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Abstract. Although widely used standards such as JPEG and JPEG
2000 exist in the literature, lossy image compression is still a subject
of ongoing research. Galić et al. (2008) have shown that compression
based on edge-enhancing anisotropic diffusion can outperform JPEG for
medium to high compression ratios when the interpolation points are
chosen as vertices of an adaptive triangulation. In this paper we demon-
strate that it is even possible to beat the quality of the much more
advanced JPEG 2000 standard when one uses subdivisions on rectan-
gles and a number of additional optimisations. They include improved
entropy coding, brightness rescaling, diffusivity optimisation, and inter-
polation swapping. Experiments on classical test images are presented
that illustrate the potential of our approach.

1 Introduction

Image compression is becoming more and more important due to the increasing
amount and resolution of images. Lossless image compression algorithms can only
achieve mediocre compression rates compared to lossy compression algorithms,
though. Popular lossy image compression algorithms are JPEG [1], which uses
a discrete cosine transform, and its successor JPEG 2000 [2], which is based on
wavelets.

In the last decade the interpolation qualities of nonlinear partial differen-
tial equations (PDEs) have become evident by an axiomatic analysis [3] and by
applying them to inpainting problems [4, 5]. Extending inpainting to image com-
pression drives these ideas to the extreme: Only a small subset of pixels is stored,
and the remaining image regions are reconstructed by PDE-based interpolation.
This idea has been introduced by Galić et al. in 2005 [6] and extended later on in
[7]. These authors used edge-enhancing anisotropic diffusion (EED) [8] because
of it favourable performance as an interpolation operator. By encoding pixel
locations in a B-tree that results from an adaptive triangulation [9] and intro-
ducing a number of amendments, they ended up with a codec that outperforms
JPEG quality for medium to high compression ratios. However, they could not
reach the substantially higher quality of JPEG 2000.

The goal of our paper is to address this problem. We show that it is possible
to beat the quality of JPEG 2000 with edge-enhancing anisotropic diffusion,
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provided that a number of carefully optimised concepts are combined that have
not been considered in [7]: First of all, we replace the adaptive triangulation by a
subdivision into rectangles. Afterwards we use an improved entropy encoding of
the interpolation data, a rescaling of the brightness map to the interval [0,255], an
optimisation of the contrast parameter within the diffusion processes of encoding
and decoding, and a swapping of the role of interpolation points and interpolation
domain in the decoding step. The resulting novel codec that uses EED within a
rectangular subdivision is called R-EED.

Our paper is organised as follows: In Section 2 we review the main ideas
behind diffusion-based image interpolation. Our R-EED codec is introduced in
detail in Section 3, and its performance is evaluated in Section 4. The paper is
concluded with a summary in Section 5.

Related Work. While there are numerous papers that apply nonlinear
PDEs and related variational techniques as pre- or postprocessing tools for im-
age and video coding, their embedding within the encoding or decoding step has
hardly been studied so far. Notable exceptions include work by Chan and Zhou
[10] where total variation regularisation is incorporated into wavelet shrinkage,
research on specific surface interpolation applications such as digital elevation
maps [11], and some recent embedding of inpainting ideas into standard codecs
such as JPEG [12].

2 Diffusion-Based Image Compression

As explained in the introduction, the basic idea behind the image compression
approach used in this article is to save the brightness values only at a subset
K ⊂ Ω of the whole image domain Ω ⊂ R

2. These values will be denoted by
the function G : K → R

+

0 . In order to reconstruct the image, we introduce an
artificial time parameter t. The reconstructed version R of the original image I

is given by the steady state R = inf
t→∞

u(x, t) of the evolution equation

∂tu = Lu (1)

with Dirichlet boundary conditions given by G and some elliptic differential
operator L. That is, we set the brightness on K to the given values, initialise
the remainder of the image arbitrarily, e.g. by setting it to zero, and diffuse the
unknown parts of the image until convergence.

As differential operator, we use edge-enhancing diffusion (EED) [8] because
it has been shown in [7] that it performs favourable in this context. EED is given
by

Lu = div(g(∇uσ∇u⊤

σ )∇u), (2)

where ∇uσ := Kσ ∗ u is the image smoothed with a Gaussian Kσ with standard
deviation σ, and g is a diffusivity function. The diffusion tensor g(∇uσ∇u⊤

σ )
is a symmetric 2 × 2 matrix with eigenvectors parallel and orthogonal to ∇uσ,
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and corresponding eigenvalues g(|∇uσ|
2) and 1. Here we use the Charbonnier

diffusivity [13]

g(s2) :=
1

√

1 + s2

λ2

, (3)

where λ is a contrast parameter. Note that EED is designed in such a way that
it smoothes along edges, but not across them. Thus, this diffusion process can
produce sharp edges.

To compare the performance of different compression algorithms, one con-
siders the compression ratio, i.e. the ratio between the file size before and after
compression, and some error measure that quantifies the reconstruction error be-
tween the initial image I and the reconstruction R. We choose the mean square

error (MSE)

MSE(I, R) :=
1

|Ω|

∑

Ω

(R(x) − I(x))2, (4)

since it shows the quality differences between the methods very well. Moreover,
there is a monotone mapping from the MSE to the popular peak signal to noise
ratio (PSNR).

3 Our Novel Codec

In order to make anisotropic diffusion competitive for image coding great care
has to be taken to select an appropriate set of interpolation points and to encode
these data in a very compact way. Let us now discuss this in more detail.

3.1 Rectangular Subdivision

The proposed compression algorithm starts by saving the four boundary lines of
the image. However, note that whenever we state that we “save” a line of the
image, this is done by saving only three points on the line: the two endpoints
and the midpoint of the line. Thus, the four boundary lines are saved as eight
pixels since pixels lying on several lines must only be saved once.

Next, we check the quality of the image reconstruction when only boundary
data are known. Although the complete boundary is not known, this allows to
save subimages independently from each other. Then we compute the recon-
struction error, i.e. the MSE between the image and the reconstruction. If it is
larger than the splitting threshold given by ald, where a and l are parameters,
and d is the recursion depth, the image is split into two subimages by saving
a line between the two subimages. These subimages are then saved recursively.
The line saved is always the line in the middle of the larger image dimension, as
shown in the left image in Figure 1.

Thus, in order to decrease the space required to store the positions of the
saved pixels, we do not store points at arbitrary positions, but only save the
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Fig. 1. Left: Illustration of the adaptive grid used for the proposed recursive compres-
sion routine. The white area is the area being reconstructed in the corresponding step.
Right: Example point mask used for compressing the image “trui” with the proposed
compression algorithm and a compression ratio close to 60 : 1.

Table 1. The effect of entropy coding for the image “walter”, shown in Figure 3,
using different splitting thresholds in the subdivision process. Shown are the size of the
compressed pixel data in bytes without entropy coding (none), with Huffman coding
(HC), with Huffman coding using canonical codes (HCc), with arithmetic coding with
static (ACs) or adaptive (ACa) model, Lempel-Ziv-Welch coding (LZW), range coding
(RC), gzip (version 1.3.5), bzip2 (version 1.0.3), and PAQ. The best result for each
ratio is highlighted.

None HC HCc ACs ACa LZW RC gzip bzip2 PAQ

5200 3219 3311 3202 3125 3288 3549 2918 2878 2366

2602 1345 1517 1390 1291 1504 1758 1350 1337 1136

1270 694 866 716 646 789 1114 683 720 613

adaptive grid structure indicated in the left image in Figure 1. This is done by
storing the maximal and minimal recursion depth reached in the compression
algorithm, as well as one additional bit for each subimage between these two
depths. These bits indicate whether the corresponding subimages has been split
in the compression step.

3.2 Improved Entropy Coding

To further decrease the file size, the pixel values saved are quantised and coded
using a general purpose entropy coder. For the proposed codec, we tested several
compression algorithms ranging from Huffman coding [14] over arithmetic coding
[15] (with static or adaptive model), Lempel-Ziv-Welch coding [16] to standard
tools like gzip (version 1.3.5) and bzip2 (version 1.0.3). Most of the time, PAQ
[17] yielded the best results. In our implementation, we used a slightly modified
version of paq8o8z-feb28. If very few pixels have to be compressed, a simple
arithmetic coding with an adaptive model works best, though. Except for gzip
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and bzip2, which are standard tools, and PAQ, the source code of which is
available at [18], we used the implementations from [19] in this paper.

The performances of different entropy coders are compared in Table 1 and
in Section 4.

3.3 Brightness Rescaling

Some images do not use the whole range of possible grey values. For example,
the pixels in the image “trui”, which is shown in Figure 2, have a brightness
between 56 and 241. Thus, it can make sense to map the brightness of the
image such that the complete range is used. This can improve the reconstruction
because quantisation has less effects in this way. Note that quantisation does not
only occur when quantising the grey values in the encoding step, but also when
mapping the real numbers obtained by diffusion to integer values in the decoding.

To illustrate the improvement of this step, we compressed the image “walter”
(see Figure 3) once with the method explained in the last section and once with
the same method using brightness adjustment. With brightness adjustment, the
MSE for a compression rate of approximately 45 : 1 dropped from 50.64 to 46.33.

3.4 Diffusivity Optimisation

In the explanation of EED in the last section, we did not state how to choose
λ for the diffusivity in Equation (3). While the same λ was used for all images
in [7], we found out that the best parameter is dependent on the image and the
compression ratio. Thus, we save the λ parameter that should be used in the
reconstruction. We assume this parameter is between 0 and 1, quantise it to 256
different values and use a single byte to store it.

Furthermore, we noticed that a different λ parameter should be used in the
compression and decompression steps. This is advantageous due to two reasons:
Firstly, the subimages reconstructed in the compression step necessary to gen-
erate the grid structure are not equal to the corresponding subimages in the
reconstructed image since the influence of surrounding parts of the image are
neglected. Secondly, the compression algorithm raises or lowers the saved bright-
ness of each saved point if that improves the reconstruction error, similar to the
approach proposed in [7]. During these point optimisations, the optimal λ for
the reconstruction may change. Thus, searching an optimal λ and performing
the point optimisations is interleaved. That is, after the optimal λ is found, each
saved point is optimised once, and these two steps are repeated until convergence.

When using an optimised λ in the compression step, the MSE of our test im-
age “walter” improves from 46.33 to 38.91. After using the optimised parameter
for the decompression, we get an error of 38.38. Using one point optimisation
step, the error drops to 24.67, and finally to 21.38 after multiple optimisations.
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3.5 Interpolation Swapping

Due to quantisation, most points stored in the compressed file are actually
slightly inaccurate. This effect can be even stronger after the point optimisa-
tions explained in the last section.

To ease this problem, we follow an idea by Bae [20] and perform an ad-
ditional step after the decompression step explained so far: Once the image is
reconstructed, we swap the roles of known and unknown points. That is, the
points reconstructed by diffusion are assumed to be known, and the previously
known points on the interpolation mask are reconstructed with EED. With this
interpolation swapping step, the reconstruction error of the image “walter” drops
from 21.38 to 20.13.

We abbreviate our EED-based image compression method with rectangu-
lar subdivision, improved entropy encoding, brightness rescaling, and diffusivity
optimisation by R-EED.

3.6 File Format

The image format used by the proposed algorithm is given by:

– image size (between 8 (small image, equal width and height) and 18 bits)
– entropy coder used (4 bits, see Section 3.2)
– brightness mapping information (between 1 and 17 bits, see Section 3.3)
– contrast parameter for decompression (1 byte, see Section 3.4)
– flag if interpolation swapping should be used (1 bit, see Section 3.5)
– minimal and maximal recursion depth (2 bytes, see Section 3.1)
– splitting information (variable size, see Section 3.1)
– compressed pixel data (variable size)

In our implementation, there are currently four additional bits used for flags
which had been used to test extensions not used any more. Thus, these bits can
be used for checksums.

4 Experiments

In this section, we show compression results of the proposed algorithm for differ-
ent compression rates and compare the results against JPEG, JPEG 2000, and
the approach from Galić et al. [7]. For all experiments, we set σ to 0.8.

The first image for which results are presented is the image “trui”. This image
is a standard test image often used in image processing. In order to compare
our algorithm against the one proposed in [7], we scaled the image to 257× 257,
since that resolution was used there. Figure 2 shows the result using the different
compression methods. The images for JPEG and JPEG 2000 have been created
with “convert” (version ImageMagick 6.2.4 02/10/07). Note that convert uses
optimised entropy coding parameters when saving JPEG files. Since this was
not the case for the JPEG images shown in [7], those images are worse than the
JPEG images shown here.
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Fig. 2. Comparison of the image quality when saving the image “trui”, scaled to 257×
257 with different compression algorithms. Top row: Input image, and plots showing
the MSEs for different compression ratios. Middle row: Images obtained with JPEG,
the method by Galić et al. [7], JPEG 2000 and with the proposed method (R-EED)
with a compression rate close to 43 : 1. Bottom row: Results with compression rate
close to 57 : 1. The images showing the compression result of [7] are courtesy of Irena
Galić.

Nevertheless, JPEG is clearly worse than the other approaches, though. In
order to demonstrate the performance difference between the proposed approach
and JPEG 2000, we compute their MSE for comparable compression ratios. We
observe that the reconstruction error for JPEG 2000 is substantially inferior to
R-EED: For compression ratios around 43 : 1, the JPEG 2000 error is 48 %
larger, and for ratios around 57 : 1 it is even 66 % worse.

Compared to the approach by Galić et al. [7], R-EED also yield clearly su-
perior results. The images created by Irena Galić, which are shown in Figure 2,
have an MSE of 50.89 (compression ratio 44 : 1) and 75.81 (compression ratio
58 : 1), which is 64 % and 77 % higher than that obtained with R-EED.

Furthermore, let us also consider two more images: the first image of an
image sequence of Walter Cronkite, available at [21], and a subimage of the
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Table 2. Compression results for JPEG, JPEG 2000, and for the proposed algorithm
(R-EED) for the images “trui”, “walter”, and a subimage of “peppers”. The best results
are highlighted.

trui walter peppers

Ratio MSE Ratio MSE Ratio MSE

JPEG 42.17 : 1 71.16 45.15 : 1 39.67 42.03 : 1 70.47

JPEG 2000 43.44 : 1 45.99 45.40 : 1 27.55 42.57 : 1 48.97

R-EED 44.11 : 1 31.00 45.40 : 1 20.13 42.96 : 1 42.61

image “peppers”. For both images, the proposed compression algorithm beats
JPEG 2000 for high compression rates, and achieves a similar performance for
medium compression rates, as is demonstrated in Figure 3 and Table 2.

The graphs in Figure 3 also show results of the proposed algorithm when only
Huffman coding is used. As can be seen, even with this simple entropy coder,
we still achieve a better quality than JPEG 2000 for high compression ratios.

Note that the graphs in the figures show the complete compression range for
JPEG and JPEG 2000, i.e. with quality settings from 100 to 1. However, only a
small subinterval of the results obtainable with the proposed algorithm is shown.

Results in which the image “trui” was compressed with compression ratios up
to 186.77 : 1 are shown in Figure 4. Higher compression ratios are also possible.

5 Conclusions

We have presented an image compression method that performs edge-enhancing
anisotropic diffusion inpainting on an adaptive rectangular grid. By using an im-
proved entropy coding step, brightness rescaling, an optimised diffusion param-
eter in the compression as well as in the decompression step, and interpolation
swapping, the proposed algorithm can yield results that clearly surpass those of
related previous work [7] as well as of JPEG and even the sophisticated JPEG
2000 standard.

Our ongoing work includes research on parallelisation strategies for multicore
architectures, optimal handling of highly textured regions, as well as extensions
to colour images and videos.

Acknowledgement. We thank Irena Galić for fruitful discussions and for pro-
viding two images in Figure 2.
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