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Abstract. Recent video compression algorithms such as the members
of the MPEG or H.26x family use image transformations to store indi-
vidual frames, and motion compensation between these frames. In con-
trast, the video codec presented here is a model-based approach that
encodes fore- and background independently. It is well-suited for appli-
cations with static backgrounds, i.e. for applications such as traffic or
security surveillance, or video conferencing. Our video compression algo-
rithm tracks moving foreground objects and stores the obtained poses.
Furthermore, a compressed version of the background image and some
other information such as 3-D object models are encoded. In a second
step, recent halftoning and PDE-based image compression algorithms
are employed to compress the encoding error. Experiments show that
the stored videos can have a significantly better quality than state-of-
the-art algorithms such as MPEG-4.

1 Introduction

Due to the huge amount and increasing resolution of videos that are created and
viewed each day, video compression remains a topic of ongoing research. Most
popular video compression algorithms such as the ones from the MPEG and
H.26x family calculate the motion of pixel blocks to estimate the appearance of
these blocks from nearby frames. In addition to the estimated displacement, an
approximation of the reconstruction error is stored. In the decoding phase, this
information is used to reconstruct individual frames. For a detailed introduction
to general video codecs, we refer to the survey by Sullivan and Wiegand [19], or
the overview of Abomhara et al. [1].

Apart from general purpose video compression algorithms, there are also
video compression codecs using model-based coding schemes. The idea behind
these schemes is to compress fore- and background independently. This concept
is fundamentally different from standard video compression algorithms, and thus
has different advantages and drawbacks. For example, model-based coding typ-
ically requires previous knowledge to distinguish fore- and background region.
Furthermore, the video sequence must have a fairly static background. However,
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several views of the same scene can often be encoded very efficiently, and generat-
ing intermediate frames is often much easier. Examples in which these conditions
are fulfilled include traffic or security surveillance, or video conferencing.

Since the seminal work by Forchheimer and Fahlander [6], different ap-
proaches to model-based video coding have been pursued. We will give a short
summary of the ideas presented in this context, but refer to [14] and [23] for a
more detailed overview of the field.

In [20], Toelg and Poggio propose an approach that uses a small set of ex-
ample images containing a human face with different facial expressions. With
the help of a pose estimation algorithm, a novel view or facial expression is con-
structed from these example images. Vieux et al. employ a similar approach for
their “Orthonormal Basis Coding” in [21].

These approaches are based on 2-D example images, but there are also meth-
ods that utilise full 3-D models. In [10], a partial description of a model-based
coding which builds upon the MPEG-4 standard is presented. However, this
method requires manual interaction, and it is not specified how the necessary
texture is stored. Although these questions are answered in the work by Granai
et al. [7], both methods only explain how to compress the foreground, and ignore
the background. In [2], motion compensated temporal interpolation is used to
estimate the background onto which the 3-D object model is projected. Various
extensions to model-based coding have been proposed, e.g. for varying illumina-
tion conditions [5] or for different facial expressions [4, 13]. The latter was even
included into MPEG-4 as facial animation parameters [12].

The model-based video compression codec we propose differs fairly much
from these existing approaches. It combines three state-of-the-art algorithms
from apparently unrelated fields, namely 3-D pose tracking, PDE-based image
compression, and halftoning. As illustrated in Section 4, their combination makes
it possible to beat the results of MPEG-1, and even of MPEG-4. In contrast to
many other model-based coding algorithms, our approach is not specialised to
faces or other specific objects. Thus, it is applicable for different kinds of videos.

Our paper is structured as follows: Section 2 explains our baseline video com-
pression algorithm (MB), which is extended to an algorithm with residual coding
(MB+DH ) in Section 3. We continue with an evaluation of both approaches in
Section 4 and conclude the paper with a summary in Section 5.

2 Our Baseline Codec (MB)

Before we explain the steps of our codec in detail, lets us give an overview of our
algorithm: First, we track the moving objects in the video. As a second step, the
tracking results are used to estimate the colour of each vertex of the object model.
Thirdly, the background is reconstructed, if necessary, and compressed. Finally,
all data is saved and compressed using PAQ [11], a general purpose entropy
coder. To reconstruct a frame of the video, the object model is simply projected
onto the loaded background image using the pose tracked while encoding. We
denote this model based codec by MB .
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For the first step of our codec, we employ the 3-D pose tracking algorithm
explained in [16], as it reports one of the best tracking results in the HumanEva-
II benchmark [18]. Assuming that the necessary data (a projection matrix of
each view, an (uncoloured) 3-D object model, and a pose initialisation in the
first frame) are known, we find the pose of the free-form surface consisting of
rigid parts interconnected by n predefined joints as minimiser of the cost function

E(χ) =−
∑̀
i=0

∫
Ω

(
Pvi,χ(x) log pi,χ(x)

)
dx . (1)

Thereby, the pose χ ∈ R6+n consists of the 3-D position and orientation of
the object model, as well as of the n joint angles (or other internal parameters)
searched for. The index i runs over the background (i = 0) and all ` model com-
ponents. The set Ω denotes the 2-D image domain, while the function pi,χ(x)
models the appearance of the i-th component. These appearances are estimated
and adapted while tracking. The indicator function Pvi,χ(x), which is 1 if the
i-th model component is visible at the image point x and 0 otherwise, ensures
that occlusions are taken into account in an adequate way. Even if model compo-
nents belong to different object models, all occlusions are automatically handled
correctly. Thus, even tracking multiple mutually occluding object is possible.
This is favourable for our codec in case of multiple moving foreground objects.

Equation 1 is minimised with a modified gradient descent: The object model
is projected onto the image plane, and the resulting silhouette points are dis-
placed depending on to which region they fit better. This displacement is then
transferred to the 3-D pose of the object. These steps are repeated until conver-
gence, and the pose initialisation of the next frame is obtained by extrapolation.

In the second step of the MB codec, we estimate the appearance of the
object model. As the tracking algorithm requires an (uncoloured) object model,
we already know to which image point each vertex of the object is projected in
each frame. Thus, to estimate the colour of each vertex, we simply average the
colour at the projected vertex position over all frames in which this vertex is
visible. This simple estimation is far from being perfect, though. Consequently,
the obtained video quality should improve significantly if a better estimation is
used.

In the third step, we reconstruct the background image, if necessary. This
step is easy in our setting as we know which parts of the background are occluded
after the tracking step.

Then, we employ the PDE-based image compression algorithm from [17] to
encode the background image. We chose this algorithm as is reports better a
compression quality than JPEG 2000. Moreover, it is related to the approach to
store the residual image introduced in the next section.

The basic idea behind the algorithm from [17] is to store only a small subset
of all image points, while the remaining points are reconstructed using edge-
enhancing anisotropic diffusion (EED) [22], i.e. by computing the steady-state
inf
t→∞

u(x, t) of the evolution equation
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∂tu = div(g(∇uσ∇u>σ )∇u) . (2)

Here, u = u(x, t) is the image value of the point x at time t, uσ := Kσ∗u denotes
the image convolved with a Gaussian Kσ with standard deviation σ, and g is
the Charbonnier diffusivity function g(s2) := λ√

λ2+s2
with contrast parameter λ.

The diffusion tensor g(∇uσ∇u>σ ) is a symmetric 2× 2 matrix with eigenvectors
parallel and orthogonal to ∇uσ, and corresponding eigenvalues g(|∇uσ|2) and
1. Since EED smoothes along edges, while reducing smoothing across them, this
diffusion process is able to create sharp edges.

This concludes the description of our baseline codec, which is often suffi-
cient to yield a reasonable reconstruction. However, tracking failures or model
inaccuracies can sometimes result in a bad video quality. Thus, we introduce an
algorithm that can correct such problems in the next section.

3 Video Codec with Residual Coding (MB+DH )

Our enhanced codec explained in this section is an extension of the MB codec. It
additionally encodes the residual images, i.e. the error of each frame compressed
by our baseline codec. This residual image is stored as set of pixels between which
inpainting with homogeneous diffusion is performed. Therefore, we compute the
steady-state of the linear diffusion equation [8]

∂tu = ∆u = div(∇u) . (3)

Let us start by considering only the first frame of a grey-valued video. When
inpainting with homogeneous diffusion, we know that the interpolation points
should be distributed according to the magnitude of the Laplacian of a smoothed
version of the image [3]. Thus, we can employ a dithering algorithm to obtain the
inpainting mask. In [3], the Floyd-Steinberg algorithm was used for dithering,
while we compare the performance of four different dithering algorithm. Two
representative results are shown in Figure 1. In these experiment, we use 500
mask points, but results are similar for other numbers: Independent of the image
and the amount of presmoothing, the electrostatic halftoning algorithm from [15]
performs best. Thus, we chose this algorithm in our codec.

The basic idea behind the electrostatic halftoning algorithm is to model black
dots as negatively charged particles, while the pixels are positively charged [15].
Consequently, particles repel each other, but are attracted to dark image areas.
Let us denote the grey value at position x by u(x) ∈ [0, 1]. Then, the charge
of the pixel x is equal to 1 − u(x). When choosing the charge of the particles
is such a way that the total amount of positive and negative charges is equal,
the particles are automatically bound to the image domain. The final halftoning
result is then obtained as the steady-state of this particle system. Adding all
forces acting on each particle results in the update equation
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Fig. 1. Evaluation of dithering algorithms in the context of image interpolation. The
mask points are obtained by dithering the (scaled) absolute value of the Laplacian of
the smoothed input image, where a Gaussian with standard deviation σ is used for
smoothing. The graphs show the results for the two images “trui” and “house”.

pk+1
n = pkn + τ

( ∑
x∈Ω
x 6=pn

1− u(x)

|x−pkn|
en,x −

∑
m∈P
m6=n

1

|pkm−pkn|
en,m

)
, (4)

where pkn is the position of the n-th particle at time k, τ = 0.1 serves as an
artificial time step parameter, and P denotes the set of all particles. The two
vectors en,m and en,x denote unit vectors between the n-th and m-th particle,
and between the n-th particle and the pixel x, respectively.

The optimal standard deviation σ of the Gaussian used to smooth the residual
image before dithering varies with the image and the number of mask points.
Thus, we try different standard deviations in our codec and take the σ for which
the best approximation is obtained. As σ is not needed to decompress the video,
this does not increase the final file size. Furthermore, we restrict the domain of
the dithering algorithm to a region containing the foreground region and points
close to it, as inaccuracies in the background region are easier solved by storing
an improved version of the background image.

We store the position of the points in the inpainting mask K using the JBIG
file format [9], which is a lossless compression algorithm for binary images. The
grey-values of the mask points are quantised uniformly before entropy coding.

For colour videos, we compute a grey-valued variant of the difference image
to find the inpainting mask. Thereby, different colour models are possible. Ac-
cording to our experiments, the results are very similar, though. Thus, we simply
average the red, green, and blue colour channels to get a grey-valued variant of
the difference image.

In the remaining frames, we initialise the dithering process with the inpaint-
ing mask from the previous frame. This requires much fewer iterations of elec-
trostatic halftoning. In addition to speeding up the computations, this allows to
store the particle movements relative to the last frame instead of the particle
positions. This reduces the amount of data that must be encoded if the number
of particles is reasonable. While it is trivial to obtain the particle motion when
using electrostatic halftoning, this is a difficult or even impossible problem with
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HumanEva-II S4 Cart

Codec frame size file size MSE frame size file size MSE

MPEG-1 656 × 480 2019733 187.25 496 × 368 202847 48.53
MPEG-4 656 × 490 537404 210.58 500/496 × 380 112182 31.52

MB 656 × 490 161223 102.57 500 × 380 68721 52.38
MB+DH (400/200) 656 × 490 494246 48.09 500 × 380 109137 41.55

MB+DH ( 100) 656 × 490 194513 76.53 500 × 380 83355 47.04
MB+DH ( 500) 656 × 490 612452 43.66 500 × 380 196465 32.77
MB+DH (1000) 656 × 490 1256973 30.27 500 × 380 353026 26.64

Table 1. Overview over the frame and file sizes, as well as the mean square errors
(MSE) of results with MPEG-1, MPEG-4, and the proposed algorithms. The numbers
in parenthesis state the number of additional points stored per frame. In line 4, this
number was chosen in such a way that the file size is similar to MPEG-4. Note that
the codecs from the MPG-family cropped some of the video material.

other dithering algorithms. This is another reason why it is advantageous to use
the electrostatic halftoning algorithm as dithering step in our codec.

Finally, all data is compressed with the same entropy coder as in the baseline
codec. We denote this model-based codec which stores the d ifference image by
halftoning as MB+DH .

To reconstruct the video, we first execute the steps explained for our baseline
codec. Afterwards, the inpainting mask is loaded (first frame) or reconstructed
using the stored particle motion and the particle locations in the preceding frame.
The loaded values of the error image are interpolated and added to the frame.
Thereby, we use Dirichlet boundary conditions to ensure that the difference
image is zero at the boundary.

4 Experiments

In this section, we compare the performance of our codecs against MPEG-1 and
MPEG-4. We created the MPEG-1 videos with the program “mpeg encode”
using three P-frames between successive I-frames, and three B-frames between
other frames, i.e. the pattern “IBBBPBBBPBBBPBBB”. This is a common
pattern which typically allows a strong compression. The quantisation levels
for all types of frames were set to the lowest possible value (31) to obtain a
compression ratio which is as close as possible to the one of our approach. To
create the MPEG-4 videos, we used the Linux program “mencoder”, the codec
“msmpeg4v2”, the AVI container format, and the smallest possible variable bit
rate (4000 bits per second). Nevertheless, we could neither create MPEG-1 nor
MPEG-4 videos which are as small as the ones from our baseline codec MB
(see Table 1). Note that MPEG-1 cropped the original frames, while MPEG-4
replaced a part of the frames in one sequence by a black boundary.

In our first experiment, we encode the sequence S4 of the HumanEva-II
tracking benchmark [18]. Figure 2 illustrates an example frame from the resulting
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Original, 1250 frames MB , 161 kB, MSE: 102.57

MPEG-1, 2020 kB, MSE: 187.25 MPEG-4, 537 kB, MSE: 210.58

Fig. 2. Comparison of our MB codec against MPEG-1 and MPEG-4 using the
HumanEva-II sequence S4. In the graph showing the mean square error in each frame,
the result of our MB+DH codec with 400 point per frame is shown as comparison. The
corresponding files sizes are denoted below the images, which show frame 500.

Original MB MPEG-1 MPEG-4 MB+DH

Fig. 3. Magnifications of the experiment from Figure 2. Note the block artifacts when
using MPEG-1 or MPEG-4. One can see that our approach has sharp boundaries in
object and background region, and that our simple model colouring algorithm is far
from being perfect. The better result of our algorithm MB+DH with 400 additional
points, which tries to reduce this problem, is shown on the right.
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Original MB MPEG-1 MPEG-4
464 frames 69 kB, MSE: 52.4 203 kB, MSE: 48.5 112 kB, MSE: 31.5
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Fig. 4. Comparison of our method MB against MPEG-1 and MPEG-4 using the se-
quence “Cart”. The jump with MPEG-4 in frame 250 and the sawtooth pattern with
MPEG-4 are due to the different frame types. While our codec MB ignores the cor-
ruption in frame 360, MPEG-1 and MPEG-4 encode the original frame.

videos, as well as a graph showing the mean square error (MSE) each method
obtained per frame. The video created with our approach is considerably smaller
than those of the other methods. Nevertheless, its error is always below that
of MPEG-1 and MPEG-4, even though the result of the tracking approach is
inaccurate in some frames.

Figure 3 shows magnifications of the results depicted in Figure 2. We see that
our MB codec creates sharp boundaries, while the approaches from the MPG
family generate blocky results. Due to the rather poor performance of our simple
model colouring approach from in Section 2, the MB codec yields suboptimal
results at the sleeves, though. As shown on the right, this is improved by the ad-
ditional information stored. A more accurate representation of the object model
should significantly boost the performance of our algorithm, though.

Furthermore, we encode the sequence “Cart”, in which a person performs a
cart wheel; see Figure 4. This sequence is much more challenging than the first
video for our codec due to several reasons: First of all, the background is very
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noisy, which deteriorates the results of the diffusion-based image compression
approach. Moreover, the object model is often not able to represent the complex
movement performed by the actor, e.g. due to muscle contractions or missing
joint angles. Additionally, the lower side of the feet are visible in many frames.
Since the feet are not included in the object model, the human is partly seen
from the inside, which results in wrong colours. Finally, this sequence is shorter
than the HumanEva-II sequence, resulting in a larger overhead for object model
and background. Due to these reasons, the MB algorithm is worse than MPEG-4
for this sequence; see Figure 4. However, we still beat MPEG-1 in most frames
even though the file created with our approach is significantly smaller.

The high error of our codec in frame 360 is due to the fact that this input
frame is corrupted. While MPEG-1 and MPEG-4 encode the corrupted frame,
the codec MB stores a “corrected” version. This may even be seen as advantage
of our algorithm, since it automatically corrected the corrupted frame.

Table 1 also shows results of the codec MB+DH . In particular, we compare
our codec against MPEG-4 with similar file sizes. For the HumanEva-II sequence
S4, this results in 400 additional particles, while 200 additional particles are used
for the “Cart” sequence. We are still slightly worse than MPEG-4 in the “Cart”
sequence, but one can see that we clearly outperform MPEG-4 in the HumanEva-
II sequence S4: Even though the video created with MPEG-4 is 8% larger, its
MSE is about 4.4 times as large as the one with our approach.

5 Summary

We have demonstrated how to combine recent state-of-the-art methods from
PDE-based image compression, 3-D pose tracking, and halftoning into a model-
based video compression codec. Our algorithms show promising results that can
beat those of MPEG-1, and even of MPEG-4. Moreover, we are optimistic that
the performance of our approach can be significantly improved when the appear-
ance of the moving foreground objects is estimated more accurately, or is even
known in advance. This would not only enhance the approximation obtained
by projecting the object model, but can also help to improve the results of the
tracking algorithm. A detailed evaluation is part of our future work.
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