2.6.

When dealing with cameras, there are three different coordinate systems that must be con-
sidered (see Figure 2.6):

• A 2-D image coordinate system in the image plane with origin c and unit vectors x and
y.
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• A 3-D camera coordinate system with origin C and axes X , Y , and Z such that Z is
parallel to the optical axis. The axes are orthogonal to each other and have length 1.

• A 3-D orthonormal world coordinate systemXW ,YW ,ZW with origin CW .

To compute the image position xi, yi of a point given in world coordinates, we have to find
a transformation from world coordinates into image coordinates.

Let us first consider how to get from a point O := (XO, YO, ZO) in camera coordinates to
the image coordinates xi, yi. With the intercept theorem, we get

− f

ZO
=

xi
XO

=
yi
YO

⇔ xi = −fXO

ZO
, yi = −fYO

ZO
. (2.49)

Using homogeneous coordinates on both sides, this can be written as:xiyi
Zi

 =

−f 0 0 0
0 −f 0 0
0 0 1 0



XO

YO
ZO
1

 (2.50)

Remember that, since the vector (xi, yi, Zi) is given in homogeneous coordinates, this results
in the 2-D point ( xi

Zi
, yi
Zi

)
In order to transform the world coordinate system to the camera coordinate system, a rigid

transformation must be done. That is, the necessary transformation is an element of the Lie
group SE(3) (see Definition 2.E). The necessary rotationR and translation vector t are called
the extrinsic camera parameters.

While the extrinsic camera parameters depend only on the position of the camera, there
are also parameters that depend on the camera itself. These parameters are the position of
the principal point c= (x0, y0), the pixel dimensions kx and ky in x and y direction, and the
angle θ between the coordinate axes x and y. To transform a point from the camera coordinate
system to the image coordinate system, the following matrix can be used:kx −kx cot(θ) x0

0 ky
sin(θ)

y0

0 0 1

 . (2.51)

Thus, the projection of a 3-D point W = (XW , YW , ZW , 1)> from world coordinates into
image coordinates is given by

( xi
Zi
yi
Zi

)
=

xiyi
Zi

 =

kx −kx cot(θ) x0

0 ky
sin(θ)

y0

0 0 1

−f 0 0 0
0 −f 0 0
0 0 1 0

(R3×3 t3×1

01×3 1

)
XW

YW
ZW
1

 .

(2.52)

Combining these three matrices into a single matrix results in the so-called 3× 4 projection
matrix P . In total, there are 12 free parameters: Three for the global position t, three for the
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global rotation R, one for the focal length f , two for the principal point c = (x0, y0), two for
the pixel dimensions kx, ky, and one for the angle between the coordinate axes θ. Since scal-
ing the complete matrix results in the same projection function, there are eleven parameters
that must be found to estimate an unknown projection matrix P . The process of estimating
the camera parameters is called camera calibration. One distinguishes between explicit cam-
era calibration, which is the process of finding the individual extrinsic and intrinsic camera
parameters, and implicit camera calibration, which is the (simpler) task to find the complete
projection matrix P . In this thesis, only the complete projection matrix is used. Thus, implicit
camera calibration is sufficient.

For implicit camera calibration, we create a set of 2-D–3-D point correspondences, i.e. we
specify the 3-D positions of some 2-D image points. This can be done by taking an image
of a calibration cube, as distances on the cube are known. Two such cubes used for cam-
era calibration in sequences tracked in later chapters are shown in Figure 2.7. From these
correspondences, a system of equations is set up and solved to obtain the projection matrix.
However, this is only one of several possible approaches to camera calibration. In [8], for
example, a set of ellipses is used for camera calibration.

The inverse task of determining the 3-D positionO of a point from a given 2-D image point
o is obviously underdetermined, since there are infinitely many points that are projected to
each image point. The set of all such points is given by the projection ray, which is a line
passing through the 2-D image point o and the camera centre C.

2.7. Statistics
“There are three kinds of lies: lies, damned lies, and statistics.”

Benjamin Disraeli (1804 – 1881)

In order to track an object, it is necessary to decide whether a point in the image belongs to
the object to be tracked or to the background. This is often done by estimating the appearance
of the fore- and background in some way, followed by a comparison to see to which appear-
ance a point fits better. As in many other works [219, 58], we will use probability density
functions to model the appearance of different image parts.

In this section, we introduce the basic concepts behind probability density functions, and
explain some methods how they can be estimated. More detailed introductions into probability
theory can be found in [130, 145, 257].

2.7.1. Intuitive Introduction to Probability Density Functions
For the proper definition of random variables and their probability density functions, some
rather abstract concepts ranging from σ-algebras over measurable spaces up to probability
spaces have to be considered. Such an axiomatic approach is not really helpful for beginners
to understand the intuition behind the concepts used. Thus, we will give an intuitive and very
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Figure 2.7.: Two cubes used for camera calibration in some sequences shown in this thesis.

short introduction in this section. For those readers interested in an axiomatic introduction,
we refer to Appendix A, or to one of the books mentioned above.

To understand the idea behind probability theory, visualise a random variable as numerical
result of an non-deterministic process or experiment. Simple (discrete) examples include the
results from rolling a die, drawing lottery numbers, or flipping a coin. Note that, in the last
example, we have to assign numbers to each outcome, e.g. by identifying “head” with zero and
“tail” with one, since we only consider random variables as mappings into the real numbers in
this intuitive introduction.

Well-known continuous examples of random variables are the time until a certain event
occurs, or the canonical random variable, which results in a random number in the half-open
interval [0, 1) such that each number is equally likely.

The function P which assigns to each set the likelihood that the result of one experiment is
in the set is called the probability distribution. When tossing a normal die, for example, we
have P ({3}) = 1

6
, and P ({1, 4, 5}) = 1

2
= 50%.

For tracking, we are especially interested in so called (absolutely) continuous random vari-
ables with values in R. For such random variables X , there exist (by definition) an integrable
function p : R→ R+ such that for any set S ⊂ R over which one can integrate p, the property

P (X ∈ S) =

∫
S

p(x)dx (2.53)

holds. The function p is called the probability density function. We will use the common
abbreviation PDF in this thesis.

It is obvious that P ({x}) = 0 holds for all continuous random variables and all possi-
ble values of x, since an integral over a single point is always zero. Furthermore, we have∫∞
−∞ p(x)dx = 1, as P (X ∈ R) must be equal to one. In fact, any nonnegative, integrable

function f with
∫∞
−∞ f(x)dx = 1 is a probability density function for some random variable.

The last concept we need is the (in)dependence of two (or more) random variables. As the
name already implies, random variables are called independent if the results of the experiments
measured by the random variables do not depend on each other. For example, when rolling
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a die twice and noting the individual numbers, the two numbers are independent. However,
the two random variables that measure “the first number” and “the sum of both numbers”
are obviously dependent, i.e. not independent. If several random variables have the same
underlying PDF and are independent, they are called independent and identically distributed
(or short i.i.d.). Such random variables can be used to estimate the underlying PDF. This is
the topic of the following section.

2.7.2. Estimating PDFs
To separate fore- and background points, we will model the appearance of those regions by
PDFs and see which image points fit better to which PDF. However, the tracking approach
presented in this thesis does not use predefined appearances of object or background. Thus,
the required PDFs are unknown, and must be estimated.

In this section, we introduce some of the methods used to estimate the necessary PDFs,
namely a simple Parzen density estimation [197] (also called Parzen-Rosenblatt estimator or
Rosenblatt-Parzen estimator due to the initial work by Rosenblatt [215]), a global Gaussian
model, and the local Gaussian model from [219].

Parzen Window Method

The Parzen window method or kernel density estimation is a non-parametric method to es-
timate the PDF of a sequence of i.i.d. random variables. Note that, in this context, non-
parametric means that no prior knowledge about the PDF to be estimated is used, and not that
the Parzen window method has no parameters.

Let f(x, y) : Ω → R be a grey-scale image from the image domain Ω to the real numbers
and let Ω1 ⊂ Ω be a part of the image for which a PDF should be estimated. Since the Parzen
density estimator does only consider the brightness of the pixels and not their positions, the
information in the region Ω1 is completely given by a sequence consisting of all brightness
values in Ω1. Let us denote this sequence by x1, . . . , xn. Note that the ordering within the
sequence is not important.

Intuitively, a kernel density estimation places some function around every observation of the
random variable as shown in Figure 2.8: The red crosses indicate the observations x1, . . . , xn,
the blue lines the functions placed around each observation, and the green function is the
estimated PDF obtained by adding the blue functions. As function, shifted and scaled versions
of the same kernel must be used:

Definition 2.H: (Kernel) A kernel is a function K: R→ R with

• K(x) ≥ 0 for all x ∈ R

• K is integrable

•
∫ ∞
−∞

K(x)dx = 1

• K is symmetric around zero, i.e. K(x) = K(−x) for all x ∈ R
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Figure 2.8.: Illustration of a Parzen estimation for a PDF with a Gaussian (left) and a triangle
(right). The red crosses indicate the random events drawn from the PDF shown in violet and
the blue curves the contribution of each point to the complete estimation (green).

In the examples in Figure 2.8, a Gaussian and a triangle were chosen as kernels. The
resulting estimations ph are given by

ph(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
=

1

n

n∑
i=1

Kh (x− xi) (2.54)

where

Kh(x) :=
1

h
K
(x
h

)
, (2.55)

and where the parameter h is the so-called bandwidth that serves as a smoothing parameter.
The choice of h is very important, and wrong choices lead to estimation that are too smooth,
or too noisy, respectively.

Global Gaussian Model

As mentioned above, a kernel density estimator does not use any prior knowledge about the
PDF to be estimated. If prior knowledge is available, the estimator should use it, though.
Thus, a kernel density estimator is obviously not optimal in such a situation.

One common way to use prior knowledge is to assume that the PDF to be estimated is
a member of a parameterised class of PDFs. For example, the (global) Gaussian model ex-
plained in this section assumes that the PDF to be estimated is a Gaussian with unknown mean
µ and standard deviation σ. That is, the PDF p is given by

p(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
(2.56)
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Figure 2.9.: Estimation using a Gaussian model: The observations are shown in red, the esti-
mated PDF in green, and the actual PDF used to generate the random events in violet.

Consequently, instead of estimating an infinite-dimensional PDF, only two parameters must
be estimated in this setup.

A common (but not optimal) way to estimate approximations µ̃, σ̃ of µ, σ from the sequence
x1, . . . , xn (as defined in the last section) is by using the following formulas [145]:

µ̃ =

∫
Ω1
f(x)dx∫

Ω1
1 dx

, σ̃ =

√∫
Ω1

(f(x)− µ̃)2dx∫
Ω1

1 dx
(2.57)

in a continuous setting and

µ̃ =
1

n

n∑
i=1

xi, σ̃ =

√√√√ 1

n− 1

n∑
i=1

(xi − µ̃)2 (2.58)

in the discrete setting, respectively.
Figure 2.9 shows the estimated PDF when using the (global) Gaussian model and the same

random variables as in Figure 2.8.

Local Gaussian Model

Both the Parzen window method as well the global Gaussian model ignore the ordering of
the random variables since they are assumed to have the same distribution. However, in the
situation described in the beginning of Section 2.7.2, i.e. if the observations are image points,
this assumption usually does not hold.

Thus, it was proposed by [136] not to use a single PDF for the whole region Ω1, but to
use PDFs that vary depending on the position inside the region. That is, a PDF for each
image pixel inside Ω1 is estimated in such an approach. This is advantageous if the object’s
appearance varies strongly, e.g. due to shadows and highlights, or if the appearance of the
object observable in the region Ω1 is complex.

While it is possible to use the pixels within a certain neighbourhood to perform a kernel
density estimation [136], the estimations can become inaccurate due to the low amount of
information given. The advantage of a non-parametric method, namely their ability to model
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multimodal densities, is usually not necessary within a local window, because multimodal
situations are rarely encountered there.

Thus, it was proposed in [219] to assume local Gaussian probability densities

p(s, x) =
1

σ(x)
√

2π
exp

(
(s− µ̃(x))2

2σ̃(x)2

)
(2.59)

that vary with the position x in the region. Here, µ̃(x) and σ̃(x) are estimated in a local
neighbourhood of each point as

µ̃(x) =

∫
Ω1
Kρ(t− x)f(t)dt∫

Ω1
Kρ(t− x) dt

, σ̃(x) =

√∫
Ω1
Kρ(t− x)(f(t)− µ̃(x))2dt∫

Ω1
Kρ(t− x) dt

, (2.60)

where ρ is the standard deviation of the Gaussian used as window function. This local Gaus-
sian model is widely used in segmentation nowadays [179, 151], and will also be employed
for some experiments in this thesis.
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3 Image Compression

“People forget how fast you did a job – but they remember how well you did it.”

Howard Newton (∗1982)

For many years, image compression has been a field of ongoing research due to the con-
stantly increasing amount and resolution of images. Since lossy image compression algo-
rithms can reach much higher compression ratios than lossless algorithms, we decided to
develop a lossy image compression algorithm. This algorithm, which is based upon the work
presented in [232] and [240], is the topic of this chapter.

One of the most prominent and widely used lossy image compression algorithms today
is JPEG [200], which is based on the discrete cosine transform (DCT). Its successor JPEG
2000 [270], which uses Cohen-Daubechies-Feauveau wavelets, performs noticeably better but
is not yet widely supported. Still, JPEG 2000 is likely to replace JPEG in the near future.

In contrast to these popular approaches, which are transformation-based, there are also re-
cent approaches that store only a subset of all image points, and build upon partial differential
equations (PDEs) to reconstruct the remainder of the image, as explained in Section 2.1.

The general problem to reconstruct missing image parts is called inpainting, or disocclu-
sion [170, 21]. Note that upsampling, the task to increase the resolution of images, can also
be regarded as inpainting, such that the same approaches can be used [290, 227].

Only a few selected points of the initial image are stored in the extreme situation considered
in [87]. The remainder of the image is then reconstructed using edge-enhancing anisotropic
diffusion (EED, see Section 2.1.4). These points are located on an adaptive triangulation,
which is stored as binary tree [65]. However, even with the improvements introduced in [88],
the performance of this compression approach only lies between that of JPEG and JPEG 2000
for medium to high compression ratios, and can only surpass JPEG 2000 at very high com-
pression ratios.

The approach presented in this chapter builds upon the basic ideas presented in [88]. By
changing a number of concepts and improving some parts of the algorithm [240], our novel

Figure 3.1.: Illustration of PDE-based image compression. From left to right: Initial image,
inpainting mask, brightness values at the inpainting mask, and result after reconstruction with
EED. In this example, a compression ratio of 95 : 1 was used.
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image compression codec yields much better results, which even surpass those of JPEG 2000
for basically all compression ratios in images with little texture.

It should be noted that there are a number of related approaches which also store only a
small subset of the initial image and reconstruct the remainder. These methods differ both in
the way the points are placed (regular, on specific structures, or arbitrarily) and in the way in
which the image is reconstructed.

In [59], for example, points can be placed arbitrarily. When loading the image, the Delauney
triangulation of the known points is computed, and the remainder is reconstructed using linear
splines in each triangle. This approach was extended to anisotropic geodesic triangulations
in [27].

While these approaches use triangulations to approximate the image, the image is approxi-
mated on rectangles using linear functions in [258]. The necessary recursive plane decompo-
sition is embedded in a quadtree data structure. Another approach that uses quadtrees is given
in [263], in which Lagrange multipliers are used to find optimal rate allocations.

Approaches in which images are reconstructed using information about image edges are
also very common: In [117], different methods to reconstruct images from zero-crossings in
scale-space are compared. Acar and Gökmen proposed to use an energy function based on
a weak membrane model [3]. In [13], an edge-preserving filtering followed by a nonlinear
difference filter is applied to obtain a ternary image which encodes edges in the smoothed
image. Together with a subsampled version of the smoothed image, this information is used to
reconstruct an approximation of the original image. In [62], an edge map and colour intensities
of pixels left and right of each edge are stored. To reduce errors obtained by non-closed
contours, the mean of each 10× 10 block of the original image is additionally saved. In [73],
blur and gradient direction is used as additional information to edge locations and intensity
change. Recent work shows that approaches based on edges can even beat JPEG 2000 for
cartoon-like images [168].

Another class of image and video compression algorithms also uses PDEs and related vari-
ational methods. In contrast to the works by Galić et al. [87, 88] and our approach [240],
which use PDEs within the compression framework, these works mainly perform preprocess-
ing [45, 144, 278] or postprocessing [6, 70, 98, 182, 298, 299] steps using PDEs. An exception
is the work of Chan and Zhou [46] in which a variational approach using total variation is em-
ployed to minimise oscillations when using wavelet decompositions.

Furthermore, there has been work in which images are reconstructed using top points in
scale-space [135, 138], i.e. from points in scale-space where both gradient and Hessian deter-
minant vanishes. In [156], a set of scale-space blobs and edges is used to reconstruct images,
where a first order structure is used for edges, and a second-order structure for blobs. Another
classical technical report using points and their derivatives for global image reconstructions is
given by [39], in which it is proposed to use a standard Tichonov regularisation method and
directional filtering for stabilisation.

This chapter is organised as follows: In the next section, we explain our image compression
codec, which includes a detailed description of our compression and decompression algo-
rithms as well as an explanation what information is stored in a compressed image. Section
3.2 shows several experiments that demonstrate the high quality of our compression algorithm.
The chapter is concluded in Section 3.3 with a summary.
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3.1. Codec

“One’s first step in wisdom is to question everything - and one’s last is to come
to terms with everything. ”

Georg C. Lichtenberg (1742 – 1799)

In this section, we give a detailed description of our image compression framework. We start
by discussing how to choose the pixels whose brightness will be stored in the compressed file,
and how their location is encoded. Next, we investigate how to store the corresponding bright-
ness values, followed by several possible optimisations. After explaining a simple extension
to colour images and clarifying the file format used, we also show how to decompress a file
compressed with our algorithm.

3.1.1. Selecting Pixels and Encoding Their Localisation

Our image compression algorithm stores only a small subset of all points of the image, whereby
the number of points saved directly corresponds to the compression ratio. The remainder of
the image is then reconstructed using PDE-based inpainting, as explained in Section 2.1. Since
the reconstruction quality depends on the choice of points, it is necessary to find a good subset
of points to save. However, there is little theoretical knowledge about how to find such a sub-
set. For linear isotropic diffusion (see Section 2.1.1) in a continuous setting, this question has
been answered using the theory of shape optimisation [20]. Still, it is not clear how to carry
over these results to the discrete setting, especially if there are additional model assumptions.
Additionally, it may pay off to use more but less optimal points if those points can be encoded
more efficiently.

A naive approach to find good point positions is to try all subsets of the whole image with a
given number of points, and to choose the set with yields the best approximation to the original
image. Even for a very small image of size 64× 64 from which only 64 points are to be kept,
this results in (

4096

64

)
≈ 7.5 · 10141 (3.1)

different subsets that must be checked. However, even when regarding the whole universe as a
big physical system, the total number of elementary (quantum) logical operations the universe
can have performed since the big-bang is merely around 10120 [157]. Moreover, saving the
pixel locations tends to be quite expensive in this general setting since there usually is no
simple pattern behind the points.

Another extreme approach is to store points on a regular grid. Encoding the point locations
with such an approach only requires very few bits. However, unnecessarily many points are
stored in homogeneous image regions, while regions with a more complicated appearance are
sampled too sparsely. Thus, the reconstruction quality is often poor.
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Figure 3.2.: (a) Left: Illustration of the binary tree structure used to find point positions re-
stricted to an adaptive rectangular grid. The white parts are the (sub)images being processed,
while the blue circles show example points that might be used to represent this part of the
image. (b) Right: Example of a complete interpolation mask used for the image “trui”. The
original image is shown in Figure 3.6(a).

Here, we use a hybrid approach that only considers point positions on an adaptive rectangu-
lar grid. This way, all point locations can be encoded in a binary tree, similar to the tree used
in [65]. This allows to store the point locations in an inexpensive way.

To find out which pixels should be kept, we simulate the decompression step by reconstruct-
ing the sub-image from those points that have already been chosen. We will give details which
points these are later in this section. Then, original and reconstruction are compared. If the
reconstruction is sufficiently close to the original, we stop. Otherwise, the image is split along
the middle of the x or y direction. Thereby, we always split along the largest dimension. As
illustrated in Figure 3.2, these two image parts are then saved recursively.

To judge how accurate the image is reconstructed, we use the mean square error (or MSE)
between reconstruction and original image. The MSE is a widely-used error measure defined
as

MSE(f, g) :=
1

|Ω|

|Ω|∑
i=1

(f(i)− g(i))2, (3.2)

where Ω is the common image domain of the images f and g, and where |Ω| is its size. The
same error measure will be used later in the experiments to compare different compression
algorithms.

If the MSE between reconstruction and original image part exceeds the threshold T , the
image is split by our algorithm. As in [88], this threshold depends on the recursion depth
d of the sub-image being processed. More precisely, the threshold is given by T := ald,
where a and l are free parameters in our compression algorithm. We discuss how to find these
parameters in Section 3.1.4.
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Pattern A Pattern B Pattern C Pattern D Pattern E

Pattern F Pattern G Pattern H Pattern I Pattern J Pattern K

Figure 3.3.: The pixel selection patterns evaluated in our image compression framework. In
pattern B, C, H, and I, the selected non-corner pixels are always on the longer side of the
rectangle.

Table 3.1.: Number of points in each of the patterns shown in Figure 3.3, and mean square
error (MSE) for each pattern when saving different images with a compression rate of 20 :
1. Note that the brightness values are not compressed, yet. The best result in each line is
highlighted.

Pattern A B C D E F G H I J K

No. of points 1 2 3 4 4 5 5 6 7 8 9

MSE (trui) 47.75 46.49 43.98 38.08 47.53 35.78 46.94 37.60 39.68 44.09 41.86

MSE (walter) 23.61 25.13 22.51 20.64 23.27 19.95 24.58 20.27 22.30 22.44 20.90

MSE (peppers) 56.50 53.29 54.50 44.13 56.30 45.88 59.05 46.22 50.83 52.70 50.36

Average MSE 42.62 41.64 40.33 34.28 42.37 33.87 43.52 34.70 37.60 39.72 37.70

Once the splitting steps are completed, we know which points will be saved. Instead of
storing the position of each pixel individually, it is sufficient to store a binary tree containing
the splitting decisions. This is done by first storing the minimal depth up to which all sub-
images are split, as well as the maximal depth at which no sub-image is split any more. In
between, one bit for each node of the tree is saved. The same approach was used in [65]
and [88] to store a triangular subdivision. In the decompression step, the positions of the
saved points can be reconstructed from this tree. The points form the inpainting mask K used
for reconstructing the image.

The amount of data necessary to store the tree described in the last paragraph depends on
the maximal and minimal depth of the tree. Thus, it usually pays off to specify a minimal
depth m up to which all images are split independent of T , and a maximal depth M at which
no image is split no matter what T is. This way, more points can be saved without additional
space, as less space is required to store the tree. These two parameters, which are not needed
for decompression, can therefore improve the quality of a compressed image.

The last open question is which points of each sub-image should be stored. To answer this
question, we have evaluated the performance of our compression algorithm when compressing
the three images “trui”, “walter”, and “peppers” with a compression ratio of 20 : 1. The eleven
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Figure 3.4.: Left: Average MSE obtained when compressing the three images “trui”, “walter”,
and “peppers” with a compression ratio of 20 : 1 with different point selection patterns. The
patterns are shown in Figure 3.3, and are ordered with respect to the number of points used
in each image part. Only a subset of all tested patterns is shown here. Right: Illustration of
the resulting pattern if Pattern D (top left), E (top right), G (bottom left), or J (bottom right) is
repeated several times.

patterns tested are illustrated in Figure 3.3, while the best MSE obtained with each pattern is
shown in Table 3.1. This table also shows the average performance. As can be seen, the best
results are usually obtained when using Pattern F. The results with Patterns D and H are also
quite good, though. In the remainder of this section, we will explain why this is the case.

First of all, let use compare the results of the eight Patterns A, B, C, D, F, H, I, and K, i.e. we
will ignore the Patterns E, G, and J for the moment. The MSEs obtained with these patterns are
plotted in the graph in Figure 3.4. Note that the patterns are ordered according to the number of
points in each pattern, as shown in Table 3.1. One can observe that there is an optimal number
of points in each sub-image, namely five. This is due to the fact that the number of points in
the pattern acts as a tradeoff between accurate point localisation and overhead necessary to
store the binary tree. If there are many points in each sub-image, the overhead necessary to
store a certain amount of points is quite low. However, the possible point positions are rather
restricted, which results in a comparatively bad approximation quality. This can be seen at the
right end of the graph. If there are few points in each image part, the drawback that a larger
tree is necessary to store a certain amount of points outweighs the possibility to localise the
points in a more precise way. This is visible in the left part of the graph.

Next, we compare the Patterns D and E. With both, the same amount of points is used in
each image part. When several image parts with these patterns are next to each other (see right
images in Figure 3.4), both form a regular grid. However, the two grid directions obtained with
Pattern E (illustrated by the dashed green lines) are not orthogonal to each other in general.
Furthermore, points on adjacent images are more likely to coincide, resulting in less points.
Additionally, natural images often contain horizontal or vertical edges, which can be stored
better using Pattern D.
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Finally, we explain why Pattern G and J yield worse results than one would expect by only
considering the number of points in the pattern. This is due to the fact that the interpolation
points should be well distributed over the complete image domain. As shown in Figure 3.4,
this is not the case for Pattern G and J, since there are “holes” in the otherwise regular pat-
terns. Note that these holes also appear when using Pattern I, thus explaining the large jump
between Patterns H and I, and the small difference between Patterns I and K. Similarly, the
jump between Patterns C and D can be explained by the fact that the three points in Pattern C
are very badly distributed, while the four points in Pattern D are very well distributed in the
image parts considered.

Since Pattern F yields the best average performance, we use this pattern for the remainder
of this thesis. An alternative is to use different patterns for different images. However, we
have not done this in this thesis.

3.1.2. Quantisation and Encoding of Brightness Data

In the last section, we have shown how we encode the positions of the pixels stored in the
compressed file. Next, we explain how to store the corresponding brightness values.

First of all, a list of all brightness values to be stored is created. This is done by scanning the
interpolation mask row-wise from top left to bottom right. Whenever the interpolation mask
K indicates that a pixel should be kept, the brightness value from the original image is added
to the list.

In contrast to the pixel positions, which are stored in a lossless way, a lossy compression
will be used for the brightness values. That is, quantised brightness values are stored. This
reduces the number of possible brightness values, which improves the final entropy coding
step explained later this section. Thus, the coarser the quantisation, the more pixels can be
saved. It is easy to see that, for a fixed amount of space, there is a tradeoff between a fine
quantisation, which allows to store less points very accurately, and a coarse quantisation, with
which points can be stored with less accuracy.

Here, we use an (approximately) equidistant quantisation. Each of the 256 grey values
possibly present in the original image is mapped to the closest of the q quantised values

qi :=

⌊
(i+ 1

2
) · 256

q

⌋
i ∈ {0, . . . , q − 1}, (3.3)

where bxc : R 7→ N returns the largest integer smaller or equal to x. Note that q can have
any value between 2 and 256. Further note that we store the index i instead of the quantised
value qi, as this results in smaller files with some of the entropy coders described in the next
paragraph.

As a final step, the quantised brightness values are encoded using a general purpose entropy
coder. Different entropy coders can be used in this step. Specifically, our implementation
supports Huffman coding [116] with or without using canonical codes, arithmetic coding with
static or adaptive model [214], PAQ (version paq8o8z-feb28, [165, 166]), gzip (version 1.3.5,
[86]), bzip2 (version 1.0.3, [243]), Lempel-Ziv-Welch coding [291], and range coding [169].
For gzip and bzip2, we used the standard implementations available in Linux. We built our
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own version of PAQ from the source code available at [165] by removing its ability to save
multiple files in one archive, and by removing the name of the stored file from the archive. For
the remaining entropy coders, the implementations from [64] have been used.

In order to decide which entropy coder is suited best for quantised brightness values, we
evaluate the performance of these coders using different quantisation levels and point sets
with different sizes. Some of these experiments are shown in Table 3.2. It can be seen that
different coders are optimal in different situations: For larger files, PAQ always performs best,
independent of the quantisation used. For small files, arithmetic coding and gzip sometimes
results in a stronger compression. In our codec, we use three additional bits in the uncom-
pressed image header to decide which of the first eight methods shown in Table 3.2 was used
to store the brightness data. This way, the entropy coder which yields the best compression
for a specific file can be used.

3.1.3. Improved Diffusion Parameters
Some of the inpainting operators explained in Section 2.1 have free parameters, namely the
(regularised) Charbonnier operator, and EED (see Sections 2.1.3 and 2.1.4).

One important parameter present in these nonlinear operators is the contrast parameter λ,
which is used to distinguish between low contrast regions where homogeneous diffusion is
approximated, and high contrast locations where less diffusion is appropriate.

In contrast to the approach from [88], in which a constant λwas used to create the inpainting
mask K, we employ different values for λ for different images or compression ratios. That
is, the (quantised) contrast parameter which yields the smallest reconstruction error is stored
in the file header, and used when decompressing the image. A single byte is sufficient to
store this parameter according to our experiments, since the optimal value has a limited range.
This range, which depends on whether Charbonnier interpolation, regularised Charbonnier
interpolation or EED interpolation is used, is quantised linearly into 256 values. For example,
we used the interval [0, 1] for EED. To find the optimal λ, we decompress the image once
with each of the 256 possible values for λ. However, it is also possible to use a binary search
without noticeably worse results.

The second parameter that can be optimised is the regularisation parameter σ, which occurs
in the regularised Charbonnier operator and in EED. In our experiments, even strong variations
only slightly change the results with our framework. We conclude that, possibly due to the
specific point patterns or point densities used, the presence of regularisation itself is more
important than its exact amount in the setting considered here. Thus, we use a constant σ of
0.8 for all experiments shown here.

3.1.4. Finding Good Parameters
For our compression framework, we have followed an idea often used in video compression.
This idea is to specify only file format and decoder, while the encoder is not specified explic-
itly. This allows to improve the encoder without changing the decoder or the file format. For
example, more than 6 megabits per second were necessary in 1995 to get a picture quality
acceptable for television broadcast when using MPEG-2. In 2002, a third of that bandwidth
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Table 3.2.: Size of brightness data after compression using different general purpose entropy
coders. As initial data, brightness values obtained when encoding the image “trui” with dif-
ferent splitting thresholds are used. Shown are the size of the uncompressed pixel data in
bytes (none), and the size of the compressed pixel data with Huffman coding (HC), with
Huffman coding using canonical codes (HCc), with arithmetic coding with static (ACs) or
adaptive (ACa) model, PAQ, gzip (version 1.3.5), bzip2 (version 1.0.3), Lempel-Ziv-Welch
coding (LZW), and range coding (RC). The best result for each ratio and quantisation level is
highlighted.

Levels Size

None HC HCc ACs ACa PAQ gzip bzip2 LZW RC

256 8001 8229 7566 7396 7785 6520 7380 7209 9625 7794

128 8001 6786 6578 6445 6545 5498 6322 6075 7703 6804

64 8001 5566 5588 5476 5428 4483 5251 4998 5996 5813

32 8001 4470 4607 4502 4377 3475 4257 4017 4555 4826

16 8001 3480 3672 3548 3387 2546 3251 3052 3329 3866

8 8001 2511 2728 2614 2436 1758 2321 2198 2296 2928

256 2002 2749 2086 1899 2328 1810 1911 2115 2406 2337

128 2002 2051 1843 1685 1836 1547 1645 1724 2148 2095

64 2002 1576 1598 1456 1464 1287 1393 1414 1760 1849

32 2002 1218 1355 1221 1156 1033 1148 1155 1374 1604

16 2002 933 1125 990 889 787 934 915 1024 1368

8 2002 676 893 760 643 573 715 694 746 1135

256 504 1269 706 493 898 510 527 626 577 962

128 504 845 652 454 641 455 453 510 559 908

64 504 573 595 407 465 390 386 415 500 851

32 504 396 533 353 341 319 319 340 398 790

16 504 286 478 299 253 259 270 273 317 733

8 504 203 420 244 182 201 228 222 247 675
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Figure 3.5.: Left: A graph showing the MSE when compressing the image trui with a different
number of quantised values q. The parameter a has been optimised such that a compression
ratio of 40 : 1 was obtained using arithmetic coding. All remaining parameters are constant.
Right: Overview of the recursive algorithm used to find a good set of parameters.

was sufficient to reach the same quality even though the same decoders were still used [181].
Similarly, we expect that improved encoders or faster computers will increase the compres-
sion quality of our framework in the future, as we only find a local minimum with the steps
explained in this section.

There are several free parameters in our image compression algorithm explained so far: The
parameters a and l used to compute the splitting threshold T , the number of possible quantised
values q, the minimal and maximal allowed tree depths m and M , and possibly parameters
occurring in the inpainting operator such as the contrast parameter λ described in the last
section. In this section, we describe the method we have used to find good parameters for a
specific compression ratio C.

First, we consider only the parameter a. Reducing the parameter a results in smaller thresh-
olds T , with the consequence that more sub-images are split. Thus, we assume that, the smaller
this parameter, the better the reconstruction and the larger the resulting files1. In order not to
exceed the compression ratio C, we only have to perform a binary search in order to find the
smallest parameter a for which the resulting file is at least compressed with this compression
ratio. Thus, it is not necessary to perform the decompression step to find this parameter.

When searching the number of quantised values q, the parameter a is searched for each
value of q considered. If q is chosen too high, few pixels are saved, as each pixel requires a
lot of space. If q is too low, the pixels stored are very inaccurate. Both cases yield bad recon-
structions, as can be seen in the graph in Figure 3.5(a). Thus, the optimal value is somewhere
in between the extremal values q = 2 and q = 256. Here, we assume that there is exactly
one minimum, and use the golden section search [209] to find it. Although this assumption is
sometimes violated, the golden section search still results in a good approximation.

1Although it is counterintuitive, both assumptions can be violated: Due to entropy coding, storing more pixels
can result in smaller files, and specifying more pixels in the interpolation step can result in a worse recon-
struction.
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The parameter l, which is used in the computation of the splitting threshold T , and the
contrast parameter λ are also found using a golden section search in which other parameters
are searched for recursively. Note that the order in which the parameters are searched for can
make a difference. The ordering we used in our experiments is illustrated in Figure 3.5(b). Any
other ordering could be used, though. To speed up the optimisation, we cache the computed
inpainting results for each sub-image. As altering λ changes the inpainting result and thus
invalidates the cache, we suggest to search for λ last.

The remaining two parameters m and M have a very limited range, and are thus found
manually for all experiments shown in this thesis. However, searching them automatically can
be done straightforwardly.

3.1.5. Brightness Optimisation
Instead of utilising the (quantised) brightness values of the original image, it is usually benefi-
cial to use modified brightness values to reconstruct the image. This can significantly improve
the quality of the reconstructed image, as already reported in [88].

Here, we use a simple and straightforward approach: For each pixel in the inpainting mask
K, we replace its brightness if increasing or decreasing it to the next quantisation level reduces
the reconstruction error of the image. Thereby, the ordering of the pixels inK is random. Once
no single pixel can be optimised any more, the algorithm stops. This way, we reach only a
local minimum. Since finding the global minimum is very expensive, we restraint from further
optimising the brightness values. For alternatives to the simple approach employed here, we
refer to [167] and [111].

3.1.6. Interpolation Swapping
Especially when using large compression ratios, it can happen that the error of the recon-
structed image is larger in the inpainting mask K than in the inpainting domain Ω \K. There
are several reasons why this can happen. First of all, the pixels in K are quantised quite
coarsely, which is not the case for the interpolated pixels. Secondly, higher errors are accepted
in the interpolation set K if this is improves the approximation quality within the inpainting
domain Ω \K. Thirdly, data is inpainted by PDEs, which basically average information from
K in the inpainting domain Ω \ K. Even if the stored brightness values in K are erroneous
due to quantisation or due to the brightness optimisation step explained in the last section,
blending them averages the errors and can lead to less “noisy” results in Ω \K. A similar ob-
servation can be made in variational optic flow estimation where the results at locations with a
large data term are worse than those in areas where the smoothness term with its inpainting ef-
fect dominates [40]. The fourth and last reason only applies when using an isotropic diffusion
operator. In such a setting, inpainting results can become singular close to an isolated point in
K. In the linear case, this can be explained with the well-known logarithmic singularity of the
Green’s function of the 2-D Laplacian.

This problem has already been reported in [15]. This paper also proposes a relatively simple
solution. After the initial inpainting step is done, the role of known and unknown pixels is
exchanged. That is, the reconstructed points in Ω\K are assumed to be known, and the points
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in K are reconstructed using the same inpainting algorithm as before. The resulting image is
much smoother and propagates the high quality solution from Ω \ K to the more inaccurate
data in K. This approach can be justified as a numerical consistent approximation of the
inpainting PDE in the sense of so-called Hopscotch schemes [99].

In this thesis, we propose to further extend this idea: Instead of only recomputing the points
in K, we even allow to recompute all points within a certain distance to the points in K. We
denote this step by interpolation swapping in this thesis. According to our experiments, the
larger the compression ratio, the larger this distance should be. The radius for which the best
results are obtained is stored in the file header, and will be used in the decompression step.

It should be noted that the three optimisations introduced in the last three sections influence
each other. For example, changing the radius used for interpolation swapping may change the
optimal brightness values. Thus, the diffusivity optimisation from Section 3.1.3, the brightness
optimisations from Section 3.1.5, and the search for the best radius for interpolation swapping
explained in this section are interleaved (in this order) by our algorithm.

3.1.7. Colour Images

So far, we have only explained how to compress grey-scale images. However, as we will use
our image compression algorithm to compress colour images in Chapter 10, we now introduce
a version of our algorithm that can handle colour images.

As a first variant to handle colour images, we have implemented a rather simple approach:
When a colour image is to be compressed, the R, G, and B value of each pixel indicated by
the inpainting mask are stored in an interleaved way. The file containing all colour channels is
then compressed together using the chosen entropy coder. An additional bit in the file header
is used to indicate whether a grey-scale or colour image has been stored. In the decompres-
sion step, all three channels are reconstructed simultaneously using vector-valued inpainting
operators [288]. Note that this yields different results than inpainting each channel separately
when a nonlinear inpainting process is used, since the argument of the diffusivity function
depends on all channels.

3.1.8. File Format

Before we discuss the decompression algorithm, we will quickly explain the exact file format
we have used for the experiments in this thesis.

For the image size, we first store a single bit indicating if one or two bytes must be used
to store the width and height of the image. Since width and height are positive, one byte is
sufficient if width and height of the image are smaller or equal to 256. The next bit indicates if
width and height are identical, i.e. if one or two numbers must be saved. Finally, between one
and four bytes are necessary to store the actual width and height. That is, ten bits (one byte
and two bits) are sufficient for a small square image, while 34 bits (four bytes and two bits)
are necessary for a large image whose width and height differ.

The next three bits indicate which of the first eight entropy coders from Table 3.2 must be
used to decompress the brightness values.
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Then, four bits are used to indicate the radius used in the interpolation swapping step.
Thereby, each of the sixteen possible values stands for one specific radius such that all discrete
circles with radii between 0 to

√
26 can be used. When using the maximal radius of

√
26, 88

points around each given point will be reconstructed. This is much more than necessary for
all our experiments.

Next, the quantisation level q of the brightness values is stored. This allows to store these
values as numbers between 0 and q−1 instead of the actual brightness values, which improves
the performance of some entropy coders. Especially when using PAQ, this additional byte can
reduce the total file size by a few percent.

The next bit is straightforward and indicates whether a grey-scale or colour image is com-
pressed.

The quantised contrast parameter λ that should be used in the reconstruction step is stored
as a single byte, as explained in Section 3.1.3.

To store the maximal depth of the splitting tree, we use the knowledge that this number is
nonnegative and bounded by a number that can be computed from the image size. Thus, one
can easily compute the number of bits necessary to store the maximal tree depth. Similarly, the
number of bits for the minimal tree depth, which is nonnegative and bounded by the maximal
tree depth, can be computed.

Next, the tree containing the splitting decision (see Section 3.1.1) is saved by storing a
single bit for each decision. Here, we traverse this tree in breadth-first order, but any other
ordering results in the same file size.

In the remainder of the file, the quantised and entropy encoded brightness or colour values
are stored. This is done by scanning the interpolation mask row-wise from top left to bottom
right. Whenever the interpolation mask indicates that information at a certain position should
be kept, the quantised brightness or colour values at that point are stored in a file, which is
encoded afterwards.

The following list summarises our file format described in this section:

• image size (between 10 and 34 bits)

• type of entropy coder (3 bits)

• radius of interpolation swapping (4 bits)

• number of quantisation levels (1 byte)

• flag whether a colour or grey-scale image is compressed (1 bit)

• contrast parameter (1 byte)

• minimal and maximal depth of the tree (variable size)

• splitting information as a binary tree (variable size)

• compressed brightness or colour values (variable size)

43



3. Image Compression

Our current file format does not contain magic number or checksums, which are very common
in standard file formats. However, they can be included easily, and only result in a constant
overhead which does not invalidate the good compression performance of our codec. Sim-
ilarly, other information such as the type of inpainting operator used can easily be added if
necessary.

3.1.9. Encoding and Decoding Algorithms
In the decompression step, our algorithm first reads the file header explained in the last section.
Using the tree containing the splitting data and the image size, the inpainting mask is created.
Next, the compressed brightness or colour values are decompressed, mapped according to the
number of quantisation levels, and put into an otherwise black image at those points indicated
by the inpainting mask. Then, the remainder of the image is reconstructed by the same in-
painting algorithm as in the compression step. As a last step, an interpolation swapping step
(see Section 3.1.6) is done, if necessary.

3.1.10. Numerical Implementations
To solve the inpainting problem with different PDEs, we have used a large variety of numerical
schemes. Most of them are based on finite difference discretisations of the evolution equation
(2.6), and use (semi-)implicit time discretisations to allow using large time steps. In these
approaches, SOR (successive overrelaxation) or the conjugate gradient method are used to
solve the occurring systems of equations. Alternatively, fast explicit diffusion schemes [101],
as well as multigrid methods have been employed. Exceptions are biharmonic and trihar-
monic smoothing, for which pseudospectral methods have been used, and the approach by
Bornemann and März (see Section 3.2.1), which is not iterative and employs a fast march-
ing approach. For the method by Tschumperlé, we used the result kindly provided by David
Tschumperlé. However, an open source implementation is also available [277].

3.2. Experiments
“A fool is a man who never tried an experiment in his life.”

Erasmus Darwin (1731 – 1802)

The experiments presented in this section have two purposes: First, we compare the perfor-
mance of several differential operators in our image compression framework using the image
“trui”, see Figure 3.6(a). Additionally, we look at specifically chosen inpainting problems. In
the second section, we compare our codec against JPEG, JPEG 2000, and the approach by
Galić et al. [88] using the standard test images “trui”, “walter”, and a sub-image of “peppers”.
These three images are shown in Figure 3.6. The latter two images are available from the SIPI
web page http://sipi.usc.edu/database of the University of Southern California.
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(a) Trui, 257× 257 (b) Walter, 256× 256 (c) Peppers, 257× 257

Figure 3.6.: Original images used to evaluate the performance of our compression algorithm.

Table 3.3.: Performance of different inpainting operators in our image compression frame-
work. This table evaluates the results using the operators introduced in Section 2.1, and the
approach by Bornemann and März (see [26]), which is abbreviated as “BM”. First line: MSEs
obtained. Second line: Number of quantisation levels used. Third line: Total number of
brightness values saved. Fourth line: Depth range of the adaptive tree used to store the pixel
locations.

Homogeneous Biharm. Triharm. AMLE Charb. regul. Charb. EED BM
MSE 35.40 39.79 42.83 64.94 35.25 29.53 28.29 69.45
quantisation levels 11 20 17 11 11 11 24 17
points saved 3502 2858 3021 3469 3510 3516 2750 2991
depth of tree 9–13 10–13 10–13 8–13 9–13 9–13 9–12 9-13

Note that, strictly speaking, the approach by Galić et al. is only explained in [88] for square
images whose width and height have the form 2n + 1, n ∈ N. Despite the fact that the image
“walter” does not have this form, we include this method in our comparison. This is possi-
ble since the implementation kindly provided by Irena Galić can in fact handle images with
different resolutions.

3.2.1. Comparison of Differential Operators

In total, we evaluate eight different PDE-based inpainting operators in our image compression
framework. These eight operators are: homogeneous diffusion (see Equation (2.7)), bihar-
monic smoothing (see Equation (2.12)), triharmonic smoothing (see Equation (2.13)), AMLE
(see Equation (2.19)), Nonlinear isotropic diffusion (Charbonnier, see Equation (2.14)), Non-
linear isotropic diffusion with presmoothing (regularised Charbonnier, see Equation (2.17)),
EED (see Equation (2.18)), and the method by Bornemann and März (see [26]). The latter
method is a non-iterative algorithm that combines a fast marching method with a coherence
transport model, and is based on Telea’s algorithm [272]. As test setup, we use the image “trui”
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(a) homogeneous diffusion (b) biharmonic

(c) triharmonic (d) AMLE

(e) Charbonnier (f) regularised Charbonnier

(g) EED (h) Bornemann and März

Figure 3.7.: Visual performance evaluation of different inpainting algorithms in our compres-
sion framework. The left image in each block shows the image before optimisation (brightness
optimisation, interpolation swapping, improved diffusion parameters), while the right image
shows the image after optimisation. For each operator, the point mask was optimised such
that a compression ratio close to 45 : 1 using Huffman coding was obtained. For a numerical
evaluation, see Table 3.3.
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(see Figure 3.6(a)) with a compression ratio of approximately 45 : 1. All other parameters are
optimised individually for each method such that the best results are obtained.

Figure 3.7 illustrates the visual quality of each of these eight methods with and without
brightness optimisations, interpolation swapping, and improved diffusion parameters, while
results of a numerical evaluation are shown in Table 3.3. If the differences between these
results are not visible in the printed version, we suggest to look at the images in the PDF-file.

Considering these experiments, on can see several things. First of all, using EED yields
the best results. This is not only true with respect to the MSE (see first line in Table 3.3), but
can also be seen visually when zooming into the images. The results from all other methods
have deficiencies such as the singularities visible with standard or regularised Charbonnier
interpolation or homogeneous interpolation. Another example are the fluctuations at edges
when using bi- or triharmonic interpolation. The latter is due to over- and undershoots, and
appears since these higher-order differential operators do not fulfil the maximum-minimum
principle. For the remaining second-order operators, the information in the selected pixels
seems to be insufficient to create sharp edges, while the method by Bornemann and März
creates too many edges.

Furthermore, one can see that EED needs less points and a less precise localisation of the
point locations, resulting in a small depth range of the binary splitting tree. This results in a
smaller file header, and less brightness values. Consequently, EED may use a larger number
of quantisation levels for the same compression ratio to obtains a better approximation quality.

To illustrate why EED has such a good performance compared to other PDEs, let us consider
the experiment depicted in Figure 3.8. For this experiment, information inside the three discs
visible in the input image is given, while the remainder of the image is initialised with random
noise. Due to the white wedges present in the discs, a human observer can see a triangle.
Thus, this experiment resembles the well-known Kanizsa triangle [137].

When comparing the inpainting results with the different operators, one can see that EED
yields an almost perfect reconstruction. This is due to the combination of two properties of
EED: its anisotropy, which allows to create sharp edges, and its semi-locality obtained by
presmoothing, which propagates information about preferred directions from the given data
points to other image regions.

Note that the method by Bornemann and März also creates an almost perfect triangle, but
still yields bad results in our compression framework. This is due to two reasons. First of all,
this method is well suited for connecting level lines. This is sufficient to yield a good result
in the experiment with the three circles since basically three level lines are to be reconstructed
the direction of which is easy to detect. In natural images, however, it is unclear how the level
lines look like when only single image points are given. The second reason is that the method
by Bornemann and März is often quite sensitive to the choice of its parameters. Thus, slight
variations can significantly alter the results, as shown in Figure 3.8. As a consequence, it is
unlikely that there is one parameter set that yields a good reconstruction in all parts of a natural
image.

For this experiment, we additionally evaluated a method by Tschumperlé, which uses a
tensor-driven PDE that regularises images while respecting some curvature constraints [276].
Independent of the parameters used, results are not satisfactory. Moreover, the method is
rather slow and did not converge even after 5000 iterations in most cases even though this
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input image homogeneous biharmonic triharmonic

AMLE Charbonnier reg. Charbonnier EED

Bornemann and Bornemann and Tschumperlé
März (σ = 4) März (σ = 5)

Figure 3.8.: First image: Input image with size 189 × 189. The values inside the three disks
are given, while the remaining parts of the image was initialised with uniform noise. Remain-
ing images: Reconstruction results with homogeneous diffusion interpolation, biharmonic
interpolation, triharmonic interpolation, AMLE, Charbonnier interpolation (λ = 1), regu-
larised Charbonnier interpolation (λ = 0.1, σ = 8), EED interpolation (λ = 0.01, σ = 4), a
method by Bornemann and März [26] (ε = 5, κ = 100, σ = 4/5, ρ = 8), and a method by
Tschumperlé [276] (30 global and local iterations, dt = 17.86, α = 2.81, σ = 0.27).
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(a) input image (b) biharmonic c) EED
EED

Biharmonic Smoothing
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(d) Both results plotted as height fields

Figure 3.9.: (a) Top left: Input image with size 32 × 31. Only the two non-grey pixels in
the middle of the image are given, while the remaining pixels are to be reconstructed. (b)
Top middle: Interpolation result using biharmonic interpolation. (c) Top right: Interpolation
result with EED. (d) Bottom: Results of both interpolation approaches plotted as height fields.
Biharmonic interpolation (blue) produces large over- and undershoots, while EED (red) stays
within the specified grey value range [0, 255].

is 25 times the number of iterations used in the original paper. Furthermore, one can easily
see that the resulting image is not rotationally invariant, as it seems to prefers horizontal and
vertical structures. Due to these reasons we refrained from evaluating this method in our
compression framework in the remainder of this chapter.

As can be clearly seen in the results shown, AMLE smoothes only in a direction perpendic-
ular to isophotes. This is the main reason for its bad performance in both experiments.

The remaining operators are unable to create a good triangle since they are isotropic. Even
though biharmonic and triharmonic interpolation create blurry triangle-like structures, this is
caused by the higher degree of smoothness of the solution, not by any kind of anisotropy.

This high degree of smoothness can be problematic, though, as illustrated in the experiment
shown in Figure 3.9. In this experiment, only a black and a white pixel in the middle of the
image are given. When inpainting this “dipole” with EED and biharmonic interpolation, both
operators split the image into a white and a black part. Since biharmonic interpolation tries
to create a smooth result, the edge is quite blurry. Even worse, this results in large over- and
undershoots at both sides of the edge since biharmonic interpolation violates the maximum-
minimum principle.

49



3. Image Compression

input image homogeneous EED

Figure 3.10.: Inpainting experiments where 16 pixels are specified in an image of size 20 ×
20 (left image). The results when inpainting with homogeneous diffusion and EED (λ =
0.01, σ = 0.8) are shown in the middle and right image, respectively. While interpolation with
isotropic linear diffusion creates singularities at the specified pixels near edges, such artifacts
are not visible with EED.

In Figure 3.8, one can also observe that unregularised Charbonnier interpolation fills the
entire image region in black. This is due to the fact that regularised Charbonnier interpolation
approximates TV interpolation (see Section 2.1.3). Since a large part of the boundary of the
discs are black, the total variation is minimised by this solution. Consequently, TV disregards
a part of the given data, which is undesired for compression.

Note that EED also utilises (an approximation of) TV interpolation across edges. In con-
trast, however, it uses homogeneous interpolation along edges. Thus, it does not create sin-
gularities as visible for isotropic second-order operators such as linear diffusion, standard or
regularised Charbonnier interpolation (see corresponding images in Figure 3.7). Due to the
vanishing diffusion across pronounced edges, the interpolation problem is segmented into sub-
problems in which the specified grey values are similar if they belong to the same segment.
In each segment, essentially isotropic linear diffusion interpolation is performed. Since the
grey values in each segment are similar, logarithmic point-like singularities, which often oc-
cur with homogeneous diffusion in the presence of fluctuating data, do not appear. In fact,
EED only creates singularities across edges, i.e. it creates sharp edges, which is desirable in
image compression.

This behaviour is further illustrated in Figure 3.10. While both methods create a smooth
transition between the left and the right part of the image, the singularities when using homo-
geneous diffusion clearly stick out.

3.2.2. Comparison to Other Compression Methods

Let us now compare the performance of our image compression codec with the standard com-
pression algorithms JPEG and JPEG 2000, as well as with the algorithm proposed by Galić
et al. in [88]. For this comparison, we have used the tool “convert” (version ImageMagick
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Figure 3.11.: Comparison of JPEG, EEDC, JPEG 2000, and our compression algorithm (R-
EED) using the image “trui” and three different compression ratios.
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Figure 3.12.: Comparison of JPEG, EEDC, JPEG 2000, and our compression algorithm (R-
EED) using the image “walter” and three different compression ratios.

52



3.2. Experiments

≈ 46 : 1 ≈ 68 : 1 ≈ 91 : 1
JP

E
G

MSE= 82.38 at 46.0 : 1 MSE=152.97 at 68.6 : 1 MSE=232.1 at 91.1 : 1

E
E

D
C

MSE= 60.3 at 46.3 : 1 MSE= 91.11 at 68.2 : 1 MSE=126.94 at 91.7 : 1

JP
E

G
20

00

MSE= 53.31 at 46.0 : 1 MSE= 91.89 at 66.4 : 1 MSE=140.43 at 91.2 : 1

R
-E

E
D

MSE= 37.17 at 46.3 : 1 MSE= 51.22 at 68.6 : 1 MSE= 69.76 at 91.8 : 1

Figure 3.13.: Comparison of JPEG, EEDC, JPEG 2000, and our compression algorithm (R-
EED) using the image “peppers” and three different compression ratios.
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Figure 3.14.: Plots illustrating the performance of JPEG, JPEG 2000, R-EED, R-EED with
Huffman coding (R-EED-HC), and EEDC for a large range of compression ratios by plotting
the MSE against the compression ratio. Top: Result for the image “trui”. Middle: Result for
the image “walter”. Bottom: Result for the image “peppers”.
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6.2.4 02/10/07) and the source code kindly provided by Irena Galić. One should note that
convert uses optimised entropy coding parameters when saving JPEG files, while this was not
the case for the JPEG images shown in [88]. Thus, the images shown here differ from the
images shown in [88]. Further note that we will denote the results by our algorithm by R-EED
from now on, while the results by the approach by Galić et al. are denoted by EEDC.

For this evaluation, we compress the three grey-scale images shown in Figure 3.6 with all
four methods using a large range of compression ratios. Example images with three different
compression ratios for each method are shown in Figure 3.11 for the image “trui”, in Fig-
ure 3.12 for the image “walter”, and in Figure 3.13 for the image peppers. Figure 3.14 shows
plots that illustrate the MSE obtained with each method using various compression ratios up
to 100 : 1.

It is obvious that, for all three images, JPEG yields the worst results. Especially at high
compression ratios, block artifacts are clearly visible. Such artifacts are typical for JPEG,
which tiles the image into patches of size 8 × 8 each of which is processed and quantised
independently.

In contrast to the statement in [88] that their “EED-based codec ... even comes close to the
quality of the highly optimised JPEG 2000...”, one can see that the method by Galić et al. can
even produce slightly better results than JPEG 2000 for sufficiently high compression ratios.
However, R-EED produces results that clearly surpass those of EEDC for all three images
and all compression ratios. This can be seen best when considering the image “walter” for
which the MSE obtained with R-EED is always less than half the MSE obtained with EEDC.
Even for the image “peppers”, for which the performance difference between both methods is
smallest, the MSE with EEDC is 62% larger than with R-EED for a compression ratio around
46 : 1, and even 82% larger for a compression ratio around 91 : 1. This clearly demonstrates
the effect of the improvements introduced in R-EED.

R-EED also yields excellent results when it is compared to the sophisticated JPEG 2000
standard. For the image “peppers” and a compression ratio around 45 : 1, the MSE when
compressing with JPEG 2000 is 43% larger. For larger compression ratios, the difference is
even more noticeable: The MSE with JPEG 2000 is more than twice as large as those obtained
with R-EED for a compression ratio around 91 : 1. Similarly R-EED yields better results than
JPEG 2000 for the other images. When using the image “trui”, the MSE of JPEG 2000 is 63%
larger for a compression ratio around 44 : 1, and 83% larger for a compression ratio around
90 : 1. For the image “walter” the improvement is even bigger: JPEG 2000 has a 84% larger
MSE for a compression ratio around 49 : 1, and a 134% larger MSE at a compression ratio
around 94 : 1. Also note that the size of the compressed file was always slightly lower with
R-EED than with JPEG 2000 in Figure 3.11, 3.12, and 3.13.

It is well known that PDE-based inpainting methods deteriorate in highly textured regions.
However, R-EED still yields a better visual impression than JPEG 2000 in the textured regions
of the scarf in Figure 3.11. JPEG 2000, on the other hand, is known to create blurry edges, or
ringing artifacts. It seems the ability of EED to create sharp edges allows to use more points
in textured regions, thus yielding a better reconstruction quality.

Neither our implementation of JPEG 2000 nor the method of Galić et al. use an advanced
entropy coder. Thus, the graphs in Figure 3.14 also show results of our codec when a simple
Huffman coding is used instead. Our results with Huffman coding are denoted by R-EED-
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Figure 3.15.: Results with very high compression ratios. Top: Results generated with R-EED.
Bottom: Results generated with JPEG 2000.

HC in these graphs. As can be clearly seen, this only slightly reduces the efficiency of our
compression algorithm.

Especially when considering the graphs in Figure 3.14, it is noticeable that the performance
of the EED-based compression algorithms (EEDC and R-EED) scales better with respect to
the compression ratio than those of the transform-based approaches JPEG and JPEG 2000.
Thus, we also compare results with very high compression ratios in Figure 3.15 for R-EED
and JPEG 2000. Although the image quality with R-EED declined noticeably, one can see
still guess pretty well what is depicted in the rightmost image. This is not the case with JPEG
2000, which is also reflected in the much higher mean square error when using JPEG 2000.

Finally, we compress a coloured version of the image peppers, which is shown in the upper
left corner of Figure 3.16. Due to the trivial handling of colour (see Section 3.1.7), the dif-
ference of R-EED to JPEG and JPEG 2000 is closer than for the grey-valued variant of this
image. This experiment shows that even with the most simple way to handle colour images,
our compression algorithm already yields better results than the modern JPEG 2000 standard.
With a more sophisticated colour handling, the performance difference will increase further.
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Figure 3.16.: Comparison of JPEG, JPEG 2000, and our compression algorithm (R-EED)
using a colour version of the image “peppers” and three different compression ratios. The
method by Galić et al. is not included, as it is not implemented for colour images.
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3.3. Summary
“A conclusion is the place where you got tired thinking.”

Martin H. Fischer (1879–1962)

In this chapter, we developed an image compression codec based on partial differential
equations. We have demonstrated that edge-enhancing anisotropic diffusion (EED) is very
well suited for our codec, since it behaves both anisotropic and semi-local, fulfils the maximum-
minimum principle, and does not create singularities.

Furthermore, we have demonstrated that our codec outperforms both the approach it is
based upon [88] as well as JPEG and JPEG 2000, especially for high compression ratios.

In the following chapters, we introduce the 3-D pose tracking algorithm we developed.
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4 Silhouette-based Tracking

“It is necessary for me to establish a winner image.
Therefore, I have to beat somebody.”

Richard M. Nixon (1913 – 1994)

The task to locate and follow an object in a video sequence is a core problem in computer vi-
sion, which is called tracking. It is necessary or helpful in a multitude of applications, includ-
ing self localisation and object grasping in robotics, body language interpretation, foreground-
background segmentation, human computer interaction, traffic or security surveillance, char-
acter animation, analysis of athletes, and content-based video retrieval.

Although tracking is quite easy for humans, it is still a challenging problem for computers
due to the possible problems that may arise. Such problems include scenes with (partial)
occlusions, cluttered backgrounds, noise, objects barely distinguishable from the background,
or changing illumination conditions. Thus, it is not surprising that a satisfactory solution
has not been found yet, even though about thirty years have passed since the initial work by
Lowe [160]. Here, we will only give a brief summary of the topic. For a detailed overview
of the field, we refer to the surveys by Gavrila [91], Aggarwal and Cai [5], Moeslund and
Granum [177], Lepetit and Fua [153], Forsyth et al. [83], Moeslund et al. [178], Yilmaz et
al. [301], and Poppe [208].

Depending on the task at hand, the requirements imposed on a tracking algorithm can vary
greatly. For some application, such as traffic surveillance or face tracking, it can be sufficient
to mark every object by a rectangle or circle [14], while foreground-background segmentation
requires a decision for each pixel in the image. Other algorithms might only return a single
point in the centre of the object, a silhouette, or some control points on the object contour.
There are also many other possibilities how the result of a tracking algorithm may look like,
some of which are illustrated in Figure 4.1.

If the object model is given as kinematic chains (see Section 2.4.2), tracking algorithms
that return lines or elliptical patches that indicate the positions of different body parts are also
common [301].

In contrast to those 2-D approaches, many applications try to solve the more difficult task of
3-D pose tracking. The word pose refers to the transformation needed to map an object model
from its own inherent coordinate system into agreement with the sensory data [102].

That is, for 3-D pose tracking, the goal is to find the position and orientation of the object
to be tracked in 3-D space. For articulated objects, e.g. humans, additional parameters such
as joint angles must also be estimated. Some common kinds of visualisation used for tracking
results of kinematic chains are illustrated in Figure 4.2: Visualisation using a stick model
(leftmost), using one 2-D primitive (left), e.g. a rectangle or an ellipse, for each part of the
chain, or using the projection of the model utilised for tracking (right), possibly with multiple
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4. Silhouette-based Tracking

Figure 4.1.: This images illustrate different kinds of results a 2-D tracking algorithm can pro-
duce. From upper left to lower right: Tracking of a single point, an ellipse, a rectangle, a
silhouette, silhouette points, and of 2-D regions.

internal parts (rightmost). Again, it is possible to consider other possibilities how to indicate
where the tracked object parts are. For example, a set on non-connected edges is used in [261].

If a tracking via general 2-D regions was done, it is very easy to get a surrounding rectangle
or circle. Thus, 2-D pose tracking is obviously more difficult than tracking via rectangles.
Similarly, given the 3-D pose of an object, all that has to be done to get the 2-D image region
the object occupies is to project it. That is why an algorithm that solves the 3-D pose tracking
task automatically solves the other two tasks as well.

In order to perform 3-D pose tracking, an object model of each object to be tracked is
usually required. In this thesis, we always used existing models, created them manually, or
used models acquired by a laser scanner. However, it is also possible – up to some extent
– to adapt a template model while tracking [41, 268, 152]. Alternatively, one can create
object models via stereoscopic segmentation [134], shape-from-X [184, 304], structure from
motion [163], or many other approaches.

Independent of the kind of model, 3-D pose tracking must involve some kind of matching
between image features and entities on the 3-D object model. These features can be points [1],
lines [161, 23], or more complex features such as vertices, T-junctions, cusps, three-tangent
junctions, limb and edge injections, or curvature L-junctions [146]. In [67], edge-detection is
used to achieve real-time tracking of articulated objects, while Pressigout and Marchand com-
bined two tracking algorithms which use edges and texture information, respectively [210].
In [267], the pose is predicted using pixel displacements and improved afterwards by using
image-based cues such as silhouettes.

Learning-based approaches are also common. In [4], Agarwal and Triggs describe learning-
based methods that use regression for human pose tracking. Other learning-based approaches
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Figure 4.2.: Here, different ways to track objects consisting of kinematic chains are depicted.
Shown are, from left to right, tracking using a stick model, tracking with ellipses, tracking
using a full 3-D model, and tracking using models consisting of multiple internal regions (see
Chapter 7).

have been introduced, e.g. by Taycher et al. [271], in which an undirected conditional random
field is used, or by Sminchisescu et al. [254], in which generative models and recognition
methods are combined. However, learning-based approaches require a lot of training data,
which is not always available. Furthermore, the results are sometimes biased towards the
training data.

Another common approach is to track the object by tracking key points using feature track-
ers such as KLT [162, 275] or by using SIFT features [159]. Although these approaches are
usually fast, they often have similar problems. For example, a sufficient number of shared
keypoints must be detected in successive images, which is not always possible. Moreover,
tracking errors can accumulate and result in an undesired drift. Matching all images to a com-
mon frame can prevent this drift, where a frame is the set of all images for a certain time,
i.e. one image per camera. However, this is not possible in strongly varying sequences.

Drift is avoided in detection-based tracking approaches, which try to detect a specific in-
stance of a given object model in each frame. Since reliable detection is very hard, this prob-
lem is usually simplified by using additional assumptions. Some approaches assume the pres-
ence of a static background such that the object can be detected using background subtraction,
as in [4, 89]. Another common assumption is that enough discriminative features are present
on each object to be tracked [192]. It is also possible to learn different object parts from
different points of view to detect objects and viewpoints in new images [266].

The approach from [219] first performs segmentation to find the 2-D position of the ob-
ject, where the object model serves as a shape prior for the segmentation. Afterwards, a 3-D
pose tracking approach uses the segmentation results to obtain the 3-D pose. This approach
requires a good initialisation in the first frame and limited motion between frames. While
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4. Silhouette-based Tracking

the requirement of an initial pose and limited motion resemble a classical tracking approach,
the matching of the surface model to the silhouette in the image avoids drift and involves the
silhouette of the object as a general descriptor (see [224]).

Dambreville et al. later proposed in [58] to jointly perform segmentation and pose tracking.
In [229], this idea is further extended to use a catalogue of 3-D shapes instead of a single
object model.

The tracking approach we developed builds upon the approach by Rosenhahn, Brox, and
Weickert [219]. Consequently, it uses many of the concepts already present in this approach.
Therefore, we describe this approach in the remainder of this chapter such that similarities and
differences between these two approaches are clear.

Thus, we first describe the pose estimation approach from [221] and the level-set-based
segmentation approach from [34] in Section 4.1 and 4.2, respectively. In Section 4.3, the com-
bination of both approaches yields an energy function for pose tracking of rigid objects [219].
We will then illustrate in Section 4.4 how this energy function can be minimised, and what
must be done to extend this approach to kinematic chains (see Sections 2.4.2 and 4.5). Sec-
tion 4.6 finally shows the problems and limitations of this approach. In the next chapter, we
will explain how to overcome these problems using the silhouette-based tracking approach we
have developed. Note that we only deal with 3-D pose tracking in this thesis. Thus, the terms
“3-D” and “pose” will usually be omitted in from now on.

4.1. Pose Estimation with Image-Vertex Point
Correspondences

“The photographic image... is a message without a code.”

Roland Barthes (1915 – 1980)

The basic idea behind the pose estimation approach introduced in this section, originally
developed by Rosenhahn et al., is to use 2-D–3-D point correspondences, which are also
called image-vertex point correspondences. That is, we assume we have a set {(ci,Ci)} of 2-
D image points ci:= (xi, yi, ki) lying at position (xi, yi) in the ki-th image for which we know
to which 3-D point Ci on an object model they correspond to. For the moment, we assume
that the object is rigid. The extended model for kinematic chains is introduced in Section 4.5.

Before giving more details about this approach, let us define the exact task to be solved in
this chapter. Since there will be similar, but slightly different tasks in later chapters, we show
them in form of a table, as this allows a faster comparisons:
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4.1. Pose Estimation with Image-Vertex Point Correspondences

Given:
– One projection matrix P for each camera (see Section 2.6)
– A model of a rigid object (see Section 2.4.1)
– A set of image-vertex point correspondences (ci,Ci)

Assumptions:
None
Task:
– Find the twist ξ describing the 3-D position and orientation of the object

The first step of this approach is to reconstruct the projection rays from the 2-D points ci of
the given correspondences, i.e. the lines passing through the points ci and the camera origin
of the corresponding camera. This results in one line Li= (ni,mi) for each correspondence,
given in Plücker form (see Section 2.5.1). Thus, we know that each 3-D point Ci lies on the
corresponding Plücker line Li. After transforming the initial 3-D positions by the unknown
twist ξ, we have

‖(exp(ξ̂)Ci)3×1 × ni −mi‖ = 0 ∀ i. (4.1)

Here, the index 3 × 1 denotes the mapping from an affine to an Euclidean space. That is, the
last element is simply removed since it will always be one in this setting.

In practice, the given correspondences are usually inaccurate. Thus, the term on the left
hand side of Equation (4.1) is not exactly zero.

As a consequence, a least-squares approximation should be performed here. Instead of
searching for the pose ξ such that Equation (4.1) is fulfilled for all points, we are looking for
the pose that minimises ∑

i

‖(exp(ξ̂)Ci)3×1 × ni −mi‖2. (4.2)

Although the exponential function can be evaluated efficiently (see Equation (2.G)), the re-
sulting equations are hard to solve. However, after linearising the exponential functions by
using a first-order Taylor expansion

exp(ξ̂) =
∞∑
j=1

ξ̂j

j!
≈ I + ξ̂ (4.3)

(where I is the identity matrix), we get quadratic equations whose minimisation results in the
equations

((I + ξ̂)Ci)3×1 × ni −mi = 0. (4.4)

When evaluating the cross product, one can see that this results in three linear equations for
each correspondence. Note that the three equations from one correspondence are linearly de-
pendent, though. More precisely, when reordering the equations into the form Aξ = b with
A ∈ R3×3 and b ∈ R3, A has rank 2. Thus, three accurate correspondences are sufficient
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ξ

O

ξ

Figure 4.3.: This figure illustrates the goal of 3-D pose tracking with rigid objects: Find the
pose and orientation change ξ necessary to move the object to be tracked from its initial
position (left) to the position seen in the image.

to find the correct pose ξ. Since correspondences can be inaccurate, we use as many corre-
spondences as possible. This results in an overdetermined linear system of equations. Such
systems can be solved with standard algorithms. Here, we use the Householder algorithm.
Note that if we have a different confidence for each point correspondence indicating how ac-
curate this correspondence is, this can be taken into account by scaling each equation in the
system accordingly.

We still have to compensate for the error introduced by the linearisation in Equation (4.3).
This compensation is done in the following way: First, an initial guess of the pose change ξ is
estimated by solving Equation (4.4). Then, this twist is transformed into a rigid body motion
by computing exp(ξ̂) using the Rodriguez formula (see Equation (2.G)). The estimated motion
is applied to the points Ci, effectively setting ξ back to zero. Note that, the larger the pose
change ξ, the larger the linearisation error will be. However, as the linearisation error in the
first step is usually smaller than the estimated pose change, a smaller linearisation error will
occur if ξ is estimated again. Thus, we can reduce the linearisation error by iterating the
process described in this paragraph. According to our experience, the linearisation error is
negligible after three iterations.
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4.2. Segmentation

Figure 4.4.: In image segmentation, the task is to split the image into two (or more) regions
with different appearance. This figure shows two examples for such a segmentation. In the
left images, the two regions differ by colour. However, the average grey value and even its
variance are the same in the right images. Thus, texture information is used to distinguish the
two regions.

4.2. Segmentation

“The image is more than an idea.
It is a vortex or cluster of fused ideas and is endowed with energy.”

Ezra Pound (1885 – 1972)

This section deals with the level-set-based two-phase segmentation method introduced by
Brox et al. in [34]. Again, we give the task in form of a table:

Given:
– An image with domain Ω ⊂ R and co-domain Rn, n ≥ 1

Assumptions:
– There are two regions Ω1 and Ω2 with the following properties:
• The appearance within each region is similar
• The appearance between the regions is dissimilar
• The boundary between the regions is short

Task:
– Segment the image into the two regions, i.e. find the boundary between the regions

Since we will use segmentation for object-background separation, we only deal with seg-
mentation into two regions. Extensions to multiple regions are possible [305, 35], but not of
interest here.

As explained in the task description, the two image regions should have a different appear-
ance. Since this formulation is rather vague, we have to clarify two things: (i) What exactly
should be different, and (ii) how do we measure dissimilarity?

The answer to the first question depends on the image to be segmented. For simple grey-
valued images, it can be sufficient to demand that the average grey value of the two regions
differs as much as possible. For more difficult images, more complicated properties must

65



4. Silhouette-based Tracking

-4
-2

 0
 2

 4

-10
-5

 0
 5

 10

-400

-300

-200

-100

 0

-120

-90

-60

-30

 0

 30

 60

-4
-2

 0
 2

 4

-10
-5

 0
 5

 10

-400

-300

-200

-100

 0

-4
-2

 0
 2

 4

-10
-5

 0
 5

 10

-400

-300

-200

-100

 0

-120

-90

-60

-30

 0

 30

 60

-4
-2

 0
 2

 4

-10
-5

 0
 5

 10

-400

-300

-200

-100

 0

-4
-2

 0
 2

 4

-10
-5

 0
 5

 10

-400

-300

-200

-100

 0

-120

-90

-60

-30

 0

 30

 60

-4
-2

 0
 2

 4

-10
-5

 0
 5

 10

-400

-300

-200

-100

 0

-4
-2

 0
 2

 4

-10
-5

 0
 5

 10

-400

-300

-200

-100

 0

-120

-90

-60

-30

 0

 30

 60

-4
-2

 0
 2

 4

-10
-5

 0
 5

 10

-400

-300

-200

-100

 0

Figure 4.5.: These plots show a level-set function (grey), the zero-level plane (blue), and the
intersection of both, i.e. the zero-level line (red), which divides the two regions. All four plots
show the same level-set function except for an additive constant. As can be seen, new regions
can appear or vanish, several regions can merge, and a region may split into several others.
Furthermore, different parts of one region must not be connected, and there can be holes even
though the level-set function is continuous.

be compared, see Figure 4.4. Examples for such properties include colour, texture descrip-
tors [249, 195, 37], motion [56], or some other filter responses [85, 28]. The only requirement
is that the properties used are dense, i.e. they can be computed at every image point. No matter
which properties are used, the set of them will be called image features (or short features).

In order to compare image features between two regions Ω1 and Ω2, we use probability den-
sity functions (see Definition A.J). More precisely, we assume there are two unknown PDFs p1

and p2 describing the appearance of Ω1 and Ω2, respectively. Then, we treat all pixels within
one region as independent and identically distributed random variables (see Definition A.M)
drawn from the corresponding PDF, and estimate them by using one of the methods described
in Section 2.7.2. However, since the amount of data is rather small, the approximations of
these multi-dimensional PDFs will be rather bad, especially if a lot of features are used. Thus,
we will assume independence (see Definition A.L) between the different features here. Then,
the PDFs including all M features are given as product of the estimations of the 1-D PDFs pij ,
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4.2. Segmentation

Figure 4.6.: Two views of the same scene in which the tea box is to be segmented. The left-
most image in each row show the initialisations of the level sets used, while the remaining
three images show the result of a level-set-based segmentation using a coarse-to-fine (also
called multiscale) strategy [34] with 10, 100, and 1000 iterations. As can be easily seen, seg-
mentation can converge to bad results if no prior knowledge about the object to be segmented
is used. This is especially true if the object is partially occluded (lower row),

where pij is an estimation of the PDF of the j-th feature inside Ωi:

pi =
M∏
j=1

pij, i ∈ {1, 2}. (4.5)

Although this is an approximation that is not always accurate, the PDFs pij can be estimated
much more accurately than the complete PDFs pi.

The approach described here uses a level-set function [61, 187] Φ : Ω→ R which splits the
image domain Ω into two regions Ω1 = {x ∈ Ω|Φ(x) > 0} and Ω2 = {x ∈ Ω|Φ(x) < 0}.
The zero-level line denotes the boundary between these two regions. The advantage of such an
approach is that all kinds of topological changes between the regions can be handled without
problems, see Figure 4.5.

Using such a level-set function, the requirements explained in the task description can be
modelled in a single energy functional [307]:

E(Φ) = −
∫

Ω

((H(Φ)) log p1 + (1−H(Φ)) log p2) dx︸ ︷︷ ︸
feature separation

+ν

∫
Ω

|∇H(Φ)|dx︸ ︷︷ ︸
Length constraint

. (4.6)

where ν ∈ R+ is a weighting parameter, and H is a function that indicates to which region a
point belongs. A typical choice is a regularised Heaviside function, i.e. a function H : R →
[0, 1] with limx→−∞H(x) = 0, limx→∞H(x) = 1, and H(0) = 0.5.

The first term demands that the features are separated into two parts with different appear-
ance, and indirectly also states that the features within each region should be equal. The last
term penalises long boundaries between the regions.
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4. Silhouette-based Tracking

Figure 4.7.: Here, the same two views as in Figure 4.6 have been segmented. The left two
images have been segmented using the shape prior from Equation (4.11) while the right images
are the results without this prior.

If p1 and p2 are known, the energy functional (4.6) can be minimised using the gradient
descent equation

∂tΦ = H ′(Φ)

(
log

p1

p2

+ ν div
(
∇Φ

|∇Φ|

))
. (4.7)

However, the PDFs are usually not known in advance. As a consequence, E not only de-
pends on the level-set Φ, but also on the two PDFs. In such a situation, one usually estimates
p1 and p2 using an initialisation of the level set function Φ, then performs minimisation of
Equation (4.6) by alternatingly fixing the PDFs and performing the gradient descent given in
Equation (4.7), and reestimating the PDFs. This is one specific instance of the expectation-
maximisation principle [60]. However, this process only converges to a local minimum. Thus,
the initialisation is important. Even if a good initialisation is available, and even when using
a coarse-to-fine strategy [25, 9], which can diminish such problems, segmentation results are
often inaccurate. This is due to the fact that image features are optimised, but the optimised
features do not necessarily correspond to the actual objects in the image.

This is illustrated in Figure 4.6: Even if a good initialisation is provided for an unoccluded
object, the minimisation in the segmentation algorithm converges to a result that has little to
do with the desired solution (see upper row). If there is a partial occlusion as shown in the
lower row, segmentation results can even be much worse.

4.3. Combined Energy Functional
“There’s an alternative. There’s always a third way, and it’s not a combination

of the other two ways. It’s a different way.”

David Carradine (1936 – 2009)

In each of the methods described in the last two sections, there is one point not discussed so
far. For the pose estimation approach, this open point is how to find the necessary point corre-
spondences. For segmentation, one should find a good initialisation to guide the algorithm as
there is no prior knowledge about the appearance of the regions to be segmented.
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4.3. Combined Energy Functional

Both open points are answered when combining these approaches into a silhouette-based
tracking approach, as proposed in [33, 219]:

Given:
– One projection matrix P for each camera (see Section 2.6)
– One image sequence with domain Ω ⊂ R for each camera
– A model of a rigid object (see Section 2.4.1)
– An approximate 3-D pose initialisation ξ0 in the first frame
Assumptions:
– The object is always (partly) visible
– The appearance of object and background differs
Task:
– Track the 3-D pose of the object through all images
– Segment the images into object and background regions

The idea was to extend the energy functional for segmentation (4.6) by an additional shape
term that depends on the pose of the object. The new energy functional (for one camera) reads

E(Φ, pin, pout, ξ) =−
∫

Ω

((H(Φ)) log pin + (1−H(Φ)) log pout) dx︸ ︷︷ ︸
Feature separation

+ ν

∫
Ω

|∇H(Φ)|dx︸ ︷︷ ︸
Boundary length constraint

+λ

∫
Ω

(Φ− Φ0(ξ))2dx︸ ︷︷ ︸
Shape prior

, (4.8)

where λ is a weighting parameter, pin and pout are the PDFs of the object and background
region, and Φ0 is a level-set function obtained in the following way: First, the object model
with pose ξ is projected onto the image plane, yielding the set xs of points occupied by the
object. Next, one initialises Φ0 by setting

Φ̃0(x) =

{
1 if x ∈ xs
−1 else

(4.9)

and finally, a signed distance transform [216] is performed. That is, Φ0 is given as

Φ0(x) =

{
dist(x, Z) if Φ̃0(x) > 0

−dist(x, Z) else
, (4.10)

where Z is the zero-level line of Φ̃0. For fast implementations of distance transformations,
see [282, 75].
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4. Silhouette-based Tracking

In a setting with C cameras with C > 1, a separate level-set function is used for each image,
resulting in the energy functional:

E(Φ1, . . . ,ΦC , p1
1, . . . , p

C
1 , p

1
2, . . . , p

C
2 , ξ)

=
C∑
l=1

[
−
∫

Ω

(
(H(Φl)) log pl1 + (1−H(Φl)) log pl2

)
dx (4.11)

+ ν

∫
Ω

|∇H(Φl)|dx+ λ

∫
Ω

(Φl − Φl
0(ξ))2dx

]
.

Since the energy functional for multiple-cameras is a straightforward extension of the monoc-
ular case, we will describe the setting for a single camera only from now on.

Since the first two terms of the new energy functional are equal to the energy functional
used in segmentation, their meaning is obviously the same as in Section 4.2. The shape prior
introduced in Equation (4.8) fulfils two tasks: It rewards object poses that match the segmen-
tation obtained, and encourages the segmentation to yield results which are consistent with the
projected object model. As can be seen in Figure 4.11, segmentation results drastically im-
prove due to this shape prior. In the next section, we give detail on how this energy functional
is minimised.

4.4. Minimisation
“I love sports. I love animals. I love kids. I want to save the world.

So how do I combine all those things? I don’t know.”

Joan Jett (∗1958)

In this section, we explain how to minimise the energy functional given in Equation (4.8). This
is a non-trivial task since it depends on a six-dimensional pose vector, an infinite-dimensional
level-set and two infinite-dimensional PDFs.

As a global minimum is very hard to find in such a complicated setting, an explicit iterative
scheme was proposed in [33]. Note that, in contrast to pose estimation, a pose initialisation is
available in pose tracking. This initial pose can be used to initialise the level-set function used
in the segmentation step.

Thus, we can initialise Φ with Φ0(ξlast), where ξlast is either the initial pose (first frame), or a
pose estimation from the poses in the previous frames. For example, one might set ξlast as the
pose result from the last frame, or a linear extrapolation might be used. Since segmentation
results depend on the initialisation, a good initialisation helps to avoid local minima.

As next step, we assume ξ (and thus Φ0(ξ)) is fixed and minimise the segmentation param-
eters, i.e. the level-set Φ and the PDFs pin and pout. Since this is the same as segmentation
with a 2-D shape prior, we can use the gradient descent described in [226, 33], given by

∂tΦ = H ′(Φ)

(
log

pin

pout

+ νdiv
(
∇Φ

|∇Φ|

))
+ 2λ(Φ0(ξ)− Φ). (4.12)
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4.4. Minimisation

Figure 4.8.: Images illustrating silhouette matching with ICP and the optic flow. Top left: A
part of the silhouette in two configurations. The silhouette points are marked by circles. Top
middle and top right: Matching obtained using ICP when matching the first to the second
curve or vice versa. Bottom left and bottom middle: Distance transform of the two silhouette
parts. Bottom right: Optic flow between the two silhouettes. The optic flow was scaled down
for visualisation.

As in the case of segmentation without shape prior, minimisation of Φ and estimating the
PDFs pin and pout is done in turns to improve the results.

Minimisation of Φ with respect to the pose ξ is done by the following steps: First, the
level-set function Φ0(ξ) obtained by projecting the object is matched to the level-set function
Φ obtained from segmentation. This can be done, for example, via an iterated closest point
(ICP) algorithm [172, 22], or by using the optic flow [112].

Figure 4.8 illustrates ICP and optic flow for silhouette matching. When using ICP on two
curves, the silhouette points on the first curve are assigned to the closest point on the second
curve, as demonstrated in the first row of Figure 4.8. Additionally, one can match the second
curve to the first to find twice the amount of correspondences. Using these correspondences
and a least-squares approach, one approximates the rigid motion that moves the curves over
each other. This motion is applied to one of the curves. The whole procedure is iterated until
convergence.

When using the optic flow, one first computes the distance transform (see Equation 4.10
and Figure 4.8) of the curves, and computes the optic flow between the two distance trans-
formed images. This yields better results than computing the optic flow directly on images
only containing the curves since there are more different features this way. By evaluating the
appropriate positions in the flow field, namely those where a silhouette point is, a matching
between silhouette points is found. As in the previous case, this matching is used to estimate
the rigid motion necessary to match the two curves. After applying the motion to one curve,
the whole process is iterated until convergence.
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4. Silhouette-based Tracking

− Update     via Equation (4.12)
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Figure 4.9.: Overview over the steps performed to minimise the energy functional (4.8) (or
(4.13)) occurring in the silhouette-based tracking approach by Brox, Rosenhahn, and Weick-
ert [33, 219] explained in Section 4.3.

Since both ICP and the optic flow can be used to estimate correspondences, using both
methods together is also possible [217].

The matching step explained above assigns each point on the level-set Φ to a point on Φ0(ξ).
However, since Φ0(ξ) is just the projection of the object model, we also know which point on
Φ0(ξ) corresponds to which point on the 3-D model. That is, we get correspondences between
the 2-D segmentation result Φ and the 3-D model this way. Using these image-vertex point
correspondences, we can estimate the pose as described in Section 4.1.

Since we perform a local minimisation, a good initialisation is beneficial to find a good
pose. Thus, once the pose was found, the pose in the next image frame is estimated by linear
extrapolation from the previous two frames. More advanced approaches such as using the
optical flow to predict the new pose [31], or using a physical simulation [285], could also be
considered. This extrapolation also helps to reduce problems introduced by linearising the
exponential function as done in Equation (4.3).

An overview over the complete minimisation algorithm can be found in Figure 4.9.

4.5. Extension to Kinematic Chains
“It is a point where our old models must be discarded and a new reality rules.”

Vernor Vinge (∗1944)

The tracking approach illustrated in the last section is designed for rigid objects. In this Sec-
tion, we present the extension to kinematic chains (see Section 2.4.2) introduced in [220].
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4.5. Extension to Kinematic Chains

Given:
– One projection matrix P for each camera (see Section 2.6)
– One image sequence with domain Ω ⊂ R for each camera
– A model of an object given as kinematic chain (see Section 2.4.2)
– An approximate 3-D pose initialisation ξ0 in the first frame
Assumptions:
– The object is always (partly) visible
– The appearance of object and background differs
Task:
– Track the 3-D pose of the object through all images
– Segment the images into object and background regions

Using kinematic chains instead of rigid objects is straightforward when using the represen-
tation of kinematic chains introduced in Section 2.4.2:

E(Φ, pin, pout,χ) =−
∫

Ω

((H(Φ)) log pin + (1−H(Φ)) log pout) dx︸ ︷︷ ︸
Feature separation

+ ν

∫
Ω

|∇H(Φ)|dx︸ ︷︷ ︸
Boundary length constraint

+λ

∫
Ω

(Φ− Φ0(χ))2dx︸ ︷︷ ︸
Shape prior

. (4.13)

Compared with the energy function from Section 4.3 (Equation (4.8)), the 6-D pose vector
ξ is replaced by the (6+n)-D pose vector χ necessary to describe the complete pose of the
kinematic chain.

The minimisation with respect to the level-set function Φ is performed in exactly the same
way as before. The same is true for the estimation of the PDFs pin and pout, and for the
matching between Φ and Φ0(χ). For the point transformation needed, e.g. to compute the
projection Φ0(χ), Equation (2.42) must be used instead of Equation (2.41). In particular, this
is of importance when linearising the term that minimises the distance of the transformed point
to the reconstructed Plücker line (compare Equation (4.4)):

exp
(
ξ̂
)

exp
(
θi1 ξ̂i1

)
. . . exp

(
θij ξ̂ij

)
X × ni −mi

≈
(
I + ξ̂ + θi1 ξ̂i1 + . . . θij ξ̂ij

)
X × ni −mi. (4.14)
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4. Silhouette-based Tracking

Figure 4.10.: These figures illustrate problems that can occur in the pose tracking approach by
Brox, Rosenhahn, and Weickert [33, 219]: Left: The segmentation result can be too smooth
(due to the boundary length constraint, see left blow-up), and there might be undesirable hole
(see right magnification). Right: The segmentation can be concave even if convex objects are
being tracked (see magnification in the upper left corner), or one might get multiple regions
(see blow-up in the lower left corner).

4.6. Drawbacks of this Algorithm
“Mistakes, obviously, show us what needs improving.

Without mistakes, how would we know what we had to work on?”

Peter McWilliams
in Life 101

Although the tracking approach described in this chapter works quite well, it has a number
of shortcomings, which are illustrated in this section.

The quality of the pose estimation approach presented in Section 4.1 directly depends on
the quality of the point correspondences estimated. Thus, an erroneous segmentation leads to
bad tracking results. A bad segmentation result can have several reasons:

First of all, the boundary length constraint can lead to oversmoothing in some regions (see
left image in Figure 4.10). Reducing the influence of this constraint is possible by reducing
the parameter λ, which in turn reduces the risk of oversmoothing. However, a small λ can lead
to oversegmentation. That is, undesired holes might appear, or one might get multiple regions
as illustrated in the magnifications shown in Figure 4.10. Note that it is not possible to simply
fill the holes, as there can be holes in the correct segmentation result, e.g. when tracking a
torus, or the tea pot depicted in the left image of that figure.

Furthermore, even when using the shape prior, the segmentation step might return segmen-
tations which are not consistent with the object model. As an example, consider the magnifica-
tion in the upper left part of the right image in Figure 4.10. One can see that the segmentation
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4.6. Drawbacks of this Algorithm

Figure 4.11.: Tracking results (red) and silhouettes (yellow) estimated using the approach de-
scribed in this chapter [33]. Shown are, from top left to bottom right, the frames 97, 230, 269,
and 277.

boundary is concave. Since the 3-D model is convex, this segmentation cannot match to the
object.

Figure 4.11 illustrates the problems in a real-world stereo sequence. Although tracking
works for some parts of the sequence, there are easily noticeable problems in others: Around
frame 97 (upper left corner of Figure 4.11), the segmentation is inaccurate due to an occlusion
by a block of wood, resulting in an imprecise tracking result. Around frame 230 (upper right
corner), problems occur since the lower surface of the tea box has a completely different
appearance than the remainder of the tea box. Around frame 269 (lower left corner), there
are specular reflections that look similar to the background, and around frame 277 (lower
right corner), the tea box simultaneously rotates around different axes, both of which leads to
tracking failures.

In addition to possibly giving wrong results, steps such as segmentation and matching are
also quite expensive; the fact that they are merely used as intermediate steps only increases
our concern about them. Nevertheless, we have to estimate an infinite-dimensional level set
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4. Silhouette-based Tracking

function several times per frame with this approach even though only a few pose parameters
are of interest. In the following chapter, we will see how to prevent this detour by directly
coupling the image statistics with the pose parameters without using image segmentation or
matching as intermediate steps. As we will see, the problems described above will not be
present in our improved approach any more.
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5 Segmentation-free Pose Tracking

“A journey of a thousand miles must begin with a single step.”

Lao Tzu, Chinese philosopher (604 BC – 531 BC)

The pose tracking approach explained in the last chapter works well in some situations. How-
ever, as explained in detail in Section 4.6, it has several problems that can result in a long
runtime, inaccurate tracking results, or even a failure to track. Most of these problems are due
to the fact that segmentation and matching steps are used as intermediate steps. The tracking
approach presented in this chapter will solve these problems by performing a direct estimation
of the pose parameters, without using segmentation or matching as intermediate steps. We
first described the approach introduced in this chapter in [235], and some extensions in [222]
and [223].

We start by introducing the energy function used in our approach, see Section 5.1. The
following two sections explain and illustrate how to minimise this new function. Section 5.4
deals with reusing information from the PDFs of the previous frame and other optional ex-
tensions. Section 5.5 performs an experimental evaluation, while the chapter is concluded in
Section 5.6.

Figure 5.1.: Illustration of the evolution of our 3-D pose tracking algorithm. From top left
to bottom right: Initial pose estimation obtained from the last frame, and pose estimated
after 10, 20, 30, 40, 50, 60, and 70 iterations (magnified). The complete image is shown in
Figure 5.3.

77



5. Segmentation-free Pose Tracking

5.1. Energy Function for Region-based Pose Tracking
“Every man builds his world in his own image. He has the power to choose, but

no power to escape the necessity of choice.”

Ayn Rand (1905 – 1982)

The task to be solved in this chapter is the same as in Chapter 4:

Given:
– One projection matrix for each camera (see Section 2.6)
– One image sequence with domain Ω ⊂ R for each camera
– Model of an object given as rigid object or kinematic chain with n

joints (see Section 2.4)
– Approximate 3-D pose initialisation ξ0 ∈ R6 or χ0 ∈ R6+n in the first frame
Assumptions:
– The object is always (partly) visible
– The appearance of object and background differs
Task:
– Track the 3-D pose of the object through all images
– Segment the images into object and background regions

As before, we describe the tracking algorithm only for the single-camera case since this
simplifies the formulas. Again, the extension to multiple cameras is straightforward, though.
Additionally, we assume that the object model is given as a kinematic chain because rigid
objects are in fact a special case of kinematic chains with zero joints.

When looking at the shortcomings of the energy functional given in Equation (4.8), one no-
tices that the problems explained in Section 4.6 are due to the segmentation step: Oversmooth-
ing can happen due to the boundary length constraint needed for the segmentation step, holes
and multiple regions appearing in the segmentation can result in wrong correspondences, and
both segmentation and matching are computationally expensive.

Thus, we proposed in [235] to remove the explicit contour computation step from the pose
tracking algorithm. Instead, we suggested to directly use the projected object to distinguish
between object and background region. This results in the energy function:

E(χ, pin, pout) = −
∫

Ω

(cχ(x) log pin + (1− cχ(x)) log pout) dx, (5.1)

where χ is the pose of the object, pin and pout are PDFs for the inside and outside of the object
region, Ω is the image domain, and cχ : Ω 7→ {0, 1} is an indicator function of the points
occupied in the image plane when projecting the object model with the pose χ:

cχ(x) =


1 if the surface of the 3-D model with pose χ

projects to the point x in the 2-D image plane
0 else

. (5.2)
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In this setting, the object and background regions Ωin and Ωout are given by

Ωin(χ) = {x ∈ Ω|cχ(x) = 1}, Ωout(χ) = {x ∈ Ω|cχ(x) = 0}. (5.3)

When comparing the energy function (5.1) with the energy functional in Equation (4.8),
one notes some important differences: First of all, the level-set function is no longer neces-
sary. Thus, instead of estimating an infinite-dimensional energy functional, we only need to
estimate an energy function with 6 + n unknowns, where n is the number of joints. Neverthe-
less, we can still employ all of the dense feature sets used in segmentation. In this thesis, we
use either the grey value or the colour in the CIELAB colour space [125] as features. For some
difficult sequences, we additionally utilise the four channels from the texture space explained
in [37].

Strictly speaking, Equation (5.1) is still an energy functional since it depends on the two
PDFs pin and pout. As we assume an underlying model for these functions, minimising them
is rather easy (see Section 2.7.2), and does not require a gradient descent equation such as
the one given in Equation (4.7), though. Thus, we refer to this equation as “energy function”.
Furthermore, we will reduce this energy functional to a real energy function in Section 5.4.1.

Another difference is that the boundary length constraint is no longer necessary. Thus, the
problems due to oversmoothing that could occur in the approach explained in the last chapter
are not present in our new approach.

Even more important is that the segmentation obtained by the projection function is, by
construction, consistent with the object model. Thus, a segmentation containing too many
regions cannot occur. Likewise, there cannot be undesired holes.

If there are holes in the 3-D model, they are still visible in the projected object for some
poses. Similarly, if the object consists of several parts which are not connected, there can be
multiple regions. Thus, the approach presented in this section still has the advantage that all
kinds of topological changes can be modelled.

5.2. Minimisation of the Energy Function
“Mathematics is the most beautiful and

most powerful creation of the human spirit.”

Stefan Banach (1892 – 1945)

In order to minimise Equation (5.1) we would like to perform a gradient descent. However,
this requires the indicator function cχ to be differentiable. Since cχ is a binary function this is
usually not the case, though.

This problem can be solved by smoothing cχ, e.g. by convolving it with a small Gaussian
kernel. In practise, this smoothing is not necessary because cχ is only evaluated at discrete
pixel positions, and discretisation is also a form of regularisation. Nevertheless, we use Sobel
operators [96], which compute a smoothed central difference, to approximate ∇cχ in our
implementation.
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5. Segmentation-free Pose Tracking

Assuming cχ to be differentiable, the gradient descent of the energy function (5.1) with
respect to the pose is given by

−∇χE(χ, pin, pout) =

∫
Ω

(∇χcχ(x) log pin −∇χcχ(x) log pout) (5.4)

+
(
cχ(x)∇χ(log pin) + (1− cχ(x))∇χ(log pout)

)
dx.

Since the estimated PDFs pin and pout change very slowly with varying χ, the two terms
∇χ(log pin) and ∇χ(log pout) are quite small. Thus, and since it is non-trivial to find the
change induced into the PDFs by changing the pose, we set them to zero, which results in the
approximation

−∇χE(χ, pin, pout) ≈
∫

Ω

(∇χcχ(x)(log pin − log pout)) dx. (5.5)

We will further justify this approximation in Section 5.4.1.
If x is not a silhouette point of the projected object, cχ(x) is constant in a small neighbour-

hood of x. Thus, ∇χcχ(x) is zero at such points. Therefore, we can rewrite Equation (5.5)
as

−∇χE(χ, pin, pout) ≈
∫
s

(∇χcχ(c(s))(log pin − log pout)) ds, (5.6)

where s is the arc-length parametrisation of the 2-D silhouette c := c(s).
When minimising, we are in a discrete setting in which only a finite number of object

points lies on the 2-D silhouette c. We will denote the set of these points by Os. Using this
set, Equation (5.6) simplifies to

−∇χE(χ, pin, pout) ≈
∑
xs∈OS

∇χcχ(xs)(log pin − log pout). (5.7)

Intuitively, this equation states that, in order to minimise Equation (5.1), each 2-D silhouette
point xs should move into the direction indicated by

∇χcχ(xs)sign(log pin − log pout). (5.8)

However, the positions of the 2-D silhouette points depend on the pose of the object to be
tracked. That is, the points xs can only be moved indirectly by changing the pose of the
object.

Our idea here is to transfer the movement of each 2-D point to the corresponding 3-D point
on the object model by using the point-based pose estimation algorithm from Section 4.1.
More precisely, we first create a set of image-vertex point correspondences containing all 2-D
silhouette points and the corresponding 3-D model points. Then, the 2-D part of each point
correspondence is moved along the direction indicated by Equation (5.8). We will denote
the 2-D vector that is added to a silhouette point as force vector. As a last step, we use the
adapted point correspondences to estimate a pose change using the pose estimation algorithm
explained in Section 4.1. As a consequence, the 2-D silhouette of the new pose will separate
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Figure 5.2.: This figure gives an overview over the steps done to minimise the energy function
(5.1) occurring in our basic pose tracking algorithm.

the features in the image more clearly. The whole minimisation procedure is repeated until the
pose change is smaller than a threshold T := (t, r). More precise, minimisation is stopped if

χi < t ∀ i ∈ {0, 1, 2}, χi < r ∀ i > 3. (5.9)

That is, the joint angles and the part of the pose corresponding to the rotation use one thresh-
old r, while another threshold t is used for the translational part of the pose. The whole
minimisation process is illustrated in Figure 5.2.

Similar to the minimisation step in the level-set-based segmentation (see Section 4.2), the
estimation of the two PDFs pin and pout and the minimisation of the pose parameters is done
alternatingly.

As before, we use linear extrapolation to estimate an initial pose guess for the next frame.
Even though the initial pose guess is often suboptimal, our minimisation step is usually able
to find the correct pose. An experiment with a bad initialisation is discussed in Section 5.5.

The last open question in this minimisation step is how the lengths of the force vectors
should be chosen. Equation (5.7) indicates that the length should be | log pin − log pout|, i.e. it
should depend on the ratio of pin and pout. After some experiments, we decided to set all force
vectors to a fixed length l depending on the sequence, though.

To explain the reasons for this decision, we must distinguish two cases: The appearance
change between object and background is either continuous or abrupt. In the first case, the
blurring at the object boundaries leads to pixel values not fitting to any of the two PDFs. Us-
ing only the sign of the term | log pin − log pout| leads to a robustification since all silhouette
points have the same influence on the movement direction. In the second case, the appearance
difference is not a good indicator to decide how much a point should move since the appear-
ance difference at a certain silhouette points stays the same as long as this point does not cross
a boundary. Consequently, the appearance difference should not be used to decide how far the
silhouette points should move.

Furthermore, due to unmodelled camera aberrations or small errors in the model creation
step, it can happen that the model does not exactly fit the foreground region. As a consequence,
a part of the silhouette points will be in wrong regions even if the pose is perfect. When not
ignoring the term | log pin− log pout|, these points would induce large force vectors, especially
in case of abrupt boundaries.
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We also tested a multitude of other approaches how to chose the length of the force vectors.
Especially, we tried several different adaptive approaches which start at a silhouette point,
follow the direction given by Equation (5.8) until the sign of the term | log pin − log pout|
changes, and set the length of the force vectors to this distance. However, all considered
variants of this approach, which differ in the way the length of the force vectors and confidence
of each point is set, yield inferior results.

The threshold T and the length l that should be used depend on different parameters, e.g. the
distance of the object to the camera, the number of silhouette points, or the image resolution
used. As in most gradient descents, using a too small l results in a slow convergence. Choosing
l too large or T too small leads to oscillations, while a threshold T that is too high results
in inaccurate results. As demonstrated in the experiments, there is a quality/speed tradeoff
between large and small values of l and T .

Recently, a different gradient descent approach has been proposed for this energy function.
In [58], the gradient is computed in 3-D, resulting in several differences: First of all, this
approach directly changes the pose instead of using force vectors and reconstruction rays as
intermediate steps. Then, there is an additional curvature-dependent multiplicative factor.
However, this term is neglected in [58]. Finally, the term | log pin − log pout| also appearing
in their approach is not neglected. Although this makes the optimisation theoretically more
sound, we believe that their approach would also benefit from discarding this factor, due to the
same reasons explained above.

Later, their approach was extended such that it can handle shape variations by performing a
principal component analysis (PCA) and simultaneously estimating pose and shape variation
parameters [229]. This approach can also be used in the framework presented in this thesis.

5.3. Illustration of the Minimisation Process
“An algorithm must be seen to be believed.”

Donald E. Knuth (∗1938)

The minimisation process described in the last section may sound complicated at first, but
there is a clear intuition behind it. In this section, we will illustrate the minimisation process.

Consider the example shown in Figure 5.3, in which a puncher is to be tracked. The left
image shows the initial image while the projection of the initial pose guess is displayed in blue
in the middle image. The 2-D silhouette of this projection is shown in red in the right image.

Our algorithm first creates the PDFs for object and background region. For this example,
we used the Parzen model (see Section 2.7.2). The PDFs are shown in red in Figure 5.4.

Next, the minimisation algorithm evaluates the two PDFs at 2-D silhouette points to decide
to which PDF these points match better. As an example, let us consider the point xmarked by
the golden circle in the middle image of Figure 5.3. This point has a colour of (186, 202, 218)
in the RGB colour space. Since we use the CIELAB colour space [125], this colour must first
be converted to that colour space, resulting in the (approximate) colour (80.6,−2.8,−12.7).
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5.3. Illustration of the Minimisation Process

Figure 5.3.: These images illustrate the minimisation process with the region-based pose track-
ing algorithm presented. Left: Initial image. Middle: Object in initial pose (blue), and exam-
ples in which direction silhouette points should move. The green arrows indicate a movement
towards the interior of the object, the red arrows a movement away from the object. The two
circles indicate points considered as examples in Section 5.3 and 5.4.1. Right: Silhouette in
the initial pose (red) and the silhouette after the minimisation step is finished (green). The last
two images have been cropped and magnified.

Next, our algorithm checks whether it is “more likely” that this feature appears when drawing
randomly from pin than when doing the same from pout. This is the case if pin(x) > pout(x).
Remember that, since we assume independence between the different features, this holds if

n∏
i=1

pin,i(x) >
n∏
i=1

pout,i(x), (5.10)

where n is the number of features, i.e. three in our example, and pin,i and pout,i are the PDFs
for the i-th feature, estimated for the inside and outside region, respectively.

Note that, strictly speaking, the probability that any given feature was drawn from any PDF
p is always zero (see Lemma A.K). That is, instead of evaluating p at x, one has to integrate a
(small) neighbourhoodB(x)ε := {y : ‖x−y‖ < ε}, ε > 0 around the feature to get a positive
probability. However, since the PDFs pin and pout are continuous, we know that, if pin(x) >
pout(x) for some x, there is a neighbourhood B(x)ε of x such that pin(y) > pout(y) holds for
all y ∈ B(x)ε. The same arguments holds for pin(y) < pout(y). Thus, for sufficiently small ε,
we have

pin(x) < pout(x) ⇒
∫
y∈B(x)ε

pin(y)dy >

∫
y∈B(x)ε

pout(y)dy (5.11)

and

pin(x) > pout(x) ⇒
∫
y∈B(x)ε

pin(y)dy <

∫
y∈B(x)ε

pout(y)dy. (5.12)

Therefore, it is sufficient to compare pin(x) and pout(x) to find out to which PDF a feature
matches better.
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Figure 5.4.: PDFs estimated for the three channels in the puncher image shown in Figure 5.3,
i.e. the luminance channel and the colour channels a and b. Shown are the estimated PDFs
in the initialisation (red lines) and after minimisation (green lines) for the foreground (thick
lines) and the background (thin lines) region. As can be seen, the PDFs are more clearly
separated after the minimisation.

For the example point described above, the “a” colour channel indicates that the point be-
longs to the background region, since pin,2(−2.8) ≈ 0.046 < 0.049 ≈ pout,2(−2.8) (see Figure
5.4). However, the luminance and “b” colour channel indicate the opposite, since pin,1(80.6) ≈
0.012 > 0.0017 ≈ pout,1(80.6) and pin,3(−12.7) ≈ 0.016 > 0.0073 ≈ pout,3(−12.7). In total,
we get

pin(x) = pin,1(x)pin,2(x)pin,3(x) ≈ 0.012 · 0.046 · 0.016 ≈ 8.602 · 10−6 (5.13)
pout(x) = pout,1(x)pout,2(x)pout,3(x) ≈ 0.0017 · 0.049 · 0.0073 ≈ 0.58762 · 10−6 (5.14)

and thus, since pin(x) > pout(x), the point x seems to belong to the object region.
Note that, since the logarithm is monotonically increasing, we have the following equiva-

lence:

pin(x) > pout(x)

⇔ log pin(x) > log pout(x)

⇔ log pin(x)− log pout(x) > 0 (5.15)
⇔ sign(log pin(x)− log pout(x)) = 1

Thus, Equation (5.8) states that those points which seem to originate from the PDF pin are
moved towards the interior of the projected object model. This is indicated by green arrows
in the middle image of Figure 5.3. Similarly, those points x where pout(x) > pin(x) holds
are moved in the opposite direction, i.e. away from the object silhouette, as denoted by the red
arrows in the same image.

As explained before, the movement of these 2-D points is transferred to the corresponding
3-D point, and this process is iterated. Initially, the object’s silhouette contains parts of the
orange measuring tape, whose colour is approximately (55,40,55) in CIELAB colour space,
and of the cyan mouse pad, which has a colour of (51, -15, -5). Both regions, but especially
the first, are well visible in the estimated PDFs for the object region (thick red lines in Figure
5.4).
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After tracking is finished, the silhouette mainly includes white image parts. Consequently,
the undesired peaks – in the luminance channel around 53, and in the colours channel around
35 and 50, respectively – are gone (see thick green lines in Figure 5.4). Obviously, the PDFs
for foreground (thick lines) and background (thin lines) are separated more clearly after pose
tracking (green lines) than they have been before (red lines). Note that the PDFs estimated
for the background region only changed slightly since only a small percentage of the outside
region changed.

5.4. Extensions
“We worked very hard to make extensions very simple.”

Mitchell Baker (∗1957)

In the following sections, we show several optional extensions that can be used to stabilise
tracking in different situations.

5.4.1. Reusing PDFs from the Preceding Frame
The minimisation strategy introduced in the last two sections is local, and can thus result in
a local minimum. This problem is especially imminent if the pose is far away from the cor-
rect position as this leads to inaccurately estimated PDFs. Using extrapolation (as explained
in Sections 4.4 and 5.2) can help to diminish this problem only if the object moves in a pre-
dictable way.

To understand this problem, consider the point x marked with a black circle in the middle
image of Figure 5.3. Its colour in the CIELAB colour space is (142.7, 111.4, 123.4), and thus,
we have (compare red graphs in Figure 5.4):

pin(x) = pin,1(x)pin,2(x)pin,3(x) ≈ 0.021 · 0.013 · 0.043 ≈ 1.1942 · 10−5, (5.16)
pout(x) = pout,1(x)pout,2(x)pout,3(x) ≈ 0.026 · 0.011 · 0.022 ≈ 0.6531 · 10−5. (5.17)

That is, since pin(x) > pout(x), this point fits better to the foreground region, and is thus
moved into the wrong direction. This is the case because the percentage of the cyan mouse
pad of the total area is larger for the foreground than for the background.

The problem described is due to the fact that the PDFs are inaccurate at the beginning of
a new frame. Thus, we propose to refrain from estimating new PDFs before each iteration.
Instead, the PDFs estimated at the end of the last frame are used for all computations in the
current frame. That is, starting from the second frame, only one PDF for each region and each
feature channel is estimated. Since much fewer PDF estimations are necessary this way, this
also speeds up the minimisation algorithm.

The assumption behind this approach is that the appearance of fore- and background, i.e. their
description by a PDF, changes only slightly each frame. This assumption is well satisfied if
the frame rate is high enough to capture the movement adequately.
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5. Segmentation-free Pose Tracking

Figure 5.5.: Schematic used to illustrate the possible problems when mixing local PDF esti-
mations and information reusing. In the images, the monochromatic cyan region is the object
to be tracked in two consecutive images. The right image shows the image currently being
processed, the left image the image considered in the last frame. The black circles indicate
the two possible regions in which the local PDF estimations can be performed to decide if the
point indicated by the red cross belongs to the foreground region.

There is a third advantage when keeping the PDFs from the previous frame: Since pin and
pout are known, only the pose parameters are unknown in the energy function in Equation (5.1).
This justifies calling this equation an energy function. Remember that we have approximated
the terms∇χ(log pin) and∇χ(log pout) with zero in the minimisation of the energy function
in Section 5.2. However, when reusing the PDFs from the previous frame, this approximation
is not necessary as the derivative of the constants pin and pout are zero anyway.

There is one slight drawback of this approach, though. When estimating the PDFs by a
local model, e.g. the local Gaussian model introduced in Section 2.7.2, it is not clear at which
point the PDFs should be evaluated. Let (c,C) be the image-vertex point correspondence for
which we want to check whether it better fits to the object or background region. We can then
evaluate the old PDFs either at c, or at the position to whichC was projected at the end of the
last frame.

Figure 5.5 illustrates the advantages and disadvantages of both methods: The point c is
marked by a red cross in the right image, i.e. in the current frame, while the points at which
the local PDFs are evaluated with the first or second method are shown as brown or golden
points, respectively.

The first method ignores the motion of the object, resulting in a bad approximation of the
foreground appearance. Even worse, if the object moved very fast, the point c might be so far
away from the foreground region of the last frame that only the background region is present
in the local regions. That is, the PDF of the foreground region cannot be estimated at all.

With the second method, the estimation of the background region might be completely
wrong. In the schematic illustration in Figure 5.5, for example, the background would be
estimated as blue while it is in fact green. However, this problem can also occur present in
case of a moving background. Also note that this method is not applicable in pose tracking

86



5.4. Extensions

algorithms that use explicit segmentation without using real 3-D information in the segmen-
tation step. Furthermore, additional time and memory is necessary for this method, albeit the
overhead is rather small.

Additionally, it is also possible to estimate the PDF of the background region using the first
method, and PDF of the foreground region using the second method. This should combine the
advantages of both methods. However, we have not tested this combined approach since the
movement between two frames is usually quite small. Thus, both methods yield very similar
results in practise. The experiments we show in this thesis use the first method since it is easier
to implement and slightly faster.

5.4.2. Prior Knowledge on Probable Joint Configurations
“Learning is not compulsory... neither is survival.”

W. Edwards Deming (1900 – 1993)

Especially in monocular sequences, it can happen that a component at the end of a kinematic
chain is not visible due to (self-)occlusions. In such a case, there is no knowledge about the
corresponding joint angles. Consequently, such angles cannot be estimated at all, even by
humans.

However, there is one possible remedy in such a situation, namely to use prior knowledge
on likely joint configurations. Such priors will be called angle priors in this thesis. For
example, explicit joint angle limits may be enforced [255, 109]. In this thesis, we use static
pose priors [253, 32] for complex sequences, while easy sequences are tracked without any
priors. We briefly show how to incorporate pose priors into our tracking approach in this
section. For more details, we refer to [32].

The main idea how to incorporate prior knowledge on probable joint configurations is to
add additional constraints to the system of equations that is solved to find the pose (compare
Equation (4.4)). These additional equations draw the solution towards a state in which the
constraints are fulfilled. If the constraints are incorrect, it is still possible to gain a solution that
contradicts the constraints, as we are looking for a least-squares solution of an overdetermined
system of equations. Thus, the equations derived from the image data can still overrule those
from the constraints.

Let us denote the known N joint angle configurations as Θi, i ∈ {1, . . . , N}. In order to
obtain likely pose configurations, we first estimate the probability density function p(Θ) of all
joint configurations via a Parzen estimation (see Section 2.7.2). As kernel, a Gaussian function
is employed. This leads to the estimation

p(Θ) =
1

σN
√

2π

N∑
i=1

exp

(
−|Θi −Θ|2

2σ2

)
, (5.18)

where the standard deviation σ is chosen as the maximal distance between any nearest neigh-
bours in the training set.
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For likely joint configurations, p(Θ) is large. Thus, − log(p(Θ)) is small for such configu-
rations. Therefore, we add the term

EPrior = − log(p(Θ)) (5.19)

to our energy function (5.1) to incorporate this prior knowledge.
When minimising the new energy function, the additional term ∇χEPrior appears in the

modified gradient descent. As EPrior only depends on the joint angles, this term is zero for the
rigid transformation of the complete object. For the joint angles, one obtains the gradient

∇ΘEPrior =

∑N
i=1 wi(Θi −Θ)

σ2
∑N

i=1 wi
, (5.20)

where the weights wi are given by

wi := exp

(
−|Θi −Θ|2

2σ2

)
. (5.21)

Intuitively, this draws the angles of the current pose to nearby prior joint configurations, i.e. to
the next local maximum of the PDF. This is accounted for by adding an additional equation

θt+1
j = θtj + τ∂jθ

t
j (5.22)

for each joint angle j to the linear system obtained in the minimisation step. Here, the su-
perscript t denotes time, i.e. the frame number, and τ is a time step parameter always set to
1
8
σ2. In order to obtain an appropriate and constant weighting between prior and image data,

these equations are multiplied by the total number of image-vertex correspondences divided
by eight.

There are more advanced methods that might be used instead. For example, an anisotropic
kernel might be utilised for estimating the PDF, or motion dynamics might be employed,
see [30, 248, 281]. As motion priors always bias tracking results towards the training data, we
tried to avoid such priors as much as possible, and did not invest much time into improving
them.

5.4.3. Positional Constraints
The constraints introduced in this section model further prior knowledge about the scene that
cannot be handled with the approach from the last section. Here, we discuss for a couple
of situations how to integrate this knowledge into our tracking approach. The constraints
explained here were first published in [222] and [223].

3-D–3-D Point Correspondences

As first example, consider the cyclist shown in Figure 5.6(a), whose model consists of a human
rigidly attached to the pedals of a bike. The left foot is in the same rigid object as both
pedals. However, if the right foot were also connected to the pedals, we would obtain a cyclic
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Figure 5.6.: Right: A cyclists for which various constraints can be used. Right: This figure
illustrates the projection of the point X onto the plane P = (D, d) by using the Plücker line
L = (n,m) = (D,X ×D). The projected point is calledX ′.

dependency, which is impossible in kinematic chains. For this sequence, we want to exploit
several facts: The hands are always at the handle of the bicycle, the pedals have to rotate
around a fixed axis, and the right foot should stay on the right pedal. The first two constraints
can be incorporated by demanding that some vertices of the model are at a fixed position. For
the latter constraint, we demand that some vertices are at the same positions as other vertices
lying in different rigid parts of the kinematic chain.

For each of these constraints, we have equations of the form

0 = Pi − P ′
i , (5.23)

where Pi are vertices of the model, and where each P ′
i denotes either a fixed point or a vertex

of the model. Next, we express the vertices as

Pi = exp
(
ξ̂
)

exp
(
θi1 ξ̂i1

)
exp

(
θi2 ξ̂i2

)
. . . exp

(
θij ξ̂ij

)
Xi, (5.24)

where the indices ij denote the rigid body parts from the root of the kinematic chain to the
rigid part on which Pi lies, as explained in Equation (2.42).

Finally, these equations are linearised in the same way as before, resulting in either(
I + ξ̂ + θi1 ξ̂i1 + . . . θij ξ̂ij

)
Xi − P ′

i = 0, (5.25)

if P ′
i is a fixed point, or in(
I + ξ̂ + θi1 ξ̂i1 + . . . θij ξ̂ij

)
Xi −

(
I + ξ̂ + θi′1 ξ̂i′1 + . . . θi′j ξ̂i′j

)
X ′i′ = 0, (5.26)

if both points are vertices of the model.
In both cases, we get additional linear equations which are added to the system of linear

equations obtained before. After solving the system of equations, the resulting pose will ap-
proximately fulfil the constraints. The stronger these new equations are weighted, the stronger
deviations from the desired constraints are penalised. Tracking results using these constraints
will be shown in Figure 6.11 in Section 6.4.
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Floor constraints

As a second example, consider a human moving on a flat floor. Although no part of the human
can pass through the floor in reality, our current tracking approach can produce results where
this is the case.

To include the prior knowledge that the floor is impenetrable, we first search all vertices
lying below the floor in the current pose. To find these vertices, we model the floor as a 3-D
plane P = (D, d) in Hessian normal form and compute the sign of x ·D+ d for each vertex
x to find out which points lie below the floor (see Section 2.5.2).

For each point lying below the floor, we compute the point X ′ on the plane P that is closest
to X . This point is found as intersection between the plane P and the Plücker line L =
(n,m) = (D,X × D) passing through X and parallel to the normal of the plane, see
Figure 5.6(b). The intersection point between a plane and a line can in general be computed
as

X ′ =
D ×m− nd

Dn
(5.27)

Here, D is equal to n and thus, Dn = 1 holds due to normalisation. Using Lagrange’s
formula,

a× (b× c) = b(ac)− c(ab), (5.28)

Equation (5.27) can be simplified in the following way:

X ′ =
D ×m− nd

Dn
=D × (X ×D)−Dd
=X(DD)−D(DX)−Dd (5.29)
=X −D(XD + d)

That is, the intersection point can be found by moving from the point X into the normal
direction of the plane. The length and sign of this movement is determined by the signed
distance of the pointX to the plane P , i.e. byXD + d, see Section 2.5.2.

For each pointXi below the ground plane, we obtain an equation of the form

0 = Xi −X ′i, (5.30)

where X ′i is the projection of the point Xi onto the plane. As before, Xi is expressed with
respect to the pose and the joint angles:

exp
(
ξ̂
)

exp
(
θi1 ξ̂i1

)
. . . exp

(
θij ξ̂ij

)
Xi −X ′i = 0. (5.31)

After linearising this equation, one obtains(
I + ξ̂ + θi1 ξ̂i1 + . . . θij ξ̂ij

)
Xi −X ′i = 0. (5.32)

As before, these linear equations are added to the system of equations obtained in the minimi-
sation step. We use this constraint in several experiments with the HumanEva-II benchmark,
e.g. in Figure 5.19 in Section 5.5.
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5.4.4. Jitter Prevention
Even when using prior knowledge to handle partial occlusions and model inaccuracies, track-
ing results can still be jittery. Thus, many approaches in the literature have proposed to smooth
the obtained tracking results as a post-processing step [49, 262, 279]. In [7], an approach to
camera motion smoothing by minimising an energy functional is proposed. In the following,
we will extend our energy function such that it performs online smoothing while tracking the
sequence, as described in [218].

To prevent motion jitter, we first predict the object’s pose at the beginning of a new frame
χe = (ξe,Θe) from the poses estimated in the last two frames χt and χt−1. For the joint
angles this is done via the following formula:

Θe = Θt + ∂Θt ≈ Θt + (Θt −Θt−1). (5.33)

That is, the change between the last two frames is added to the last known joint configuration.
Similarly, we obtain an estimation for the rigid transformation of the complete object by first

computing the motion between the last two frames, and “adding” this motion to the last known
rigid body motion. As we use twists to represent these transformations, we first convert them
to elements of the Lie group SE(3) via the exponential function (see Section 2.3.1), compute
the corresponding motion, and convert this motion back into a twist via the inverse logarithm.
This results in the prediction:

ξe = log
(

exp(ξ̂t) exp(ξ̂t−1) exp(ξ̂t)
)
. (5.34)

Now, we can compute the deviation of the current pose from the predicted pose as

ESmooth =
∣∣∣log

(
exp(ξ̂e) exp(ξ̂t+1)−1

)∣∣∣2 + |Θe −Θt+1|2. (5.35)

This term is added to our energy function to penalise poses that deviate from the prediction.
When minimising the new energy function, this results in additional linear equations, which

are added to the system of equations to be solved. These equations have the form

∇χESmooth =
(

log
(

exp(ξ̂e) exp(ξ̂t+1)−1
)
,Θe −Θt+1

)>
= 0 (5.36)

and draw the estimation of the next pose towards the predicted pose, which smoothes the
tracking results. Moreover, this can also stabilise the tracker: Large deviations from the pre-
diction, which are often due to tracking failures, can be prevented. Moreover, these additional
constraints prevent singular equation systems, which can occur if parts of a kinematic chain
are not visible.
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5.5. Experiments
“Life is too short not to experiment.”

Jamelia (Niela Davis) (∗1981)

We performed several experiments to illustrate the abilities of the basic tracking approach
introduced in this chapter. We start by showing tracking results for rigid objects, followed by
tracking results for kinematic chains.

5.5.1. Rigid Objects
The first tracking result obtained with the pose tracking approach presented in this chapter is
shown in Figure 5.7. It demonstrates that, despite the problems explained in the last section,
our tracking algorithm also works very well without reusing PDFs from the preceding frame.
Here, the pose of a tea box was to be tracked in a stereo setup. Figure 5.7 shows tracking
results for some particularly difficult frames of the sequence. In the first frames, the tea box
does not move while simultaneous occlusions occur in both views. Later, the tea box is turned
upside down, and specular highlights occur, while it is turned around two axes simultaneously.
Nevertheless, the tracker was able to track the tea box throughout the complete sequence, while
the segmentation-based approach explained in the last chapter has various problems with this
sequence (see Figure 4.11).

As mentioned before, there is a quality/speed tradeoff between different choices of l (length
of the force vectors) and T (threshold of the pose change below which the minimisation is
stopped). In Figure 5.8, we use the stereo tea box sequence to illustrate this tradeoff. The
results shown in the upper row use l = 6, a threshold of 1 for the translational part and 0.01
for the rotational part of the twist, i.e. T = (1, 0.01). In the lower row, the length of the force
vectors and the used thresholds were smaller (l = 2, T = (0.1, 0.001)). Furthermore, only the
CIELAB channels were used as features in the upper row, while both CIELAB channels and
the four channels from the texture space from [37] were used to create the results shown in
the lower row. We will refer to these sets of parameters as set “A” (upper row, fast, inaccurate)
and set “B” (lower row, slow, precise).

Although our algorithm was able to track the whole sequence with both parameter sets,
there are large differences in quality and speed: Using parameter set “A”, tracking results are
less accurate, as can be seen in Figure 5.8. Especially note the strong fluctuations during the
first 160 frames when using parameter set “A”. The only notable fluctuations that can be seen
when using parameter set “B” are around frames 100 and 120, in which a significant part
of the tea box is occluded. However, tracking was performed over all 395 frames in three
minutes and 13 seconds (approximately two frames per second), while more than 28 minutes
was necessary using parameter set “B” (less than one frame every four seconds). Due to the
quality/speed tradeoff, it is difficult to give exact running times of our algorithm.

To further understand the problem, one should note that the time required in a certain frame
depends on the number of iterations necessary to track the object. Figure 5.9 shows a com-

92



5.5. Experiments

Figure 5.7.: Each block shows the silhouette (yellow) and pose (blue) estimated for both views
of a stereo sequence in which a tea box was tracked. Despite partial occlusions (frame 97,
top left), complete rotations (frame 230, top right), specular reflections (frame 269, bottom
left) and simultaneous rotations around different axes (frame 277, bottom right), tracking was
successful.

parison of the time and iterations required per frame when tracking the tea box using the two
parameter sets mentioned above.

As can be clearly seen in the graphs shown in Figure 5.9, there are two main reasons why
parameter set “B” is much slower than set “A”. First of all, the preprocessing step takes much
longer since computing the texture feature space is very expensive. Furthermore, much more
iterations are necessary until the movement of the object is below the requested threshold. It
can also be seen that more iterations are necessary in some frames. This is due to unexpected
movements, or occlusions.

Figure 5.10 shows the first example for which PDFs from the previous frame are reused (see
Section 5.4.1). In this scene, a wooden toy giraffe is tracked in a monocular sequence. Due to
the cluttered background and since only one view is available, this scene is quite challenging.
Nevertheless, our tracking approach was able to estimate good poses.
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Figure 5.8.: This figure illustrates the quality/speed tradeoff of our pose tracking algorithm.
Upper row: Inaccurate but fast results. Lower row: More precise results that take more than
ten times as long. The two images in each row show the tracking results in frame 220 as seen
from both cameras, while the plot shows the change in the translational part of the pose in the
first 160 frames. Since the tea box did not move in the first 160 frames, no movement would
be optimal.

As another example, we show tracking results for a stereo sequence with a tea pot in Figure
5.11. This sequence is not too difficult to track: Despite changes in the lighting conditions,
fore- and background can be separated very easily. The only difficulty is the fact that the
object model does not perfectly match the object seen in the image. This only causes very
slight problems, though.

Figure 5.12 shows tracking results for the puncher sequence already shown in Figure 5.3.
As can be seen, there are a multitude of challenges that must be addressed, ranging from large
displacements over bad image quality to the fact that only a single view is available. However,
as the puncher is rather easy to distinguish from the background, this is not a big problem for
our pose tracking algorithm.

To evaluate our tracking approach quantitatively, we also checked our tracking results in a
synthetic sequence. The advantage of such a sequence is that the ground truth is available,
i.e. it is possible to compare the result of the tracking algorithm against the real position of the
object to be tracked. The sequence used here is a monocular sequence with a rolling aeroplane,
which was generated and kindly provided by Richard Steffen. As can be seen in Figure 5.13,
the aeroplane passes another (static) aeroplane with a similar appearance, making tracking
nontrivial.

Considering the translational error (lower right plot in Figure 5.13), one can see that errors
in this sequence appear due to two different reasons: At the beginning of the sequence, the
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Figure 5.9.: Left: Time required per frame when tracking the tea box shown in Figure 5.8
using the fast parameter set “A” (red). The green line corresponds to the time required for
preprocessing. Middle: The time required per frame using parameter set “B” is shown in
blue, while the green line again shows the time required for preprocessing. All times are given
in seconds. Right: Iterations done per frame using parameter set “A” (red) or parameter set
“B” (blue), respectively.

Figure 5.10.: This figure shows the estimated pose of a wooden giraffe in some frames of a
monocular image sequence. From left to right: Frames 32, 48, 64, 74, and 84. The surface
model was given in patch representation (see Section 2.4.1), and consists of a single patch.
Thus, it is possible to look through the projected object.

aeroplane is very small. Since there is only one camera view available, this results in depth
ambiguities which in turn lead to errors in the X and Z component with different signs (com-
pare the coordinate system shown in the upper right part of the first image in the second row).
The error at the last frame of the sequence is due to the fact that the 3-D model of the aeroplane
turned incorrectly. Since there is only a tiny part of the aeroplane visible, as seen in the last
image shown in Figure 5.13, it is not surprising that our tracking approach has difficulties at
this frame.

5.5.2. Kinematic Chains

Next, we evaluate the performance of our algorithm when tracking kinematic chains, i.e. mod-
els in which unknown joint angles must be estimated in addition to the global position and
orientation of the complete object. Due to the high importance of human tracking, the most
common case in which a kinematic chain is used is when tracking a human body. It is quite
simple to create sequences in which a human moves, while other objects modelled as kine-
matic chains are often more difficult to move around in a controlled manner without undesired
occlusions. Thus, results for four sequences with humans are presented here. For these se-
quences, four camera views were available to track the movement of the different humans.

95



5. Segmentation-free Pose Tracking

Figure 5.11.: Frames 0, 62, 130, and 240 of a stereo sequence of a moving tea pot. The mesh
was in given in patch representation.

The first sequence is the most simple one. It shows a human running in an outdoor environ-
ment into a fixed direction. The presented algorithm can easily track this scene, as can be seen
in Figure 5.14.

The next two sequences presented are more complex. They show a person turning a cart
wheel (Figure 5.15) and a flip (Figure 5.16), respectively. For both sequences, prior knowledge
about likely poses is used (see Section 5.4.2). This is necessary because, in some frames,
there are no point correspondences for one of the leafs of the kinematic chain, which results
in tracking being aborted.

For both sequences, tracking works quite well, apart from smaller problems. Most tracking
inaccuracies visible are due to the fact that a human cannot be modelled perfectly by a kine-
matic chain. Furthermore, the feet are sometimes inaccurate since the feet are white while
the remainder of the human is black. Thus, once the feet are not accurate in one frame, the
resulting PDF of the inside region does not include white parts and accordingly, the feet are
unlikely to enter the white region again. This is a general problem with small parts at the end
of the kinematic chain that have an appearance different from the remainder of the object. The
extension introduced in Chapter 7 helps to solve this problem.

As a last sequence, we track sequence S4 of the HumanEva-II benchmark [251, 250]. For
this sequence, which is provided by Brown University, colour images from four cameras are
available. The other eight cameras visible in the images were used to measure ground truth
positions of several markers attached to the moving person. Although this ground truth data
is not publicly available, tracking results can be evaluated by uploading the estimated marker
positions to Brown University, from which the average tracking error per frame is computed.
It should be noted that the ground truth of the frames 298 until 325 is corrupted. Thus, we will
linearly interpolate the error for these frames.

This sequence consists of three parts: In the first part (approximately up to frame 400), the
person is walking. Then, it starts to run until around frame 800. The last part consists of
balancing movements. The running part in the middle of the sequence is the most difficult
one, as we will see later.
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Figure 5.12.: Tracking results of a monocular sequence with a puncher. The green numbers in
each image denote the number of the frame shown. Despite fast translational and rotational
motion, colour aberrations, large rotations, and motion blur, tracking worked very well. These
problems are depicted in the first three rows. In the images shown in the last row, there is a
strong acceleration. This lead to the very bad prediction shown in red in frame 103. Still, by
using the PDFs from the previous frame, our algorithm can deal with this problem. The final
tracking result is shown by black contours in the last line.
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5. Segmentation-free Pose Tracking

Figure 5.13.: Silhouette of the tracked pose in the frames 0, 10, 20, 30, 40, 44, and 47 of
a monocular, synthetic scene with a moving aeroplane. Despite the facts that the aeroplane
almost completely left the image, and that there is a similar aeroplane in the background,
tracking results look very convincing. The coordinate system used is shown in the first image
in the second row (frame 30), while the plots in the lower right corner show the translational
tracking errors in each frame, given in meters. The reasons for the errors visible in these
graphs are explained in detail in Section 5.5. The input sequence was generated and kindly
provided by Richard Steffen.
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Figure 5.14.: Tracking results of a running person for frame 0, 20, 40, 60, 80, and 97, shown in
all four views. Although the images are monochromatic, the whole sequence has been tracked
without problems. Note that no prior knowledge about the movement pattern was used.
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5. Segmentation-free Pose Tracking

Figure 5.15.: Initialisation in the first frame (upper row) in all four views of the scene, and
tracking results shown in the first camera view available. Shown are the frames 90, 180, 220,
260, 300, 340, 400, and 460 of a person doing a cart wheel.
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Figure 5.16.: Tracking results for frames 0, 37, 74, 111, 148, 185, and 259 of a person doing
flips. All four views are shown.
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Figure 5.17.: Frame 42 of sequence S4 of the HumanEva-II benchmark, and the silhouette
image obtained by performing background subtraction. Since the appearance of the shirt and
the wall are too similar, background subtraction results are poor. Also notice that the space
between the legs was not correctly classified.

Note that the background of each camera is static. Thus, it is possible to approximately
separate the human from the background by performing background subtraction [204]. How-
ever, background subtraction is a difficult task itself. Thus, the estimated foreground region
is often of poor quality, as shown in Figure 5.17. Here, such silhouette images are used as
additional feature for the sequence, except for some experiments using the localised mixture
models introduced in Chapter 8.

Figure 5.18 shows tracking results for all frames of the sequence, together with the average
error reported. For this experiment, we did neither use angle priors from motion databases
nor knowledge about the ground plane. Although tracking results are not completely wrong,
inaccuracies are easily visible. These inaccuracies are due to several reasons ranging from
self-occlusion over object-floor intersections to problems to distinguish fore- and background.

When including the floor constraints explained in Section 5.4.3, the tracker can overcome
some of the problems, as illustrated in Figure 5.19. However, serious tracking failures still
occur. We will show in later chapters how tracking results can be further improved. A com-
parison of all results presented for this sequence is given in Table 8.1 in Section 8.3.

5.6. Summary
In this chapter, we introduced our basic tracking algorithm, and evaluated it using a large
variety of different object models and video sequences. Furthermore, we explained a number
of extensions that are very helpful in some situations. Our algorithm can track both rigid
objects as well as kinematic chains and fuse information from several cameras. However, it
was also shown to work well for monocular sequences.

However, our tracking algorithm is only able to track a single object so far. In the next chap-
ter, we introduce the necessary concepts to track multiple overlapping objects simultaneously.
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Figure 5.18.: These images show the tracking results for sequence S4 of the HumanEva-II
benchmark with the basic tracking approach presented in this chapter. Shown are, from top
to bottom, one frame of the walking part (frame 222), two frames in the jogging part (frames
444 and 666), two frames in the balancing part (frame 888 and 1110), and the frame with the
highest tracking error (frame 757). The plot at the lower end of the figure shows the average
tracking error per frame as reported by Brown university.
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5. Segmentation-free Pose Tracking

Figure 5.19.: Tracking results using floor constraints. From top to bottom: Tracking results
in one frame of the walking part (frame 222), two frames in the jogging part (frames 444
and 666), two frames in the balancing part (frame 888 and 1110), and in the frame with the
highest tracking error (frame 420). The plot at the lower end of the figure shows the average
tracking error per frame achieved with floor constraints (red) and with the basic tracker (see
Figure 5.18, blue).
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“What we call ’Progress’ is the exchange of one nuisance for another nuisance.”

Havelock Ellis (1859 – 1939)

As shown in Section 5.5, our tracking approach can handle different objects, a varying number
of cameras and different kinds of features. It can even handle partial occlusions (see Figure
5.7) and partial self-occlusions (see Section 5.5.2) up to some degree. As soon as too much of
the object to be tracked is occluded, tracking will fail, though.

To understand why tracking fails in such a situation, consider the synthetic sequence de-
picted in Figure 6.1. At first glance, this sequence is very easy to track: The object to track
(the green puncher used in Figure 5.12) is very clearly separated from the background, and
there are even two views available. Still, tracking fails due to the occlusion, as illustrated in
Figure 6.2.

The problem with occlusions is that the occluded parts lead to wrong estimations of the
PDF of the inside region. In the example explained above, the percentage of the foreground
region that is yellow is larger than the percentage of the yellow background region for some
frames. Thus, the tracking algorithm wrongly assumes that yellow points belong to the object
instead of to the background. Consequently, it tries to find the pose in such a way that the
yellow points belongs to the foreground, which finally leads to a tracking failure.

In such a situation, tracking both the green puncher as well as the yellow tea box can be
beneficial even if we are only interested in one of the objects. Moreover, there are also tasks
in which the poses of multiple objects are searched for.

Figure 6.1.: A simple looking synthetic stereo sequence, created by projecting a tea box (yel-
low) and a puncher (green) onto a blue background. Both objects perform a simple and regular
movement in 3-D space. Shown are frames 0, 4, 9, 14 and 19 in both views available for track-
ing.
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Figure 6.2.: Result when trying to track the puncher in the sequence shown in Figure 6.1. Due
to occlusions by the yellow tea box, tracking the green puncher fails.

Figure 6.3.: Tracking results of uncoupled tracking. Again, the frames 0, 4, 9, 14 and 19 are
shown. It can be seen that both objects are not tracked accurately around frame 14. While
the pose of the yellow tea box can be recovered in later frames, tracking the puncher fails
completely.

(a) (b) (c) (d) (e)

Figure 6.4.: (a) Magnification of frame 12 of sequence “Synthetic double” shown in Figure
6.1, (b) illustration of the object regions in this image, (c) silhouette of the puncher, (d) non-
occluded region of the puncher, and (e) silhouette of the puncher used by the coupled tracker.
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In this chapter, we explain how to track multiple objects simultaneously. We start by
explaining a simple uncoupled tracking, which does not take occlusions into account. We
proceed with the coupled model we proposed in [238], and improved in [237]. Some re-
lated work on multiple object tracking is given in [115], where a Gibbs sampler and parti-
cle filters are utilised for tracking a variable number of objects. Anther approach is to use
a Rao-Blackwellised sequential Monte Carlo method, as demonstrated in [230]. These two
approaches only perform 2-D tracking in the image domain, and are thus very restricted in
handling mutual occlusions.

After introducing our simple uncoupled tracking algorithm in Section 6.1, we explicate
how to couple the tracking of multiple objects in Section 6.2. Section 6.3 further improves
this approach. After performing a detailed evaluation in Section 6.4, we conclude the chapter
in Section 6.5.

6.1. Uncoupled Tracking of Multiple Objects
“Attempt the impossible in order to improve your work.”

Bette Davis (1908 – 1989)

When tracking multiple objects, we assume that a 3-D object model and an initial pose is
available for each of the N objects to be tracked. The pose of the i-th object will be denoted
by χi even if the object to be tracked is rigid. The task is to find the pose χi of each object i
in each frame. Once again, this task is summarised in the following table:

Given:
– One projection matrix for each camera (see Section 2.6)
– One image sequence with domain Ω ⊂ R for each camera
– Models for each object i to track as rigid object or kinematic chain with ni joints

(see Section 2.4)
– Approximate 3-D pose initialisation χi ∈ R6+ni for each object i in the first frame
Assumptions:
– Each object is always (partly) visible
– The appearances of objects and background differ
Task:
– Track the 3-D pose of all objects through all images

To find the pose of each object, the easiest way is to extend the energy function for one
object from Equation (5.1) such that it depends on all poses. This can be achieved by adding
each individual energy function for each object, resulting in:

E(χ1, . . . ,χN) =−
N∑
i=1

∫
Ω

[
cχi,i(x) log pi,in +

(
cχi,i(x)

)
log pi,out

]
dx. (6.1)
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In this equation, pi,in and pi,out are the PDFs for the inside region (or outside region, respec-
tively) of the i-th object, and cχi,i is the indicator function of the points in which the i-th object
with pose χi can be seen in the image, cf. Equation (5.2). As the different poses correspond to
different parts of the energy function, each pose can be optimised independently of the others.

Due to this independence, tracking works fine as long as the objects do not occlude each
other. If a large part of one object is occluded, though, the problems described at the beginning
of the chapter occur, and tracking fails. This problem is illustrated in Figure 6.3. Note that not
only the occluded green puncher is not tracked correctly, even the yellow tea box is tracked
inaccurately around frame 14. The reason why the tea box is only tracked inaccurately is
either a very slight occlusion (the objects actually pass through each other in 3-D space) or
an insufficient number of iterations due to a wrongly chosen pose change threshold T . When
using the energy function introduced in the next section, these problems disappear.

6.2. Coupled Tracking of Multiple Objects

“Ideas not coupled with action never become bigger
than the brain cells they occupied.”

Arnold H. Glasgow

In order to understand the problems occurring when tracking occluding objects with the sim-
ple energy function (6.1) more clearly, consider the magnification of frame 12 in Figure 6.4(a).
Assume that the pose of both the puncherχ1 and the tea boxχ2 are already perfectly accurate.
Then, p1,in is estimated from the green and yellow area in Figure 6.4(b), while p1,out is esti-
mated from the blue and the orange area depicted in the same figure. Thus, slightly more than
half of the interior of the puncher is yellow in this picture (53.4%), while only very few pixels
in the outside region are yellow (3.5%)1. Consequently, a yellow point x will be classified as
inside the interior of the puncher, as p1,in(x) > p1,out(x) holds, and yellow silhouette points
will be moved outwards by our tracking algorithm. As a result, the puncher moves towards
the upper right direction in the image. Shortly after the wrong movement, green points might
even be assumed to lie outside the puncher region.

To handle this problem, we have to notice that a part of the puncher is occluded by the tea
box, are ignore this part when computing p1,in. That is, only the green part shown in Figure
6.4(d) should be used for this computation. To achieve this goal, we now utilise a visibility
function vi (χ1, . . . ,χn,x) ∈ R6+n1×. . .×R6+nn×Ω for each object i [261]. These functions
are then used in an energy function designed for a coupled tracking of multiple objects.

First of all, we define the sets Oi(χi,x) containing all points on the i-th object model that
are projected to a certain image point x. Then, we define the distance of the object model to

1Remember that only a part of the image is shown in Figure 6.4, and that the orange area in Figure 6.4(b) is
actually yellow, and is only shown in orange to show which image regions are occupied by the objects.
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this image point as

di(χi,x) := d(Oi(χi,x),C) = min
y∈Oi(χi,x)

{d(y,C)} , (6.2)

where C is the optical centre of the camera and d is the standard Euclidean metric. Only the
object whose distance to the optical centre is closest will be visible in the image. Thus, the
visibility functions are given by

vi(χ1, . . . ,χn,x) =

1 if di(χi,x) = min
j∈{1,...,n}

{dj(χj,x)} ,

0 else .
(6.3)

Note that visibility is determined on a per-pixel basis. Thus, even if the first object occludes the
second in one image region, while it is the other way round in another part of the same image,
the proposed tracking approach will be able to deal with both occlusions. As a consequence,
this approach is clearly superior to simple approaches in which each model is either completely
in front of or behind another. To improve readability, the arguments of the visibility functions
will usually be omitted from now on.

When including the visibility functions into the energy function given in Equation (6.1), we
obtain:

E(χ1, . . . ,χN) = −
N∑
i=1

∫
Ω

[
vicχi,i(x) log pi,in +

(
1− vicχi,i(x)

)
log pi,out

]
dx. (6.4)

The indicator functions cχi,i(x) are multiplied by the corresponding visibility functions such
that only those points of the object that are actually visible are used for estimating pi,in. This
results in a different PDF for inside and outside region. In our example explained above, only
the green region shown in Figure 6.4(d) is used to compute pi,in, while the yellow and blue
parts lie completely in the region used to estimate pi,out.

To find image-vertex point correspondences necessary for the point-based pose estimation
step, we need the silhouettes of the tracked objects. There are two (suboptimal) silhouettes
that could be used, namely the silhouette ignoring occlusions shown in Figure 6.4(c), or the
silhouette after accounting for occlusions, i.e. the boundary between the green and the blue
region in Figure 6.4(d). It is immediately obvious why the first choice should not be used: As
a part of the object is occluded, so is a part of the silhouette. Consequently, those occluded
points cannot be used, as there is no object boundary visible in the image.

To understand why the second possibility is also not optimal, consider the idea behind
the pose tracking algorithm: Each silhouette point casts a vote for the direction in which the
projection of the object should move; A point which seems to belong to the object tries to have
nearby points included as well, while points that seem to belong to the background try to move
the object away such that these points actually belong to the background region. Therefore, if
the movement proposed by each silhouette point is performed, each silhouette point benefits
from this movement as it gets closer to the actual contour seen in the image. However, this is
not the case for those points which are only on the silhouette due to an occlusion. No matter
how the object moves, this part of silhouette will stay the same, at least for small movements.
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In fact, the other object must be moved to change this part of the silhouette. Thus, only those
points which are on the silhouette both before and after considering occlusions are used to
estimate the motion of the puncher. In our example, those points are shown in Figure 6.4(e).

As each part of the energy function (potentially) depends on each pose, searching the poses
independently of each other is no longer possible. In our implementation, we simultaneously
perform one gradient descent step for each object until all objects move less than the given
threshold T from Equation (5.9).

This concludes the introduction of the energy function for coupled tracking of multiple
objects introduced in [238]. This method still has a major drawback, which will be removed
in the next section. Thus, experiments are postponed until Section 6.4.

6.3. Improved Tracking of Multiple Objects

“First ask yourself: What is the worst that can happen?
Then prepare to accept it. Then proceed to improve on the worst.”

Dale B. Carnegie (1888 – 1955))

Minimising the energy function (6.4) for coupled tracking of multiple objects often yields
good results. However, there are situations in which problems can occur. In this section, we
explain why and when problems appear, and answer the question how the energy function can
be improved such that these problems do not occur any more.

Consider Figure 6.4 to understand the possible problem discussed now. This time, assume
that the 3-D poses of the two objects are in such a way that each object exactly occupies
the image region it should, but the puncher is actually in front of the tea box. That is, the
puncher is visible in the green and yellow part in Figure 6.4(b), while the tea box is visible
only in the orange part. Obviously, when tracking the puncher, we face same problems as in
the uncoupled case, as it is not occluded.

To illustrate that the problem we described can even occur when there are no occlusions,
consider Figure 6.5(a) as a second example. The black and the white rectangle are to be
tracked, while the dashed brown lines indicate the current position of the object models. Using
the coupled energy function from the last section, the regions marked by the green circles and
by the blue lines in Figure 6.5(b) are compared to decide in which direction the points on the
silhouette of the right object move. As 20% of the green “inside” region is white, but only
around 14% of the blue “outside” region, white points are classified as belonging to the object.
Thus, the points marked in red move in outwards normal direction, i.e. to the left. The black
points marked by cyan circles on the right side are correctly classified as inside the object, and
thus move in outwards normal direction, i.e. to the right. As a result, the induced forces cancel
each other and the right object stays at the incorrect position.

The reason why a simple coupled tracking fails is the following: Although each image point
is assigned to at most one object region, it is still assigned to multiple background regions.
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Figure 6.5.: Left: Image in which the white and the black object should be tracked. The
dashed brown lines indicate the currently estimated position of the two objects. Middle:
Situation when using a simple coupled tracking. Right: Situation with an improved coupling.
The arrows indicate the displacement of some example points on the black object. The areas
marked by green circles indicate the regions used for estimating the appearance of the interior
of the right object, while the blue lines show the region whose appearance is compared against
the appearance of the appropriate inside regions for the marked points.

That is, although the PDFs for the interiors of the object regions are accurate, those for the
background regions still overlap, and are thus inaccurate.

To eliminate this problem, we propose to use a single background region instead of an
individual background region for each object tracked. More precisely, we define a visibility
function v0 for the background as

v0(χ1, . . . ,χN ,x) :=
N∏
i=1

(1− vi) , (6.5)

since the background is visible if and only if no object is visible. Furthermore, we define an
indicator function c0 for the background by setting

c0(χ1, . . . ,χN ,x) := 1, (6.6)

as the background covers the whole image due to the fact that occlusions are already handled.
Furthermore, we set p0 as the (unknown) PDF which describes the complete background re-
gion.

Then, the improved energy function is given by:

E(χ1, . . . ,χN) = −
N∑
i=0

∫
Ω

(
vicχi,i(x) log pi

)
dx. (6.7)

Using this energy function, each image point is assigned to exactly one PDF.
Minimising this energy function is done in a similar way as before. However, there are

some important differences. First off all, the visibility functions are computed simultaneously
by projecting each object with OpenGL [247], where a different colour is used for each object.
The rendered image is then used to compute all visibility functions. As before, object regions
are computed from which we collect the points lying on the silhouettes, i.e. those points which
are on the silhouette before and after considering occlusions. Each of these points is then
moved in inwards or outwards normal direction, depending on whether it fits better to the PDF
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6. Tracking Multiple Objects

Figure 6.6.: Result when tracking the sequence shown in Figure 6.1 with the energy function
for coupled tracking of multiple objects. As can be seen, the problems visible in Figure 6.3 do
not occur any more.

of the object it belongs to, or to the PDF of the region next to it. The shifted points are then
used to estimate the pose of each object using the point-based pose estimation algorithm from
Section 4.1. This minimisation step is then repeated until each object motion is small enough,
cf. Equation 5.9.

In the example explained at the beginning of this section, we will get three PDFs: The PDF
p1 for the interior of the puncher is estimated from green and yellow points, the PDF p2 for the
tea box indicates that it is completely yellow, and the PDF p0 of the background region states
that only blue points are in the background. For the points on the silhouette of the puncher
which are adjoined to the background, i.e. for the silhouette points shown in Figure 6.4(e), the
PDFs p1 and p0 are compared to decide to which region the points belong, while the PDFs p1

and p2 are used for the remainder of the points. In both cases, all points are correctly classified,
which was not the case before.

When using the improved energy function in the second example, we are in the situation
depicted in Figure 6.5(c): Again, 20% of the inside region are white. However, the points
marked in red will compare their appearance against those of the left object, i.e. against the
region marked by the blue lines. As 75% of this region is white, the points are now correctly
classified and move to the right. Thus, the right object is moved into the correct direction.

6.4. Experiments
“I really like to experiment. That’s the only way I can work. It’s instinctive.”

Fahrid Murray Abraham (∗1939)

As a first experiment, we consider the sequence used throughout this chapter to illustrate
shortcomings and improvements of our energy functions, namely the sequence depicted in
Figure 6.1. Tracking results for this sequence are shown in Figure 6.6. It can be observed that
coupled tracking works very well.
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6.4. Experiments

Figure 6.7.: Tracking results for a synthetic scene with three objects. The first two rows show
the two views available, the third and fourth row the tracking results using the coupled energy
function, and the last two rows the results when adding uncorrelated Gaussian noise with a
standard deviation of 256 before tracking. Each row shows the frames 4, 9, 14, 19, and 24.
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6. Tracking Multiple Objects

Figure 6.8.: Easy real-world sequence with tracking results. Shown are, from top to bottom,
the frames 20, 60, 100, 140, 180, 220, and 260 in both views (left columns), and the tracking
results in these frames (right columns).
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6.4. Experiments

Figure 6.9.: In this sequence, three objects are moving. Although there are some problems
around frame 130 and 190, tracking works well in general. Shown are, from top to bottom,
the frames 10, 70, 130, 190, 250, 310, and 340 in both views (left columns), and the tracking
results in these frames (right columns).
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6. Tracking Multiple Objects

Figure 6.10.: Real-world sequence in which one object is only visible through a hole of the
other. As can be seen, tracking also works in such a difficult situation. Shown are, from top to
bottom, the frames 15, 45, 75, and 105 in both views (left columns), and the tracking results
in these frames (right columns).

We also evaluate a more complex synthetic sequence with three objects, and multiple par-
tial occlusions. This sequence, which is depicted in the first two rows in Figure 6.7 is tracked
twice: Once without noise, and once after uncorrelated Gaussian noise with a standard devia-
tion of 256 has been added. For the noisy sequence, our tracking algorithm has smoothed all
images using a Gaussian kernel before estimating the PDFs. Both results are shown in Figure
6.7. There are some minor inaccuracies visible when tracking the noisy sequence, e.g. see the
red teapot in the second view of frame 14. However, this is not surprising due to the amount
of noise added.

In Figure 6.8, a real-world sequence with three Lego Duplo® objects and the corresponding
tracking results are shown. Even though only the object built from green and blue bricks
moves, all three objects have been tracked. However, tracking only the moving object also
works, since the appearance of the background is homogeneous close to the objects and since
only a small part of the moving object is occluded.
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6.5. Summary

This is not the case for the second experiment we performed with Lego Duplo bricks, as
this sequence is far more complicated: All three objects move, the background is not homo-
geneous, and a large part of one object is occluded in some frames, see Figure 6.9. These
problems result in inaccurate tracking results for some frames around frame 130. In Section
7.3, we will show improved tracking results for this sequence using the extension to multiple
internal object regions introduced in Section 7.1.

Although there are only two interesting objects used in the sequence shown in Figure 6.10
only one of which is moving, this sequence is even more complicated. For example, the
yellow object has an appearance that is close to the hand moving it. Furthermore, there are
simultaneous occlusions of significant parts of the yellow object in both views while it is
moved behind the large one, and the appearance of the background is less uniform than before,
as the table-cloth is wrinkled. Nevertheless, tracking results are only slightly inaccurate. Also
note that the small object is only visible through a hole in the big one. This is no problem for
our tracking algorithm, though.

As a last experiment, we combined tracking of multiple objects with the soft constraints
introduced in Section 5.4.3 to track a cycling athlete. As explained before, the hands of the
cyclist are required to stay at the handle of the bicycle, the pedals should rotate around a fixed
axis, and right foot should stay on the right pedal. Note that the left foot is rigidly attached
to the left pedal. Due to the soft constraints and due to the fact that mutual occlusions can
be handled since both objects are tracked, tracking results look very good. They are shown
in Figure 6.11. The second row in this figure also illustrates the different complex mutual
occlusions: Areas where the bike is occluded by the cyclist have been drawn in green, while
regions where it is vice versa are shown in dark blue. It can easily be seen that there are several
mutual occlusions of each type in each view. Nevertheless, our general visibility functions
automatically handle these occlusions.

6.5. Summary
Using the concepts introduced in this chapter, we extended the basic tracking algorithm from
the last chapter such that it can track multiple object simultaneously. Instead of only assuming
that one object is completely in front of another, our model can deal with situations in which
different objects mutually occlude each other. Where occlusion occur is decided purely on the
tracked objects on a per-pixel basis, i.e. without using prior knowledge of the scene, and may
change in every iteration of our algorithm.

The ideas presented in this chapter are reused in the following chapter to deal with occlu-
sions occurring in kinematic chains.
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6. Tracking Multiple Objects

Figure 6.11.: Tracking result when tracking a static training bike and a cyclist using soft con-
straints. Shown are frame 210, 240, 270, 300, 470, 500, and 530 in each of the four available
views. The green and dark blue regions in frame 240 illustrate the occluded regions of the
bike and the cyclist, respectively.
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7 Tracking Models with Multiple Components

“Much learning does not teach understanding.”

Heraclitus (540 BC – 480 BC)

So far, we have demonstrated how to track multiple objects by dividing the image into several
non-overlapping regions for each of which a separate PDF is estimated. In this chapter, we
show that this concept can be extended naturally to use additional internal silhouettes. This
is especially favourable for tracking articulated objects, but can also be beneficial for rigid
objects.

As a simple example why additional internal silhouettes are advantageous consider the syn-
thetic sequence shown in Figure 7.1. This sequence was created by projecting each rigid part
of a human (modelled as kinematic chain) in a unique colour onto a fixed background. The
only exception are the thighs, which have been omitted. Afterwards, uncorrelated Gaussian
noise with standard deviation 15 was added. The movement of the person was modelled in
such a way that the right arm of the person moves in front of its body. Thus, the arm is com-
pletely inside the object region, and there are no image-vertex point correspondences on this
arm. In the resulting system of equations, there is no equation in which the angles correspond-
ing to the right arm or the right hand occur. Thus, these angles cannot be estimated at all using
the tracking approaches introduced so far as there is no cue for the pose of that part.

One possibility to cope with such problems is to use a bottom-up approach that first searches
possible positions of different parts of the object. Out of these possible positions, one posi-
tion for each part is picked such that all parts together result in the complete object. The
appearance of the different object parts can be learned using Gibbs distributions [252] or us-
ing AdaBoost [175], for example. Another approach is to average pixel intensities inside parts
of the object as done in [84].

Furthermore, it is possible to deal with such situations by using angle priors (see Sec-
tion 5.4.2). This may introduce an undesired bias towards the used training data, though.

Figure 7.1.: Frame 0, 10, 20, and 29 of a synthetic sequence in which a human moves one arm
in front of its body. Furthermore, the upper parts of the legs are transparent to simulate body
parts whose appearances are indistinguishable from the background.
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7. Tracking Models with Multiple Components

Here, we deal with such problems by using internal silhouettes. As only information provided
by the input images is used, this will not introduce a bias. We first presented this approach
in [239].

We first extend our tracking algorithm such that it can use multiple components per ob-
ject. In Section 7.2, we explain how to create those components automatically. The chapter
is finished with synthetic and real-world experiments in Section 7.3, and a conclusion in Sec-
tion 7.4.

7.1. Multi-component Models

“I love modeling.”

Brooke Burke (∗1971)

The task we are going to solve in this chapter is very similar to the task from the last section.
We only make the additional assumption that, for at least one object to track, there are some
parts of this object whose appearance differs from the appearance of other parts of the object.
This is a reasonable assumption since tracking is infeasible if two overlapping object parts
have the same appearance. Even humans cannot distinguish equally looking parts after all.

Thus, the task to be solved now is given by:
Given:
– One projection matrix for each camera (see Section 2.6)
– One image sequence with domain Ω ⊂ R for each camera
– Models for each object i to track as rigid object or kinematic chain with ni joints

(see Section 2.4)
– Approximate 3-D pose initialisation χi ∈ R6+ni for each object i in the first frame
Assumptions:
– Each object is always (partly) visible
– The appearances of objects and background differ
– Different object parts have different appearances
Task:
– Track the 3-D pose of all objects through all images

Let M j, j = 1, . . . , l be l different components of one object model M . Note that we do not
require each vertex of M to be in exactly one component M j , i.e. there might be vertices that
are in several components, or in none at all. In the synthetic example illustrated in Figure 7.1,
the arm on the left side of the image could be one region, while the remainder of the visible
body is the second component. That is, the thighs do not belong to any region in this case. As
a real-world example in which some parts of the object model are omitted, consider a person
wearing shorts whose colour matches those of the background. We presume that this splitting
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7.1. Multi-component Models

is given for the remainder of this section. Details on two possible heuristics how a given object
model can be split automatically are given in Section 7.2.

We follow the ideas explained in the last chapter, i.e. to use visibility functions to find out
which portions of the object are actually visible in a certain image. To this end, we define
Oj(χ,x) as the set of 3-D points on M j which are projected to the image point x when the
current pose of the complete object is given by χ. Next, we define dj(χ,x) as the smallest
distance of all points on M j which are projected to x to the optical centre C as:

dj(χ,x) := d(Oj(χ,x),C) = min
y∈Oj(χ,x)

{d(y,C).} (7.1)

The visibility functions vj are then given by:

vj(χ,x) :=

1 if dj(χ,x) = min
j∈{1,...,l}

{dj(χ,x)} ,

0 else .
(7.2)

For the background region, we set

v0(χ,x) :=
l∏

j=1

(
1− vj(χ,x)

)
, (7.3)

as the background is visible if no part of the object can be seen, and c0(χ,x) := 1 as the
background is everywhere in the image where it is not occluded. The energy function for
minimisation with multiple internal silhouettes is then given by:

E(χ) =−
l∑

j=0

∫
Ω

(
vj(χ,x)cjχ(x) log pj

)
dx. (7.4)

Here, we used the notation pj := pj(χ,x) for the estimated PDF of the j-th component M j

and cjχ(x) : Ω→ {0, 1} for the indicator function that is one if and only if any point on M j is
projected to the image point x.

If multiple objects are to be tracked, defining an appropriate energy function can be done in
a similar way: For each of the i objects, we denote the number of parts considered by li, and
the j-th component of the i-th object model as M j

i . The corresponding PDFs and indicator
functions are denoted by pji and cjχi,i(x), respectively. As before, the pose of the i-th object
is called χi. Using the set Oj

i (χi,x) of those points on M j
i that are projected onto the image

point x and the distance

dji (χi,x) := d(Oj
i (χi,x),C) = min

y∈Oji (χi,x)
{d(y,C)} , (7.5)

we can define the visibility function vji for the j-th component of the i-th object as

vji (χ1, . . . ,χn,x) :=

1 if dji (χi,x) = min
i′∈{1,...N}

min
j′∈{1,...,li}

{dj
′

i′ (χi,x)}

0 else
. (7.6)
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7. Tracking Models with Multiple Components

For the background region, we set l0 = 1, define the visibility function as

v1
0(χ1, . . . ,χn,x) =

n∏
i=1

li∏
j=1

(
1− vji (χ1, . . . ,χn,x)

)
, (7.7)

and set c1
0(χ1, . . . ,χn,x) = 1

Then, the energy function to be minimised reads:

E(χ1, . . .χN) = −
N∑
i=0

li∑
j=1

∫
Ω

[
vji c

j
χi,i

(x) log pji
]
dx. (7.8)

Minimising the energy functions given in Equations (7.4) and (7.8) can be done similarly
to the minimisation of Equation (6.7), i.e. when tracking multiple objects: First of all, each
component of each object is projected simultaneously using OpenGL. In this projection step
each component has a unique colour. After reading back the rendered image from the graphics
card, the colour at an image point indicates which of the object components is visible at that
specific point. This way, the visibility functions vji for the current iteration are obtained. Af-
ter that, each component is projected individually to compute the indicator functions cjχi,i(x).
Using these two functions, we compute the silhouettes of each region before and after con-
sidering occlusions, thereby gathering a set of 2-D silhouette points lying on both silhouettes
of each component. Using a lookup-table created while projecting the object components,
we determine the 3-D points on the object model corresponding to the 2-D silhouette points,
resulting in a set of image-vertex point correspondences. The 2-D part is then shifted by a
force vector perpendicular to the object boundary. To decide whether this force vector points
towards the inside or the outside of the object component, the PDF of the current component
and the next component in outside normal direction are compared in the same way as in the
minimisation of the basic tracking approach presented in Section 5.2. Once the movement
of all objects is below the requested threshold, the current poses are considered final for this
frame, and tracking continues with the next frame.

7.2. Automatic Component Generation

“Just because it’s automatic doesn’t mean it works.”

Daniel J. Bernstein (∗1971)

Up to now, we have explained how to improve tracking by using models with multiple compo-
nents. However, we have not explained how these components are chosen. This will be done
in this section.

The tracking approach described in the last section only works well if the appearance of
those model components M j which are close together can be distinguished, as it compares the
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7.2. Automatic Component Generation

estimated PDFs of these components. Thus, it is reasonable to assume that object parts with
similar appearance should be in the same component.

Our automatic component generation algorithm starts by assigning each rigid part of the
kinematic chain into a component of its own, resulting in as many components as object parts.
This results in 14 components in the example shown in Figure 7.2: head, torso, three for each
arm (upper arm, lower arm, and the hand), and three for each leg (thigh, lower leg, and foot).
Note that it can also be useful to start with a different assignment, e.g. if a rigid part has two
completely different appearances. We will see an example for this situation in Figure 7.8.

Once the initial assignment is known, a PDF is estimated for each component by projecting
them into the image plane using the initial pose estimation, accounting for occlusions and
estimating the PDF from the visible pixels. Next, the most similar components are merged
into a new component, and the process is iterated until all components are different enough.

In this algorithm, it is necessary to compare two PDFs p(i) and q(i). For this task, there are
several possible distance measures that can be used, e.g. summing the squares of the differ-
ences,

J1(p, q) :=
∑
i

(p(i)− q(i))2 , (7.9)

or the Kullback-Leibler divergence [147] given by

J2(p, q) :=
∑
i

p(i) log
p(i)

q(i)
. (7.10)

In our tests, we obtained the best results with the Jensen-Shannon divergence [297]. It is a
symmetric and smooth variant of the Kullback-Leibler divergence and is given by

J3(p, q) :=
J2(p,M) + J2(q,M)

2
, (7.11)

where M is the average of p and q, i.e. M = p+q
2

. Once there is no pair of components for
which J3(p, q) is smaller that a given merging threshold α, the algorithm has converged. The
remaining components are fixed and used in our multi-component tracking algorithm. For all
our experiments, we set α := 0.25.

If some parts of the object are to be omitted, the background region can be added as an addi-
tional component in the initial assignment. All rigid model parts merged with the background
region will not be present in a component while tracking. However, no leaf of the kinematic
chain should ever be added to the background region, as it would be impossible to estimate
the joint angles of these parts.

This process is illustrated in Figure 7.2. Using the top left image, the model of a woman
wearing an orange shirt and dark trousers is to be divided automatically. In the third image in
the upper row, the 14 initial components are shown. Note that the initial pose is inaccurate, and
that there is no clear boundary between the joints, as explained in Section 2.4.2. Nevertheless,
the merging steps performed are reasonable: The image in the second row show the pairwise
differences between the PDFs estimated for the different components in the first three steps
of the algorithm. In the first step, the difference between the PDFs corresponding to the two
lower legs is smallest. Thus, these the components are merged into a new component called
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Figure 7.2.: Illustration of the automatic component generation algorithm. Upper row, first
two images: Initial image, and magnification of the person to be tracked. Upper row, third to
fifth image: initial components, and components after one and two merging steps, illustrated
by projecting each component with a different colour. Upper row, last image: Components
at the end of the merging steps after tracking the first frame. Lower row, from left to right:
Matrix indicating the similarity of all pairs of components in the initial assignment, and after
one and two merging steps. The darker a square, the more similar the corresponding compo-
nents are. The blue circles indicate the regions merged next, and the names written in green
indicate new components.

Body

Left leg

Head

Left arm

Right arm

Right leg

Figure 7.3.: Second example for our automatic component generation algorithm. Shown are a
magnification of the input image (leftmost), the initial pose (left), the similarity matrix (right),
and the final components (rightmost). The two circles in the similarity matrix indicate the first
components merged, namely head and lower right arm (green) and both hands (blue).
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7.3. Experiments

Figure 7.4.: Tracking result for frame 0, 10, 20, and 29 of the sequence shown in Figure 7.1.
For the shown tracking results, a model with two components was used: One component
consists of the right arm, and the other of the remainder of the body except for the thighs.

“lower legs” in the second image. Next, the two thighs are merged, followed by the right
forearm and the right hand. In the end, we get the three components shown in the last image
of the first row in Figure 7.2: One for the torso and the upper arms, one for the legs, the feet
and the head, and one for the lower arms including the hands.

This assignment might seem surprising at first, as it does not assign the upper and lower
arms to the same component. When looking carefully at the image, one can see that the upper
arms are partly orange and have partly the colour of skin. The same situation is given for the
torso, while only skin can be seen for the lower arms and hands. Consequently, the upper arms
in fact belong to the same component as the torso, according to their appearance.

As a second example, we consider sequence S4 of the HumanEva-II benchmark (see Sec-
tion 5.5.2). The first similarity matrix and the final components obtained using our algorithm
are shown in Figure 7.3. As can be seen, the results are similar to the first example: The only
difference is that the head is assigned to different components. This happens because the head
region mainly contains skin tone and a dark colour, which also appear at the trousers or the
arms, respectively.

7.3. Experiments

“When your work speaks for itself, don’t interrupt.”

Henry J. Kaiser (1882 – 1967)

The first experiment for which we present results is the synthetic sequence shown in Fig-
ure 7.1. For this first initial experiments, the model components were created manually. As
shown in Figure 7.4, all 30 frames were tracked without problems even though one arm is
completely in front of the remainder of the body. Consequently, the basic tracking approach
introduced in Section 5 is unable to track this sequence.

Further note that the upper legs are automatically tracked in this sequence even though they
are not part of any component, as the lower legs and torso determine the position of the thighs.
More precisely, the image-vertex point correspondences from lower legs and feet result in
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7. Tracking Models with Multiple Components

Figure 7.5.: Upper row: Frames 8, 18, 28, 38, 48, and 58 of the input image (cropped). Lower
row: Tracking results for the same frames.

equations which include all joint angles of the legs. Thus, the position of the upper legs is also
estimated when solving the resulting system of equations.

In Figure 7.5, a monocular real-world sequence with a person performing a similar motion
is shown. As can be seen, the tracker found poses such that the projected object model matches
the object seen in the image quite well for the first 58 frames. This changes in later frames,
though.

When looking at the scene in frame 58 from other cameras not used for tracking (see Figure
7.6, one can immediately see why tracking fails after this frame: Theoretically, the exact
distance of the model from the camera centre can be derived by the tracker. However, due to
small errors in the model, camera aberrations, and other otherwise minor problems, there is a
depth ambiguity. That is, the estimated model position is closer to the camera than it should
be. As a result, the moving arm is actually estimated to be behind the head, resulting in wrong
visibility functions. As the right arm is believed to be completely occluded, tracking fails.

Once again, we use sequence S4 from the HumanEva-II benchmark to evaluate our tracker.
Example frames are shown in Figure 7.7. Using multiple regions, the average tracking error
decreases from the 66.78mm obtained using soft floor constraints in Section 5.4.3 to 48.87mm
when additionally using multiple regions. The improvements can be seen especially well
around frames 200 and 400: Here, the legs flip without internal regions (see first images in
Figure 5.19). Additionally, the arms are more accurate during the balancing part (compare
fourth row of images in Figures 5.19 and 7.7), and the partial tracking failure of one leg from
frame 930 to frame 1185 has disappeared (fifth row of images in these figures).
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7.4. Summary

Figure 7.6.: Tracking results for frame 58 of the sequence shown in Figure 7.5 from two ad-
ditional views not used for tracking. It can be seen that the 3-D pose is much worse than
expected when looking only from the view shown in Figure 7.5.

As last experiment in this chapter, we revisit the Lego Duplo sequence from Figure 6.9
in Chapter 6. This sequence has three moving objects, two of which were tracked without
noticeable problems. However, tracking results for the third object were inaccurate in some
frames. Two example frames already shown in Figure 6.9 are magnified in Figure 7.8. When
splitting one object into the blue and the green part depicted in that figure, tracking results
get noticeably more accurate. This is demonstrated in Figure 7.8. In those frames not shown,
tracking still works nicely.

7.4. Summary
This chapter introduced our approach for using multiple internal regions to improve the track-
ing of kinematic chains. This especially improves the tracking results in monocular scenes, but
also helps in sequences with several views, as parts of the kinematic chain might be occluded
in some views. The necessary splitting of the object model can either be done manually, or
our automatic splitting approach can be employed.

In the next chapter, we introduce the last improvement of our tracking algorithm, namely
an enhanced approach how to improve tracking in case of complicated and possibly varying
backgrounds.
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7. Tracking Models with Multiple Components

Figure 7.7.: Tracking results using multiple internal regions. From top to bottom: Tracking
results in one frame of the walking part (frame 222), two frames in the jogging part (frames
444 and 666), two frames in the balancing part (frame 888 and 1110), and in the frame with
the highest tracking error (frame 757). The plot at the lower end of the figure shows the
average tracking error per frame achieved with multiple regions (red), and the best tracking
error obtained without multiple regions (blue) shown in Figure 5.19 in Section 5.4.3.
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7.4. Summary

Figure 7.8.: Tracking experiment with multiple objects and multiple regions. From left to
right: Input image, tracking result from Chapter 6 (see Figure 6.9), and tracking results using
two internal components for one object. Upper two row: Frame 130 from both camera views.
Lower two row: Frame 190 from both camera views.
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8 Localised Mixture Models

“Essentially, all models are wrong, but some are useful”

George E. P. Box (∗1919)

In the last chapters, we explained how to handle occlusions between different object parts or
different objects by increasing the number of image regions considered. However, the more
regions are used in such approaches, the more likely it is that the appearance of one object
part is similar to some part of the background. In such situations, distinguishing fore- and
background region may fail.

Two example images in which such situations may occur are shown in Figure 8.1. In the
synthetic image to the left, a blue giraffe with red hooves is to be segmented or tracked. As
half of the background is red, the red pixels in the hooves are classified as background points.
Consequently, results will be inaccurate. Here, using the local Gaussian model presented in
Section 2.7.2 is sufficient to solve this problem. However, this is not the case for the image on
the right, which shows a man with black hair in front of a mostly black background.

A different local statistical model was proposed in [179], which blurs across discontinuities
inside the region. This blurring can be quite significant, as a large neighbourhood is necessary
for a reliable estimation.

Thus, we proposed in [236] to segment the background region into different subregions
in each of which a separate PDF is estimated. Therefore, our approach uses local region
statistics, i.e. it uses the position of the pixels in addition to their colour. Simultaneously, it
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Figure 8.1.: Two examples for which modelling fore- and background by independent and
identically distributed random variables would yield suboptimal tracking results. Left: Syn-
thetic image of a giraffe with red hooves. As red points are more likely in the background
region, the hooves are not classified correctly. Right: Black and white regions appear fre-
quently in fore- and background.
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8. Localised Mixture Models

utilises a large part of the image to accurately estimate the occurring PDFs. This is particularly
necessary for non-parametric approaches such as kernel density estimations, see Section 2.7.2.
Our approach will be called localised mixture model, and is abbreviated as LMM.

There is a similar concept in the context of background subtraction, namely so-called Gaus-
sian mixture models. When using such a model, the estimations are performed along the
temporal axis instead of in a spatial neighbourhood, resulting in accurate positional informa-
tion [103]. An overview of both simple and complicated background models is given in [205].
It is also possible to combine learned statistics with a conventional spatially global model,
see [265]. Learning the background in advance is still necessary for background subtraction.
Thus, a background image or images without the objects to track and without strong motions
must be available. This is not the case when using LMMs. There are also image labelling ap-
proaches that segment the background into several regions such as [246]. In contrast to such
approaches, no learning step is necessary with LMMs.

There are many more approaches to distinguish foreground from background using tech-
niques such as graph cuts [225, 57], active contours [24, 12, 139, 151], segmentation using
K-means clustering [74], or Markov random fields [57]. The details of these approaches are
beyond the scope of this thesis.

In the remainder of this chapter, we first introduce a localised background model for a
known background image. Afterwards, this model is extended to the case of an unknown and
possibly changing background in Section 8.2. Furthermore, we evaluate two segmentation
algorithms for the necessary splitting of the background. After presenting tracking results
both with and without localised models in Section 8.3, the chapter is concluded in Section 8.4
with a summary containing all tracking results presented in this thesis.

8.1. LMMs using Static Background Images
“In the midst of movement and chaos, keep stillness inside of you.”

Deepak Chopra (∗1946)

We first consider the case that a static background image is given. As we do not require
the different background regions to correspond to different objects in the scene, this task is
much easier than the top-level task of object-background separation. Thus, any segmenta-
tion algorithm which supports multiple regions may be used. Here, we test an extension of
the level-set-based segmentation algorithm presented in Section 4.2, which has been intro-
duced in [36]. Additionally, a simple segmentation using the K-means algorithm [164, 158] is
evaluated. We employ the implementation from [92], which implements a fast variant of the
K-means algorithm [74]. Note that this algorithm is also called Lloyd’s algorithm, especially
in computer science. As mentioned on page 149 in Section 9, it is used in [241] and [17] for
stippling.

Notice the difference between these two segmentation algorithms: K-means only clusters
the pixels in the image according to their appearance, but independent of their position in the
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8.1. LMMs using Static Background Images

(a) Input image

(b) K-means, 3 regions (c) K-means, 6 regions

(d) Level-set-based, 3 regions (e) Level-set-based, 8 regions

Figure 8.2.: Example segmentations of the image shown on the left (a). The images on the
upper row (b,c) show segmentation results with K-means clustering with three and six clusters,
respectively, while level-set-based segmentation with two different parameter settings is used
for the images on the lower row (d,e). As can be seen, K-means results in more fuzzy region
boundaries.

image. The more sophisticated level-set-based approach considers multiple image scales, and
includes a smoothness prior on the contour. Note that the number of regions a background
image is segmented into is fixed when using the K-means algorithm, while the level-set-based
segmentation algorithm utilises a homogeneity criterion to find the optimal number of regions,
depending on a tuning parameter. Thus, the number of regions can vary between different
frames or views.

The differences can be seen in Figure 8.2 in which the same background image is segmented
with both approaches and with different parameters. Due to the boundary length constraint, the
region boundaries are much smoother when using the level-set-based segmentation approach.
Furthermore, we get a lot of small disconnected regions when using K-means. Especially
when considering a moving background, as introduced in the next section, fuzzy boundaries
and small regions can be harmful.

Once the background is segmented, a separate PDF pi is estimated for each segment in
the background image. These PDFs are then combined to obtain the LMM of the complete
background image. More precisely, let L(x) : Ω 7→ N denote the segmentation that maps
each point in the background image to the number of its region, and let s be the set of image
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8. Localised Mixture Models

features used for tracking. The PDF of the background is then given by

p(x, s(x)) = pL(x)(s(x)). (8.1)

It is reasonable – but not obligatory – to use the same density models for the subregions that
were used for segmentation. For K-means, this results in Gaussian distributions with fixed
variance (see Section 2.7.2):

pkmeans
j (s) ∝ exp

(
−(s− µj)2

2

)
, (8.2)

where µj is the cluster centre of cluster j. For the level-set-based segmentation approach, a
kernel density estimator is employed (see Section 2.7.2):

plevelset
j (s) = Kσ ∗

∑
x∈Ωj

δ(s, I(x))

|Ωj|
, (8.3)

where δ is the Dirac delta distribution and Kσ is a Gaussian kernel with standard deviation
σ =

√
30. For tracking, these PDFs can be computed once at the beginning of the sequence

and the LMM can then be used as PDF p0 in one of the Equations (6.7), (7.4), or (7.8). Note
that p0 is fixed for all frames, while the PDFs for the different object parts are still recomputed
once each frame.

8.2. LMMs with Varying Backgrounds
“To be suspicious is not a fault.

To be suspicious all the time without coming to a conclusion is the defect.”

Lu Xun (1881 – 1936)

The approach presented in the last section can only be used if there is a static background im-
age given as input data. However, this is usually not the case. Especially in outdoor scenarios,
the background constantly changes due to moving plants, clouds, people passing by, shadows,
changing lighting conditions, or camera motion. Note that the last problems can also appear
in indoor environments.

To extend LMMs to non-static images and images in which the object is already present,
we use the facts that the background usually changes slowly between successive frames. Note
that, at the time when the new PDFs are estimated, tracking the current frame is already
finished when information reusing as introduced in Section 5.4.1 is applied. Thus, we know
where the object currently is and can exclude the occluded regions from the segmentation step.

Example segmentation results for which the object region is omitted are shown in Fig-
ure 8.3. The image shown is frame 42 of sequence S4 of the HumanEva-II benchmark, which
was already used several times in earlier chapters. As can be seen, both approaches still yield
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8.2. LMMs with Varying Backgrounds

Figure 8.3.: Here, segmentation results for frame 42 of the HumanEva-II sequence S4 obtained
with the level-set-based segmentation approach (middle) and the K-means-based segmentation
approach (right) are presented. The white region is occluded, every other colour denotes a
segmented region.

reasonable segmentations. However, there are some faults close to the object due to tracking
inaccuracies and due to the fact that a human cannot be modelled accurately using kinematic
chains. This is especially visible in the right foot in the right image, for which tracking results
are quite bad.

In those parts of the background image in which the object is not visible, the LMM is
created as before. However, as the object’s position in the image will change during tracking,
it is necessary to evaluate the PDF of the background region at points occluded while the
segmentation was performed. At those points, we use the PDF of the subregion closest to this
point. Thus, the LMM is given by:

p(x, s) = pj∗(x) with j∗ = argmin
j

(dist(x,Ωj)) , (8.4)

where Ωj is the jth subregion computed by the segmentation step:

Ωj := {x ∈ Ω|L(x) = j}. (8.5)

Although this is just an approximation of an ideal segmentation, we will see in the next section
that this approximation is good enough to obtain much better tracking results than with a
global PDF.

In order to account for small tracking inaccuracies, and thus dubious segmentation results
close to the object, it can make sense to increase the area of the occluded background region
before segmentation, e.g. by dilating the occluded region. However, this has not been done for
the experiments shown in this thesis.
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Figure 8.4.: PDFs for the three subregions in each of the segmented backgrounds shown in
Figure 8.3. Shown are the PDFs for the luminance channel (left), and the two colour channels
(middle and right) for the level-set-based approach (top) and for K-means (bottom).

8.3. Experiments

“All life is an experiment. The more experiments you make the better.”

Ralph Waldo Emerson (1803 – 1882)

Once again, we use sequence S4 from the HumanEva-II benchmark to evaluate the new
tracking approach. All experiments performed with this sequence are summarised in Table 8.1.
The first three lines show the results obtained with the basic tracking approach introduced in
Sections 5.1, the improved version using floor constraints (see Section 5.4.3), and the ex-
tension to multiple internal components explained in Section 7.1. The remaining rows show
results using the localised mixture models explained in this chapter, with and without back-
ground knowledge, and with different segmentation algorithms. More details will be given in
the remainder of this section.

Since we noticed an increased tracking error around frame 1200 without any visible reason
for this behaviour (see graph in Figure 7.7), we decided to use only the frames up to and in-
cluding frame 1170 for the comparison in this section. Thus, the numbers given in Table 8.1
which are used as comparisons in this section slightly differ from those values given in previ-
ous chapters. The frames 298–325, for which the ground truth is corrupt, are still omitted.

As a first experiment, we use one of the available static background images for each view
to segment the background, as shown in Figure 8.2 and explained in Section 8.1. For both
segmentation approaches, we optimised the involved parameters such that the best tracking
results are obtained. That is, the number of clusters is optimised for K-means, and the pa-
rameter determining the additional energy for each region is optimised for the level-set-based
approach. In contrast to the previous chapters, the inaccurate silhouette images from back-
ground subtraction (see Figure 5.17) are not used as additional features.
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8.3. Experiments

Figure 8.5.: Tracking results using LMMs instead of background subtracted silhouette images.
From top to bottom: Tracking results in one frame of the walking part (frame 222), two
frames in the jogging part (frames 444 and 666), two frames in the balancing part (frame 888
and 1110), and in the frame with the highest tracking error (frame 610). The plot at the lower
end of the figure shows the average tracking error per frame when using a localised region
model of the known background image (red) instead of using silhouette images obtained by
background subtraction as additional feature. Again, the best tracking error obtained before
(see Figure 7.7 in Section 7.3) is shown in blue.
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8. Localised Mixture Models

Using LMMs with K-means (fourth row in Table 8.1), an average error of 49.61mm is
obtained, which is slightly higher than the average error of 48.63mm obtained with the method
from the last chapter (third row). However, the maximal tracking error dropped from 156.5mm
to 114.2mm. With the level-set based approach, the results are even much better: The average
tracking error drops to 40.25mm, and the maximal tracking error drops to 74.5mm, as shown
in the fifth row of Table 8.1. A comparison of the tracking error for each frame is shown in
Figure 8.5. One can see that the jogging part between frames 370 and 780 is tracked much
better when using level-set-based LMMs than when using silhouette images obtained from
background subtraction as additional features.

Next, we evaluate if using both silhouettes extracted from background subtraction and
LMMs computed on given background images further improves the tracking results. Thus,
we performed experiments in which LMMs and background subtraction are used simultane-
ously. The corresponding experiments are given in the last two lines of the first block in
Table 8.1 (lines six and seven).

When using K-means in the LMMs, tracking results are further improved when addition-
ally using silhouettes extracted with background subtraction. With the level-set based ap-
proach this is not the case. However, this approach still yields better results than the one using
K-means. It seems that the erroneous silhouettes obtained by background subtraction (see
Figure 5.17) can only improve the results if an improper segmentation algorithm is used in
LMMs. Note that we have claimed in [236] that using both LMMs and silhouettes always im-
proves the results. However, we merely got this impression due to a minor bug that has been
corrected after the paper was published. Figure 8.6 shows a comparison per frame when using
LMMs with and without background subtraction as additional feature (lines five and seven in
Table 8.1).

Finally, we performed several experiments to evaluate our tracking algorithm without using
the background images or any information derived from them. The results from those ex-
periments are summarised in the second block of Table 8.1. That is, we use the LMM variant
designed for varying, unknown backgrounds from Section 8.2 and did not perform background
subtraction to obtain additional silhouettes images. For these experiments, the same internal
regions as before have been used.

In such a situation, our tracking approach fails when only using a simple Parzen model,
see line eight of Table 8.1. Nevertheless, our approach using LMMs with unknown back-
ground images (lines nine and ten) yields results which are very close to those obtained with
background subtraction (line three), especially when using the level-set-based approach: The
average error is only 0.17mm worse (48.80mm versus 48.63mm), while the maximal error is
even significantly slower (82.8mm instead of 157mm). This shows that using LMMs signifi-
cantly stabilises tracking if no background images are given.

Note that the tracking results for this sequence show that the results obtained with our
algorithm are very accurate compared with other approaches from the literature.

In [113], segmentation and feature learning is used for monocular pose tracking. The track-
ing errors obtained range are in the range 111-146mm for the walking part, and 106-155mm
for the jogging part, depending on the view used. No results for the balancing part are given,
as balancing was not part of the training set.
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8.3. Experiments

Figure 8.6.: Tracking results when using both LMMs and silhouette images from background
subtraction. From top to bottom: Tracking results in one frame of the walking part (frame
222), two frames in the jogging part (frames 444 and 666), two frames in the balancing part
(frame 888 and 1110), and in the frame with the highest tracking error (frame 379). The plot
at the lower end of the figure shows the average tracking error per frame when using both a
localised region model of the known background image all well as silhouette images obtained
by background subtraction (red). The results obtained when using only LMMs (see Figure 8.5)
is shown in blue.
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8. Localised Mixture Models

Figure 8.7.: Tracking results using LMMs without knowledge about the background image.
From top to bottom: Tracking results in one frame of the walking part (frame 222), two
frames in the jogging part (frames 444 and 666), two frames in the balancing part (frame 888
and 1110), and in the frame with the highest tracking error (frame 933). The plot at the lower
end of the figure shows the average tracking error per frame when using both a localised region
model of the known background image as well as silhouette images obtained by background
subtraction (red). The best tracking error obtained when using background knowledge (see
Figure 8.5) is shown in blue.
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8.3. Experiments

Table 8.1.: Summary of all tracking results of sequence S4 of the HumanEva-II benchmark.
The first seven results use background images in tracking, either by using silhouette images
obtained from background subtraction as additional features (Lines 1, 2, 3, 6, and 7), or by
using LMMs with fixed background image (Lines 4–7). For the last three results, the back-
ground images are not used, nor is any information derived from them. Shown are the number
given to the method for referencing (No.), a short description of the method itself (Method),
the average tracking (Avg. error), the variance of the error (Variance), the maximal tracking
error obtained (Max. error), and the figures in which results from the experiments are shown
(Figure). All numbers are in millimetres. As explained in the text, only the frames up to frame
1170, but excluding frames 298 to 325, were used to compute the average tracking error.

No. Method Avg. error Variance Max. error Figure

1 Basic approach 72.78 756.60 154.79 5.18
2 Floor constraints 66.86 847.97 154.32 5.19
3 Internal regions 48.63 511.23 156.53 7.7
4 LMM (K-means) 49.61 485.69 114.17 –
5 LMM (LS segm.) 40.25 107.51 74.46 8.5
6 LMM (K-means) + BG subtraction 42.75 179.75 92.56 –
7 LMM (LS segm.) + BG subtraction 41.44 154.70 83.78 8.6

8 Parzen Model 451.18 24706.77 728.45 –
9 LMM (K-means) 52.66 603.67 162.70 –

10 LMM (LS segm.) 48.80 127.15 82.82 8.7

Table 8.2.: Comparison of results from our tracking approach with different approaches from
the literature. Given are the average tracking error of Sequence S4 of the HumanEva-II bench-
mark for the walking part, the jogging part, the balancing part, and the complete sequence. All
results are given in millimetres.

Paper walking jogging balancing Total

Poppe [207] 121–183 112–156 185–266 148–204
Howe [113] 111–146 106–155 – –
Cheng and Trivedi [50] 161 259 134 177
Husz et al. [118] 180 126 161 157
Corazza et al. [55] 80 – – –
Brubaker et al. [38] 52 – – –
Gall et al. [89] 28 37 31 32
Our approach 31 52 37 40

141



8. Localised Mixture Models

Hierarchical partitioned particle filters specially designed for human tracking are employed
in [118]. Using a motion model and prior knowledge of the structure of the human body, aver-
age tracking errors of 180mm (walking part), 126mm (jogging part), and 161mm (balancing
part) are obtained.

A volumetric reconstruction, combined with a single Gaussian mixture model for each rigid
object part, was used in [50]. The mean tracking error reported is 177mm. The example-
based pose estimation in [207] uses histograms of oriented gradients as image descriptors to
estimate the pose from a single view. Depending on the view used, the average tracking error
lies between 148mm and 204mm.

Corazza et al. report a mean tracking error of 80mm [55]. However, they used only the first
150 frames, as tracking became less robust and started failing afterwards. In [38], an average
error of 54mm is obtained by employing a physical model of walking and two of the four
views. However, only the lower body part is tracked, and tracking was only done for frames
15 to 350, i.e. for the walking part of the sequence.

An impressive average tracking error of 32mm was reported in [89] by combining a global
optimisation based on interacting simulated annealing with a particle filter, followed by a local
optimisation similar to the approach presented in this thesis. Due to the global optimisation,
a tracking failure in one frame is very unlikely to propagate into the following frames. Obvi-
ously, this stabilises tracking considerably. Such an approach can also be used as first step in
our approach. One should note that using such a global approach is quite costly, and would
increase the run time of our tracking algorithm by a factor of five. Also note that we also
receive very good results without using the provided background images, while the method by
Gall et al. requires background subtracted images for its global optimisation step.

To verify that LMMs also work for non-static backgrounds, we show tracking results with a
partially moving background in Figure 8.8. Note that there are no background images available
for this sequence. Thus, background subtraction is impossible. As can be seen in the middle
column, the algorithm fails to track a 90◦ rotation of the tea box around frame 90 if the Parzen
model is used. However, the LMM can deal with the changing background and tracks the tea
box successfully.

When adding uncorrelated Gaussian noise with standard deviation 10 before tracking this
sequence, the difference is even more striking. This is demonstrated in Figure 8.9: With the
Parzen model, tracking completely fails beginning with frame 75, while the LMM can track a
longer part of the sequence.

Even with LMMs, the tracker still fails to track the rotation around frame 200. This is
due to two facts: We are dealing with a monocular setting, and two planes of the tea box are
projected (approximately) to lines in the image. In such a situation, rotating the object a little
more makes this plane appear or disappear. As the points on the plane are not part of the
silhouette yet, they do not influence the pose. It was thus proposed in [211] to use also the
furthest points projected onto the silhouette in such a situation. Using this extension, tracking
the tea box will probably succeed. This is part of our future work.
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Input images Parzen model LMM

Figure 8.8.: A monocular sequence of a tea box with partially varying background (left)
tracked with a global Parzen model (middle, green) and with LMMs based on level-sets (right,
cyan). Shown are, from top to bottom, the frames 20, 80, 90, 160, and 230. In contrast to the
LMM, the global Parzen model misses a 90◦ rotation of the tea box around frame 90.
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Figure 8.9.: In this figure, uncorrelated Gaussian noise with standard deviation 10 was added
before tracking the sequence from Figure 8.8. Shown are, from left to right, the frames 20,
90, 160, 200. While tracking with the Parzen model fails quickly, the LMM can track the
sequence quite long.

8.4. Summary
In this chapter, we presented our localised mixture model, and showed that this model can
noticeably improve the obtained tracking results. We further illustrated that our model can
use the background image to improve the tracking results, but even works very well in case of
unknown or varying background images.

Table 8.3 shows a summary of all sequences tracked in this thesis. As can be seen, the
presented tracking approach can deal with both monocular and multi-view sequences, and can
track several completely different objects with different model representations in the same
sequence. Furthermore, it can deal with simple and complex models, can be used for rigid and
articulated models with a large amount of unknown joint angles, use different image features,
and incorporate soft constraints and angle priors.

This concludes the part of this thesis that deals with 3-D pose tracking. The next chapter
introduces the third topic discussed in this thesis, namely the novel halftoning algorithm we
developed.
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9 Electrostatic Halftoning

“I like physics. I think it is the best science out of all three of them,
because generally it’s more useful. You learn about speed and velocity and time,

and that’s all clever stuff.”

Thomas Andrew “Tom” Felton (∗1987)

In Chapter 2.7.2 we have seen how to estimate a probability density function (PDF) from
random samples drawn from this PDF. In sampling, the inverse problem must be solved: Given
a PDF, the task is to choose a predefined number of sample points such that these points best
represent the underlying PDF. This problem arises in different tasks such as stippling [241],
object placement [63], multi-class object placement [286], ray-tracing [203], image-based
lighting using high dynamic range images [142], geometry processing [269], or numerical
integration such as Quasi-Monte Carlo methods [105, 54].

The general problem to approximate images with continuous tones using a finite number of
dots is called halftoning. Here, only few different colours may be used for each dot. Common
examples are the preparation of grey-scale images for printers or fax machines, which can
only create black dots onto a white piece of paper due to technical reasons. Similarly, offset
printers used to create colour images also use dots with a limited amount of pure colours,
typically cyan, magenta, and yellow. Black is often added in addition as a fourth colour.
Through mixing dots with these colours, a human viewer gets the impression to see a much
larger amount of tones.

Typically, but not always, these dots are required to be on some regular grid, which is usually
quadratic. In this case, the specific problem is called dithering, see Figure 9.1. In one of the
first methods proposed for dithering, Goodall first added Gaussian noise to an image and used
a simple thresholding afterwards [97]. This can also be regarded as adapting the threshold
instead of adding noise. The next notable approach, which uses predefined threshold matrices,

Figure 9.1.: Illustration of dithering and stippling results. Left: Initial image. Middle: Result
using our dithering algorithm. Right: Result using our stippling algorithm.
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Figure 9.2.: (a)+(b): Bayer matrices used in the methods of Bayer [19] for size 2 and 4.
(c)+(d): Two threshold matrices created with the method of Purgathofer et al. [212] with
size 4.
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Figure 9.3.: Error diffusion filter proposed by Floyd and Steinberg [80] (a), by Jarvis, Judice,
and Ninke [131] (b), and by Stucki [260] (c). The X indicates the pixel currently being
processed, and the remainder of the matrix shows which portion of the quantisation error is
spread to which pixel. A processing order from top to bottom and left to right was assumed.

was introduced by Bayer [19]. In this approach, the image is tiled into parts having the same
size as the given threshold matrix, which is also called Bayer matrix, and every image value
is increased by the corresponding matrix entry before thresholding. Later, Purgathofer et al.
proposed to substitute the optimal pattern used by Bayer with less regular matrices [212].
Even nowadays, these two methods are still used in printing due to their efficiency. Example
matrices are shown in Figure 9.2.

Another well-known idea in dithering is to spread the local image error obtained by dither-
ing the current pixel to those surrounding pixels which are not dithered, yet. This idea is called
error diffusion. The most popular dithering approach based on error diffusion is the method by
Floyd and Steinberg [80]. When using this method, the image is scanned from left to right and
top to bottom. Each pixel encountered is quantised, and the quantisation error is distributed
to the surrounding pixels according to the error diffusion matrix shown in Figure 9.3(a). At
image boundaries, the diffused errors are either “moved out” of the image, or the matrix en-
tries are re-weighted such that the error is only distributed to those places inside the image.
When using the first approach, the average grey value of the image is not preserved, while the
second method creates more artefacts. It is also possible to swap the processing order in each
line, such that every odd line is processed from left to right while every even line is processed
from right to left. This is called serpentine scanning, and can reduce some of the artefacts that
occur for the different methods. More complex processing orders, e.g. a Hilbert curve, have
also been proposed [213].

There are many related methods that use the same idea as the original method by Floyd
and Steinberg, but introduce different error diffusion matrices. Examples include the stencils
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proposed by Jarvis, Judice, and Ninke [131], and by Stucki [260], which are both shown in
Figure 9.3. Stevenson and Arce introduced an error filter for images on a hexagonal grid [256].
Further improvements were proposed by Ostromoukhov, who used a different error diffusion
matrix for each grey value encountered [188], and by Zhou and Fang, who combined the
ideas by Goodall and Ostromoukhov by adapting the thresholding with random noise whose
strength depends on the grey value in the image [306]. Furthermore, they used optimised
error diffusion matrices afterwards. In such a context, the adaptation of the threshold is called
threshold modulation [141]. One recent approach even uses the local frequency, orientation,
and contrast of the image to choose appropriate thresholds and error diffusion matrices [47].
The five lookup tables used in their method were created manually, and require more than one
megabyte in total. In another method, the image is covered with polyomino tilings, which are
then used to create threshold matrices for dithering [283].

The methods described so far only consider each pixel once. Thus, they have a linear run-
time complexity but cannot undo suboptimal decisions. As a remedy, methods that perform
a global optimisation have been proposed. Some first global approaches were presented by
Geist et al. [93], who proposed two models using Markov simulations and neural networks,
respectively. The results of those two approaches are equivalent. As they only consider a local
neighbourhood to judge the reconstruction quality, they handle midtones accurately, but have
problems with dark or bright image parts. The method patented by Ilbery has similar prob-
lems since it only locally optimises space distance measures based on a physical model [120].
However, it performs no global search, but has a processing order as the method by Floyd
and Steinberg. Another global approach which minimises a structure-preserving energy func-
tional was introduced by Pang et al. in [194]. However, artefacts present in the initialisation
often stay visible with this approach. Thus, the authors even propose to initialise this dithering
scheme using the method of Ostromoukhov et al. explained in [188].

Other modern approaches aim at creating artistic images, e.g. to reproduce traditional draw-
ing or printing techniques [191]. Here, the output of the halftoning algorithm may also consist
of other primitives, such as lines, or complex patterns such as a set of Kanjis. In this situation,
the primitives are not restricted to only occur at grid locations. Another noteworthy approach
is the work by Pnueli and Bruckstein, which uses lines obtained from an Eikonal equation in
the resulting image [206].

Stippling is a task similar to sampling and dithering. Here one tries to visualise images by
drawing dots of a predefined size whose positions are not restricted to the grid, as illustrated
in the right image in Figure 9.1. However, the number of points that may be used is fixed,
such that one dot typically has a different size than a pixel in the initial image. One technique
to create such images is to apply Lloyd’s algorithm [158, 171] to create (weighted) centroidal
Voronoi diagrams, whose centres are the positions of the dots in the final image. The first
such approach that is not interactive was proposed by Second [241]. An approach recently
proposed by Balzer et al. significantly improves these results [17], and was accelerated by Li
et al. [154, 155]. Yet other approaches are based on shortest paths in weighted graphs [180],
or on the approximation of the image by sums of Gaussians [77].

In the context of sampling, there are many more approaches building upon ideas such as dart
throwing [69], tiled blue noise samples [110], Poisson disks [148, 149, 90], or methods based
on aperiodic tilings such as Penrose tiles [190] or Wang tiles [244, 51]. Since introducing
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all these methods is beyond the scope of this thesis, we refer to the survey by Lagae and
Dutré [150].

The method presented here [233] is motivated by principles from electrostatics, and can
be used for stippling, screening, halftoning, or sampling. Using the extension presented in
Section 9.3.2, it can also create dithered images and hatching results.

Many recent algorithms aim to achieve specific application-dependent features such as
structure-enhancement or prevention of aliasing artefacts, and include these characteristics
as integral and mandatory part of their model. However, our approach is much more general:
In its basic form, it tries to represent the underlying image or PDF as good as possible, while
intuitive and flexible extensions are used to achieve specific characteristics. Thus, the pre-
sented algorithm directly adapts to the requested number of dots in the output image, is edge
enhancing to a freely adjustable degree, works well on colour and grey-valued images, and
can adjust between energetically optimal and visually pleasing results. As we will show in
Section 9.4, these extensions are completely optional, and constant parameters already yield
very precise results that clearly surpass those of other state-of-the-art algorithms. We work
presented in this chapter was first published in [233] and [234]. For our faster optimisation
scheme not described in this thesis, we refer to [273] and [104].

The remainder of this chapter is organised as follows: First, we introduce our basic halfton-
ing algorithm and the particle model it is based upon. Section 9.2 gives more details on how
to perform the three major steps of our implementation. A number of extensions to the basic
algorithm, e.g. for varying dot sizes, colour images, or hatching, are explained in Section 9.3
and thoroughly evaluated in Section 9.4. Section 9.5 concludes this chapter with a summary.

9.1. Electrostatic Model
“When I’m working on a problem, I never think about beauty.

I think only how to solve the problem.
But when I have finished, if the solution is not beautiful, I know it is wrong.”

Richard Buckminster Fuller (1895 – 1983)

The basic idea behind our halftoning approach is that, in regions of constant density in
the input image, black points should be equally distributed after halftoning. To achieve this,
we model black points as (negatively) charged particles in a global particle system. Due to
the repulsive forces between the particles, an arrangement fulfilling this condition is obtained
when the particle evolution is finished.

The idea described above was first mentioned in [106]. However, the approach from this
paper was not extended to arbitrary images, and requires an unintuitive force repelling parti-
cles from boundary locations. Another related approach was introduced by Meyer et al. [174],
which proposed a curvature dependent sampling of implicit surfaces using a particle system.
Since particles should only have a local influence according to their approach, it does not use
electrostatic potentials, but an alternative energy function utilising an additional parameter
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9.1. Electrostatic Model

that must be optimised during particle evolution. Such problems do not occur in our approach,
which is based on two simple ingredients: A repulsive force between particles, and an attrac-
tive force from the underlying image. The first force takes care of a good distribution of the
particles, while the second attracts particle to dark image areas. In this section, we introduce
these two forces, and explain how both are combined to obtain halftoned images.

For the moment, we assume that the number of particles linearly depends on the grey values
in the input image. That is, for a discrete nx × ny image u : Γ 7→ [0, 1], where 0 corresponds
to black and 1 to a white and where

Γ :=
{

(i, j)>
∣∣ i ∈ {1, . . . , nx}, j ∈ {1, . . . , ny}} , (9.1)

we compute the number of black particles in the output image as

|P| := round

(∑
x∈Γ

(1− u(x))

)
, (9.2)

where round(x) : R 7→ N returns the integer closest to x. For dithering, this is basically
the only reasonable choice. For stippling, it is possible to choose the number of particles
arbitrarily since the size of the particles is not predefined. We will show in Section 9.3.1 how
to extent our approach such that it uses another number of particles.

For the remainder of this section, we will identify each particle m ∈ P by its charge qm
and its 2-D position pm. Let m and n be two such particles. As shown in Equation (2.29),
the repulsive force Fr,n,m acting on particle n due to the electric field induced by particle m is
given by

Fr,n,m = − k · qn · qm
‖pm − pn‖

en,m, (9.3)

where en,m is the unit vector from pn to pm. To obtain the total force Fr,n acting on particle n
due to all other particles, we sum up all forces on this particle:

Fr,n =
∑
m∈P
m 6=n

Fr,n,m = −
∑
m∈P
m6=n

k · qn · qm
‖pm − pn‖

en,m. (9.4)

This concludes the description of the first force, which is responsible for a good distribution of
particles over the image domain. For constant images, this is already sufficient to obtain a rea-
sonable halftoning result, provided that particles may not leave the image domain. However,
too many particles will arrange on the boundary when only using this force.

Instead of using a force repelling particles from the boundary as in [106], e.g. by mod-
elling a charged boundary, we now introduce an attractive force that even makes it possible
to halftone arbitrary images. This force prevents that particles accumulate at the boundary,
and automatically ties particle locations to the image domain. This is done by modelling each
pixel x ∈ Γ with grey value u(x) as a particle with a positive charge (1 − u(x)) · q, where
q is the charge of the darkest possible pixel. As these positive charges attract the negatively
charged particles, this results in the attractive force

Fa,n =
∑
x∈Γ
x6=pn

k · qn · (1− u(x)) · q
‖x− pn‖

en,x, (9.5)
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where en,x is the unit vector from pn to the grid location x ∈ Γ.
To ensure that the particles are distributed over the complete non-white image domain, the

two forces from Equations (9.4) and (9.5) must be balanced correctly. That is, there must be
an equilibrium between attractive and repulsive forces. Except for the inaccuracies introduced
by rounding in Equation (9.2), this holds automatically when all involved charges are equal:

∀n ∈ P : qn := q. (9.6)

The global force Fn acting on each particle n ∈ P is obtained by combining Equations (9.4),
(9.5), and (9.6):

Fn = k · q2 ·

∑
x∈Γ
x6=pn

1− u(x)

‖x− pn‖
en,x −

∑
m∈P
m6=n

1

‖pm − pn‖
en,m

 . (9.7)

Using these forces, we perform a particle evolution until a situation is reached in which an
equilibrium of forces is obtained. As in image inpainting, such a situation is called a steady-
state. Since we are interested in the steady-state, and not in the evolution in between, we do not
consider the acceleration induced by the forces resulting in accelerated particles, but perform
a numerically more stable artificial time evolution also resulting in the desired steady-state. In
this evolution, each particle is moved according to the weighted force acting on it. This results
in the following update equation:

pk+1
n = pkn + τ

∑
x∈Γ
x6=pn

1− u(x)

‖x−pn‖
en,x −

∑
m∈P
m6=n

1

‖pm−pn‖
en,m

 , (9.8)

where pkn is the position of the particle n at time k, and where τ denotes an artificial time
step parameter which also includes the constants q and k. That is, the imbalance of forces is
reduced in each time step by repositioning the particles in accordance with the forces induced
by the image and the particles. In our experiments, we always use τ := 0.1.

Alternatively, this update equation can also be derived by performing a gradient descent
of the potential energy in the particle system. For a particle system without attractive forces,
this energy is well known [79]. When including the attractive forces, we get the following
potential energy:

W = k · q2 ·
∑
n∈P

∑
x∈Γ
x6=pn

(1− u(x)) · log(‖x− pn‖)−
∑
m∈P
m 6=n

· log(‖pm − pn‖)

 . (9.9)

Using Equation (9.8), each part of the image exactly attracts the number of particles it
should contain according to its average grey value. That is, once the correct amount of particles
is present in a certain part of the image, this part is electrically neutral and does neither attract
nor repel other particles. Especially, this holds for the complete image domain. Thus, if a
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particle leaves the image domain, the attractive image forces will be stronger than the repulsive
forces, moving the particle back into the image. Therefore, it is not necessary to restrict
particle locations to the image domain. To speed up the convergence and for technical reasons,
we still prevent particles from leaving the image domain, though.

As attractive forces are uniformly distributed in regions of homogeneous grey values, the
optimal particle positions are still those maximising the particle distances. Thus, this approach
still follows our basic idea explained above.

9.2. Algorithm

“You can’t trust code that you did not totally create yourself.”

Ken Thompson (∗1943)

Our implementation of the algorithm explained in the last section performs three major
steps: The initialisation of the particle locations, a precomputation of the attractive image
forces, and the particle evolution. The first two steps are initialisations only performed once,
while the last step must be performed several times. In the remainder of this section, we detail
on these steps.

As the main parts of our algorithm are perfectly suited for parallelisation, we have imple-
mented them on Graphics Processing Units (GPUs) using CUDA (Compute Unified Device
Architecture), which is a programming language for NVidia GPUs. More precisely, we use
an adapted version of the fast parallelisation technique proposed by Nyland et al. [185]. We
will leave out most of the technical details of this method, and refer the reader to [185] for a
detailed explanation.

9.2.1. Particle Initialisation

The first step done by our algorithm is the initialisation of the particle locations. For this
step, any initialisation with the correct number of particles can be used, as long as all particle
locations are distinct. However, as we will see in Section 9.4.5, the closer the initialisation
is to the optimal solution, the faster the particles will converge. Thus, using the result of
another halftoning algorithm as initialisation can be beneficial. Here, we perform a more
simple initialisation in order to allow a fair comparison against other methods, and to prevent
a biasing of our algorithm: We use a random initialisation in which the probability that a
certain position is chosen is proportional to 1− u(x). More precisely, the particles are placed
one after the other. For each particle, a random grid position and a random number between
zero and one is chosen. If the number is smaller than the image brightness at that position,
or if there is already a particle at that position, a new position and a new random number
are chosen. This is done for each particle until convergence. If there are more particles than
possible grid positions, the particles may also be placed at positions between the grid.
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As the particle positions are chosen one after the other, this step is done on the CPU, while
most of the remainder of the algorithm is implemented on a GPU. As the time required by the
particle initialisation step is negligible, this does not have a noticeable negative impact on the
running time of the complete algorithm.

9.2.2. Force Field Computation
As second step, we precompute the attractive forces Fa,n given in Equation (9.5). This is
possible since the term Fa,n only depends on the current position, and is thus independent
from other particles.

First of all, we compute the attractive image forces in each grid point. For particle locations
not coinciding with grid locations, bilinear interpolation will be used in the particle evolution.
This way, a smooth representation of the attractive force field is obtained. Note that using a
smoothed version of the attractive field automatically prevents attractive forces which are too
strong and could bind particles to undesired grid locations.

To compute the attractive forces at grid locations, we move a single test charge over each of
the nx ·ny = M grid position. Then, the force acting on this test charge due to the otherM−1
point charges residing on the other image grid points is computed. This resembles an M -body
particle system in which each grid point interacts with each other grid point. Thus, a modified
version of the fast parallel M -body particle system on CUDA is well suited to compute these
forces.

Once the attractive forces for the grid positions have been computed, these forces are stored
in texture memory on the graphics card. Consequently, the bilinear interpolation is automati-
cally performed in hardware by the GPU using an advanced caching strategy.

9.2.3. Particle Evolution
The movement of each particle depends on the attractive and the repulsive forces. The first
force can be obtained by a simple texture lookup (see last section), while the second force
again corresponds to an N -body particle system, where N is the number of particles. As for
the force field computation, we use an adapted variant of the fast parallelisation technique
proposed by Nyland et al. [185] to compute the forces acting on each particle.

After each iteration of the particle evolution, we check for convergence by comparing each
particle displacement with a given threshold. For all our experiments, this threshold was
10−10. Note that, since all computations on the GPU are performed with single-precision
floating point numbers, this threshold might be reached much faster than when using double
precision floating point numbers on a CPU. The information if a particle has moved more than
this threshold is reduced on a per-block basis, and sent to the CPU. The particle evolution
is stopped if there is no particle whose displacement exceeds the threshold, or until a certain
number of iterations is reached.

In particular when adapting our algorithm such that it performs dithering (see Section 9.3.2),
it is possible that the particle evolution gets stuck in a local minimum. Thus, we also use a
procedure we call “shaking”: Every ten iterations, each particle is randomly displaced by
a small amount. The direction and strength of this displacement is uniformly distributed,
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whereby the maximal possible movement slowly decreases: For the i-th of NOI iterations,
the maximal displacement is given by

max

(
0,

log2(NOI)− 6

10

)
· exp

(
−i

1000

)
. (9.10)

That is, most shaking is performed at the beginning of the particle evolutions, and when many
iterations are requested. Seen from a physical standpoint, the particles perform a Brownian
motion, whereas the temperature of the particles – and therefore the amount of motion –
decreases during the particle evolution. This strategy is known as simulated annealing, and is
well known in literature.

Note that there was no random number generator available in CUDA when we implemented
our algorithm. Thus, the particle locations were transferred to the CPU, perturbed, and moved
back to the GPU.

9.3. Extensions

“Ideas are like rabbits. You get a couple and learn how to handle them,
and pretty soon you have a dozen.”

John Steinbeck (1902 – 1968)

In the last section, we introduced our halftoning algorithm based on electrostatic forces. Due to
its flexibility, this basic algorithm can be easily extended. We present several such extensions
in this section.

9.3.1. Different Dot Sizes

When computing the number of black particles in Equation (9.2), we assumed that one dot
in the output has the same size as one pixel in the initial image. Depending on the applica-
tion, this is not always the case, e.g. when sampling a density distribution or when placing
objects. One possibility to overcome this problem is to create a large point cloud which is
sparsified recursively, as proposed in [143]. However, it is also application dependent whether
such post-processing steps are possible. Furthermore, computing large point clouds can be
computationally expensive.

With the proposed algorithm, using a different dot size is straightforward: If we denote the
ratio between the size of one pixel in the image and one dot in the output by r, all that has to
be done is to divide the brightness of the pixels in the input image by a factor of r. Note that
this is the same as multiplying the charge of each particle by r while simultaneously scaling
the number of particles down with the same factor.

Further note that, using this extension, it is even possible to account for the slight inaccu-
racy introduced by rounding in Equation (9.2): After the number of particles |P | has been
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Figure 9.4.: Halftoning results of a constant grey value without (left, C = 1) and with (right,
C = 2) the additional force responsible for an equal distribution of large particles. The colours
were only used for illustration purposes.

computed, we determine the ratio r with the formula

r =

∑
x∈Γ(1− u(x))

|P |
=

∑
x∈Γ(1− u(x))

round
(∑

x∈Γ(1− u(x))
) , (9.11)

and divide the brightness values in the image by this factor. Then, the complete image domain
is exactly electrically neutral, which was only approximately true before.

Furthermore, it is even possible to use dots of varying sizes within one image: In fact, the
only change necessary is to assign charges proportional to the dot sizes to the corresponding
particles. Then, all dots automatically approximate the image. However, the larger dots may
accumulate in some image regions, as illustrated in the left image in Figure 9.4. Typically,
such clusters are undesired. In printing applications, for example, some of the smaller dots
may not be printed due to technical reasons. However, the remaining large dots alone do not
approximate the underlying image well.

Let us first consider the case of only two different dot sizes. In this situation, we introduce a
supplementary force that encourages a good distribution of the large particles such that a result
as shown in the right image of Figure 9.4 is obtained. Consequently, even if the small dots are
removed, the remaining particles still approximate the image well. This supplementary force
only affects the large particles, and is, except for a multiplicative constant C − 1, exactly the
same force that occurs in our particle system when only large particles are present. Thereby,
the parameter C ≥ 1 deals as a tradeoff between the two conflicting requirements imposed on
the system: The larger C, the better the approximation of the original image when considering
only large particles, but the worse the approximation of all particles.
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S L

S ASAS ASAL

L ASAL CALAL

u AS (wS + CwL)AL

Figure 9.5.: This interaction matrix shows the total repulsion strength between small particles
(S) with area AS and large particles (L) with area AL. The attraction strength for each particle
size from the underlying image is shown in the last line. The constant C is a user-defined
variable explained in detail in the text. The variables wS and wL correspond to the fraction of
charges located in small and large particles, respectively.

S M L

S ASAS ASAM ASAL

M ASAM C1AMAM C1AMAL

L ASAL C1AMAL C2 ALAL

u AS (wS + C1(wM + wL))AM (wS + C1wM + C2wL)AL

Figure 9.6.: Interaction matrix i for three particle sizes. Each entry in the table shows the
repulsion strength between pairs of consisting of small particles (S) with area AS, medium
sized particles (M) with area AM, or large particles (L) with area AL. In the last line, the
interaction strength of each particle class with the attractive image field is given. The variables
wS , wM , and wL correspond to the fraction of charges located in small, medium, and large
particles, respectively.

However, there are now more forces repelling large particles than attracting them, i.e. the
complete image is not electrically neutral any more. As this leads to problem, we need addi-
tional attractive forces to maintain the electric neutrality of the overall image. To solve this
problem, we first denote the fraction of the charges located in large particles by wL, and the
fraction of the charges located in small particles by wS . If we multiply the force attracting
large particles by the factor wS +CwL, the electric neutrality is restored, as large particles are
attracted C times as strong from the fraction of the image corresponding to the large particles,
and as strong as before from the remainder.

All these concepts are summarised in the interaction matrix i depicted in Figure 9.5. Each
entry i(Aj, Ak) of the matrix i indicates how strong the interaction between particles from the
classes Aj and Ak are.

This additional force slightly reduces the approximation quality of all particles. However,
this problem arising from the fact that a tradeoff between two conflicting requirements is
searched for. Thus, it is a unavoidable problem, which must occur in any algorithm trying to
solve this problem. As shown in the experiments section, this impact is typically negligible in
real-world images.
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These ideas can be easily extended to more than two dot sizes. Then, the property that all
particles approximate the image as good as possible should also hold for each subset contain-
ing only the particles up to a certain size. The resulting interaction matrix for three particle
sizes is shown in Figure 9.6. For the experiments shown in this thesis, we choose the neces-
sary parameters Ci in a multiplicative manner, i.e. Ci = Ci

1 = 2i. This is only one of several
possible choices, though. In the general setting, the attractive image force f(s) acting on the
particle s is given by

f(s) =

∑
t∈P i(As, At)At∑

t∈P At
. (9.12)

We can even deal with situations in which there are as many classes as particles. That is,
even if each particle has a unique size, halftoning is possible when choosing the interaction
matrix appropriately. An example is given in the experiments section.

9.3.2. Dithering
The extension introduced in this section is complicated, but very important: We will extend
the algorithm such that the computed particle locations at the end of the evolution are at one
of a predefined set of possible locations. Here, this will always be the rectangular grid given
by the initial image. That is, the extension explained in this section allows to use the proposed
algorithm for dithering.

The most simple idea how to achieve this goal is to first compute the unrestricted result,
followed by assigning each particle to the closest grid location. As can be seen in Figure
9.7, this yields very bad results. This is due to several reasons. First of all, multiple particles
can be assigned to the same grid location. In this example, this happened over 400 times
and noticeably reduced the image brightness. Furthermore, hexagonal structures occur in the
continuous setting due to their optimality. Those structures cannot be adequately represented
on the regular rectangular grid imposed by the given image domain. This leads to clearly
visible artefacts.

To deal with these problems, we include the rectangular grid as additional constraint into
the model by adding three additional ingredients. First, we add another force term that pulls
particles to grid locations. This force is given by

Fg,n = β · 1

1 + ‖xng‖8
λ8

· xng
‖xng‖

, (9.13)

where xng is the vector from the particle n to the nearest grid point g ∈ Γ, the regularisation
weight β := 3.5 steers the influence of this force term on the system, and the contrast weight
λ := 1√

10
decides by how much a particle is pulled back depending on the distance to this grid

point. This is a nonlinear weighting structurally similar to the Perona-Malik function used in
diffusion filtering [201]. However, a higher exponent is used here. Technically, this additional
force comes down to adding τFg,n to Equation (9.8).

The force just introduced pulls particles to grid points, which results in a solution much
closer to the rectangular grid. Consequently, the solution looks much better when the particles
are mapped to grid locations as last step of the algorithm,
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Figure 9.7.: Illustration of dithering results. Top left: Initial image. Top right: Halftoned im-
age with continuous dot placement. Bottom left: Result when mapping the space-continuous
dots to discrete pixel locations. Bottom right: Dithering result with proposed dithering algo-
rithm.

159



9. Electrostatic Halftoning

In some sense, this force negates the effect of the regularisation introduced by computing
the attracting image forces only at grid locations, and using bilinear interpolation in between.
However, simply removing this regularisation is a poor alternative to this additional term as
the attractive forces are unbounded, as already mentioned in Section 9.1.

Still, there are local minima in which particles stay far from the grid positions. Thus, we
project all particles back onto the closest horizontal or vertical line between the grid points af-
ter each time step. This is the second ingredient used. As a result, particles align in rectangular
instead of hexagonal structures.

These two ingredients are sufficient to obtain good-looking dithering results in many cases,
see Figure 9.7. However, when there are white regions in the image, a third ingredient must be
added. In general, white regions should not contain any particles in the end. This can happen
if particles undergo large displacements per time step, e.g. if particles get too close together
due to shaking or a too large time step size τ . In the continuous setting, this is no problem
as the particle can steadily move back to a good position. In the discrete setting, however,
the extensions explained above prevent such a slow movement, as the involved forces are
too strong. The easiest way to prevent particles from being stuck is by using the extensions
only at non-white image areas, and by limiting the maximal displacement of each particle
to one pixel per time step. This allows particles to gradually get back while simultaneously
preventing them from moving too far from desirable positions.

9.3.3. Edge Enhancement
It is in the nature of the problem that sampled or dithered images are not as sharp as the
original image. Thus, sharp edges are less pronounced after halftoning. However, there are
applications in which the visual quality is more important than an optimal approximation of
the initial image.

Around 1976, it was thus proposed to emphasise edges by using a preprocessing step before
applying the dithering algorithm [131, 132]. This idea was originally proposed for dithering
algorithms based on error diffusion, but can also be used for some other halftoning approaches,
including the proposed halftoning and dithering approaches. In fact, both the classic unsharp
masking [96] and the discrete variant proposed for the Floyd-Steinberg algorithm can be used
without modifications. Note that the image brightness can leave the range [0, 1] due to this
edge enhancement step. As a consequence, those image parts with a brightness greater than
one actually repel particles. This is already included in Equation (9.8), and does not need a
special treatment. Further note that those halftoning algorithms which are based on weighted
Voronoi cells cannot handle such cases without modifications, while other approaches such as
the one in [93] have a built in edge enhancement that cannot be turned off.

9.3.4. Artefact Prevention (‘Jittering’)
As we will see in Section 9.4, the results of the proposed sampling algorithm are very good
with respect to different error measures. In uniform image regions, however, our algorithm
often arranges dots in hexagonal structures. Such patterns are easily noted by humans, and are
thus undesired in some applications. In [158], it was proposed to prevent these artefacts by
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stopping an iterative scheme before convergence. However, it is unclear when their iterative
schemes should be stopped.

Although this idea also works for the proposed algorithm, we prefer an approach in which
it is not necessary to guess when the algorithm should be stopped. Instead, the so-called
“jittered” variant of our method converges to a minimum not containing hexagonal structures.
Moreover, the user is able to steer between optimal quality and prevention of artefacts such that
an optimal tradeoff between visual and analytic quality can be found by adapting a tradeoff
parameter.

When using this extension, a high-frequent turbulence field T is constructed during initial-
isation and added to the attraction field created from the image. This is done by creating a
random vector (

wx · d · sin(ϕ)
wy · d · cos(ϕ)

)
:=

(
wx · d(g) · sin(ϕ(g))
wy · d(g) · cos(ϕ(g))

)
(9.14)

at each grid point g ∈ Γ, where ϕ(g) is a random direction in the interval [0◦, 360◦) and
d(g) is a random number between zero and a parameter j. This parameter, which is 0.1
for all experiments presented here, is the tradeoff parameter described above. The weights
wi(f, g) := 1− |∂if(g)| are due to the fact that jittering is mainly necessary in homogeneous
image regions, i.e. where ∂if ≈ 0. From these random vectors, the complete turbulence
field T is obtained by performing bilinear interpolation between these vectors. Since T is
constant during the particle evolution, and since we use the same bilinear interpolation as
for the attractive field computed from the image, these two forces can be combined into a
single texture on the GPU. Thus, additional time is only required during initialisation and not
during particle evolution. Since we have merely adapted the attractive field, the process stays
convergent. Technically, this extension adds the term τT (pkn) to Equation (9.8).

9.3.5. Colour Images
Halftoning images using linear colour spaces such as CMY and RGB is straightforward, as
each channel can be halftoned independently. Printers typically use more complex colour
models, though. A common example is the (comparably simple) CMYK colour model which
is found in all sorts of printers ranging from inexpensive inkjet printers such as the Canon
Pixma i560 via business-scale colour laser printers like the Kyocera FS-C5200DN up to mass-
production printing machines. Some recent printers even use more complex, ’asymmetric’
colour models: The Canon Pixma iP8500, for example, utilises the CMY-RG-K colour space,
while the CMY-RB-K colour space is employed in the Stylus Photo R1800 by Epson. In large
scale production printing machines, the ’full’ CMY-RGB-K colour model is typically used.

In this section, we introduce an extension to our halftoning approach that allows to use any
of the colour models mentioned above. To ease the explanations, we assume that all particles
have the same size.

To deal with the interactions between dependent channels, we again use the concept of
interaction matrices introduced in Section 9.3.1. However, each matrix entry denotes the
interaction between particles with two colours instead of with two sizes.

Since there are no interactions between different channels for linear colour models such as
RGB or CMY, the interaction matrix is the identity matrix in this case.
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C M Y R G B K

C 1 α α α α α α
M α 1 α α α α α
Y α α 1 α α α α
R α α α 1 α α α
G α α α α 1 α α
B α α α α α 1 α
K α α α α α α 1

C M Y R G K

C 1 0 α α α α
M 0 1 α α α α
Y α α 1 α α α
R α α α 1 α α
G α α α α 1 α
K α α α α α 1

Figure 9.8.: Interaction matrices for the CMY-RGB-K (left) and the CMY-RG-K (right) colour
space.

Let us consider the restrictions in the CMYK colour model. First of all, we still want the
dots of each colour to approximate the corresponding channels. This is again modelled by an
identity matrix. In addition to the requirement that two particles with the same colour should
not overlap, we request that no particle at all should overlap with a black particle. This is
due to the fact that a black particle can be seen as a union of the remaining three colour. We
encode this restriction in a second matrix, which we call non-overlap matrix, and obtain the
final interaction matrix by a linear combination of these two matrices:

(1− α)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

identity

+ α


1 0 0 1
0 1 0 1
0 0 1 1
1 1 1 1


︸ ︷︷ ︸

non-overlap map

=


1 0 0 α
0 1 0 α
0 0 1 α
α α α 1


︸ ︷︷ ︸
interaction matrix

(9.15)

Unless noted otherwise, we always use α = 1
2
, i.e. we give the same weight to both con-

straints.
Extending this approach to other colour models is straightforward: For any two colours

whose particles are allowed to overlap, a zero is placed in the non-overlap matrix, and a one
otherwise. For the CMY-RGB-K colour model, there should be no overlaps between any
particles, resulting in a 7 × 7 non-overlap matrix containing only 1s. For the CMY-RG-K
colour model, a natural choice is to prevent any overlaps except between cyan and magenta
particles, as this is the only combination with which a new colour is obtained. The interaction
matrices for these two examples are shown in Figure 9.8.

There is one important step not described so far, namely how to create the image attracting
the particles for each colour, and therefore also how to choose to amount of particles for
each channel. Several suggestions for such a decomposition can be found in the literature,
including a chromatic decomposition resulting in nonempty C, M , and Y channels only, or
an (a)chromatic decomposition with under colour removal (UCR), see [140]. Any of these
method works fine with our approach. In the experiments shown in Section 9.4, we use a
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Sa La Sb Lb

Sa ASAS ASAL αASAS α ASAL

La ASAL CALAL αASAL αCALAL

Sb αASAS α ASAL ASAS ASAL

Lb αASAL αCALAL ASAL CALAL

ua AS (wS,a + CwL,a)AL αAS α(wS,b + CwL,b)AL

ub αAS α(wS,a + CwL,a)AL AS (wS,b + CwL,b)AL

Figure 9.9.: Final interaction matrix when using two classes a and b, where each class contains
particles with two sizes AL and AS .

= + + +

(a) (b)

Figure 9.10.: (a): Illustration how we split the forces acting on a line consisting of two par-
ticles. The first and third force results in a translation, the second force in a rotation around
the middle of the line, and the last force to a length change. (b): Comparison of an inappro-
priate line placement with visible artefacts (top) and a better placement without such artefacts
(down).

simple achromatic composition of the CMY colour space. That is, we set the K channel to
the minimum of the C, M , and Y channel, and subtracts this values from the C, M , and Y
channel. Afterwards, one of these three channels is zero in every image point. Then, we either
subtract theR channel from theM and Y channels, theG channel from the C and Y channels,
or the B channel from the C and M channels in each point, depending on which channel is
zero.

As we demonstrate with the interaction matrix shown in Figure 9.9, combining colour
halftoning with variable dot sizes is straightforward. Thus, our approach is also well suited for
general multi-class sampling algorithms, which are needed for object placement or procedural
texture creation. Examples will be shown in the experiments section.

9.3.6. Hatching

Finally, our last extension illustrates how to perform hatching, i.e. we explain how to approx-
imate images with lines.

One again, the basic idea behind this extension is very simple: Instead of using charged
particles, we use charged rods. However, it is much more complicated to compute the resulting
forces in this situation. Thus, we approximate each rod by a few connected particles. In each
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iteration, the forces acting on each particle used in the approximation is computed in exactly
the same way as before, and the movement of each line is computed from these forces. This
is done by splitting the forces into components responsible for translations, rotations, and
stretching, as illustrated for an approximation with two particles in Figure 9.10(a). These
components can easily be found using projections and elementary operations.

In fact, directly moving each particle instead of using the decomposition into the forces
mentioned above would yield the same particle movement. However, the decomposition al-
lows to impose additional constraints necessary to obtain a visually pleasing result. For exam-
ple, the length and orientation of each line can be arbitrary at the moment, as the two particles
basically move independently.

In order to solve this problem, we first introduce a desired line length and orientation at each
image position. For the experiments performed in this thesis, the desired line length is always
set to a constant, and the desired orientation is set to a direction orthogonal to the eigenvector
corresponding to the largest eigenvalue of the smoothed structure tensor [82]

Kρ ∗ (∇uσ∇u>σ ), where uσ := Kσ ∗ u (9.16)

where K? is a Gaussian with standard deviation σ = 1.0 or ρ = 3.0 times the pixel size,
respectively. However, any other choice is possible, as our GPU implementation simply reads
the desired line length and orientation from a texture, which is generated on the CPU at the
beginning of the program.

To encourage the lines to obtain the desired orientation, we introduce a new force that
rotates the line. The strength of this new force to proportional to the difference between
requested and current angle. However, the rotation obtained from the particle movement is
not necessarily identical to the new force. That is, as in multi-size and colour halftoning, there
are two constraints between which a compromise must be found. Again, we compute the
weighted average between these forces to obtain a situation in which both requirements are
fulfilled as good as possible. The appropriate weights can (and should) therefore be chosen by
the user depending on what is more important: an accurate approximation of the image, or a
perfect match between desired and final line direction. For the experiments shown here, both
weights are set to 0.4, i.e. their sum is less than one. This favours moving a line instead of
rotating it by slowing down the rotations.

In some situations, it can happen that all directions are equally good. In homogeneous
regions, for example, the eigenvector corresponding to the largest eigenvalue can be chosen
arbitrarily. Thus, the force responsible for aligning the orientation of the line with the desired
line direction is additionally scaled by a number from the interval [0, 1]. Here, we chose
this position dependent number as the largest eigenvalue of the smoothed structure tensor
at the current position, divided by the largest eigenvalue occurring anywhere in the image.
Consequently, the lines may arrange arbitrarily in homogeneous image regions, but are still
forced to align perpendicular to image edges.

Similarly, we introduce a force that shrinks or expands the line, which is as strong as the
difference between the current and the requested line length. As before, we weight and average
the two forces resulting in a change of the line length. To prevent crossing lines, the line
length should only change very slowly, though. Thus, we set the weights to 1

5
(force acting on
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particle) and 1
10

(force from desired line length), respectively. Additionally, our initialisation
uses very short lines distributed with the same approach as if only particles are used to prevent
crossing lines in the initialisation. This allows the lines to distribute appropriately before the
final line lengths are reached. By this steps, almost all crossing lines can be prevented.

There is one parameter in hatching not discussed so far, namely the width of each line.
Here, we use a constant width computed in such a way that the average grey value of output
and input image are equal. Again, any other choice is possible, though.

It is obvious that, the more particles are used to approximate each lines, the better but more
expensive the approximation will be. According to our experiments, using three particles
placed in the middle and at the end of each line already yields a very good approximation at
a reasonable running time. As forces acting on the middle particle only influence the transla-
tional part of the forces, this situation is very similar to the two particle case.

However, there is still one possible problem left: It can happen that the spaces between lines
arrange in regular patterns, as illustrated in the upper part of Figure 9.10(b). When using three
particles per line, this problem can be prevented by assigning a higher charge to the particle
in the middle of the line, as it encourages the middles of the lines to approximate the image
as well. Consequently, the situation shown in the lower part of Figure 9.10(b) is much more
likely than the problematic one described before. According to our experiments, the results
are very similar for a large range of charge ratios. In the experiment we present in the next
section, the middle particle has a charge six times as large as the charge of the particles at the
end of the line.

Since the position of dots and lines are determined by the same principles, it is very easy
to use both dots and lines to approximate an image, see Figure 9.30. Furthermore, it also
straightforward to use lines with different colours or different widths.

9.4. Experiments

“Listen up, everyone! I have one word that I want to say to all of you.
And that word is... FIRST PLACE!”

Yukari
in Azumanga Daioh, Episode 1.6

In this section, we evaluate the performance of our halftoning algorithms. This is done by
comparing several quality criteria such as the blue-noise property [280]. For all experiments,
we compare our continuous results with and without jittering against those obtained with the
method of Balzer et al. [17]. Our implementation of this method builds upon the source code
available at [16]. Unless noted otherwise, we used 1024 points per site, and a Euclidean metric
for all images shown here.

Additionally, we also compare our dithering approach against the methods by Bayer [19]
(with a matrix of size 8×8), by Floyd and Steinberg [80], by Geist et al. [93] (based on neural
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networks), by Purgathofer et al. [212] (using a matrix at least as large as the image), by Ostro-
moukhov [188], by Zhou and Fang [306], and by Pang et al. [194] (always using the result of
the approach by Ostromoukhov as initialisation). For the method of Ostromoukhov, we used
freely-available source code [189]. All other methods were implemented from scratch.

Furthermore, we illustrate the effect when using each of the optional extensions introduced
in Section 9.3, show particle evolutions for different initialisations, evaluate the dithering ap-
proach in the context of image inpainting, and sketch the running time and memory usage of
our algorithm.

Note that, since an additional halftoning step is done when printing images, we propose to
look at the images in this section in the PDF version of this thesis. Further note that aliasing
artefacts can occur at certain zoom ratios, which are not due to the halftoning methods.

9.4.1. Visual Evaluation

First of all, we evaluate the visual quality of our halftoning approaches by halftoning a simple
regular ramp covering all grey values from 0 to 255, and a 2-D Gaussian.

Halftoning results for the grey ramp created with the different algorithms are shown in
Figure 9.11. The proposed algorithm has a good tone preservation, but suffers from regularity
artefacts. When using method of Balzer et al. [17], such artefacts are not present. However,
tone is also less accurately preserved. When using our jittered variant, the advantages of both
approaches are combined: Although the tone is preserved very well, there are no striking
artefacts.

Of the eight discrete methods, the proposed method (using the extension from Section 9.3.2)
also yields the best results. It does neither create artefacts in the middle of the ramp, such as
the methods by Floyd-Steinberg [80], Ostromoukhov [188], Bayer [19], Pang et al. [194], or
Purgathofer et al. [212], nor does it prevent this through a high graininess, which is done in
the method of Zhou and Fang [306]. As the method by Geist et al. [93] only considers a local
neighbourhood, it fails to accurately dither very bright and dark regions.

Figure 9.12 shows results when halftoning a Gaussian with a standard deviation of 40 pixels.
Here, all continuous algorithm yield visually very similar results. This is not true for the
discrete algorithms, though. The methods by Geist et al. once again fail to reproduce low
frequencies, while the method by Pang et al. preserves only the structure, but not the tone.
The method by Purgathofer et al. scatters the black pixels too strongly, while the method of
Bayer has too many artefacts. Especially for the method of Floyd-Steinberg, the processing
order is clearly visible. The same is true for the method by Ostromoukhov, and for the method
by Zhou and Fang. In contrast to those approaches, no direction is preferred by our discrete
algorithm since it is rotationally invariant. The same is true for our continuous algorithm.

Even though a good halftoning method should be rotationally invariant, halftoning a rota-
tionally invariant image should not result in a symmetric output. This is due to the fact that
such a result has visually unpleasing artefacts. As can be clearly seen, our algorithm does not
create symmetric output images. This is due to (up to) three reasons: First of all, the initiali-
sation step places particles randomly, resulting in an initial particle configuration which is not
symmetric. Secondly, the shaking step moves all particles differently. Finally, the turbulence
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Original Proposed Proposed Balzer et al. Geist et al. Pang et al.
(continuous) (jittered)

Proposed Floyd- Ostromoukhov Zhou and Purgathofer Bayer
(discrete) Steinberg Fang et al.

Figure 9.11.: Visual quality of halftoning results for an input image with size 100×256 show-
ing a grey ramp.
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Original Proposed Proposed Balzer et al.
(continuous) (jittered)

Proposed Floyd- Ostromoukhov Zhou and
(discrete) Steinberg Fang

Purgathofer Bayer Geist et al. Pang et al.
et al.

Figure 9.12.: Visual quality of halftoning results for an input image with size 100×256 show-
ing a Gaussian.
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field added in the jittered variant of our algorithm is spatially varying and thus prevents sym-
metric results. Note that each of these steps or extensions does not prefer any directions but
still prevents output images containing symmetries. Still, if symmetric images are desired, it
is very easy to adapt our algorithm such that it creates such images.

9.4.2. Evaluation in Gaussian Scale Space

In the last section, we showed a visual evaluation of our halftoning algorithm. However, this is
only a subjective evaluation. Now, we perform an objective evaluation motivated by the idea
that a human looking at a halftoned image from a certain distance should not be able to see a
difference to the original image. To this end, we simulate a certain distance by smoothing the
images by convolution with a Gaussian, thereby modelling the human visual system.

For this experiment, we use the image “trui” which contains smooth transitions, sharp
boundaries, and textured regions at different scales. Figure 9.13 shows halftoned images in
the first row, and blurred versions (obtained by convolution with a Gaussian with standard
deviation σ = 1.0) in the second row. Difference images between blurred original and blurred
halftoned images are shown in the third row. These error images have been scaled by a factor
of five, and shifted by 128. Furthermore, only magnified parts of all images are shown such
that details are spotted easier.

If halftoning is perfect, there is no difference between both smoothed images. Thus, for a
good halftoning result, the error should be small everywhere, and no image structures should
be visible in the error images. However, one should be aware that a Gaussian with a large
standard deviation is necessary to prevent artefacts, especially in sparsely sampled regions.
This can be seen left of the nose in the error maps of the continuous halftoning methods: As a
Gaussian with σ = 1.0 cannot fill the region properly, artefacts are visible. A similar problem
also occurs for all dithering methods, since only few fixed point positions are possible.

Apart from those theoretically justified artefacts, the error of our continuous halftoning
algorithm is very small, resulting in an error image that has almost a constant grey colour. The
method of Balzer et al. [17] creates far more fluctuating error images, indicating that the error
is higher.

As seen in the error images, the methods by Geist et al. [93] and Pang et al. [194] fail to
find good approximations due to the fact that only a limited neighbourhood is used, or due
to its structure-enhancing property, respectively. For the remaining dithering approaches, no
or little structural information can be seen. However, compared to the approaches by Floyd-
Steinberg [80] or Ostromoukhov [188], no regular patterns can be seen in our discrete ap-
proach. The approach by Purgathofer et al. [212] has a lot of inaccurate points manifesting as
very dark or very bright dots in the error image. The same is true for the approach by Zhou and
Fang [306], while our approach yields much better results in this respect. Thus, our discrete
algorithm is the only dithering algorithm without noticeable artefacts in this experiment.

Since the standard deviation of the Gaussian σ directly corresponds to the simulated distance
between viewer and (printed) image, a large range of different σ should be considered to
evaluate halftoning algorithms. Thus, we evaluate the quality of the halftoned images using
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Proposed Proposed Balzer et al. Geist et al. Pang et al. Thresholding
(continuous) (jittered)

Proposed Floyd- Ostromoukhov Zhou and Purgathofer Bayer
(discrete) Steinberg Fang et al.

Figure 9.13.: Comparison of blurred results of different halftoning algorithms to the blurred
original. As test image, the image “trui” (resolution 256×256) was used. Only a zoom is
shown such that the differences are easier to see. The original image is shown in Figure 3.6(a).
From top to bottom: Dithering/Stippling result, blurred result with σ = 1, and scaled and
shifted difference image. An optimal error image has a grey value of 50% everywhere. Note
that, for the continuous results, an optical illusion makes dots appear larger in regions with a
small amount of dots for a certain viewing distance. When zooming into the image or out of
the image, this illusion disappears.
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Figure 9.14.: Peak signal to noise ratio (PSNR) for stippling methods under Gaussians of vary-
ing standard deviation σ (see also Figure 9.13). For comparison, the plot for our dithering
approach is also shown.

different values for σ. That is, for each σ, we compute the Peak Signal to Noise Ratio (PSNR)

PSNR(f, g) := 10 log10

(
2552

MSE(f, g)

)
. (9.17)

between blurred original f and blurred halftoned image g, where MSE is the mean squared
error between f and g, see Equation (3.2). This results in the graphs shown in Figure 9.14 for
the continuous methods, and in Figure 9.15 for the discrete methods.

As can be seen in Figure 9.14, our continuous algorithm yields results that are much closer
to the original image than those obtained with the method of Balzer et al. with 1024 points per
site, especially for large σ. Note that large values of σ correspond to large viewing distances,
and thus to fine printing resolution. When using our jittered variant, the results are only slightly
worse. The excellent results of our algorithm are due to the global optimisation of the particle
locations. Note that even our discrete variant yields more accurate results than the method by
Balzer et al. for sufficiently large σ, even though the restriction of points positions to grid
location makes a good approximation much more difficult. This is even true when increasing
the number of points per sites in the algorithm of Balzer et al. from 1024 to 81921.

1The result with 8192 points per site was kindly provided by Thomas Schlömer from the University of Con-
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Figure 9.15.: Peak signal to noise ratio (PSNR) for dithering methods under Gaussians of
varying standard deviation σ.

Consequently, it is not surprising that our discrete algorithm also clearly outperforms the
other dithering algorithms for large σ, see Figure 9.15. The performance for small σ is very
similar. It should be noted that a simple thresholding yields the best error for very small σ.
Since the visual appearance when using a simple thresholding is very poor, this indicates that
larger σ are more interesting.

9.4.3. Evaluation of Blue Noise Behaviour

As an additional quality criterion, we evaluate the spectral properties of our halftoning al-
gorithms and compare it against those of several other algorithms. This is done by halfton-
ing constant images, computing the power spectrum of the difference between original and
halftoned image, and radially averaging this power spectrum. This way, the frequencies ap-
pearing in the halftoned image can be seen very well. High frequencies cannot be prevented
and are thus allowed. Low frequencies, however, should not appear [176, 280]. Images con-
forming to these properties are said to have a blue noise behaviour. The so-called principal

stance, as it requires much more memory than can be allocated with the 32-bit operating system we were
using.
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Figure 9.16.: Evaluation of the blue noise behaviour for 85% grey. Every method is repre-
sented by a patch of the generated result, by its radially averaged power spectrum (upper
graph), and the anisotropy of the power spectrum in decibels (lower graph). The diagrams are
obtained from an average of 10 periodograms.
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frequency is used to distinguish between low and high frequencies. For rectangular grids, the
principal frequency fg is given by

fg =

√
1

2
−
∣∣∣∣g − 1

2

∣∣∣∣ (9.18)

where g ∈ [0, 1] is the brightness of the input image. For hexagonal grids, the principal
frequency is computed as

fg =
2√
3

√
1

2
−
∣∣∣∣g − 1

2

∣∣∣∣. (9.19)

Since a hexagonal structure is optimal in a continuous setting, the principal frequency in a
continuous setting is also given this equation.

According to Ulichney [280], there should be a sharp transition region below fg and a po-
tential overshoot at fg. For higher frequencies, a flat blue noise behaviour noticeably lower
than the overshoot is allowed. An illustration of a graph with such properties is shown in Fig-
ure 9.16, together with our measurements for several algorithms. Our results are obtained by
averaging ten randomly selected patches of a larger image, as proposed by Bartlett [18]. Since
some methods create artefacts at image boundaries, only patches with a sufficient distance
from the image boundaries are considered.

As can be seen in Figure 9.16, our algorithm has a sharper transition region than the method
by Balzer et al., especially without using the artefact-preventing extension. Note that the peak
for all continuous methods appears between the two principal frequencies for rectangular and
hexagonal grids. This is due to the fact that the points still depend on the underlying, rectan-
gular image, while the energetically optimal distribution corresponds to that of a hexagonal
grid. Consequently, the peak appears between the corresponding two principal frequencies.

In the discrete case, our approach also works very well. The same is true for the approach by
Floyd and Steinberg, and for the method by Ostromoukhov. On the other hand, the method by
Zhou and Fang barely has an overshoot at the principal frequency. While this is not a problem
itself, it is an indication that the initial image is not approximated very well.

In addition to the frequencies contained in the halftoned image, one must also consider the
anisotropy of the averaged power spectra, i.e. the variance on circles of the same frequency.
The smaller the anisotropy, the better the halftoning method. Note that the anisotropy x is
usually plotted in decibels, i.e. using the relation

xdB = 10 log10 x. (9.20)

Due to noise in the measurements, there will always be some stochastic background noise.
More precisely, this background noise appears at −10 log10K dB, where K is the number of
patches averaged. Thus, the background noise appears at a level of −10dB here.

When looking at the anisotropies shown in Figure 9.16, one can see that there is barely a
noticeable difference in the anisotropies. An exception is the method by Floyd and Steinberg,
which has a slightly higher anisotropy. The same is true for the method by Ostromoukhov, al-
beit to a smaller degree. Noticeable peaks, which indicate that certain directions are preferred,
are not present for any method.
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Figure 9.17.: Illustration of halftoning with different dot sizes using the image “The skull bi-
sected and sectioned” by Leonardo da Vinci. The image has a resolution of 200×300. From
left to right: Original, continuous results with dot sizes of 0.5, 1.0, 1.5, and 2.0.

9.4.4. Illustration of Optional Extensions

So far, we have evaluated the quality of our halftoning algorithm. In this section, we illustrate
the effect obtained when using one of the optional extensions introduced in Section 9.3. That
is, we show results with dots of different sizes, with and without edge enhancement, with
various degrees of artefact prevention, and show a couple of colour images. The extension to
dithering is not included here, as it has already been evaluated in detail in the last sections.

Different Dot Sizes

To illustrate the effect of varying dot sizes, we halftoned the image “The skull bisected and
sectioned” by Leonardo da Vinci with dots of different sizes. Original and halftoned versions
of this image are shown in Figure 9.17. As can be seen, our algorithm creates very good
results, independent on the size of the dots. Even in the very coarse representation on the right
side of Figure 9.17, lines of the original image are clearly noticeable.

The left column of Figure 9.18 shows a halftoning of a Gaussian with particles with sizes 1
and 3 pixels, and a magnification thereof. The number of particles of each size were chosen
such that wL = 1

3
and wS = 2

3
holds. As desired, the large particles alone additionally

approximate the underlying image as well. In the right column of Figure 9.18, a halftoning of
the image “skull” with particles of area 1, 2, and 4 pixels with wL = 1

9
, wM = 2

9
, and wS = 6

9

is shown. As before, the image is not only approximated very well by the set of all particles,
but also by the two subsets corresponding to the largest particles, or all particles except the
smallest ones.

To create Figure 9.19, we used particles having unique sizes linearly going from 0.5 to
2 pixel. Shown are the complete result, as well as versions in which 25%, 50%, and 75%
of the particles with smallest size have been omitted. For the interaction matrix, we set
i(Aj, Ak) = min(A2

j , A
2
k)AjAk for two particles with sizes Aj and Ak. When omitting some

of the particles, the image becomes brighter, which is inevitable. Nevertheless, the remaining
particles still approximate the underlying image well.
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9. Electrostatic Halftoning

Figure 9.18.: Halftoning results created by our algorithm with two (left) and three (right)
different particle sizes. Left: Halftoning of “Gaussian” (256 × 256). Right: Halftoning of
“skull” (200 × 300). Top: Complete images. Bottom: Zoom into the Gaussian and into the
tip of the right eye, respectively.
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Figure 9.19.: Results when halftoning with dots of continuously varying sizes. Again, the
image “trui” (256× 256) was used. All images show the same result. However, in all but the
first image, some of the dots with smallest radius were omitted. Top left: Result with all dots.
Top right: Result when omitting 25% of the dots. Bottom left: Result when omitting 50% of
the dots. Bottom right: Result when omitting 75% of the dots. Apart from the unavoidable
fact that the image gets noticeably brighter, it still approximates the underlying image well.
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9. Electrostatic Halftoning

Figure 9.20.: Illustration of halftoning with edge enhancements using the image “Study for
the Head of Leda” by Leonardo da Vinci. The image has a resolution of 256×256. From
left to right: Input image, continuous result without edge enhancement, and results with little
(radius 5, factor 0.5) and more unsharp masking (radius 10, factor 1.0).

Figure 9.21.: Effect of the parameter j used in our artefact preventing extension. The larger the
parameter j, the less likely artefacts are. However, results will also get less accurate. Shown
are, from left to right, results for j = 1

2
, j = 1, j = 2, j = 4, j = 8, and j = 16.

Edge Enhancement

Images illustrating the effect of edge enhancement are shown in Figure 9.20. As edge-
enhancing preprocessing step, we have used the unsharp masking implemented in “The GIMP”
(GNU Image Manipulation Program), version 2.2, see [199]. Especially for small structures
such as braids and curls, the edge-enhancing can be clearly observed, as they are much more
emphasised.

Artefact Prevention

Next, we illustrate the influence of the parameter j used in our optional artefact prevention,
see Section 9.3.4. A large value of j corresponds to a strong turbulence field, thus resulting in
energetically less optimal results with less artefacts. Halftoning results for the image “ramp”
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Original Proposed (continuous) Proposed (jittered) Balzer et al.

Proposed (discrete) Floyd-Steinberg Ostromoukhov Zhou and Fang

Purgathofer et al. Bayer Geist et al. Pang et al.

Figure 9.22.: Visual comparison of halftoning results for a photograph of a statue of Charles
XIV, in Norrköping. The input image has a resolution of 229×229. Original image licenced
as CC-BY-SA 2.0 by User:Thuresson, published on Wikimedia Commons.

with a large range of different j’s are presented in Figure 9.21. The original image, as well as
the results without artefact prevention, are shown in Figure 9.11.

As can be seen, this parameter allows a smooth transition between energetically optimal
and visually pleasing results: For small j, regular structures are visible. As these structures
are not aligned identically, there are cracks visible between those structures. For large j, there
are no such problems, but the halftoned image is not very accurate. For intermediate values
of j, a good tradeoff between artefact-freedom and accuracy can be obtained. As mentioned
before, we have used j = 1 for all other experiments.

Colour Images

Next, we evaluate the visual performance of our algorithms for colour images by comparing
the results of our algorithms against those from the eight methods already utilised in Sec-
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tions 9.4.1 and 9.4.2. For these first experiments, the CMY colour model was used. Thus,
each channel was halftoned independently.

As a first test image, we halftone the photograph shown in Figure 9.22. As can be seen in
this figure, the continuous methods yield comparable results of high quality. However, most
discrete approaches have some artefacts. The methods by Floyd-Steinberg and Ostromoukhov
create regular patterns and worm-like artefacts. The latter can be seen especially well in the
upper left corner of the image and at the chest of the statue. With the approach by Bayer,
artefacts are visible over the complete image domain. The method by Geist et al. fails to
reproduce the correct colours due to the fact that two of the channels are nearly zero. This
is visible very well in the background. The method by Pang et al. once again pronounces
edges too strong. The approach by Purgathofer et al., as well as the one by Zhou and Fang,
yield good-looking results, but we have already shown that this comes at the cost of a less
accurate approximation of the initial image (see Section 9.4.2). In contrast, the result from our
approach, which approximate the initial image very well, also has very few artefacts.

The second colour image we use for evaluation is the photograph of two hands holding
a Rubik’s cube, see Figure 9.23. This image is challenging due to several reasons: First of
all, it contains completely white regions. This is challenging since points incorrectly placed
in such a region are easily spotted by humans. Similarly, slight variations in the skin colour
are also easily recognised. Further note that, in contrast to the first colour image, this image
has saturated colours. Thus, the performance for weak and bright colours is evaluated when
considering both experiments.

Nearly everything described for the halftoning algorithms with the last image is also true for
this image. Thus, we describe only new findings in order not to repeat the problems already
explained.

Once again, the overall quality of the continuous halftoning methods is very similar at first
glance. However, the approach by Balzer et al. places some single dots into white regions,
e.g. between the middle and ring finger of the left hand (see first magnification in Figure 9.23).
Since this methods represents Voronoi cells by their centres, such stray dots occur whenever
colour information is distributed along the boundary of a Voronoi cell. Furthermore, we can
see that dark colours are not represented very accurately due to the fact that a this method has
a built-in “jittering” (see third magnification). The same is true (up to some degree) for our
jittered variant. However, when using the approach of Balzer et al., the jittering cannot be
turned off or reduced, which is trivial with our approach.

Our discrete variant also preserves colours nicely, which is not the case for the methods by
Geist et al., Pang et al., or Bayer. Furthermore, our method does not put single dots into the
white areas, which happens both for the method of Ostromoukhov, as well as for the method
by Zhou and Fang. Also note the worm artefacts visible for the methods by Ostromoukhov
and Floyd-Steinberg, especially in the second magnification.

So far, we have only considered the linear CMY colour space possible with all halftoning
algorithms. In our next experiment, we illustrate that our approach can also use more complex
colour models. Figure 9.24 shows results with the common CMYK colour space, and with
the asymmetric CMY-RB-K colour space. For comparison, the result with the linear colour
space CMY is given. Note that none of these colour spaces contains green as a single colour.
Nevertheless, the dark green in the regions of the T-shirt is represented well in all results.
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Original Proposed (continuous) Proposed (jittered) Balzer et al.

Proposed (discrete) Floyd-Steinberg Ostromoukhov Zhou and Fang

Purgathofer et al. Bayer Geist et al. Pang et al.

Figure 9.23.: Visual comparison of halftoning results for the “Rubik’s cube” test image. The
original has a resolution of 256×256.
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Figure 9.24.: Halftoning of the colour image “comic” in complex colour spaces. Top left:
Original image (256 × 256) Top right: Using the CMY colour model. Middle left: Using
the CMYK colour model. Middle right: Using the asymmetric CMY-RB-K colour model.
Bottom row: Zooms into the images.
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Figure 9.25 illustrates the influence of the parameter α on the tradeoff between good rep-
resentations of the total set of particles and good representations of subclasses in multi-class
sampling applications. Small α cause clusters in the subsets corresponding to single classes,
while large α generate clusters in the total set to improve the approximation of the single
classes. Depending on which representation is more important, α should therefore be chosen
application dependent.

As explained before, a similar tradeoff exists in multi-class sampling, which can be steered
using the parameter C. This is illustrated in Figure 9.26. With C = 1, only the overall image
is approximated well but a bad approximation is obtained when considering only small or
large particles. An increasing C forces the larger particles to additionally approximate the
image well without the smaller particles, which also yields an appropriate distribution of only
the small particles. If C is chosen too large, however, the large particles nearly ignore the
positions of the small particles, which yields an excellent approximation with only the large
particles, but an inappropriate approximation when considering all particles.

Instead of forcing the large particles to approximate the image well without the small par-
ticles, one might also require the same for the small particles. The resulting halftone is also
illustrated in Figure 9.26. One can notice at second glance that the small particles cluster
around the larger ones in dark image regions. Apart from this issue, halftoning works well,
though.

In Figure 9.27, we show results for multi-class sampling with two particle sizes. In this
experiment, the ratio between the areas covered by a small and a large particles is 4 : 9. As in-
dicated in Figure 9.27, there are a total of six different subsets in which the particles should be
distributed correctly. Thus, finding a good sampling is difficult in this situation. Nevertheless,
it can be seen that our results are rather smooth, and that there are no striking artefacts which
hint at the presence of a second class or particles with a different size, respectively. Note that,
as explained before, it is possible to adapt the parameters C and α to increase the smoothness
of specific classes, if desired.

Next, we show real-world example images created with our multi-class, multi-size halfton-
ing algorithm, see Figure 9.28. To create these images, we sampled the densities shown with
particles from three classes, which mutually repelled each other. Additionally, three different
particle sizes were used for each class. The images shown are obtained after rendering a (ran-
domly rotated) image of a piece of ham, mushrooms, or salami at the places indicated by the
dot locations, which is scaled by the size of the dot.

Hatching

As a last extension, we illustrate the visual performance of our hatching algorithm using the
images “skull” (200 × 300) and “bird” (463 × 229). The first image was hatched with 20000
lines with a desired length of 2 and 4 pixels, respectively, see Figure 9.29. Note that edge
enhancement via unsharp masking has been performed on the input image to improve the
visual appearance of the result. Thus, even small details are visible very well.

For the second image, we used 10000 lines and 10000 dots to approximate the input image.
Figure 9.30 shows results with and without edge enhancement, as well as a result for with
edge enhancement was only used for the dots, but not for the lines. Note that the latter is
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C = 1 C = 2

C = 4 C = 2 for small
instead of for large particles

Figure 9.26.: Influence of the tradeoff parameter C on halftoning with multiple dot sizes of
the ramp shown in Figure 9.11. Shown are, from top left to bottom right, the results with
C = 1, C = 2, C = 4, and the result when setting C = 2 for the small instead of for the large
particles.
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Figure 9.27.: Multi-class sampling of a uniform density with two particles sizes. Top row:
Results with both dot sizes. Bottom row: Results with large particles only. Left column:
Results with both colours. Middle and right column: Red and blue subsets, respectively.

straightforward in our approach: We simply precompute the attractive image forces with and
without edge enhancement, and use the appropriate force in the evolution.

9.4.5. Dependence on Initialisation

As explained on Page 152, we are interested in the steady-state of the particle evolution, and
not in the evolution itself. Still, it is reasonable to look at the particle evolution to see how fast
the algorithm converges.

Two particle evolutions for the image “trui” with different initialisation are shown in Fig-
ure 9.31. Even with a random initialisation (upper two rows), the result of our algorithm
locally looks very good after only a few iteration. However, too many black particles gather at
the upper boundary while there are particles missing at the lower part of the image. This is due
to the fact that too many particles are placed in the upper part of the image in the initial par-
ticle arrangement. Consequently, these particles are repelled too strongly from the repulsive
forces, and try to move out of the image. After some iterations, the “superfluous” particles
force other particles to locations in which particles are still missing, and move to the positions
of the repelled particles. Thus, the particle positions converge even with a bad initialisation.

The better the initial particle arrangement is, the less probable such problems are. Thus,
as explained in Section 9.2.1, the initial particles locations are chosen randomly in such a
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Figure 9.28.: Real-world scenario in which our multi-class multi-size sampling is used to
determine the positions of ham (User:fugutabetai_shyashin, flickr.com, CC-BY-NC-SA),
mushrooms (User:cyclonebill, flickr.com, CC-BY-SA), and salami (User:vagabondvince310,
flickr.com, CC-BY). The circle in the bottom right corners indicate the input images used to
place the ingredients. In all images, three different ingredient sizes were used.

way that dark regions probably contain more particles than bright regions for all experiments
shown here. Using this initialisation, the particles converge a bit faster than with a random
placement. This is shown in Figure 9.31. Note that in this specific example, there are still
particles that gather at the upper right boundary. This can happen since the particle placement
is still random.

For our dithering algorithm, the situation is very similar, as shown in Figure 9.32. When
looking carefully at these images, one can see that a good initialisation is even more important
in the discrete setting, as only a rather small force pulls particles at the image boundary back
into the image. Due to the attractive forces from the grid locations, particles may stay longer
at the boundary than desired. Thus, one can see that there are some artefacts at the upper
part of the right boundary even after 256 iterations. Again, we would like to stress that these
problems do not appear with a good initialisation, e.g. from another fast dithering approach,
but that we have not used such initialisation in order not to bias the results of our algorithm.
Furthermore, these problems also disappear when using more iterations.

9.4.6. Evaluation using Image Interpolation

As shown in Section 2.1, it is possible to reconstruct an image from a few selected point;
the reconstruction quality depends on the choice of interpolation points. In general, finding
the best interpolation points is a difficult task. When linear isotropic diffusion is used for
inpainting, however, it was shown in [20] that the interpolation points should be distributed
according to the absolute value of the Laplacian. Thus, Belhachmi et al. proposed to dither
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Figure 9.29.: Hatching result of the image “skull” (200 × 300). Left: Original. Middle and
Right: Result with desired line length of 2 and 4 pixels, respectively.

an image containing the absolute values of the Laplacian of the smoothed input image to
find good interpolation points. In order to obtain the desired number of mask points, the
image should be scaled correctly before dithering is applied. This algorithm is illustrated in
Figure 9.33.

In [20], the Floyd-Steinberg algorithm was used for dithering. Here we will evaluate the
inpainting quality with different dithering algorithms to check which algorithm performs best
in this context. The reason for these experiments is that we will employ a halftoning algo-
rithm to find a good inpainting mask for inpainting with homogeneous diffusion in the video
compression algorithms presented in Chapter 10.

For the first experiment, we used the image “house” shown in Figure 9.33(a). The recon-
struction error with four different dithering algorithms with 500, 1000, 1500, and 2000 mask
points are shown in Figure 9.34. As can be seen, there is a huge difference in the recon-
struction quality when using different dithering algorithms. Independent of both the number
of mask points and the amount of presmoothing, our dithering algorithm performs best. The
methods by Zhou and Fang ties with the method by Ostromoukhov for second place for most
parameters. The method by Floyd-Steinberg is often worst, but reaches the second place for
some parameter settings. Furthermore, one can see that using a good dithering algorithm is
especially important when a low number of points are used, and when little presmoothing is
done.

In Figure 9.35, the same experiment was done using the images “skull” and “trui”. In both
experiments, 500 mask points were used. As can be seen, similar results are obtained for these
additional experiments.
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Figure 9.30.: Image “bird” (463 × 229) and three results with 10000 lines and 10000 dots.
Top left: Original. Top right: Result without edge enhancement. Middle left: Result with
edge enhancement. Middle right: Result with edge enhancement only for the lines. Bottom:
Magnifications to chest region, respectively.

9.4.7. Runtime and Memory Requirement

Our algorithm consists of the three major parts explained in Section 9.2, namely particle ini-
tialisation, force field computation, and particle evolution. The time required for the first step
is negligible, whereas the time required for the other two steps is illustrated in Figure 9.36.
Note that the force field computation only depends on the image size, and not on the number
of particles while it is vice-versa for the particle evolution. Thus, initialisation time and time
required per particle evolution is given individually in Figure 9.36. The jumps visible in both
graphs are due to CUDA specifics: On our GPU (NVidia GTX 285), we use 128 blocks with
512 threads each; Thus, there is a discontinuity for 128 · 512 = 65536 particles/pixels. All
further discontinuities are due to the number of 30 streaming multiprocessors, which cause
jumps at n · 65536 +m · 30 · 512 particles/pixels, i.e. whenever the number of blocks exceeds
a multiple of 30.

For the simple implementation described in Section 9.2, the initialisation time of our algo-
rithm (in Landau notation) is O(n2), where n is the number of pixels in the original image.
For one particle evolution, the required time is in O(m2), where m is the number of particles.
Furthermore, there is a linear dependence on the number of iterations in the particle evolu-
tion step. However, it is possible to design asymptotically faster algorithms, e.g. by using a
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Figure 9.31.: Evolution of our halftoning algorithm with a random initialisation (first two
rows), and with our initialisation (see Section 9.2.1, last two rows). For each initialisation,
the initial particle placement and the resulting image after 1, 2, 4, 8, 16, 64, and 256 iterations
are shown.
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Figure 9.32.: Evolution of our dithering algorithm with a random initialisation (first two rows),
and with our initialisation (see Section 9.2.1, last two rows). For each initialisation, the initial
particle placement and the resulting image after 1, 2, 4, 8, 16, 64, and 256 iterations are shown.
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(a) Initial image (b) Laplace (c) Mask (d) Reconstructed image

Figure 9.33.: Pipeline used for evaluating dithering algorithms using linear inpainting: From
an initial image (a), the magnitude of the Laplacian is computed (b) and scaled corresponding
to the desired number of mask paints. The mask points are then obtained by dithering this
image (c). The last image shows the reconstruction from these points using linear diffusion.
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Figure 9.34.: Mean squared errors obtained using linear image interpolation with 500 mask
points (top left), 1000 mask points (top right), 1500 mask points (bottom left), and 2000 mask
points (bottom right) for the image “house”. The mask points are obtained by dithering the
(scaled) absolute value of the Laplacian of the smoothed input image, where a Gaussian with
standard deviation σ is used for smoothing. The different graphs in each plot correspond to
different dithering methods.
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Figure 9.35.: Results for the same experiment as in Figure 9.34 with the images “trui” (left)
and “skull” (right). For both experiments, 500 mask points were used.

fast summation procedure based on the fast Fourier transform at non-equidistant knots. This
reduces the algorithmic complexity of one particle evolution to O(m logm). Details can be
found in [273], while the GPU-version of this approach is described in [104].

Even with our suboptimal initialisation, we have seen in the last section that reasonable
results are obtained quite quickly. As an example, 6.5s are required for 300 iterations on a
256 × 256 image with 16384 particles (25%) using the simple implementation explained in
Section 9.2.

The memory complexity of our algorithm in Landau notation is O(m + n), where n and
m are the number of pixels and particles, respectively. It uses only very few arrays of size m
and n. Although the algorithm by Balzer et al. also has a memory requirement of O(m+ n),
it still requires much more memory in practise, as it first creates a large amount of points for
each dot in the final image. In their example implementation and the experiments presented
here, 1024 points are used for each dot. Using less points is possible, but will deteriorate the
results. Thus, our algorithm requires significantly less memory in practice.

9.5. Conclusion
“It’s more fun to arrive at conclusion than to justify it.”

Malcolm S. Forbes (1919–1990)

In this chapter, a halftoning approach motivated by electrostatics has been explained, which
can be used for applications such as dithering, multi-class sampling, or stippling. By using a
large range of different evaluation procedures, we have shown that it yields excellent results
which outperform those of all other state-of-the-art halftoning approaches. Our algorithm is
very flexible and can easily be adapted to specific applications. It performs edge enhancement
and avoids visual artefacts if and only if these features are desired, and is trivial to adapt to
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Figure 9.36.: Time required by our algorithm for initialisation (left), and for particle evolu-
tion (right). Note that the time required for initialisation only depends on the image size,
while the time required for particle evolution only depends on the number of particles. The
discontinuities in both graphs are due to CUDA specifics explained in Section 9.4.7.

any printer resolution. Results are excellent independent of the viewing distance or printer
resolution.

This concludes the presentation of the third main topic of this thesis. In the next chapter,
we show how to combine the developed algorithms into several video compression codecs.
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“A good video can make all the difference.”

Brian May (∗1947)

Finally, we come to the last topic we consider in this thesis, which is video compression,
i.e. the task to reduce the amount of data necessary to represent a sequence of images. Typical
video compression codecs consists of two independent parts. The first part is a codec used
for compressing the image data. This is the topic of this thesis, while the second part, which
is the compression of audio information, will not be discussed here. Most popular video
compression algorithms combine pixels within a square to so-called macroblocks on which
motion estimation is performed to estimate the appearance of these block in nearby frames.
In addition to the estimated motion, the appearance change within each block is stored. While
decompressing, this information is used to reconstruct the individual frames of the video.

The first official digital video encoding standard was published in 1984 by CCITT (Comité
Consultatif International Téléphonique et Télégraphique, International Telegraph and Tele-
phone Consultative Committee), and was called H.120 [52]. Although its compression quality
turned out to be insufficient for practical use, it is the basis of other video codecs such as the
H.261 codec [53], or the more recent H.263 codec [122]. Both H.261 and H.263 [122, 95] are
mainly used for video-conferencing.

In 1993, the Moving Picture Experts Group (MPEG)1 released MPEG-1 (part 2) [126], a
video codec built upon H.261. Based on these early works, several other well-known and
widely-used video codecs have been developed. As result of a joint work of both groups,
the standards H.262/MPEG-2 (part 2) [127, 121] and H.264/MPEG-4 AVC (“Advanced Video

1The official designation is ISO/IEC JTC1/SC29 WG11 - Coding of moving pictures and audio (ISO/IEC Joint
Technical Committee 1, Subcommittee 29, Working Group 11).

Figure 10.1.: Illustration of the different steps occurring in one of our video compression al-
gorithms. From left to right: Initial image of size 640× 480, compressed background image
(compression ratio: 98 to 1), projected object model in tracked pose, and final result when
using information from 5000 additional points whose locations are obtained by dithering.
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Coding”) [292, 186, 129, 124] have evolved. Currently, these groups are working on a project
with the working title HEVC (High Efficiency Video Coding), which shall either become a new
standard or an extension of H.264/AVC [66].

There are many more general video compression algorithms most of which are proprietary.
Thus, details about those codecs are often not publicly available. Prominent examples for such
codecs include AVS (Audio Video Standard), Bink, RealVideo, Smacker video, VP8, and WMV
(Windows Media Video). For a detailed comparison of different general video codecs, we refer
to the surveys and introductions by Sullivan and Wiegand [264], Sayood [231], Strutz [259],
and Abomhara et al. [2].

Apart from general purpose video compression algorithms, there are also video compression
codecs using model-based coding schemes, often abbreviated as MBC. We will give a short
summary of the ideas presented in this context, but refer to the survey by Pearson [198], and
the thesis by Yao [300] for a detailed overview of the field.

The original idea behind model-based coding schemes, namely to compress moving parts
in videos by storing a model and some motion parameters, was introduced in 1983 by Forch-
heimer and Fahlander [81]. Since this initial work, different approaches to model-based video
coding have been pursued.

In [274], for example, Toelg and Poggio propose an approach that uses a small set of ex-
ample images containing a human face with different facial expressions. With the help of a
pose estimation algorithm, a novel view or facial expression is constructed from these example
images. Vieux et al. use a similar approach for their “Orthonormal Basis Coding” in [284].

While these two approaches are based on 2-D example images, there are also many ap-
proaches which use full 3-D models. In [133], a partial description of a model-based coding
based on the MPEG-4 standard is presented. However, this method requires manual interac-
tion, and it is not specified how the texture is stored. Although these questions are answered
in the work by Granai et al. [100], both methods only explain how to compress the foreground
using model-based coding, and ignore the background.

Huang and Tand [114] proposed to save the complete first and last image of the video
sequence using JPEG, and to synthesise intermediate frames from estimated motion vectors.
In [11], motion compensated temporal interpolation is used to estimate the background onto
which the 3-D object model is projected.

Various extensions to model-based coding have been proposed, e.g. for varying illumination
conditions [72] or for handling different facial expressions [71, 196]. The latter idea was even
included into the MPEG-4 standard as facial animation parameters (or FAPs) [193].

However, all papers described only show results for faces seen from the front – sometimes
including the shoulder region – and most algorithms are even specialised to this situation.
Consequently, they are well suited for compressing videos for video-conferencing, but not for
general videos.

In this chapter, we introduce three closely related video compression algorithms, which are
based on the ideas of model-based coding, see Figure 10.1. Since they are not specialised to
faces or other specific objects, they can handle any kind of moving objects. The next section
first introduces our simple approach to estimate the appearance of the object models, followed
by a detailed explanation of our three video compression algorithms. We continue with a
thorough evaluation of these approaches in Section 10.2 before concluding the chapter.
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10.1. Codecs
“We might be the holographic image of a two-dimensional structure”

Brian Greene (∗1963)

In this section, we introduce several variants of the video compression algorithm sketched in
the introduction. Therefore, we first present the simple algorithm we have used to estimate the
colour of each vertex of the model used for tracking, followed by a detailed description of the
video compression codecs. Furthermore, we explain the file format used by our algorithms.

10.1.1. Model Colouring
Our first two video compression algorithms require a coloured model of the tracked objects.
However, we assumed that only uncoloured object models are available for tracking. Thus, it
is necessary to estimate the appearance the object models. This is the topic of this section.

The idea how to find the colour of each vertex in the object model is quite simple and
straightforward: Since we have used the uncoloured object model to track the object through-
out the image sequence, we know to which image point each vertex of the object is projected
in each frame. Thus, to get the colour of a specific vertex v, it is theoretically sufficient to set
the colour of this vertex to the colour of the image point u(Pv), i.e. to the colour of the point
to which the vertex v is projected. Thereby, P denotes the corresponding projection matrix
and u is one image of the sequence.

In practise, however, this will yield a very poor colouring, as tracking results are inaccurate
in general, e.g. due to inaccurate object models. Furthermore, one has to check if the vertex
is actually visible in a certain image. Changing lighting conditions and other related problems
further decrease the quality of this simple approximation. Thus, we not only consider a single
image but utilise the colours over all views and frames of the sequence in which the vertex v
is visible. Note that it is easy to check if v is visible when using OpenGL [247].

To handle some of the tracking inaccuracies, we make use of the fact that the background
image b is known: If the colour of u(Pv) is similar to b(Pv), i.e. to the colour of the back-
ground image at the same image position, we assume that the estimated position of the vertex
is inaccurate. Consequently, we disregard this pixel when estimating the colour of v. Al-
though this does not take care of all cases in which estimated vertex positions are inaccurate,
this step handles some critical cases in which the colour differs strongly from the real colour
of v. To further stabilise the estimation, we simply average the colours obtained by different
images. An example model coloured with this approach is shown in Figure 10.2.

10.1.2. Basic Model Based Video Codec
Our first video compression algorithm is a simple model-based coding algorithm: As a first
step, we track all objects moving in the video with our tracking algorithm explained in Chap-
ter 5 to 8. Thereby, we assume that the necessary data – a projection matrix for each view,
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Figure 10.2.: Model coloured with the approach explained in Section 10.1.1, shown from three
different views. Here, the HumanEva-II sequence S4 was used to obtain the colours.

an (uncoloured) object model, and a pose initialisation – are given. Additionally, we assume
that the background in each view to be saved is static. We will discuss how to overcome these
restrictions later.

As a second step, the background image is reconstructed, unless it is known in advance.
Although background reconstruction is a difficult topic in general, it is fortunately very easy
in our setting: First, each frame of the video sequence is segmented into fore- and background
region by using the tracking results. Then, each pixel of the background image is taken from
the image in which this pixel is farthest from the projected object model. This is illustrated
in Figure 10.3 using two images. Note that points which are always occluded by the object
model can be chosen arbitrarily, as they will not be needed later.

Thirdly, the tracking results obtained are used to estimate the colour of each vertex of the
given object models, as explained in Section 10.1.1.

Next, the background image is compressed using the PDE-based image compression algo-
rithm introduced in Chapter 3.

Finally, the compressed background image, the coloured object model, the projection ma-
trices, and the estimated pose parameters are saved and compressed using a general purpose
entropy coder. Details about this step are given in Section 10.1.5.
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10.1. Codecs

Figure 10.3.: Illustration of a simple way to reconstruct a static background image using 3-D
tracking results. The first two images show two frames into which the model in the estimated
pose has been projected in cyan. Each pixel is taken from the image for which this pixel is
furthest from the projected model. The pixels taken from the first image are shown in red,
those from the second image in blue. The reconstructed background is shown in the third
image.

This concludes the description of our first video encoding algorithm. We denote this codec
by MB, which is an abbreviation for model based codec.

Reconstructing the video is straightforward: First, the background image is uncompressed.
Then, each frame of the video is restored by projecting the object model using the correspond-
ing pose and projection matrix loaded from the compressed video file onto the background
image. These two steps are illustrated in the middle images in Figure 10.1.

For some cases, this codec is sufficient to yield a good reconstruction. However, problems
such as tracking failures or model inaccuracies can lead to a bad video quality, as the pro-
jected object model looks quite different than the original video frame. Thus, we introduce an
algorithm that can cope with such problems in the next section.

10.1.3. Video Codec with Residual Coding

The codec introduced in this section is an extension of the MB codec from last section. It
performs all steps done by MB but additionally encodes the residual image, i.e. the difference
image between the image compressed by the MB codec and the original image.

This residual image is stored as sets of single pixels and reconstructed by inpainting with
homogeneous diffusion, as explained in Section 2.1. Note that we will use the additional pixel
information only to account for inaccuracies close to the moving foreground, as problems in
the background region are easier solved by storing the background image more accurately.

In this situation, we do not use the adaptive grid utilised in our still image compression
algorithm in Chapter 3 due to several reasons. First of all the inpainting mask K cannot be
chosen arbitrarily if it is restricted to positions on a grid. This restriction limits the possi-
ble reconstruction quality, and is not present in our new approach introduced in this section.
Furthermore, since we only use points in and close to the foreground, the image region to be
saved is not rectangular. Thus, the rectangular grid structure cannot be used without special
adaptations.
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10. Video Compression

First, let us consider only the first frame of a grey-valued video. When we use inpainting
with homogeneous diffusion (see Section 2.1.1), we know that the interpolation points should
be distributed according to the magnitude of the Laplacian of a smoothed version of the image,
as discussed in [20]. Thus, we can use a dithering algorithm to obtain the inpainting mask.
We use our electrostatic dithering algorithm introduced in Chapter 9, as we have shown in
Section 9.4.6 that it is best suited for this situation.

The optimal standard deviation σ of the Gaussian used to smooth the residual image is not
known in advance. Thus, we try different standard deviations in our algorithm and use the σ
for which the best approximation is obtained. As σ is not needed to decompress the video,
this does not increase the final file size.

Another optimisation done at this point is to restrict the domain of the dithering algorithm
to a region containing the foreground region and points close to it. This is realised by first
computing the Euclidean distance transform of the projected objects, followed by computing
the Laplacian only for those pixels whose distance to the projected object models is not larger
than a threshold T . For all experiments shown here we have used the fixed value T = 20.
However, adapting T to the current image is likely to further improve the reconstruction qual-
ity. A detailed evaluation is part of our future work.

The image obtained by computing the Laplacian of the initial image is scaled before it is
used as input image in the dithering algorithm. This scaling ensures that the total amount of
points in the obtained inpainting mask can be chosen depending on the video quality and file
size desired. To store the position of the points in the inpainting mask K, we use the JBIG
file format [128, 123], which is a lossless image compression algorithm for binary images.
The grey-value of all points specified by K are quantised uniformly to q values and stored
separately. For all experiments done here, we have used q = 17. This will be justified by the
experiments shown in Figure 10.16. For colour images, each channel is quantised and stored
separately.

To summarise, the algorithm for coding the residual image in the first frame performs the
following step: First, the residual image is computed. This residual image is converted to a
grey-valued image, which is smoothed with a 2-D Gaussian with standard deviation σ. Next,
the distance transform of the projected object model is computed, and the Laplacian of all
pixels whose distance to the projected object model does not exceed the threshold T are com-
puted. The remainder of the image is set to zero such that only inaccuracies close to the
foreground are considered. The resulting image is scaled appropriately such that the electro-
static dithering algorithm used next gives the desired number of particles/interpolation points
|P|. The dithered image is stored using JBIG, and the corresponding quantised grey values of
the residual image are saved to a different file, see Section 10.1.5.

If the video is in colour, we use the same approach, but first compute a grey-valued variant
of the difference image. Thereby, different colour models may be used. However, results are
quite similar independent of the colour model used, according to first experiments. Thus, we
just add the red, green, and blue colour channels to get the grey-valued variant of the difference
image.

In the remaining frames, the residual image is coded in a similar way. However, there are
some important differences. First of all, we use the dithering result from the previous frame
as initialisation of the new dithering process. Furthermore, we perform much fewer iterations
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of electrostatic dithering. Since it is possible that two particles have been mapped to the same
grid location in one iteration, the particles are deterministically shifted up to a quarter of a pixel
before starting the iterations, though. More precisely, the vector (m · sin(φ),m · cos(φ))> is
added to each particle location, where φ is a random number in [0, 2π) and m is a random
number in [0, 0.25).

These optimisations do not only speed up the computations, but also allow to store the
particle movements relative to the last frame instead of the particle positions. This reduces the
amount of data that must be stored if the number of particles is reasonable. While it is trivial
to obtain the particle motion when using electrostatic dithering, this is a very hard problem
(or not possible at all) using any of the other dithering algorithm discussed in Chapter 9. This
is another reason why it is advantageous to use our electrostatic dithering algorithm in this
context. The colour values at the new inpainting positions are quantised as in the first frame.

All this data is stored to different files, and compressed using a general purpose entropy
coder. Details about the file format will follow in Section 10.1.5. We call this Model-Based
codec which stores the difference image by Halftoning MB+dH.

To reconstruct the video, we first execute the steps explained for our first codec MB. Af-
terwards, the inpainting mask is loaded (first frame) or reconstructed using the stored particle
motion and the particle locations in the preceding frame. As in the case of still image compres-
sion, the stored colour information is mapped to the points indicated by the inpainting mask.
Furthermore, we add all points whose distance from the projected object model is larger than
the threshold T (see above) to the inpainting mask, and set their colour to zero. This ensures
that the difference image is zero at the transition between the region adapted by the stored
residual image and the unmodified background image.

As can be seen in the last image in Figure 10.1, this can significantly improve the recon-
struction quality of the resulting video sequence.

10.1.4. Third Video Compression Algorithm
Although the algorithm MB+dH yields significantly better results than the codec MB, videos
compressed with this approach often appear noisy. This is especially true when only few
particles are used to store the residual image.

Let us first illustrate why MB+dH can result in noisy images: Even when tracking results
are only slightly wrong, there is one (possibly thin) stripe in which the background is visible
instead of the object tracked, or vice versa. At the boundary of such stripes, the Laplacian of
the difference image is high. Thus, many particles are placed on these boundary to compensate
for this problem. The regions next to these boundaries are much smoother, resulting in only a
few particles being localised next to these boundaries.

However, when only a few particles are used, there is not enough information to obtain
a sharp boundary. As a consequence, the reconstructed residual image might bleed, i.e. the
colour values at one side of the border of the stripe are influenced too strongly by the colours
from the other side of the border. In contrast to a slight misplacement of the object model,
such a problem is easily spotted by humans.

Our third codec prevents this bleeding at the cost of a higher reconstruction error. Instead
of projecting a coloured model and coding the residual image as additional information, our
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Figure 10.4.: Illustration why blending is used in the codec MB+mH. When overwriting the
background image with the reconstructed foreground region, visually unpleasant artefacts can
appear (first column). With blending (second column), this is not the case. This can be seen
especially well in the magnifications of the right arm and the left leg shown in the third column
(without blending) and forth column (with blending), respectively. However, blending can also
significantly change the appearance, as visible between the legs.

next approach uses the (uncoloured) object model and its pose merely to find the image region
F in which the tracked object is visible. As in our codec MB+dH, additional grey or colour
values are saved at locations obtained by dithering. This allows to reconstruct the foreground
region F . The resulting Model-Based codec which stores the model region by Halftoning is
called MB+mH.

There are some important differences to the codec MB+dH: Now, we dither the magnitude
of the Laplacian of the image to be saved instead of that of the residual image. Thus, we
must set the boundary pixels to the value of the background image at the appropriate positions
instead of setting it to zero.

To deal with tracking errors, we extend the foreground region F by adding all points M
whose distance to this region is less than T pixels. This increases the likelihood that the whole
foreground object is covered by F ∪M . As explained in the last section, the threshold T can
be adapted to the sequence to obtain optimal results. For our experiments, we use the constant
value T = 5.
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Note that the particles use a colour obtained from the original image while the boundary
is initialised to the compressed background image, as only this image is available in the de-
compression step. Thus, simply overwriting the background image with the reconstructed
foreground region can yield a clearly visible boundary, as can be seen in Figure 10.4.

Thus, we propose another approach to combine fore- and background: Let x be a point
with distance d(x) from the region F , and let F (x) and B(x) be the colour of the recon-
structed foreground and background region, respectively. Then, the point in the final image is
computed as

(1− αF (x)) + αB(x) where α = min

(
1,
d(x)

T

)
That is, there are three possible cases:

• Points inside the initial foreground region F are taken from the reconstruction obtained
by inpainting.

• Points further away than T , i.e. the points in Ω \ (F ∪M), are taken from the saved
background image.

• The remaining points, i.e. the points in M , are reconstructed as a linear combination of
fore- and background region.

Through this interpolation, the visible boundaries illustrated in Figure 10.4 will not appear
any more. Even though this slightly deteriorates the image quality with respect to quantitative
error measures such as the MSE, the result looks more appealing to the human eye. Note that,
as can be seen at the legs in Figure 10.4, the visual appearance can be noticeably different with
blending.

10.1.5. File Format
The following list summarises the data (possibly) saved by our video compression algorithms.
Depending on the variant used, some parts of the data can be omitted.

• For each view:

– Compressed background image

– Projection matrix

– Initial dithering result

• For each view and image:

– Particle motion

– Particle colour

• For each moving object:

– Object model (possibly coloured)

– Pose parameters for complete video
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HumanEva-II S4 Cart
method image size file size MSE image size file size MSE

MB 656 × 490 161223 102.57 500 × 380 68721 52.38
MPEG-1 656 × 480 2019733 187.25 496 × 368 202847 48.53
MPEG-4 656 × 490 537404 210.58 500/496 × 380 112182 31.52

Table 10.1.: Overview over the image and file sizes of the videos created using our algorithm
MB, as well as with MPEG-1, and MPEG-4. As can be seen, the encoder used for MPEG-1
cropped all images such that the x and y resolution are a multiple of 16. MPEG-4 uses the
correct resolution, but replaced a stripe of width four at the right hand side of each image with
black pixels for one sequence, see Figure 10.11.

For each line in the list, a single file is created. The final file, which contains the complete
video, is then created by packing all these files with tar, followed by a compression with PAQ.

As indicated by this list, it is also possible to store several views of the same scene simul-
taneously. This is especially advantageous with the first codec MB, as only one additional
background image and a very small projection matrix must be stored for each view.

10.2. Experiments
“The true method of knowledge is experiment.”

William Blake (1757–1827)

In this section, we compare the performance of our three video compression codecs against
that of the standard codecs MPEG-1 [126] and MPEG-4 [129].

The MPEG-1 videos have been created using the program “mpeg_encode”. We used three
P-frames between successive I-frames, and three B-frames between other frames, i.e. using the
pattern “IBBBPBBBPBBBPBBB”. This is a common pattern which usually allows a strong
compression. Furthermore, we have set the quantisation levels for all types of frames to the
smallest possible value (i.e. 31) to obtain a compression ratio which is as close as possible to
the one of our approach.

For MPEG-4, we used the Linux program “mencoder” with the codec “msmpeg4v2” and
the AVI container format to generate the videos. We used the smallest possible variable bit
rate (4000 bits per second) to obtain a small video.

Even though we tried to reduce the file size of the MPEG-1 and MPEG-4 videos as much
as possible, we could neither create MPEG-1 nor MPEG-4 videos which are as small as the
ones created with our first approach (see Table 10.1). Note that MPEG-1 cropped the original
images such that width and height are a multiple of 16, see Table 10.1. Moreover, MPEG-4
replaced a part of the images in one sequence by a black boundary such that the non-black
image width is a multiple of 16.
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Figure 10.5.: Comparison of our first video compression codec MB against MPEG-1 and
MPEG-4. Shown are frame 250, 500, 650, and 1000. Note that the files sizes differ strongly,
as explained in detail in Section 10.2 and shown in Table 10.1.
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Original MB MPEG-1 MPEG-4

Figure 10.6.: Magnifications from frame 500 of the experiment shown in Figure 10.5. Note
the block artifacts when using MPEG-1 or MPEG-4. One can also see that our approach has
much sharper boundaries, both in the object and the background region.

In our first experiments, we encode the sequence S4 of the HumanEva-II benchmark. Fig-
ure 10.5 shows example frames from the videos created with the codecs MB, MPEG-1, and
MPEG-4, as well as a graph showing the MSE obtained per frame with each method. Even
though the video created with our approach is considerably smaller than those of the other
methods, its error is always below that of MPEG-1 and MPEG-4. This is even true in those
frames in which our tracking approach yielded only inaccurate results.

Magnifications for one of the frames shown in Figure 10.5 are given in Figure 10.6. It is
easy to observe that our approach creates sharp boundaries, while the approaches from the
MPEG family generate blocky results. However, our approach yields suboptimal results at the
sleeves, due to the rather poor performance of our simple model colouring approach explained
in Section 10.1.1.

Results for our codecs MB+dH and MB+mH with different numbers of particles are shown
in Figure 10.7. Again, we show a magnified image part to emphasise the differences, see
Figure 10.8. Figure 10.9 illustrates the MSE for each frame, while Table 10.2 contains the file
sizes for these experiments before and after applying PAQ.
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Figure 10.7.: Example results when compressing the HumanEva-II sequence S4 with our
codecs MB+dH (middle column) and MB+mH (right column). Shown are the images in frame
500 of the resulting videos with 100, 200, 500, 1000, and 2000 additional points. The original
image and the result with our codec MB are shown in the left column. The corresponding
images for MPEG-1 and MPEG-4 are shown in Figure 10.5.
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MB 200 500 1000 2000 Original

Figure 10.8.: Magnifications from frame 500 of the experiment shown in Figure 10.7. From
left to right: Result with the codec MB, with 200, 500, 1000, and 2000 additional particles,
and original image. Results created with the codec MB+dH are shown in the upper row, results
with the codec MB+mH in the lower row.

Codec Particles Size before compression Size after compression MSE
MB+dH 100 880640 194513 76.53

200 1505280 267728 63.18
500 3379200 612452 43.66

1000 6502400 1256973 30.27
2000 12748800 2639927 20.50

MB+mH 100 870400 192630 92.97
200 1495040 264210 67.07
500 3368960 586778 46.78

1000 6492160 1208553 37.71
2000 12738560 2531087 32.43

MB – 256000 161223 102.57
MPEG-1 – – 2019733 187.25
MPEG-4 – – 537404 210.58

Table 10.2.: File sizes when coding the HumanEva-II sequence S4 with the codecs MB+dH
and MB+mH with different numbers of particles. Given are the file sizes before and after
applying entropy coding, and the average MSE of the whole sequence. The size and error
when using MB, MPEG-1, and MPEG-4 are shown as comparison.
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MB+dH

MB+mH

Figure 10.9.: Error per frame with our video codecs MB+dH and MB+mH with different
numbers of additional points when compressing the sequence S4 from the HumanEva-II
benchmark. The results with the codec MB are shown as comparison.

As expected, the more additional point information is used, the more accurate the recon-
struction. This is true both visually and with respect to the MSE, which noticeably decreases
even when using only a few additional particles. However, one can also see bleeding artifacts
with the codec MB+dH when the first estimation obtained by projecting the object model is
inaccurate, see the right shoe in Figure 10.7. Furthermore, the foreground is quite noisy with
the codec MB+mH when only few particles are used.

Additionally, we encoded the sequence “Cart” (see Figure 5.15). A comparison of the per-
formance of our first codec MB against MPEG-1 and MPEG-4 is shown in Figure 10.10, and
magnifications thereof in Figure 10.11. Note that this sequence is much more challenging than
the first video for our codec due to several reasons: First of all, the background is very noisy,
which deteriorates the results of our diffusion-based image compression approach. Further-
more, the object model used is often not able to represent the complex movement performed
by the actor, e.g. due to muscle contractions or missing joint angles. Additionally, the lower
side of the feet are visible in many frames. However, this part is not included in the object
model. Thus, the object is partly visible from the inside, which results in wrong colours. Fi-
nally, this sequence is much shorter than the HumanEva-II sequence S4, which means that
the overhead necessary to store the object model is much larger. Especially due to the last
reason, the results of our algorithm are, compared to MPEG-1 and MPEG-4, much worse for
this sequence than for the sequence S4 of the HumanEva-II benchmark

Due to these reasons, the reconstruction error of our approach is worse than that of MPEG-
4, see the graph in Figure 10.10. However, note that the file created with our approach is also
significantly smaller (see Table 10.1), and that we still beat MPEG-1 in most frames.
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MB MPEG-1 MPEG-4

Fr
am

e
10

0
Fr

am
e

20
0

Fr
am

e
30

0
Fr

am
e

40
0

Figure 10.10.: Comparison of our method MB against MPEG-1 and MPEG-4 using the se-
quence “Cart” depicted in Figure 5.15. Shown are the frames 100, 200, 300, and 400, and
a graph showing the MSE in each frame. The reason for the peak in frame 360 when using
the codec MB is explained in Figure 10.12, the jump at frame 250 when using MPEG-4 in
Figure 10.13.
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Original MB MPEG-1 MPEG-4

Figure 10.11.: Magnifications from frame 200 of the experiment shown in Figure 10.10.
Again, one can easily see the block artifacts when using a codec of the MPEG family (third
and fourth image in first row). These artifacts are also well visible in the background, as
shown in the second row. The last row shows the lower right corner of each image. Since the
encoder of MPEG-1 trimmed the video from 500× 380 to 496× 368, this video is smaller, as
indicated by the white region. The encoder of MPEG-4 replaced four columns of pixels at the
right hand boundary with black pixels.

Original MB MPEG-1 MPEG-4

Figure 10.12.: Result in the corrupted frame 360 of the sequence “Cart”. While our codec MB
ignored the corruption, MPEG-1 and MPEG-4 encoded the original frame.
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Figure 10.13.: Magnifications of videos created with MPEG-4. Left: Sequence S4 of the
HumanEva-II benchmark. Right: Sequence “Cart”. For each sequence, one image before
frame 250 (left in each block) and one image after frame 250 (right in each block) is shown.

The peak that can be observed with our codec in frame 360 is due to the fact that the input
image was corrupted in that frame, see Figure 10.12. While MPEG-1 and MPEG-4 encode
the corrupted input frame, the codec MB stores a “corrected” version. This can be seen as
advantage of our algorithm, since it automatically corrected the corrupted frame. However,
it is also possible to argue that our algorithm failed to encode this image properly. This is
especially true if the background actually changes.

Note that it is well visible that the error with MPEG-4 suddenly rises in frame 250. This
is due to the fact that a new I-frame with lower quality than the first image was inserted by
mencoder, as illustrated in Figure 10.13. The low quality is probably due to the fact that a
variable bit rate was requested, as this allows the codec to use more bits in complex images.
However, as the coder was unable to achieve the requested bit rate, it chose to use less bits for
the new I-frame. In the HumanEva-II sequence, this also occurred as illustrated in the same
figure. When using MPEG-1, it is apparent from the sawtooth pattern that the quality of the
I-frames is better than those of the P- and B-frames.

Results for our other codecs are shown in Figure 10.14 and 10.15, respectively. As ex-
pected, more particles lead to more precise reconstructions. Furthermore, one can clearly
observe that using too many particles should be avoided: The total reconstruction quality can
never be much better than the quality of the background image, as only the foreground region
is enhanced through the particles. Consequently, the appropriate fraction of the total space
available should be used to store the background.

We also evaluated the effects of using different quantisation parameters than the standard
setting q = 17 used in all experiments so far. Therefore, we again consider the sequence
“Cart”. Figure 10.16 illustrates the resulting MSEs obtained with different number of particles
for our codecs MB+dH (left) and MB+mH (right). For both codecs, the same behaviour can be
seen: While allowing too few quantised values noticeable degrades the result, the performance
of our algorithms is very similar for a large range of different quantisation parameters. This
justifies using the constant value q = 17 even though the results with the codec MB+dH are
slightly better for this sequence when using q = 33.

Since the experiments in Section 3.2.1 showed that EED is better suited for 2-D image
inpainting than homogeneous diffusion, one might wonder why we have not used EED for our
video compression algorithms. In fact, there are several reasons for this decision. First of all,
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Figure 10.14.: Example results when compressing the sequence “Cart” with our codecs
MB+dH and MB+mH. Shown are the images in frame 500 of the resulting videos with 100,
200, 500, 1000, and 2000 additional points. The original image and the result with our codec
MB are shown in the left column.
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MB+dH

MB+mH

Figure 10.15.: Error per frame with our video codecs MB+dH and MB+mH with different
numbers of additional points when saving the sequence “Cart”. The results with the codec MB
are shown as comparison.

Figure 10.16.: MSE obtained when using different quantisation parameters q while compress-
ing the sequence “Cart” with different number of particles. Results for the codec MB+dH are
shown on the left, results for the codec MB+mH on the right.
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Figure 10.17.: Example results when compressing the sequence “Cart” with our codecs
MB+dH (middle column) and MB+mH (right column) with EED instead of homogeneous
diffusion. Shown are the images in frame 100 of the resulting videos with 100, 200, 500,
1000, and 2000 additional points. The original image and the result with our codec MB are
shown in the left column, results for MPEG-1 and MPEG-4 in Figure 10.10.
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MB+dH

MB+mH

Figure 10.18.: Error per frame with our video codecs MB+dH and MB+mH when using EED
instead of homogeneous diffusion. Shown are results with different numbers of additional
points when saving the sequence “Cart”. The results with the codec MB are shown as compar-
ison.

it is known how to chose the inpainting points for homogeneous diffusion, namely according
to the magnitude of the Laplacian of the smoothed image [20]. For EED, however, there is
no such result. Additionally, the resulting files with EED were 1.6% larger on average, as the
final entropy coding scheme was less efficient. Finally, inpainting with EED is slower than
inpainting with homogeneous diffusion. Thus, we decided to use the computationally more
favourable homogeneous diffusion.

To justify this decision, we also evaluate variants of our codecs which use EED as inpainting
operator in the “Cart” sequence, see Figures 10.17 and 10.18. Thereby, we still use same
approach to find the inpainting mask as before, since this is also the best known approximation
when using EED. According to our tests, these variants were not consistently better than those
with homogeneous diffusion, see Table 10.3. However, this might also be due to the fact that
we used the constant parameter set σ = 0.8, λ = 0.1 for our experiments. It is possible that
better results are obtained when optimising them. This is part of our future research.

Table 10.4 shows a final numerical comparison of our algorithms against MPEG-4. Here,
we have chosen the number of particles in such a way that the file size with our algorithms is
only slightly smaller than the one when using MPEG-4. For the HumanEva-II sequence S4,
this results in 400 additional particles, while 200 additional particles are used for the “Cart”
sequence. One can see that we clearly outperform MPEG-4 in the HumanEva-II sequence:
Even though the video created with MPEG-4 is 8% larger, its MSE about 4.4 times as large
as those of the videos created with our approaches. For the cart sequence, however, we are
slightly worse than MPEG-4 (due to the difficulties explained above).
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Codec Inpainting method Particles Size MSE
MB+dH homogeneous diffusion 100 83355 47.04

200 109137 41.55
500 196465 32.77

1000 353026 26.64
2000 691823 21.95

MB+dH EED 100 84060 44.62
200 108359 40.70
500 199590 34.20

1000 360625 28.23
2000 713183 23.53

MB+mH homogeneous diffusion 100 77471 53.30
200 103362 42.00
500 197006 33.36

1000 350542 27.83
2000 697960 25.27

MB+mH EED 100 77257 55.38
200 103620 40.45
500 196707 29.88

1000 362601 26.10
2000 737561 25.08

Table 10.3.: File sizes and average MSE when compressing the sequence “Cart” with the
codecs MB+dH and MB+mH with different number of particles. Both results with homoge-
neous diffusion as well as with EED are given.

HumanEva-II S4 Cart
method file size MSE file size MSE

Proposed 494 kb 48.09 110 kb 40.41
Proposed (with EED) 496 kb 47.66 104 kb 40.45

MPEG-4 537 kb 210.58 112 kb 31.52

Table 10.4.: File size and MSE of our best codecs and MPEG-4 with comparable file sizes.
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10.3. Summary
“People mistakenly assume that their thinking is done by their head;

it is actually done by the heart which first dictates the conclusion,
then commands the head to provide the reasoning that will defend it.”

Anthony de Mello (1931 – 1987)

The video compression algorithms presented in this chapter show promising results that can
beat those of MPEG-1, and even of MPEG-4. The ideas used are fundamentally different from
standard video compression algorithms, and thus have different advantages and drawbacks.
For example, our approaches are currently only applicable if one or several object models and a
projection matrix are known. Furthermore, the sequence must have a fairly static background.
Examples for such situations include traffic or security surveillance, or video conferencing.
Note that generating intermediate frames not saved is straightforward with our algorithm: All
that has to be done is to interpolate the object pose (and the particle locations and colours,
if present) between two frames. If the same object is used in several sequences, or if several
views from the same sequence should be compressed, the space required by our algorithm
can be further reduced. Also note that the video quality should be significantly improved if
coloured models of the foreground objects are already given.

218



11 Summary and Conclusion

“Science may set limits to knowledge, but should not set limits to imagination.”

Bertrand Russell (1872 - 1970)

This thesis discussed the challenging topics of image compression, 3-D pose tracking, and
halftoning, and illustrated that this apparently unrelated areas can be combined to video com-
pression algorithms.

First, we developed a compression algorithm for still images. Our novel image compression
codec is explained in Chapter 3. It is based on the idea to store only few single points, while the
remainder of the image is reconstructed by inpainting using partial differential equations. The
points are located on an adaptive rectangular grid to reduce the overhead necessary to store
the point locations. As we have shown, our algorithm can outperform standard compression
algorithms such as JPEG 2000 in images with a low or moderate amount of texture, especially
for high compression ratios.

In Chapters 4 to 8, we have developed our 3-D pose tracker. We started by introducing
related work in Chapter 4. In particular, we discussed the tracking approach of Brox, Rosen-
hahn, and Weickert, as our basic tracking approach is built upon this work.

The first version of our tracker is introduced in Chapter 5. In contrast to the approach from
Chapter 4, our tracking algorithm directly optimises the pose without using segmentation as
an intermediate step. Furthermore, Chapter 5 also introduces some optional extensions such
as handling of kinematic chains, reusing image information from the previous frames, or using
prior knowledge about the scene or motion patterns.

In Chapter 6, we have extended our tracker such that it can perform a joint tracking of
multiple objects, even in case of multiple mutual occlusions. We have shown that, even if only
one object is of interest, tracking additional objects passing before the object of interest can
stabilise the tracking.

Chapter 7 introduces the necessary improvements to deal with self-occlusions, which are
very common when tracking articulated objects such as humans. The idea to use additional
internal silhouettes obtained by splitting the object model is a consequent refinement of the
ideas presented for tracking multiple objects.

As further enhancement, we proposed to split not only the object, but also the background
region. The resulting localised mixture model is explained in detail in Chapter 8. The result-
ing region model works both for known and unknown background images, and for static or
variable background images. In all cases, tracking was further improved by this new model.
To the best of our knowledge, our tracking algorithm shows the second best results in the liter-
ature for the HumanEVA-II benchmark. The only algorithm that yields better results requires
five times as much time and additional background images.

219



11. Summary and Conclusion

As a final step, we have introduced our novel dithering and stippling algorithms in Chap-
ter 9. These models are based on electrostatic interactions, and are thus intuitive and flexible.
Using a detailed evaluation with different quality criteria, we have shown that our algorithms
approximate images or PDFs with a much higher quality than any other state-of-the-art dither-
ing or stippling algorithm. We further proposed several extensions that allow to adapt our
halftoning algorithms to specific tasks.

Finally, we introduced several video compression algorithms optimised for scenes with
static background and few moving foreground objects. They are well suited for compress-
ing video conferencing or surveillance videos. We have shown that the proposed codec can
yield better results than the standard video compression algorithms MPEG-1 and MPEG-4 in
some situations. This was possible by combining all the approaches introduced in the previous
chapters.

To summarise, this thesis has introduced novel algorithms for different topics. These topics
are halftoning, tracking, as well as image and video compression. In each of these topics, our
approaches yield excellent results that can outperform other state-of-the-art algorithms.

11.1. Future Research Directions
“Paradise is exactly like where you are right now...

only much, much better.”

Laura Phillips “Laurie” Anderson (∗1947)
in Language Is A Virus

Although the presented algorithms yield excellent results, there are many open questions
that should be addressed in the future. In the remainder of this chapter, we will discuss some
possible future research directions.

First of all, the tracking algorithm is not perfect and may fail in some situations. Thus, one
possible future work is to find a way to detect tracking failures and, if possible, to recover from
them. For example, it might be possible to deduce that tracking has failed if the appearance of
the object drastically changes. In such cases, searching for a new initial pose can stabilise the
tracking.

Another issue is that we currently assume that an (approximate) model for each moving
object is known. Even if only persons are moving, the models necessary to track them can
look quite different. Thus, another possible improvement is to use only a simple template
model, which is adapted during tracking. If different objects shall be tracked, it is beneficial
to automatically chose the right model for each moving object. Alternatively, one can also try
to create the object models directly from the image data.

In Section 5.4, we have explained several methods how to include prior knowledge about
the scene and the objects. A promising idea is to further follow this idea and include more
knowledge into our tracking algorithm. For example, it can happen that the estimated positions
of two or more objects intersect each other. The same is true for two parts of a single kinematic
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chain. In reality, however, this is impossible. Including this knowledge into our tracking
algorithm should therefore yield improved results.

Furthermore, our tracking approach has some free parameters which must be searched for
each new sequence. Mainly, this is the length l of the force vectors, and the threshold T (see
Section 5.2). One direction of future research is therefore to find a good heuristic for these
parameters, e.g. by using the distance of the objects from each camera. This would eliminate
the need to find these parameters by hand.

Similarly, there are a number of parameters in our image compression algorithm, such as
the number of possible quantisation levels, for which good values must be found for each new
image and each new compression ratio. Currently, this is done using exhaustive search, binary
search, or Fibonacci search. However, a good heuristic could significantly reduce the com-
pression time. This is especially true for the optimisation of the brightness values explained
in Section 3.1.5.

In some hatching applications, one might allow lines to bend. While this is not possible
with our current implementation, it should not be very difficult to extend our approach to this
setting. For example, one might replace the constraint that all points are on one line by a force
that only favours this.

It is well known that the simple RGB colour model is not optimal for compression, since
there are far more advanced possibilities to treat colour images than the simple methods used
in this thesis. For example, it is often advantageous to convert images such that they use a
different colour model, e.g. the YCbCr colour space used by the lossy versions of JPEG and
JPEG 2000 [259]. This reduces the amount of correlation between the channels, and thus
increases the compression ratio of the entropy coder used. Additionally, it is often proposed
to subsample the colour channels, or to quantise them coarser, since the human visual system
is less sensitive to colour differences than to brightness differences. In our image compression
framework, it may also be pay off to use different masks for different channels such that less
information about the colour channels is given. All this is part of our ongoing research.

One important part upon which our video compression algorithm is built is the ability to
track objects moving in the video to be compressed. However, to make this approach appli-
cable for compressing general video sequences, it is necessary to detect new objects entering
the field of vision, and to find initial poses for all objects. In the literature, there are several
algorithms for these tasks which can be included into our framework. However, we have not
implemented them, since no new scientific insights are to be expected.

Obviously, the quality of our video compression algorithms crucially depends on the model
used for tracking. If the model is sampled too fine, saving the model requires too much
space. If it is sampled too coarse, our algorithm MB approximates the foreground region
poorly. Thus, our approach either yields a high error, or many additional particles are needed
to improve the first estimation of the foreground region. Thus, it might pay off to investigate
the effect of mesh refinement or mesh simplification. It is also possible to compress the object
models with diffusion approaches, as done in [15], or to use a (compressed) texture instead of
saving the colour of each vertex.

As we have elaborated, there are many possibilities to improve and adapt our flexible ap-
proaches to future requirements.
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A Axiomatic Introduction to Statistics

“In these matters the only certainty is that nothing is certain.”

Pliny the Elder (23 – 79)

In this section, we introduce the necessary statistics to axiomatically introduce probability
density functions, in contrast to the intuitive introduction given in Section 2.7. We will skip
those definitions and theorems that are not required in this thesis. More complete introductions
can be found in [130, 145, 257].

We start this section with two basic definitions:

Definition A.A: (σ-algebra) A σ-algebra A is a family of subsets of a non-empty set Ω
which fulfils the following properties:

• Ω ∈ A

• A ∈ A ⇒ Ω \ A ∈ A

• (∀i ∈ N : Ai ∈ A)⇒
⋃∞
i=1 Ai ∈ A

Definition A.B: (Measurable space) The pair (Ω,A), with a set Ω and a σ-algebra A, as
defined in Definition A.A, is called measurable space.

The most prominent example for a σ-algebra over R, which will also be used in this thesis,
is the Borel σ-algebra B. By definition, this algebra is the smallest σ-algebra containing all
open sets. Is it easy to show that the Borel σ-algebra also contains all half-open and closed
sets, and the union of all such sets. In fact, it is not trivial1 to write down a set that is not
contained in the Borel σ-algebra.

Next, we introduce the notion of probability distributions, which is the core definition of
probability theory:

Definition A.C: (Probability distribution) A function P : A → [0, 1] defined over a σ-
algebraA is called probability distribution (or probability measure) if the following properties
hold:

• P (∅) = 0

• P (Ω) = 1

1The axiom of choice is required
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• P is σ-additive. That is, if the sets Ai are disjoint, the property

P

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai) (A.1)

holds.

Probability distributions are rarely used alone, but are used as a part of a larger entity. This
larger entity is given by the following definition:

Definition A.D: (Probability space) The triple (Ω,A, P ) is called probability space if the
following properties hold:

• A is a σ-algebra of subsets of Ω

• P is a probability distribution over A

The elements of A are called events. As a simple example, consider the possible outcomes
of rolling a fair die. In this case A = {1, 2, 3, 4, 5, 6}, and every of these numbers is one
possible event.

Intuitively, the probability distribution P assigns a probability to each event. In case of the
fair die roll, the corresponding probability distribution is P ({i}) = 1

6
, with i ∈ {1, 2, 3, 4, 5, 6}.

Often, one is not interested in the random event itself, but on some quantity derived from
it. If two dice are thrown, for example, one might only be interested in the sum of both
dice instead of the numbers on each die. In such a situation, random variables are used. To
introduce random variables, we have to first define measurable functions, though:

Definition A.E: (Measurable function) A measurable function is a function f : (Ω,A)→
(Ω′,A′) with

• measurable spaces (Ω,A) and (Ω′,A′)

• f−1(A′) ∈ A for all A′ ∈ A′.

Definition A.F: (Random variable) Let (Ω,A, P ) be a probability space and (Ω′,A′) a
measurable space. Then, a random variable is a measurable function X : (Ω,A)→ (Ω′,A′).

Here, we will only consider random variables with domain Rn, where n is an integer larger
than zero.

As explained in Section 2.7, a random variable can be visualised as numeric result of a non-
deterministic process. To compute how likely the different outcomes of the random variable
are, one uses either its distribution or its cumulative distribution function (or CDF). These are
defined in the following way:
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Figure A.1.: Examples of a CDF (left) and a PDF (right). As can be seen, a CDF is monotoni-
cally increasing and has the limits zero and one. A PDF, however, must only be non-negative,
but can be arbitrarily high as long as the integral over it is one. There can be jumps and
constant sections in a CDF and in a PDF.

Definition A.G: (Distribution) The distribution of a random variable X on the probability
space (R,B, P ) is given by

PX(B) := P (X−1(B)) (A.2)
= P ({ω : X(ω) ∈ B}) (A.3)
= P (X ∈ B) for all B ∈ X(Ω) ∩ B. (A.4)

Definition A.H: (Cumulative distribution function) Let X be a random variable on the
probability space (R,B, P ). The cumulative distribution function (or CDF) F of X is given
by

F (x) := P (X ≤ x) = P (X−1(]−∞, x])) = PX(]−∞, x]). (A.5)

In order to understand how a cumulative distribution function looks like, we consider the
following properties:

Theorem A.I: (Properties of cumulative distribution functions) Let F be the CDF of a
random variable on (R,B, P ). Then, we have:

• F is non-decreasing, i.e. x > y ⇒ F (x) ≥ F (y) for all x, y ∈ R

• F is right continuous, i.e. limx→y+ F (x) = limx↓y F (x) = F (y) for all y ∈ R

• lim
x→−∞

F (x) = 0, lim
x→∞

F (x) = 1
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Furthermore, every function which fulfils these three properties is a distribution for some
random variable.

For some distributions, it is more convenient to define the distribution using a probability
density function, or short PDF:

Definition A.J: (Probability density function) A function f : R→ R is called a probabil-
ity density function (or PDF) for the random variable X with distribution F if

• f(x) ≥ 0 for all x ∈ R

• F (x) =

∫ x

−∞
f(t)dt for all x ∈ R

• F is continuous on R

One of the advantages of defining a distribution by giving a PDF is that one can immedi-
ately see which outcomes are more likely, namely those regions where the PDF assumes large
values. Moreover, the PDF is often much simpler than the distribution of a random variable.
Figure A.1 shows examples for a CDF and a PDF.

Note that not every random variable has a probability density function, though. Specifically,
all random variables with a non-continuous CDF, i.e. all random variables for which there
exists a point with a non-zero probability, cannot be given as PDF. In fact, it is quite easy to
show that the following properties hold:

Lemma A.K: (Properties of PDFs) For a probability distribution P given by the PDF f ,
the following properties hold:

• ∀b ∈ R : P ({b}) = 0

• ∀a < b ∈ R : P (]a, b]) = P ([a, b]) = P (]a, b[) = P ([a, b[) =

∫ b

a

f(t)dt.

When considering more than one random variable, e.g. the individual components of a
multi-dimensional random variable, it is possible that some variables depend on each other.
As a simple example, consider rolling a die, with the random variablesA andB which consider
the number rolled (A), and whether the die shows an even number (B), respectively. Thus,
knowing the result of the random variable A automatically determines the outcome of the
random variable B.

It is also possible that all outcomes are still possible, but the likelihood of some outcomes
has changed, e.g. consider the random variables B and C, where C indicates whether the die
shows a number smaller than four. In this case, the random variables are dependent on each
other. If this is not the case, they are called independent. If random variables are independent,
this means that knowing the outcome of one of the experiments does not yield any information
about the outcome of other experiments. For example, when a fair die is rolled twice, the
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result of the second roll is independent from the first. However, the sum of the two rolls is not
independent from the result of the first roll.

Mathematically, independence is defined as follows:

Definition A.L: (Independence) A collection of events A1, . . . , An ∈ A is called indepen-
dent if

P

(⋂
j∈J

Aj

)
=
∏
j∈J

P (Ai) (A.6)

holds for every set J ⊂ {A1, . . . , An}, and mutually independent if

P

(
n⋂
i=1

Aj

)
=

n∏
i=1

P (Ai) (A.7)

holds. A collection of random variables X1, . . . , Xn is called (mutually) independent if, for
any numbers a1, . . . , an ∈ R, the events {X1 ≤ a1}, . . . , {Xn ≤ an} are (mutually) indepen-
dent.

If one considers a sequence of random variables, one can try to estimate the underlying
PDF (see Section 2.7.2). In such a situation, one usually assumes that the random variables
are independent and identically distributed, though:

Definition A.M: (Independent and identically distributed random variables) A se-
quence of random variables is independent and identically distributed (or short (i.i.d.)) if

• The random variables are mutually independent

• Each random variable has the same probability distribution
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“All abstract sciences are nothing but the study of relations between signs.”

Denis Diderot (1713 – 1784)

Note that some signs have multiple meanings.

Notation Description
A σ-algebra. 223
a Free parameter in image compression used to compute the threshold T. 34
B Borel σ-algebra of R. 223
C Desired compression ratio for our image compression algorithm. 40

or: Centre of a camera. 23
or: Number of cameras in tracking. 70
or: Tradeoff parameter in multi-size halftoning. 156

c Principal point of a camera. 23, 24
cχ Indicator function of the points occupied when projecting a 3-D model with pose χ

into an image. 78
c0 Speed of light in vacuum. 12

or: Indicator function of the background when tracking with multiple regions. 111
ci Image point corresponding to a vertexCi in a 2-D–3-D point correspondence (ci, Ci).

62
Ci Vertex corresponding to an image point ci in a 2-D–3-D point correspondence

(ci, Ci). 62
cχi,i Indicator function of the i-th object with pose χi. 108
cjχi,i Indicator function of the j-th part of the i-th object with pose χi. 121
cK Indicator function of the point set K. 6
cr Circular curve with radius r. 12
D Normal vector of a place in Hessian form. 22, 90
d Current recursion depth while creating adaptive rectangular subdivision. 34

or: Signed distance of a plane in Hessian form from the origin. 22, 90
or: Standard Euclidean metric of a vector field. 109

E Electric field. 12
E Any energy function. 67
en,x Unit vector from pn to the grid location x ∈ Γ. 152
ei,j Unit vector from the i-th particle to the j-th particle, see Equation (2.22). 12, 151
f Input image (continuous). 5, 27

or: Focal length of a camera. 23
F Symbol for “farad”, the unit of capacitance. 12

or: Foreground region in our video compression codec MB+mH. 202
F Any kind of force. 12
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Notation Description
Fn Total force acting on the particle n ∈ P . 152
Fa,n Attractive force acting on n-th particle due to the underlying image. 151
Fr,n,m Repulsive force acting on n-th particle due to the m-th particle. 13, 151
Fr,n Repulsive force acting on n-th particle due all other particles. 151
Fg,n Force between particle n and the closest grid point g. 158, 240
fg Principal frequency. 174
G Any group, or Lie group. 14, 15
g Diffusivity function. 8
GL(n,R) The group of invertible n× n matrices over R. 15
H (Regularised) Heaviside function. 67

or: Unit of inductance. 12
h Bandwidth of a kernel. 28
I Identity matrix (of matching dimension). 16, 63
i Interaction matrix for halftoning with different sizes/colours. 157
j Strength of the turbulence field T . 161
K Inpainting mask used for image compression. 6, 35

or: Kernel. 27
k Constant equal to twice Coulomb’s constant, see Equation (2.28). 13
Kσ Gaussian with standard deviation σ. 7
L Differential operator. 6

or: A line in Plücker form. 20
or: Segmentation of an image. 133

l Length of the force vectors used for tracking. 81
or: Number of parts an object model consists of when using additional internal sil-
houettes. 120
or: Free parameter in image compression used to compute the threshold T. 34

Li A line in Plücker form passing through the optical centre of the camera and the ith
image-vertex point correspondence (ci, Ci). 63

li Number of parts the i-th object model consists of when using additional internal
silhouettes. l0 = 1 correspond to the background region. 121

M Maximal depth allowed for the tree which is used to store the inpainting mask K in
our image compression algorithm. 35
or: Number of feature channels in an image. 66
or: Region between fore- and background region in the video compression codec
MB+mH. 202

m Minimal depth allowed for the tree which is used to store the inpainting mask K in
our image compression algorithm. 35
or: Momentum of a Plücker line. 20

M j
i j-th part of the i-th multi-component object model. 121

M j j-th part of an multi-component object model. 120
N Number of objects when tracking multiple objects. 107

or: Number of prior joint configurations when using angle priors. 87
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Notation Description
n Number of joint angles in a kinematic chain. 19

or: Normalised vector pointing in the direction of a line in Plücker form. 20
nx Width of a discrete image. 151
ny Height of a discrete image. 151
Oj
i Set of points of the j-th part of the i-th object with pose χi which are projected to

the image point x. 121
Oj Set of points of the j-th internal part of the object with pose χ which are projected to

the image point x. 121
Oi Set of points of the i-th object with pose χi which are projected to the image point

x. 108
P Set of particles used for halftoning. 151
P Projection matrix. 24

or: Plane is Hessian form. 22, 90
or: Probability distribution. 26

pkn Position of the n-th particle at time k. 152
p,pi Position of a particle, or of the i-th particle, respectively. 12, 151
p Probability density function. 26
p(s, x) Probability density function estimated in a local Gaussian model. 30
pin PDF of the inside of the (only) object. 69, 78
pi,in PDF of the inside of the i-th object. 83, 108
pji PDF of the j part of the i-th object model. 121
pj PDF of M j , i.e. the j part of an object model. 121
pout PDF of the outside of the (only) object. 69, 78
pi,out PDF of the outside of the i-th object. 83, 108
q, qi Charge of a particle, or of the i-th particle, respectively. 12, 151

or: Number quantised values when compressing. 37, 200
R Retinal plane. 23
R The set of real numbers.
r Ratio between one pixel in the image and one dot on the output device. 156

or: Part of the pose change threshold T . 81
R+ The set of positive real numbers.
SE(3) The Lie group of rigid motions in 3-D. 15
se(3) The Lie algebra corresponding to SE(3). 15
SO(3) The Lie group of rotations in 3-D. 15
so(3) The Lie algebra corresponding to SO(3). 15
T Threshold below which the pose changes must be before the next frame is considered

when tracking. 81, 239, 240
or: Threshold for the maximal distance from the projected object models considered
in two of our video compression codecs. 200, 202
or: Threshold used for adaptive rectangular splitting when compressing images. 34
or: Turbulence field used to prevent regular patterns when performing halftoning.
161, 238
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Notation Description
t Variable denoting time. 6, 88

or: Part of the pose change threshold T . 81
u(x) Input image (discrete). 151
u(x, t) Time dependent image evolution. 6
vji Visibility function of the j-th object part of the i-th object, whereby j = 0 denotes

the background region. 121
vi Visibility function of the i-th object, whereby 0 denotes the background region. 108
vj Visibility function of the j-th object part, whereby 0 denotes the background region.

121
W Potential energy of a set of charges particles in an electric field. 152
wS Fraction of charges located in small particles. 157
wM Fraction of charges located in medium-sized particles. 157
wL Fraction of charges located in large particles. 157
X Random variable. 26

or: General purpose variable, often the first coordinate of a vector.

cot Cotangent, i.e. the reciprocal of the tangent.
diag(A) A vector containing the diagonal entries of the quadratic matrix A.
div(v) Divergence of a vector (v1, . . . , vn)>: div(v) =

∑n
i=1 ∂xiv.

exp(X) Exponential operator. Note that X can be a real number, a quadratic matrix, or an
element of a Lie algebra. 15

log(X) Exponential operator. Note that X can be a real number, a quadratic matrix, or an
element of a Lie algebra. 17

AT The transpose of the matrix or vector A.
tr(A) The trace of the matrix A, i.e. the sum of the entries on the main diagonal.

α Tradeoff parameter in multi-class halftoning. 162
or: Merging threshold used in the automatic component generation algorithm. 123

β Regularisation weight for attractive grid forces. 158
χ The 6 + n pose parameters of an articulated object. 19
χi The pose parameters of the ith articulated object. 108
δ(x, y) Dirac delta distribution. 134
∆u Laplacian of the image u. See Equation (2.7) for more details. 7
ε0 Electric constant. 12
η Normalised gradient. 9
Γ Discrete image domain. 151
λ Contrast parameter for nonlinear diffusion and inpainting operators. 8

or: Contrast weight used in the force vector Fg,n. 158
or: Weighting parameter in combined segmentation and pose tracking. 69

µ Mean of a Gaussian. 7, 28
µ̃ Estimation of the mean of a Gaussian. 29
µ0 Magnetic constant. 12
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Notation Description
∇ Gradient operator.
ν Weighting parameter for image segmentation using level sets. 67
Ω Continuous image domain. 5, 27

or: A non-empty set for σ-algebras and probability spaces. 34
Ω1,Ω2 Parts of the image domain, e.g. from segmentation. 66
Ωin,Ω2 Part of the image in which the tracked object is visible. 79
Ωout,Ω2 Parts of the image in which the tracked object is not visible. 79
Ωj j-th subregion of the complete image obtained by segmentation. 135
Φ Level-set function. 67

or: Electrical flux. 12
Φ0 Level-set function used as segmentation prior. 69
σ Standard deviation, usually of a Gaussian. 7, 28
σ̃ Estimation of a standard deviation. 29
τ Time step size. 88, 152
θ Angle between the coordinate axes of the 2-D image coordinate system. 24
θi i-th joint angle in a kinematic chain. 19
Θ Vector containing all joint angles of a kinematic chain. 19
ξ An element of the Lie Group SE(3), usually denoting the six pose parameter of a

rigid object. 15
ξlast Initial pose estimation in a frame. 70
ξi Rotation axis of the i-th joint of a kinematic chain. 19

A ∗B Convolution of the two functions A and B.
[·, ·] Lie bracket or commutator. 14
∃ Universal quantification.
∀ Existential quantification.
∂t Partial differentiation with respect to t.∮
cr

Line integral along the closed curve cr. 12
a× b Cross product of the vectors a and b.

or: The Cartesian product of the two sets a and b.
∨ Vee operator (convertion from matrix to vector notation in Lie algebras). 16
ω∨ Vee operator applied on ω. 16
∧ Wedge operator (convertion from vector to matrix notation in Lie algebras). 16
ω̂, ω∧ Wedge operator applied on ω. 16
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