
This article has appeared in:
Proc. 30th Picture Coding Symposium (PCS 2013, Dec. 8-11, 2013, San Jose, CA). IEEE, Piscataway, 2013.

c©IEEE. DOI: 10.1109/PCS.2013.6737726. Link to the paper

PROGRESSIVE MODES IN PDE-BASED
IMAGE COMPRESSION

Christian Schmaltz, Nicolas Mach, Markus Mainberger, Joachim Weickert
Mathematical Image Analysis Group

Faculty of Mathematics and Computer Science, Campus, E1.7
Saarland University, 66041 Saarbrücken, Germany

Email: {schmaltz, mach, mainberger, weickert}@mia.uni-saarland.de

Abstract—Algorithms based on partial differential equations
(PDEs) constitute a relatively novel class of lossy image compres-
sion methods. In this paper we introduce a practically relevant
extension: We demonstrate how to incorporate progressive modes
into these codecs. Since the data in PDE-based codecs is only
available at irregular locations, this is a challenging task. We
propose two progressive modes: The first one changes the order
in which the grey values are stored, while the second additionally
distributes the stored information more evenly over the file. Our
experiments show that the novel codecs can outperform JPEG
and even JPEG 2000 for high compression ratios.

Index Terms—PDE-based image compression, progressive
mode

I. INTRODUCTION

The main task in lossy image compression is to reduce the
file size of an image while degrading the image quality as little
as possible. However, there are several additional requirements
on an image compression algorithm in practise. In this paper,
we focus on one of the most useful and widely employed ad-
ditional requirements, namely the so-called progressive mode.
This mode, which is also referred to as embedded bitstreams
or signal-to-noise ratio scalability, allows to generate a coarse
preview using only the beginning of a complete data stream.
This is especially useful for applications in which bandwidth
is scarce, e.g. when browsing a database of large images.

Progressive modes are readily available in most standard
image compression codecs. Lossless image compression algo-
rithms such as GIF and PNG use interleaving or interlacing,
which only changes the order in which pixels are stored. In the
lossy mode of the JPEG standard, there are three progressive
modes that can be activated: (1) Low-frequent coefficients can
be transmitted first, (2) one can store all upper bits of the
coefficients first before the lower bits are stored, and (3) there
is a hierarchical mode which stores a downsampled version of
the image, which is used as a predictor for the next resolution.
However, this can increase the total file size up to one third [1].

The JPEG 2000 algorithm [2] always stores images in
progressive mode. This is achieved with the Embedded Block

Coding with Optimal Truncation (EBCOT) scheme, which
encodes bit-planes in three passes.

In contrast to these popular transformation-based ap-
proaches, there are also recent approaches that store only a
subset of all image points, and build upon partial differential
equations (PDEs) to reconstruct the remainder of the image.
So far, PDE-based image compression methods do not include
progressive modes, though. Note that standard progressive
modes of existing image compression algorithms are not
directly applicable to PDE-based image compression, as data
is only available at irregular locations. Thus, the goal of this
paper is to introduce progressive modes into PDE-based image
compression algorithms.

While there is a long history on research on feature-based
image representations where missing information is filled in
by homogeneous diffusion (see [3]–[5], among others), most
of the early works do not consider applications in image
compression. Only recently, it has been shown that edge-based
homogeneous diffusion approaches can beat JPEG 2000 for
cartoon-like images [6], as well as for depth maps [7].

Apart from these linear, feature-based approaches, there are
some attempts to use nonlinear PDEs for image compression.
Chan and Zhou [8] propose a variational approach with total
variation regularisation to minimise oscillations in wavelet
decompositions. Work by Solé et al. [9] evaluates different
PDEs for compression of digital elevation maps, and Liu et
al [10] integrate inpainting into existing approaches.

The image compression algorithm of Galić et al. [11] uses
points located on an adaptive triangulation, which is stored as
binary tree. The remainder of the image is then reconstructed
using edge-enhancing anisotropic diffusion (EED) [12]. The
performance of this compression approach only lies between
that of JPEG and JPEG 2000 for medium to high compression
ratios. The R-EED approach from [13] builds upon these ideas.
By changing a number of concepts, e.g. using rectangular
subdivisions instead of triangular ones, the obtained image
compression codec yields much better results. These results
can even surpass those of JPEG 2000 for most compression

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&tp=&arnumber=6737726

ratios in images with little texture. In [14] it was demonstrated
how to further improve the compression quality. Due to the
promising results reported for the R-EED algorithm, we use
it as the basis of our proposed progressive modes.

Our paper is organised as follows: First, we briefly explain
the R-EED codec in Section II. In Section III, we illustrate two
ways how to incorporate progressive modes into this codec.
After evaluating these approaches in Section IV, we conclude
the paper with a summary in Section IV.

II. THE BASELINE COMPRESSION CODEC

The R-EED codec [14] only stores the grey values at a small
subset of all pixels and interpolates the missing values when
decoding. Here, we first describe this interpolation step.

Let f : Ω → R be the original image to be reconstructed
from the grey values in a given subset K ⊂ Ω. The set K
is called the interpolation mask. The idea is to compute a
reconstruction u such that u is equal to f in K, and such that
u is smooth or piecewise smooth in Ω \K. Both conditions
are met when solving the partial differential equation (PDE)

(1− cK)Lu− cK (u− f) = 0 (1)

for u with reflecting (i.e. homogeneous Neumann) boundary
conditions. Thereby, L denotes a differential operator that
ensures the requested smoothness properties, and cK is the
characteristic function of K, i.e. a function that is 1 at the
specified data set K, and 0 elsewhere. Since this PDE always
keeps the given points fixed, it can also be written as the
simplified PDE Lu = 0 on Ω \ K, with Dirichlet boundary
conditions on K, and homogeneous Neumann boundary con-
ditions on the boundary of Ω. This equation can be solved
by introducing an artificial time parameter t and computing
the steady state of the evolution equation ∂tu = Lu with
a finite difference approximation. As proposed in [11], [14],
we use edge-enhancing anisotropic diffusion (EED) [12] as
interpolation operator:

Lu = div(D(∇uσ)∇u). (2)

Thereby, uσ denotes the image u after smoothing with a 2-D
Gaussian Kσ with standard deviation σ. The diffusion tensor
D(∇uσ) is a symmetric matrix with eigenvectors ∇uσ and
∇u⊥σ that are oriented across image edges, and along them,
respectively. The corresponding eigenvalues are given by

µ1 =
1√

1 + |∇uσ|2
λ2

, µ2 = 1. (3)

This combines smooth interpolation along edges with
discontinuity-preserving interpolation across edges. Finally, λ
is a contrast parameter. R-EED stores the (quantised) value of
λ for which the best results are obtained using a single byte.

To decide which pixels are kept in K, R-EED simulates
the decompression step by reconstructing the image from five
points, namely the four corners of the image and its centre.
Then, original and reconstruction are compared by computing
the mean squared error (MSE). If it exceeds a threshold T ,

the reconstruction is considered to be insufficiently close to the
original. In this case, the image is split along the middle of the
x or y direction, whichever is larger, and both subimages are
recursively processed in the same way. Thereby, the threshold
T = a`d, depends on the free parameters a and `, as well as
on the recursion depth d.

Once these splitting steps are completed, it is known which
points will be saved, namely the five points indicated by
each rectangle. Instead of storing the position of each pixel
individually, it is sufficient to store the binary tree containing
the splitting decisions. This is done by first storing the depth
until which all sub-images are split, as well as the depth at
which no sub-image is split anymore. In between, one bit for
each node of the tree needs to be saved. The obtained points
form the inpainting mask K used for reconstructing the image.

The amount of data necessary to store the tree depends on
its maximal and minimal depth. Thus, it pays off to specify a
maximal depth up to which all rectangles are split independent
of T , and a minimal depth at which no rectangle is split no
matter what T is. This way, more points can be saved without
increasing the file size, as less space is required for the tree.

The grey values of all points to be kept are then quantised
and saved using a standard entropy coding scheme. Here,
we use the simple Huffman coding algorithm to allow a fair
comparison against JPEG and JPEG 2000. The Huffman codes
used depend on the image to be compressed, and are thus
stored in the file header.

It is possible to store brightness values which differ from
the actual values in the input image. While this introduces
an additional error at the encoded pixels, it can improve the
overall reconstruction quality. We use a simple approach that
optimises one grey value after the other, but more advanced
optimisation schemes are possible, see [6] for details.

Due to quantisation of the stored grey values as well as the
optimisations described above, the reconstructed values might
be more accurate than the stored brightness values. Thus, after
inpainting is done, all points close to the points in K are
marked as unknown, and another inpainting step is done to
reconstruct them from the remaining points. Details about all
these steps can be found in [14].

III. R-EED IN PROGRESSIVE MODE

The original R-EED algorithm stores the brightness values
row-wise. This is not only the simplest way to traverse all
mask points, but also ensures that adjacent grey values in
the resulting file are often close together in the image. As
nearby grey values have a slightly higher probability of being
similar, sophisticated entropy coders can make use of this
fact to improve the compression ratio. However, when only
a part of the image was transmitted, grey values are known
only in some image areas. While the image is reconstructed
well in those regions, the remainder of the image is basically
unknown, see the bottom left image in Figure 1.

At this point, the basic idea how to include a progressive
mode into R-EED becomes clear: Instead of storing grey
values row-wise, they should be stored such that the points

are distributed over the complete image domain no matter how
much of the compressed image has been transmitted. How to
chose a good ordering is less obvious, though.

A tempting idea would be to always chose the point from
the inpainting mask that improves the final reconstruction
quality most. Even though this would yield very good results,
the overhead necessary to store the ordering of the points is
much too expensive. Even if only 720 grey values are stored,
which corresponds to a compression ratio of 150 : 1 for the
image “trui” (see first image in Figure 1), storing an ordering
requires log2(720!) · 18 > 725 bytes. However, the size of the
compressed image is only 437 bytes. With more points, the
overhead is even worse.

Thus, we focus on methods which do not require additional
information. Instead, a good ordering is estimated from the
inpainting mask and the used tree structure, as this data is
stored anyway. To achieve this goal, we remember that the
inpainting mask is created in a specific way: Each part of the
image should (approximately) contain the fraction of points
necessary to obtain a comparably good reconstruction. Thus, it
appears natural to preserve these fractions as good as possible
if only a part of the compressed file is available.

Therefore, we traverse the tree containing the splitting
decisions once for each point to be saved. At every node,
we continue with the child corresponding to the most under-
represented image part, i.e. to the image part for which the
smallest fraction of the points to be stored has been saved so
far. Finally, we arrive at a node which has no children, or only
children with completely saved mask points. Then, we store
an unsaved mask point in the image part corresponding to this
tree node. When loading an image, the values stored in the file
are put into the positions indicated by the inpainting mask in
the same order. Points for which no grey value is available yet
are assumed to be unknown, i.e. these points are removed from
the inpainting mask before inpainting. In our experiments, we
denote this progressive mode as “R-EED-P1”.

We have tried several other approaches, e.g. a pseudo-
random permutation of the mask points, or a level-wise storage
of the points depending only on their depth in the tree node.
Due to space restrictions, and to avoid possible confusions,
we refrain from explaining those inferior approaches in detail.

The performance of the first approach is still sub-optimal if
only a very small part of the file is known. This is due to the
overhead necessary to store file header and Huffman tree, and
the fact that inpainting a complex image from a very small
number of points typically yields very bad results (see fourth
image of the first row in Figure 1).

To diminish these problems, we propose a second progres-
sive mode which builds upon the first. In this mode, which
we call “R-EED-P2”, the grey values of the points in the
inpainting mask are split in two parts. The first part consists of
the grey values fi divided by s := [

√
q] using integer division,

where [·] denotes rounding to the closest integer and q is the
number of quantisation levels used in an image. In the second
part, the remainder r := fi mod s is stored.

Saving grey values in two parts has two advantages: First of

all, the resulting two Huffman trees are smaller than the single
Huffman tree used before, which reduces the overhead of the
file header. Thus, less information is necessary to obtain the
first grey values and a first rough approximation, as visible in
the graph shown in Figure 2. The smaller Huffman trees often
result in an overall slightly less efficient entropy coding, but
the total file size can also be smaller, as for the image “walter”
and a compression ratio of 78 : 1. The second Huffman tree
is not stored in the file header but directly before it is used
for the first time. The second advantage is that less bits are
initially necessary for each point. Thus, information at more
points is available when inpainting after a small part of the
file is known. Even though these grey values are quantised
coarser, they still allow a much better reconstruction than a
significantly smaller number of more accurate points. This is
shown in the last two images in the first row in Figure 1.

After a certain number of coarse grey values are known, the
shapes appearing in the image can already be reconstructed
rather accurately. However, the specific grey values are still
quite imprecise due to the strong quantisation performed
in the first step. At this point, the reconstruction benefits
more from more accurate grey values than from additional
inaccurate points. Thus, it is not a good idea to store all points
inaccurately before saving the second part of each grey value.
Due to this reason, our second progressive mode actually
performs three passes: In the first pass, a certain percentage of
the brightness values is stored inaccurately, as described above.
Afterwards, the additional information necessary to obtain the
actual grey values for the points stored in the first pass is saved.
In the final pass, the grey values missing so far are stored as
accurate as without progressive modes. Storing the actual grey
values directly would require a novel Huffman tree, resulting
in an additional overhead. Instead, we store each grey value
in two parts using the same Huffman trees as before.

IV. EXPERIMENTS

To judge the performance of the proposed progressive
modes, we evaluate the results obtained with different amount
of transmitted data. For this, we employ the peak signal to
noise ratio (PSNR). The underlying test images are “trui” and
“walter”; see Figure 1. For our tests, we used compression
ratios ranging from 19 : 1 to 80 : 1 and partial files ranging
from the smallest possible fraction for which a reconstruction
is possible up to the complete files. The images for JPEG and
JPEG 2000 have been created using the Linux tool “convert”
(version 6.8.3-6 2013-03-04 Q16) with default parameters. The
resulting PSNRs for different parts of the files are shown
in Figure 2. Note that the JPEG and JPEG 2000 files are
slightly larger than those created with our algorithm, and that
the number of bytes that must be transmitted before the first
estimation is possible differs due to different header sizes.
JPEG 2000 has a disadvantage with this respect, as its header
is comparably large.

For very small fractions of a stored image compressed with
a small compression ratio, the progressive mode of JPEG and
JPEG 2000 typically yield slightly better reconstructions than

JPEG JPEG 2000 R-EED-P1 R-EED-P2
O

ri
gi

na
l

Tr
ui

33
.3

%
of

da
ta

O
ri

gi
na

l
W

al
te

r

66
.6

%
of

da
ta

O
ri

gi
na

l
A

lg
or

ith
m

50
%

of
da

ta

10
0%

of
da

ta

Fig. 1. First column: Input images “trui” and “walter” used in the experiments, and image reconstructed from half the data without using the progressive
mode proposed in this paper. Remaining columns: Images reconstructed from partial files containing the image “walter”, compressed using JPEG, JPEG
2000, and the proposed methods, respectively. All compressed images have a compression ratio of 80 : 1.

Fig. 2. These graphs show the performance of JPEG, JPEG 2000, and of
our progressive modes for the image “trui” (size: 256×256, see Figure 1(a))
and compression ratios around 19 : 1 (left) and 76 : 1 (right).

our approaches. For medium and high compression ratios,
however, our progressive modes clearly surpass that of JPEG
and JPEG 2000. For a visual evaluation, we show example
results for the image “walter” in Figure 1.

CONCLUSION

In this paper, we have explained how to incorporate progres-
sive modes into PDE-based image compression algorithms.
More precisely, we proposed two progressive modes, and
demonstrated that they go head to head with existing modes for
JPEG and JPEG 2000. This is an important next step towards
making lossy PDE-based image compression algorithms more
attractive for real-world applications.

Our future work includes investigating more advanced en-
tropy coding schemes for our progressive modes. Another

line of research is to transfer our results to other PDE-based
compression approaches for 2-D and 3-D data.

REFERENCES

[1] W. B. Pennebaker and J. L. Mitchell, JPEG: Still Image Data Compres-
sion Standard. New York: Springer, 1992.

[2] D. S. Taubman and M. W. Marcellin, Eds., JPEG 2000: Image Compres-
sion Fundamentals, Standards and Practice. Boston: Kluwer, 2002.

[3] S. Carlsson, “Sketch based coding of grey level images,” Signal Pro-
cessing, vol. 15, pp. 57–83, 1988.

[4] J. H. Elder, “Are edges incomplete?” International Journal of Computer
Vision, vol. 34, no. 2/3, pp. 97–122, 1999.

[5] M. Lillholm, M. Nielsen, and L. D. Griffin, “Feature-based image
analysis,” International Journal of Computer Vision, vol. 52, no. 2/3,
pp. 73–95, 2003.

[6] M. Mainberger, S. Hoffmann, J. Weickert, C. H. Tang, D. Johannsen,
F. Neumann, and B. Doerr, “Optimising spatial and tonal data for
homogeneous diffusion inpainting.” in Scale Space and Variational
Methods in Computer Vision, ser. Lecture Notes in Computer Science,
A. Bruckstein, B. ter Haar Romeny, A. Bronstein, and M. Bronstein,
Eds. Berlin: Springer, Jun. 2011, vol. 6667, pp. 26–37.

[7] J. Gautier, O. L. Meur, and C. Guillemot, “Efficient depth map com-
pression based on lossless edge coding and diffusion,” in Picture Coding
Symposium, Kraków, Poland, May 2012, pp. 81–84.

[8] T. F. Chan and H. M. Zhou, “Total variation improved wavelet threshold-
ing in image compression,” in Proc. Seventh International Conference on
Image Processing, vol. II, Vancouver, Canada, Sep. 2000, pp. 391–394.

[9] A. Solé, V. Caselles, G. Sapiro, and F. Arandiga, “Morse description
and geometric encoding of digital elevation maps,” IEEE Transactions
on Image Processing, vol. 13, no. 9, pp. 1245–1262, Sep. 2004.

[10] D. Liu, X. Sun, and F. Wu, “Edge-based inpainting and texture synthesis
for image compression,” in Proc. 2007 International Conference on
Multimedia and Expo, Beijing, China, Jul. 2007, pp. 1443–1446.

[11] I. Galić, J. Weickert, M. Welk, A. Bruhn, A. Belyaev, and H.-P.
Seidel, “Image compression with anisotropic diffusion,” Journal of
Mathematical Imaging and Vision, vol. 31, no. 2–3, pp. 255–269, Jul.
2008.

[12] J. Weickert, “Theoretical foundations of anisotropic diffusion in image
processing,” Computing Supplement, vol. 11, pp. 221–236, 1996.

[13] C. Schmaltz, J. Weickert, and A. Bruhn, “Beating the quality of JPEG
2000 with anisotropic diffusion,” in Pattern Recognition, ser. Lecture
Notes in Computer Science, J. Denzler, G. Notni, and H. Süße, Eds.,
vol. 5748. Berlin: Springer, 2009, pp. 452–461.

[14] C. Schmaltz, P. Peter, M. Mainberger, F. Ebel, J. Weickert, and
A. Bruhn, “Understanding, optimising, and extending data compression
with anisotropic diffusion,” Department of Mathematics, Saarland Uni-
versity, Saarbrücken, Germany, Tech. Rep. 329, 2013.

	Introduction
	The Baseline Compression Codec
	R-EED in Progressive Mode
	Experiments
	References

