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Abstract

In this article we present the integration of 3-D shape knowledge into a variational
model for level set based image segmentation and tracking. Given a 3-D surface model
of an object that is visible in the image of one or multiple cameras calibrated to the same
world coordinate system, the object contour extracted by the segmentation method is
applied to estimate the 3-D pose parameters of the object. Vice-versa, the surface model
projected to the image plane helps in a top-down manner to improve the extraction of
the contour. While common alternative segmentation approaches, which integrate 2-D
shape knowledge, face the problem that an object can look very differently from various
viewpoints, a 3-D free form model ensures that for each view the model can fit the data
in the image very well. Moreover, one additionally solves the higher level problem
of determining the object pose in 3-D space. Due to the variational formulation, the
approach clearly states all model assumptions in a single energy functional that is
locally minimized by our method. Its performance is demonstrated by experiments
with a monocular and a stereo camera system.
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1 Introduction

Image segmentation and pose estimation are two principal problems in computer vision.
Segmentation determines the location and shape of objects in the image plane, thereby
performing a significant abstraction step from the raw pixel data to object regions. It is
well-known and easy to imagine that higher level vision problems get much simpler and
more reliable, if the area in the image occupied by the object is known. However, image
segmentation is a difficult task and often fails for general images. The main reason for
these failures is a violation of the model assumptions imposed for image segmentation.
Due to noise, texture, shading, occlusion, or simply because the appearance of two
objects is locally nearly the same, the image gray value or color is rarely sufficient to
clearly separate objects from their background. A possible remedy is the supplement of
additional information, such as texture and motion information, which greatly extends
the number of situations where image segmentation can succeed [33, 8]. Nevertheless,
image segmentation is a too high level task for purely image-driven methods to succeed.
For segmenting general images, prior object knowledge and a basic understanding of
the scene are necessary to reliably determine the object boundaries. For this reason,
image segmentation in the sense of object contour extraction can only work generally
in the bundle with other high level vision tasks.

One such task is pose estimation, in particular 2D-3D pose estimation. Given a learned
3-D object model, the task of pose estimation is to estimate a rigid motion which
fits the 3-D object model to some 2-D image data [26], i.e., one basically searches for
the optimum six pose parameters – three for the object’s translation and three for its
rotation. To this end, the matching of features known from the 3-D object model to
corresponding 2-D features in the image is necessary.
There are several possible features that could be matched between 2-D and 3-D, the
object can be modelled in various ways, and there a different possibilities to determine
the pose from the matched features. Therefore, it is not surprising that many works
on 2D-3D pose estimation can be found in the literature [43, 25]. Pioneering work was
done by Lowe [31, 32] and Grimson [26]. Their methods have been extended to fully
projective formulations [1], the use of Plücker lines has been suggested [49], and pure
rigid bodies have been extended to kinematic chains [4]. In [52] a neural network based
approach has been proposed. The used features for matching range from lines [2], to
viewpoint dependent point features including vertices, t-junctions, cusps, three-tangent
junctions, edge inflections, etc. [29], or multi-part curve segments [55]. Also real-time
tracking of articulated objects has been achieved by using contours [23].
The strategy followed in this paper is based on a matching between the 3-D object
surface and the object contour in the image [44]. In detail, we try to find a rigid motion
that minimizes the error between the projected object surface and the region encircled
by the contour in the image. Since the common role of image segmentation is exactly to
extract the contour of objects in the image, this shows the possible connection between
2D-3D pose estimation and image segmentation.

So image segmentation can serve the pose estimation task, yet what about the infor-
mation flow in opposite direction? It has already been stated above that purely image
driven segmentation methods are not able to extract the object contour in general sit-
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uations. Hence, in some recent segmentation approaches, prior 2-D shape information
has been integrated in order to impose additional constraints that force the contour to
a desirable solution. An early example can be found in [30] where shape information
influences the evolution of an active contour model. This basic concept has been ex-
tended and modified in [17, 47, 14, 20, 41, 19, 16] and provides a good framework for
the sound integration of 2-D shape knowledge in segmentation processes.
However, the real world has three spatial dimensions. This fact is responsible for an
inherent shortcoming of 2-D shape models: they cannot exactly describe the image of
an object from arbitrary views. As a remedy to this problem, the different views of an
object can be expressed by a statistical model [15]. The present paper instead embarks
on the strategy to replace the 2-D shape model by a 3-D surface model, thus directly
respecting the 3-D nature of the object.
For the integration of 3-D shape information in a 2-D segmentation process, the object
model has to be projected onto the image plane, and for this its pose in the scene has to
be known. At this point, one realizes again the connection between image segmentation
and pose estimation, yet now the connection points into the other direction: a pose
estimate is needed in order to integrate the surface model.
Notice that a pose estimation problem appears in the case of 2-D shape knowledge as
well. Also there, it is necessary to estimate the translation, rotation, and scaling of
the shape, before it can constrain the contour in the image. This is either achieved by
explicit estimation of the pose parameters [47], or by an appropriate normalization of
the shapes [16]. Extensions to perspective transformations of 2-D shapes have recently
been proposed in [41]. However, all these efforts for estimating the 2-D pose only aim
on the use of shape knowledge in order to yield improved segmentations. The 2-D pose
estimates do not allow a location of the object in the real 3-D world but only in the
2-D projection of this world. In contrast, the 2D-3D pose estimation employed in our
model not only helps to determine the object contour but also aims on the location of
the object in the scene.

Bringing image segmentation and 2D-3D pose estimation together by formulating a joint
energy functional is therefore a contribution that can be regarded from two perspectives.
From the segmentation perspective, our approach extends methods that integrate 2-D
prior knowledge to 3-D shape models with all its consequences. From the perspective of
pose tracking, our method integrates the feature extraction step into the pose estimation
process, i.e., there is a back-coupling of the pose result that helps to improve the
extracted features, in our case the object silhouette.
Moreover, the method suggested in this paper is to our knowledge the first variational
approach to pose estimation. Variational methods are very common in image analysis
and belong to the best performing techniques, e.g., in image segmentation [8, 19],
motion estimation [6], image denoising [48], or 3-D reconstruction [42, 53]. This is also
because they provide a sound theoretical framework with all model assumptions clearly
stated in a single energy functional and numerical schemes that provide at least a local
optimum of this energy.
In the method described in this paper, the energy functional contains both the object
contour and the pose parameters as unknowns. Since the optimum pose parameters de-
pend on the contour and vice-versa, the minimization is done by alternating both image
segmentation and pose estimation in an iterative manner, as illustrated in Figure 1.
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Figure 1: Basic idea: iterating segmentation and pose estimation. The projected pose
result is used as a-priori knowledge for segmentation, the contour as matching feature
for pose estimation.

This paper comprises and extends an earlier work presented on a conference [7]. In com-
parison to this introduction of the basic idea, the present paper contains a much more
detailed description of the approach, integrates a confidence measure in the coupling of
segmentation and pose estimation, and demonstrates the generality of the method by
means of additional experiments that rule out many alternative techniques for solving
the task.

Paper organization. The next section contains a detailed review of the level set based
image segmentation model used in our approach. It further includes the introduction of
a local region statistics model that aims on the handling of inhomogeneous objects and
backgrounds. Section 3 then explains the concept of 2D-3D pose estimation including
the contour based pose estimation technique needed for our approach. In Section 4
we then present our idea to combine image segmentation and 3-D pose estimation in
a joint energy functional. Experiments in Section 5 demonstrate the performance of
the proposed technique and illustrate the conceptual difference to other methods. The
paper is concluded by a short summary in Section 6.

2 Image Segmentation

2.1 Level Set Formulation

Our method is based on variational image segmentation with level sets [22, 37, 11, 34,
38, 12], and in particular on the method described in [8, 5]. Level set formulations
of the image segmentation problem have several advantages in comparison to other
contour extraction methods. One of these advantages is the convenient embedding of
a 1-D curve into a 2-D, image-like structure. This is very useful for the interaction
between the constraints that are imposed on the contour itself and those constraints
that act on the regions separated by the contour. A further advantage of level set
segmentation is the capability of these methods to model topological changes of the
regions. This can become very important, for instance, when the object is partially
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occluded by another object and is hence split into two parts. Finally, level set methods
easily allow the integration of further constraints like prior shape knowledge. Many
recent methods that integrate shape knowledge in image segmentation are thus based
on level set methods. In our approach we benefit from all these advantages. On the
other hand, the most prominent drawback of level set methods, namely the difficulty
to extend it to segmentations with more than two regions involved, is not important
for the present method. This is because we only need a splitting of the image into the
object, the pose of which we want to estimate, and its background. Thus a two-region
segmentation is fully sufficient.

In level set based segmentation methods, a level set function Φ ∈ Ω 7→ R splits the
image domain Ω into two regions Ω1 and Ω2, with Φ(x) > 0 if x ∈ Ω1 and Φ(x) < 0
if x ∈ Ω2. The zero-level line thus marks the boundary between both regions, i.e., it
represents the object contour that is sought to be extracted.

As an optimality criterion for the contour extraction, three constraints are imposed:

1. the data within each region should be as similar as possible

2. the data between regions should be as dissimilar as possible

3. the contour dividing the regions should be as short as possible

These model assumptions can be expressed by the following energy functional [56, 13]:

E(Φ) = −
∫

Ω

(
H(Φ) log p1 + (1−H(Φ)) log p2

)
dx + ν

∫
Ω

|∇H(Φ)| dx (2.1)

where ν > 0 is a weighting parameter between the third and the two other constraints,
and H(s) is a regularized Heaviside function with lims→−∞H(s) = 0, lims→∞H(s) = 1,
and H(0) = 0.5 (e.g. the error function). It indicates to which region a pixel belongs.
Minimizing the first two terms maximizes the total a-posteriori probability given the
probability densities p1 and p2 of Ω1 and Ω2, i.e., pixels are assigned to the most probable
region according to the Bayes rule. The third term minimizes the length of the contour.

Energy minimization can be performed according to the gradient descent equation

∂tΦ = H ′(Φ)

(
log

p1

p2

+ ν div

(
∇Φ

|∇Φ|

))
(2.2)

where H ′(s) is the derivative of H(s) with respect to its argument (so in our case a
Gaussian). Applying this evolution equation to some initialization Φ0, the contour
converges to a (local) minimum for the numerical evolution parameter t →∞. This is
illustrated in Figure 2.

2.2 Region Statistics

A very important factor for the quality of the contour extraction process is the way
how the probability densities p1 and p2 are modelled. This model decides on what is
considered as similar or dissimilar. There are several choices on which image cues to
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use for the density model, for instance, gray value, color, texture [50, 39, 45], or motion
[8, 40, 18]. Moreover, there are various possibilities how to model the probability
densities given these image cues, e.g., a Gaussian density with fixed standard deviation
[13], a full Gaussian density [46], a generalized Laplacian [27], or nonparametric Parzen
estimates [28, 45, 8].

For the segmentation here, we use the texture feature space proposed in [9], which
yields M = 5 feature channels Ij for gray scale images, and M = 7 channels if color is
available. The color channels are considered in the CIELAB color space. The texture
features described in [9] contain basically the same information as the frequently used
responses of Gabor filters, yet the representation of this information is less redundant,
so 4 feature channels substitute 12-64 Gabor responses.

The probability densities of the M feature channels are assumed to be independent,
thus the total probability density comes down to

pi =
M∏

j=1

pij(Ij) i = 1, 2. (2.3)

Though assuming independence of the probability densities is only an approximation of
the true densities, it keeps the density model tractable. This has to be seen particularly
with regard to the fact that the densities have to be estimated by means of a limited
amount of image data given.

Estimating both the probability densities pij and the region contour works according
to the expectation-maximization principle [21, 35]. Having the level set function initial-
ized with some partitioning, the probability densities can be approximated within the
regions, for instance, by a Gaussian density estimate

pij(s) ∝
1√

2πσij

exp

(
(s− µij)

2

2σ2
ij

)
(2.4)

defined by the means µij and standard deviations σij in each region i ∈ {1, 2} and
channel j ∈ {1, ...,M}. This model contains only 2M parameters that have to be

Figure 2: Illustration of the curve evolution according to (2.2). From Left to Right:
Curve after t = 0, t = 1, t = 2, t = 3, t = 4, and t = 20. Bottom Row: Level set
function Φ.
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Figure 3: Synthetic image where regions have the same mean but different standard
deviations. From Left to Right: Initialization. Result with the piecewise constant
model. Result with the Gaussian model. Only the gray level information has been used
for this illustration.

estimated within a region. In contrast to the Chan-Vese model, where only the means
play a role [13], it has the advantage that the discrimination performance is independent
of the contrast of a feature channel [5]. This means in particular that there is no need
for explicitly weighting the different feature channels. Furthermore, regions can also be
distinguished if they only differ in their standard deviations and not in their means; see
Figure 3.

Figure 4: Illustration of how the Gaussian probability densities of the two regions are
adapted due to the evolution of the contour in Figure 3. Left: Probability densities
p1 and p2 estimated with the initial contour. Right: Probability densities p1 and p2

estimated with the final contour. It can be seen that the method maximizes the distance
between the densities. The very small difference at the beginning is already sufficient
to separate the regions.

With an approximation of the probability densities within the regions, one can com-
pute an update on the contour according to (2.2), leading to a further update of the
probability densities, and so on. Figure 4 illustrates the effect of this iterative process
on the probability density estimates. It can be seen that the method maximizes the
distance between the densities. Since the process converges to a local minimum, the
initialization matters. In order to attenuate the dependency on the initialization, one
can apply a continuation method in a coarse-to-fine manner [3].
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Figure 5: Motivation for using local statistics. Left: In the global scope it is not clear
whether the nose should be assigned to the zebra region or to the background (note the
dark shadow). Right: When considering a local neighborhood, the assignment of the
nose becomes unambiguous.

2.3 Local Region Statistics

The above-mentioned statistical model is a global model for the probability density of
each region. Especially in complicated scenes with many objects in the background,
shadows, and highlights, such a model may not be sufficient for separating the object
region from the background. In such cases, differences between the regions are often
only locally visible. A global statistical model looses this local information and can thus
loose the capability to separate the regions. We propose here a remedy to this problem
by suggesting local probability density estimates, where the densities may change with
the position x in the image

pij(s, x) ∝ 1√
2πσij(x)

exp

(
(s− µij(x))2

2σij(x)2

)
. (2.5)

The parameters µij(x) and σij(x) are computed in a local Gaussian neighborhood Kρ

around x by:

µij(x) =

∫
Ωi

Kρ(ζ − x)Ij(ζ) dζ∫
Ωi

Kρ(ζ − x) dζ
σij(x) =

∫
Ωi

Kρ(ζ − x)(Ij(ζ)− µij(x))2 dζ∫
Ωi

Kρ(ζ − x) dζ
(2.6)

where ρ denotes the standard deviation of the Gaussian window. In order to obtain
reliable estimates for the parameters µij(x) and σij(x), it is recommended to choose
ρ ≥ 6.

It should not be concealed that two major drawbacks come along with these local
statistics. Firstly, they demand a considerably larger amount of computation time than
global estimates. Secondly, they induce more local minima in the energy functional.
The latter drawback is less severe for the approach discussed in the present paper, as
the model uses object knowledge which constrains the subset of possible segmentations
and provides a reasonable initialization for the contour. The first drawback, however,
persists. Although one only has to compute the densities within the narrow band along
the region boundary, the contour evolution using local statistics is about one order of
magnitude slower than the same evolution with global statistics.
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Figure 6: The pose scenario: the aim is to estimate the pose R, t.

3 2D-3D Pose Estimation

2D-3D pose estimation [26] means to estimate a rigid body motion which maps a 3D
object model to an image of a calibrated camera, see Fig. 6. Depending on the camera
model being used (orthographic, perspective), the object representation (e.g. point sets,
line sets, contours, surface patches) and image data (e.g. corners, line segments, silhou-
ettes) many different algorithms can be developed for different numerical estimation
techniques (e.g. Kalman filters, gradient descent approaches, SVD decompositions),
see [43, 25] for overviews. In this section, we summarize basic notations and previously
developed point-based, contour-based, and surface-based pose estimation algorithms,
see [43].

3.1 Foundations

We start with mathematic concepts that are needed for the pose problem, such as
Plücker lines and twists to model rigid body motions. Then point-based and contour-
based pose estimation algorithms are introduced.

3.1.1 Plücker lines

A 3-D line L can be represented in Plücker form [43]. A Plücker line L = (n, m) is
given as (unit) vector n and moment m = x × n for a given point x on the line. An
advantage of this representation is its uniqueness (apart from possible sign changes).
This can be seen as follows: Let x1, x2 ∈ L with x1 6= x2. We choose λ ∈ R with
x2 = λn + x1. Then we have (note: n× n = 0)

x2 × n = (λn + x1)× n = λ(n× n) + x1 × n = x1 × n. (3.7)

Moreover, the incidence of a point x on a line L = (n, m) can be expressed as

x ∈ L ⇔ x× n−m = 0. (3.8)

This follows by a similar algebraic operation as in Equation 3.7.
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Figure 7: Comparison of a 3-D point with a 3-D line.

As a third advantage, Equation 3.8 provides us with a distance measure. Let L =
(n, m), with m = v × n as shown in Figure 7, and x = x1 + x2, with x /∈ L and
x2 ⊥ n. Then we have (note: x1 × n = m, x2 ⊥ n and ‖n‖ = 1)

‖x× n−m‖ = ‖x1 × n + x2 × n−m‖ = ‖x2 × n‖ = ‖x2‖. (3.9)

This means that x× n−m in Equation 3.8 results in a (rotated) perpendicular error
vector to line L. This distance measure and its minimization is used for pose estimation.

3.1.2 Rigid motions

Every 3-D rigid motion can be represented by a 4× 4 matrix

M =

(
R3×3 t3×1

01×3 1

)
(3.10)

for a given rotation matrix R3×3 ∈ SO(3), with SO(n) := {R ∈ Rn×n : RRT =
I, det(R) = +1}, and a translation vector t3×1. By using homogeneous coordinates,
a point x can be transformed by matrix multiplication x′ = Mx. In fact, M is an
element of the one-parametric Lie group SE(3), known as the group of direct affine
isometries. A main result of Lie theory is, that to each Lie group there exists a Lie
algebra which can be found in its tangential space by derivation and evaluation at
its origin; see [24, 36] for more details. The corresponding Lie algebra to SE(3) is
se(3) = {(v, ω)|v ∈ R3, ω ∈ so(3)}, with so(3) = {A ∈ R3×3|A = −AT}. The elements
in se(3) are called twists, which can be denoted as

ξ̂ =

(
ω̂ v

03×1 0

)
, with ω̂ =

 0 -ω3 ω2

ω3 0 −ω1

-ω2 ω1 0

 . (3.11)

A twist is sometimes written as vector

ξ = (ω1, ω2, ω3, v1, v2, v3). (3.12)

It contains six parameters and can be scaled to θξ for a unit vector ω. To reconstruct a
group action M ∈ SE(3) from a given twist, the exponential function exp(θξ̂) = M ∈
SE(3) can be used. The parameter θ ∈ R corresponds to the motion velocity, i.e., the
rotation velocity and pitch. For varying θ, the motion can be identified as screw motion
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around an axis in space. This is proven by Chasles Theorem [36] from 1830. Indeed,
evaluating the exponential of a matrix is not trivial, but it can be calculated efficiently
by using the Rodriguez formula [36],

exp(ξ̂θ) =

(
exp(θω̂) (I − exp(ω̂θ))(ω × v) + ωωT vθ

01×3 1

)
, for ω 6= 0 (3.13)

with exp(θω̂) computed by calculating

exp(θω̂) = I + ω̂ sin(θ) + ω̂2(1− cos(θ)), (3.14)

i.e., only sine and cosine functions of real numbers need to be computed.

3.1.3 Point-based pose estimation

For point-based pose estimation we combine the results of both previous subsections
and introduce a gradient descent method. The idea is to reconstruct an image point
to a projection ray L = (n, m) and to claim incidence of the transformed 3-D point x
with the 3-D ray:

(exp(θξ̂)x)3×1 × n−m = 0. (3.15)

Indeed, x is a homogeneous 4-D vector, and after multiplication with the 4× 4 matrix
exp(θξ̂) we neglect the homogeneous component (which is 1) to evaluate the cross

product with n. We now linearize the equation by using exp(θξ̂) =
∑∞

k=0
(θξ̂)k

k!
≈ I +θξ̂,

with I as identity matrix. This results in

((I + θξ̂)x)3×1 × n−m = 0 (3.16)

and can be reordered into an equation of the form Aξ = b. Collecting a set of such
equations (each is of rank two) leads to an overdetermined system of equations, which
can be solved using, for example, the Householder algorithm. The Rodriguez formula
can be applied to reconstruct the group action M from the estimated twist ξ. The
group action is then applied to the 3-D points and the process is iterated until the
gradient descent approach reaches a steady state.
Note that the projection rays only need to be reconstructed once, and can be recon-
structed from orthographic, projective, or even catadioptric cameras. The algorithm is
very fast (e.g., it needs 2 ms on a standard Linux PC for 100 point correspondences).
In [43] extensions to point-plane, line-plane constraint equations and kinematic chains
are presented using Clifford algebra [51].
In the described setting, the extension to multiple views is straightforward: we assume
N images which are calibrated with respect to the same world coordinate system and are
triggered. For each camera the system matrices A1 . . . AN and solution vectors b1 . . . bN

are generated. The equations are now bundled in one system A = (A1, . . . ,AN)T and
b = (b1, . . . , bN)T . Since they are generated for the same unknowns ξ, they can be solved
simultaneously, i.e., the spatial errors from all involved camera views are minimized.
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3.1.4 Pose estimation of free-form contours

We assume a one-parametric closed curve in 3-D space,

C(φ) = (f 1(φ), f2(φ), f3(φ))T , (3.17)

which is represented by a finite set of contour points

C(n) = {(f 1(n), f2(n), f3(n))T : n = 0 . . . M − 1}. (3.18)

The main idea is to interpret a one-parametric 3-D closed curve as three separate 1-D
signals that represent the projections of the curve along the x, y, and z axis, respectively.
Since the curve is assumed to be closed, the signals are periodic and can be analyzed
by applying a 1-D discrete Fourier transform (1D-DFT). The inverse discrete Fourier
transform (1D-IDFT) enables us to reconstruct low-pass approximations of each signal.
Subject to the sampling theorem, this leads to the representation of the one-parametric
3-D curve C(φ) as

C(φ) =
3∑

m=1

N∑
k=−N

pm
k exp

(
2πkφ

2N + 1
i

)
. (3.19)

The parameter m represents each dimension and the vectors pm
k are phase vectors

obtained from the 1D-DFT acting on dimension m. Using only a low-index subset of
the Fourier coefficients results in a low-pass approximation of the object model which
can be used to regularize the pose estimation algorithm.
For pose estimation we combine this parametric representation within an iterated closest
point (ICP) algorithm [54] in order to determine point correspondences between the
image silhouette and the 3-D contour.

15 211 8

Figure 8: Pose results during iterated ICP-cycles and increased number of used Fourier
descriptors.

The algorithm for pose estimation of free-form contours consists of iterating the follow-
ing steps:

(a) Reconstruct the projection rays from image points.
(b) Estimate the nearest point on the 3-D contour to each projection ray.
(c) Estimate the contour pose by using this point/line correspondence set.
(d) Goto (b).

For (a), we determine from the calibration the optical center c and the image point in
the world coordinate system. This is used to define the 3-D Plücker line, see section
3.1.1. For (b) we use Equation 3.7 and sample along the contour. Part (c) is described
in Section 3.1.3. Figure 8 shows an example for iterations. The algorithm usually
converges within 20 iterations and we need 40ms on a standard Linux PC (1GHz) to
estimate the pose of a free-form contour.
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42 all (51)9

Figure 9: A sequence of different low-pass approximations of an object model consisting
of three free-form surface patches.

3.1.5 Pose estimation of free-form surfaces

We assume a two-parametric surface [10] of the form

F (φ1, φ2) = (f 1(φ1, φ2), f
2(φ1, φ2), f

3(φ1, φ2))
T (3.20)

defined by three functions f i(φ1, φ2) : R2 → R acting on the base vectors. The idea
behind a two-parametric surface is to assume two independent parameters φ1 and φ2

which sample the 2-D surface in 3-D space. In fact, we are using a mesh model of
the object [10]. For a finite number of sampled points f i(n1, n2) (n1 ∈ [−N1, N1]; n2 ∈
[−N2, N2]; N1, N2 ∈ N, i = 1, . . . , 3) on the surface, we interpolate the surface by using
a 2-D discrete Fourier transform (2D-DFT) and then apply an inverse 2-D discrete
Fourier transform (2D-IDFT) for each base vector separately. Subject to a proper
sampling, the surface can therefore be written as a series expansion of the form

F (φ1, φ2) =
N1∑

k1=−N1

N2∑
k2=−N2

 F 1(k1, k2)
F 2(k1, k2)
F 3(k1, k2)

 exp
(

2πk1φ1

2N1 + 1
i

)
exp

(
2πk2φ2

2N2 + 1
i

)
with

F j(k1, k2) =
1

(2N1 + 1)(2N2 + 1)

N1∑
n1=−N1

N2∑
n2=−N2

f i(n1, n2)

exp
(
− 2πk1n1

2N1 + 1
i

)
exp

(
− 2πk2n2

2N2 + 1
i

)
. (3.21)

Figure 9 shows approximation levels of a tea pot consisting of a handle, container and
spout.
For pose estimation we assume a properly extracted silhouette of an object in a given
image. There is a need to express tangentiality between the surface and the recon-
structed projection rays, and there is also a need to express a distance measure within
our description. For this requirement, we decided to use the 3-D rim of the surface
model which is tangential with respect to the camera coordinate system. Here our
tracking assumption comes into account: we project the 3-D surface with its initial
pose onto a virtual image. Then the 2-D contour is calculated and from the image
contour the 3-D rim of the surface model is reconstructed. To get the 3-D rim, there is
a need to get from the image of a node point to its 3-D coordinates. This is done with
the help of a look-up table F , see Figure 10. First we assume a mesh C(i, j) → (x, y, z)
which gives the 3-D coordinates of the surface node for the two sample parameters (i, j).
This mesh is projected with the projection matrix into a virtual image I. The model
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Figure 10: To determine the 3-D position of a 2-D image node, a field F is used as
look-up table, which stores the relation between pixels and the 3-D mesh. C(F (x, y))
gives the 3-D coordinates of a node at pixel position (x, y) in the image.

Figure 11: Pose results of the tea pot.

is projected in the virtual image with connecting line segments between points on the
surface nodes and the nodes in another gray-scale value. This virtual image is used as
a look-up table: we can detect the 3-D surface point for a given surface node on the
image with the help of a 2-D field F and function C, since C(F (x, y)) yields the 3-D
coordinates of the node’s image point (x, y). To obtain the 3-D rim points we use a
contour algorithm which follows the image of the mesh model by a recursive procedure.
Then the nodes of the mesh model are collected, from which the corresponding 3-D rim
is calculated with the help of F . The rim model is then applied on our contour-based
pose estimation algorithm, see Section 3.1.4. Since the aspects of the surface model
are changing during the ICP-cycles, a new rim will be estimated after each cycle. Pose
results of the silhouette-based pose estimation algorithm are shown in Figure 11.
In order to deal with larger motions during pose tracking we use a sampling method that
applies the surface based pose estimation algorithm for different neighboring starting
positions. From all results we then choose the one with the minimum error between
the extracted silhouette and the projected surface mesh.
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4 Coupling Segmentation and Pose Estimation

The pose estimation method relies on the correctly extracted contour of the object in
the image. Although the method can deal with some errors in the contour, it yields
bad results as soon as the erroneous parts outnumber the correct parts. Therefore, the
applicability of the pose estimation algorithm stands and falls with the capabilities of
the contour extraction method, which must be able, e.g., to deal with texture.
On the other hand, the segmentation task can be simplified a lot, if the solutions are
restricted to be close to a given prior shape. In many cases, this prevents the object
region to capture parts of the image that do not belong to the object. Thus, using
the known object shape from the 3-D model for segmentation and correcting its pose
by the contour is beneficial both for the final contour and the estimated pose. In the
following, we introduce a way how such a joint evolution of the contour and the pose
can be realized in a variational setting.

4.1 Joint Energy Functional

In order to couple pose estimation and image segmentation in one single optimiza-
tion problem, the energy functional for image segmentation in (2.1) is extended by an
additional term that integrates the object model:

E(Φ, θξ) = −
∫

Ω

(
H(Φ) log p1 + (1−H(Φ)) log p2

)
dx + ν

∫
Ω

|∇H(Φ)| dx

+ λ

∫
Ω

(Φ− Φ0(θξ))
2 dx︸ ︷︷ ︸

Shape

.
(4.22)

The quadratic error measure in the shape term has been proposed in the context of
2-D shape priors, e.g. in [47]. The prior Φ0 ∈ Ω → R depends on the sought 3-D pose
θξ and is assumed to be represented by the signed distance function. In our case this
means, Φ0(x) yields the distance of x to the silhouette of the projected object surface.

Assumed the pose parameters θφ are known, Φ0 is constructed as follows: let XS

denote the set of points X on the object surface. Projection of the transformed points
exp(θξ)XS into the image plane yields the set xS of all 2-D points x on the image plane
that correspond to a 3-D point on the surface model

x = P exp(θξ)X, ∀X ∈ XS (4.23)

where P denotes a projection with known camera parameters. The level set function
Φ0 can then be constructed from xS by setting

Φ̃0(x) =

{
1 if x ∈ xS

−1 otherwise
(4.24)

and applying the distance transform, i.e.,

Φ0(x) =

{
dist(x) if Φ̃0(x) > 0

−dist(x) otherwise
(4.25)

where dist(x) denotes the distance of x to the zero-level line of Φ̃0.
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4.2 Energy Minimization

Minimizing (4.22) with respect to the contour Φ leads to the gradient descent equation

∂tΦ = H ′(Φ)

(
log

p1

p2

+ ν div

(
∇Φ

|∇Φ|

))
+ 2λ (Φ0(θξ)− Φ). (4.26)

The shape term in this evolution equation pushes the contour towards the contour of
the projected object model. This ensures that the contour cannot deviate too much
from the modelled shape. The weighting parameter λ ≥ 0 thereby determines just how
far the contour can deviate from the prior. If the correct pose parameters were known,
a large value of λ would ensure that the contour converges correctly to the shape of the
object model.

However, the pose parameters are not known but are free variables and supposed to be
optimized together with the contour. Thus the shape term in (4.22) not only draws the
contour towards the projected object model, but also draws the object model towards
the contour, or more precisely, makes the object model to change its pose such that the
projected object Φ0 resembles the contour Φ. This optimization of the pose parameters
is achieved by the method described in Section 3. Due to the distance transform,
the squared error measure in (4.22) is the error measure minimized by the least squares
approach in Section 3: the minimum squared residual over all point-line correspondences
is obtained by solving the overdetermined linear system Aξ = b in Section 3.1.3.

In order to minimize the total energy, we suggest an iterative approach: keeping the
contour Φ fixed, the optimum pose parameters θξ are determined as described in Sec-
tion 3 and yield the silhouette Φ0 of the object model. Retaining in the opposite way
the pose parameters, (4.26) determines an update on the contour. Both iteration steps
thereby minimize the distance between Φ and Φ0. While the pose estimation method
draws Φ0 towards Φ, thereby respecting the constraint of a rigid motion, (4.26) in re-
turn draws the curve Φ towards Φ0, thereby respecting the data in the image. The
weighting parameter λ steers the influence of the object model versus the image data.
A small λ gives the contour much freedom to evolve, enabling the pose to follow. If
the object region can be clearly separated from the background, choosing λ small is
therefore beneficial. On the other hand, if the contour is distracted by background
clutter, the shape information keeps the contour from running too far away from the
object. In our experiments we have chosen λ in the area of 0.05.

4.3 A Measure of Confidence for the Extracted Contour

The reliability of the extracted contour may vary a lot along the curve. Although the
partitioning ensures a closed contour, which is in contrast to edge detection techniques,
the separability of the object and the background region can be considerably reduced in
some areas. This happens in particular in locations where the shape prior contradicts
the local region statistics, e.g., due to occlusions. We therefore propose to measure
the confidence of the extracted contour and to consider this information during pose
estimation.
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Figure 12: From left to right: (a) Initialization. (b) Segmentation result with object
knowledge. (c) Pose result. (d) Segmentation result without object knowledge.

The sought confidence at a certain point x can be expressed by the probability that the
point has been assigned to the correct region. This probability reads

c̃(x) =
p1(x)

∫
Ω1

Kρ(x) dξ

p(x)
H(Φ(x)) +

p2(x)
∫

Ω2
Kρ(x) dξ

p(x)
(1−H(Φ(x))) (4.27)

where Kρ is the Gaussian kernel from Section 2.3. If a pixel assigned to region Ω1 also
fits well to region Ω2, i.e., p1 ≈ p2, the precise location of the contour will be ambiguous
and the confidence will be around 0.5. Obversely, if a pixel assigned to Ω1 does not fit
to region Ω2, i.e., p1 � p2, the contour location will be definite and the confidence will
be close to 1. If a pixel is assigned to the wrong region according to the statistics – this
can happen due to contradictions with the object prior or the length constraint – the
confidence will be even smaller than 0.5.
Due to slightly blurred edges, pixels directly on the contour often have a quite low
confidence, although the separability of the regions in the surrounding area is high.
Therefore, it is reasonable to take also pixels from the neighborhood into account. This
can be achieved by a simple convolution with a Gaussian kernel Kσ

c(x) = (Kσ ∗ c)(x) (4.28)

where we set σ = 1.5.

The confidence measure c(x) can easily be integrated in the pose estimation procedure.
Every equation in the linear system stemming from a correspondence of a 3-D point X
with the 2-D point x is weighted by c(x). This way, point matches in highly confident
areas obtain more influence on the solution than matches stemming from ambiguous
points on the contour.

5 Experiments

We investigated the performance of our joint contour extraction and pose estimation
method in a couple of experiments. Fig. 12 first demonstrates the general advantage of
integrating object knowledge into the segmentation process. Without object knowledge,
parts of the tea box are missing as they better fit to the background. The object prior
can constrain the contour to the vicinity of the projected object model derived from
those parts of the contour that can be extracted reliably. This basic concept is also
the key issue of approaches that use 2-D shape knowledge. With 3-D shape knowledge,
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Figure 13: Top row: Input images for frames 51, 189 and 450 of an image sequence
containing 560 frames. Bottom row: Pose results. The algorithm is able to deal with
a cluttered and changing background.

however, it is no longer necessary to model several views. Moreover, the object model
can perfectly fit the data, while in 2-D approaches there remain discrepancies if the
current view does not coincide perfectly with one of the modelled views.
In Fig. 13 we show the robustness of the method in the case of a changing background.
One can see that the estimated pose of the teabox is not distracted by any of the objects
moved in the background, though the CDs even reflect the teabox surface. Later on in
the sequence, also the teabox itself is moved, which shows that the method is not tuned
for static objects.
In the experiment shown in Fig. 14, we tested the influence of artifacts like reflections,
shadows, and noise. The motion of the object causes partially severe reflections on the
metallic surface of the teabox. Moreover, the teabox throws a shadow as it is tilted.
Additionally, Gaussian noise with standard deviation 30 has been added to the sequence.
Nevertheless, the results remain stable. Also the slight occlusion due to the fingers does
not harm the pose estimation. The presence of noise in this sequence clearly rules out
methods that are based on background substraction. Also simple thresholding methods
for contour extraction would fail due to the cluttered background and the reflections.
Fig. 15 compares the results obtained with and without the suggested confidence mea-
sure, respectively. On the first glance, the improvement may not look extraordinary,
yet the confidence measure prevents the result from being deteriorated by the shadow
and the occluding fingers. With a homogeneous weighting, the correct contour points
have not enough weight to ensure the correct pose estimate.
In the experiment depicted in Fig. 16, the monocular camera has been extended to a
stereo system. In this case, another significant advantage of using 3-D shape knowledge
becomes apparent. In contrast to 2-D approaches, our method can fuse the information
from two images. If the information in one image is not reliable, e.g due to occlusions,
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Figure 14: Top row: Initialization at the first frame. Contour at frames 49, 50, and
116 of the sequence. Bottom row: Pose results at frames 0, 49, 50, and 116. The
teabox is moved, causing partially severe reflections on the box. Furthermore, Gaussian
noise with standard deviation 30 has been added.

Figure 15: From left to right: (a) Frame 13. (b) Pose estimation result without the
proposed confidence measure. (c) Result when exploiting the confidence. (d) Confidence
along the contour. Dark values represent a high confidence.

the information from the other image can still determine the pose. Even if there are
occlusions in both images, the combined information from both images can be still
sufficient for a reliable pose estimation. The object model with the correct pose, on the
other hand, constrains the contour and keeps it from breaking away.
In the sequel of this stereo sequence, the teabox is moved. Two further frames are
depicted in Fig. 17. Again there appear reflections on the surface of the box, and there
are further partial occlusions due to the hand.
In order to demonstrate that the approach is not restricted to a certain type of object,
Fig. 18 shows an experiment with a teapot model. This object is non-convex and even
contains a hole. Dealing with such a kind of object, it is particularly beneficial to
represent the contour by means of a level set function. In the level set framework, the
more complex topology does not change anything. Thus, the region encircled by the
handle of the teapot can correctly be assigned to the background region. The teapot
immediately rules out line-based methods for this task. Also methods based on feature
matching may have difficulties due to the homogeneous surface of the object. Further
note the bad initialization. A decoupled concatenation of the segmentation technique
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Figure 16: Top left: Frame 97 from a stereo sequence with 400 frames. Top right:
Tracking result. In both views the object is partially occluded but the pose can be
reconstructed thanks to the 3-D shape knowledge. Bottom left: The extracted con-
tour is kept close to object. Bottom right: Here, the contour has been reinitialized
at this frame with the correct contour, but the shape knowledge has been neglected.
Consequently, the contour can break away.

Figure 17: Contour and pose results at frame 190 and 212 for the stereo sequence from
Fig. 16.

and the pose estimation method cannot succeed in finding the right contour and pose.
Only the mutual improvement of both the contour and the pose allows for a good result
in the steady state.
Finally, Fig. 19 depicts a sequence where object and camera are static to allow a quanti-
tative error measurement. The two diagrams show the translational and angular errors
along the three axes, respectively. Despite the change of the lighting conditions and
partial occlusions, the error has a standard deviation of less than 5mm and 3.5 de-
gree. The main rotational errors occur for rotations around the x-axis of the calibrated
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Figure 18: Top row: Stereo image with a teapot. The initialization is quite far
away from the object. Center row: Result in the steady state. The coupled contour
extraction and pose estimation move the object prior into the right pose. Bottom row:
Contour and pose with a simple concatenation of segmentation and pose estimation,
i.e., only one iteration. The contour is restricted to the initial, bad pose and cannot
fully capture the object. Consequently, the pose stays very close to the initialization.

system. This is due to the fact that such a rotation causes smaller changes of the
silhouette than rotations around the other axes. Therefore, this degree of freedom is
more sensitive to inaccuracies or errors in the extracted contour. The x-axis is located
horizontally along the teapot, crossing the center of the tea pot, and pointing from the
handle to the spout.

6 Conclusion

In this work, variational and statistical methodologies have been combined with geomet-
ric techniques based on Clifford algebras. We introduced a method that integrates 3-D
shape knowledge into a variational model for level set based image segmentation. While
the utilization of 2-D shape knowledge has been investigated intensively in recent time,
the presented approach takes the three-dimensional nature of the world into account.
The method relies on a powerful image-driven segmentation model on one side, and
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Figure 19: Top rows: Pose results at frame 30, 55, 130 and 200 for a static stereo
sequence with illumination changes and partial occlusions (left and right view). Bot-
tom left: Translational errors along the three coordinate axes in millimeter. Bottom
right: Rotational errors in 180

π
degree.

an elaborated technique for contour based 2D-3D pose estimation on the other side.
The combination of both techniques improves the quality of contour extraction and,
consequently, also the robustness of pose estimation that relies on the contour. This al-
lows for the tracking of three-dimensional objects in cluttered scenes with inconvenient
illumination effects and partial occlusions. The strategy to model the segmentation in
the image plane, whereas the shape model is given in three-dimensional space, has the
advantage that the image-driven part can operate on its natural domain as provided by
the camera, while the 3-D object model offers the full bandwidth of perspective views.
Moreover, in contrast to 2-D techniques, the object is given a location in space.
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