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Abstract. We consider the problem of interpolating frames in an im-
age sequence. For this purpose accurate motion estimation can be very
helpful. We propose to move the motion estimation from the surround-
ing frames directly to the unknown frame by parametrizing the optical
flow objective function such that the interpolation assumption is directly
modeled. This reparametrization is a powerful trick that results in a num-
ber of appealing properties, in particular the motion estimation becomes
more robust to noise and large displacements, and the computational
workload is more than halved compared to usual bidirectional methods.
The proposed reparametrization is generic and can be applied to almost
every existing algorithm. In this paper we illustrate its advantages by
considering the classic TV-L1 optical flow algorithm as a prototype. We
demonstrate that this widely used method can produce results that are
competitive with current state-of-the-art methods. Finally we show that
the scheme can be implemented on graphics hardware such that it be-
comes possible to double the frame rate of 640× 480 video footage at 30
fps, i.e. to perform frame doubling in realtime.

1 Introduction

Frame interpolation is the process of creating intermediate images in a sequences
of known images. The process has many uses, for example video post-processing
and restoration, temporal upsampling in HDTVs to enhance viewing experience
as well as a number of more technical applications, e.g. in video coding.

In this work we consider optical flow based frame rate upsampling which per-
forms interpolation along the motion trajectories. With this application in mind
we propose to reparametrize the optical flow energy such that it fits better to the
given problem. The reparametrized energy has a symmetric data fidelity term,
that uses both surrounding frames as references. We show that one can improve
modern frame interpolation methods substantially by this powerful generic trick,
that can be incorporated in existing schemes without requiring major adapta-
tions. We analyze the reparametrization, and show experimentally that it has a
great effect on the stability and robustness of the interpolation process.
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The idea to symmetrize data matching terms to achieve better results has
already established its usefulness in other areas. In image registration Chris-
tensen and Johnson [1] explored the benefit of penalizing consistency, by jointly
estimating forward and backward transforms, and requiring that they were in-
verses of one another. A similar idea was applied to the optical flow problem
by Alvarez et al. [2], who imposed an additional consistency term. Later that
same year Alvarez et al. [3] proposed a reparametrization similar to the one de-
rived in this paper in order to avoid a reference frame, and thereby increase flow
consistency. However, they did not use the obtained symmetric flow directly,
but interpolated flow values at pixel position of a reference image in order to
obtain a flow comparable to the standard asymmetric flow. Recently Chen [4]
used a symmetric data term for surface velocity estimation, noting the property
that motion vector length is halved, which in turn gives better handling of large
displacements.

Apart from being algorithmically different, the difference between the justi-
fication given in this paper and the justifications of Alvarez et al. [3] and Chen
[4] is that we have chosen the symmetric data fidelity term because it explicitly
models the standard interpolation assumption, rather than improves some no-
tion of consistency or better handles large displacements. In turn this also means
that we use the estimated flows directly on the unknown frame, and thereby
avoid problems of temporal warping. As we will show, the mentioned benefits
are clearly reflected in the results. They demonstrate that using a symmetric
flow for interpolation is generally better than using either forward or backward
flows or both.

The rest of this paper is organized as follows. In the next section we review
the estimation process for duality based TV-L1 optical flow. In Section 3 we
discuss a standard method for motion compensated frame interpolation, and in
Section 4 we present our reparametrization of the optical flow energy. In Section
5 we consider examples and compare to current state-of-the-art methods, and
finally we conclude the paper with discussion and outline future directions in
Section 6.

2 Duality Based TV-L1 Optical Flow

Optical flow estimation concerns the determination of apparent (projected) mo-
tion. Given a sequence of temporally indexed images It, we want to estimate the
optical flow v such that the motion matches the image sequence with respect to
some measure. This is often done by computing the flow as the minimizer of an
energy of the type

E(v) = λF (I,v) +R(v) (1)

where F is a positive functional measuring data fidelity and R is a regularization
term. Many energies of this type have been suggested throughout the years, and
a large variety of resolution strategies exist. Here we will focus on the TV-L1
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energy, where data fidelity between two frames I0 and I1 is measured by the
L1-norm of the difference

F (I0, I1,v) =

∫
‖I1(x + v(x))− I0(x)‖ dx, (2)

and the regularization term R penalize the total variation of the estimated mo-
tion

R(v) =

∫
‖Dv(x)‖ dx, (3)

which, depending on the definition of the operator D can give different forms
of the vectorial total variation [5]. Here we will take D to be the 1-Jacobian
of Goldluecke et al. [6], since this choice of regularizer does not suffer from the
channel-smearing of usual definition of vectorial total variation [5]. In order to
efficiently minimize E we introduce two relaxations. First we linearize the data
fidelity term I1(· + v) − I0 ≈ ρ(v),where · is a placeholder for the argument of
the function (i.e. x),

ρ(v) = I1(·+ v0)− I0 + JI1(·+ v0)(v − v0) (4)

where JI1 is the Jacobian of I1, and v0 is the current estimate of v. We fur-
ther relax E by introducing an auxiliary variable u that splits data fidelity and
regularization in two quadratically coupled energies:

E1(v) =

∫
λ‖ρ(v)(x)‖+

1

2θ
‖v(x)− u(x)‖2 dx, (5)

E2(u) =

∫
1

2θ
‖v(x)− u(x)‖2 + ‖Du(x)‖ dx. (6)

This relaxation was first proposed by Zach et al. [7], and has a number of
advantages, most notably that the first problem can be solved pointwise which
makes the solution very easy to implement on massively parallel processors like
graphics processing units (GPUs). For completeness we will give the minimizing
pointwise solution to (5) in the general case where ρ(v)(x) = a>v + b, a ∈ Rd
and b ∈ R, which is given as

v(x) = u(x)− πλθ[−a,a]
(
u +

b

‖a‖2
a

)
(7)

where πλθ[−a,a] is the projection onto the line segment joining the vectors −λθa
and λθa, which is given by

πλθ[−a,a]

(
u +

b

‖a‖2
a

)
=


−λθa if a>u + b < −λθ‖a‖2

λθa if a>u + b > λθ‖a‖2
a>u+b
‖a‖2 a if |a>u + b| ≤ λ‖a‖2

. (8)
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For a = ∇I1(x+v0) and b = I1(x+v0)− I0(x)−∇I1(x+v0)>v0 the above
expression reduces to the result of Zach et al. [7]. In the general case of vector
valued images, (5) can be minimized by the method presented in [8]. We will not
replicate the minimizer of the regularization energy (6) here, but note that it
can be minimized effectively following an iterative pointwise Bermùdez-Moreno
type algorithm (see Goldluecke et al. [6]). For further implementation details we
refer to Section 5.

3 Motion Compensated Frame Interpolation

Given two images I0 and I1 and an estimate of the (forward) optical flow vf we
are interested in estimating the in-between image I1/2 (the methods are easily
extended to any in-between frame It, t ∈ (0, 1)). A simple approach is to assume
that the motion vectors are linear through I1/2 and then fill in I1/2 using the
computed flow. However, since vf is of sub-pixel accuarcy, the points x+1/2vf (x)
that are hit by the motion vectors are generally not pixel positions. This is often
solved by warping the flow to the temporal position of the intermediate frame

I1/2 (see e.g. [9], [10], [11]), in which one defines a new flow v
1/2
f from I1/2 to I1

v
1/2
f (round(x + 1/2vf (x))) = 1/2vf (x), (9)

where the round function rounds the argument to nearest pixel value in the
domain. There are some drawbacks to this approach. First, if the area around x
in I0 is occluded in I1, there are likely multiple flow candidates assigned to the
point round(x + 1/2vf (x)). In the converse situation, i.e. dis-occlusion from I0
to I1 there may be pixels that are not hit by a flow vector, thus leaving holes in
the flow.

While the first problem can be solved by choosing the candidate vector with
the best data fit, the solution for the problem of dis-occlusions in not that simple.
Here we will simply fill the holes in the flow field by an outside-in filling strategy.
With a dense flow we can then interpolate I1/2 using the forward scheme

I1/2(x) =
1

2

(
I0(x− v

1/2
f (x)) + I1(x + v

1/2
f (x))

)
, (10)

or consider the backward flow vb (i.e. the flow from I1 to I0) and use a backward
scheme accordingly. We will in addition consider a bidirectional interpolation
scheme where the frame is interpolated as the average frames obtained by the
forward and backward schemes.

One can sophisticate the interpolation methods by estimating occluded re-
gions and selectively interpolating from the correct frame. We will not pursue
any occlusion reasoning here, but refer to [10] and [12] for details.

4 Reparametrizing Optical Flow for Interpolation

The approach presented in the previous section is the standard procedure for
frame interpolation and serves as backbone in many algorithms ([9], [13], [14],
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[11]). In this section we will reparametrize the original energy functional so the
recovered flow is better suited for interpolation purposes. The reparametrization
turns out to be beneficial on a number of levels: It makes the temporal warping
of the flow superfluous, eliminates the need to calculate flows in both directions,
improves handling of large motion, and increase overall robustness.

The original optical flow energy functional take as argument an optical flow
v that is defined on a continuous domain. In practice, however, we only observe
images at discrete pixels, and the optical flow is typically only estimated at the
points corresponding to the pixels in I0. Since we assume that the intermediate
frame I1/2 can be obtained from linearly following the flow vectors, we propose
to reparametrize the data fidelity functional F using this assumption, so that it
is given as

1

2

∫
‖I1(x + vs(x))− I0(x− vs(x))‖ dx. (11)

We note that in this parametrization, the coordinates of the optical flow
matches those of the intermediate frame I1/2, and using this data term will thus
eliminate the need for warping of the flow, since interpolation can directly be
done similarly to (10). Because the motion vectors of the symmetric flow vs
are only half of the ones of e.g. the forward flow vf , we need to halve the
corresponding λ to keep comparison fair, which is the reason for the factor 1/2.

Linearizing the data matching term (11) around v0 gives

ρ(vs) = I1(·+ v0)− I0(· − v0) + (JI1(·+ v0) + JI0(· − v0))(vs − v0) (12)

which is similar to (4). In 1D the corresponding split energy term (5) is easily
minimized using (7), and in general using the L1-L2 minimization from [8].

The differences between (12) and (4) are that we now allow sub-pixel match-
ing in both surrounding images, and instead of a single Jacobian we have a sum
of two. Thinking of this linearization as a finite difference scheme corresponding
to a linearized differential form of the data fidelity term, we see that the temporal
derivative is represented by a central finite difference scheme, as opposed to the
typical forward differences (4). In addition the sum of the two Jacobians should
make the estimation procedure more robust to noise, as the noise amplification
caused by derivative estimation is now averaged over two frames. This has previ-
ously been used heuristically to improve accuracy in asymmetric flow estimation
(see e.g. [15]). Finally we note that the motion vectors will only have half the
length of the ones obtained from the regular parametrization. This will make
the method better suited to handle large displacements compared to traditional
methods that only make use of a one-sided linearization.

5 Results

Motion compensated frame interpolation finds many uses, ranging from the more
technical applications such as video coding [13] to disciplines like improving
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viewing experience [14] or restoration of historic material [11]. For the former
type of application the reconstruction quality in terms of quantitative measures
is of great importance. For the latter types it is hard to devise specific measures
of quality, as the human visual system is very tolerant to some types of errors,
while it is unforgiving to other types of errors. In fact, the types of tolerated
errors may even depend on the specific sequence.

For the results presented in the following we use a setup where we solve
(5) and (6) iteratively in a coarse-to-fine pyramid as illustrated in Algorithm
1. We use `max = 70 levels and a scale factor of 0.95. On each level wmax = 60
warps are performed, and within each warp we minimize (5) with linearized data
fidelity term (12) using (7), followed by minimization of (6) using using imax = 5
inner iterations of a Bermùdez-Moreno type algorithm [6]. We fix the coupling
parameter θ = 0.2.

Algorithm 1: Computation of TV-L1 optical flow.

Data: Two images I0 and I1
Result: Symmetric optical flow field vs

for ` = `max to 0 do
// Pyramid levels

Downsample the images I0 and I1 to current pyramid level
for w = 0 to wmax do

// Warping

Compute vs pointwise as the minimizer of E1 (5) with data fidelity (12)
for i = 0 to imax do

// Inner iterations

Compute us as the minimizer of E2 (using methods presented in [6])

end
Upscale v and u to next pyramid level

end

end

As our first experiment we compare the four different types of interpolation
suggested in the previous sections, on the four High-speed camera training se-
quences of the Middlebury Optical Flow benchmark. Figure 1 shows the effect
of varying the data term weight λ in terms of the mean absolute interpolation
error (MAIE). We see that the symmetric flow outperforms the conventional
approaches, and that it is typically less sensitive in terms of the choice of λ.
In particular we see that the difficult Beanbags sequence which contains large
displacements is handled much better by the symmetric scheme. By evaluation
on the Middlebury training set it was found that λ = 35 gave the best overall
performance for the symmetric flow, and that λ = 20 gave the best performance
for the other three methods. These λ values will be used in the rest of the
experiments presented in this section.
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Fig. 1: Performance for varying λ on the four High-speed camera training se-
quences from the Middlebury Optical Flow benchmark [9].
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Fig. 2: MAIE performance under additive N (0, σ2) noise for varying σ. Results
are for the Beanbags sequence, and are based on 10 independent replications.

For our second example we consider the results of interpolation under noise.
Figure 2 shows the MAIE performance of the four methods on the Beanbags se-
quence with additive N (0, σ2) noise. The improved robustness of the symmetric
interpolation method is clearly visible from the distances between the MAIEs
to the asymmetric methods that increase as the standard deviation of the noise
increases. In addition we see that the variance of the MAIEs across the inde-
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pendent replications is significantly lower for the symmetric method compared
to the three other methods.

Fig. 3: Frames 7 (I0), 10 (I1/2) and 13 (I1) of the Mequon sequence.

As our third example, consider the frames given in Figure 3. The sequence
has large displacements (> 35 pixels) and severe deformations, which makes the
estimation of I1/2 very difficult. Figure 4 shows the three different flows vf , vb
and vs along with the corresponding interpolated frames. Zoom ins of details
can be found in Figure 5. We see that the result generated by the symmetric flow
is visually more pleasing than the ones produced by the forward and backward
flows, a fact that is also clearly reflected in the MAIEs and root mean square
interpolation errors (RMSIE).

Forward Backward Symmetric

MAIE 8.72, RMSIE 20.30 MAIE 8.85, RMSIE 20.09 MAIE 8.23, RMSIE 19.02

Fig. 4: Results for the Mequon sequence. Top row: Color coded optical flows,
buttom row: Interpolation results. Zoom ins of details can be found in Figure 5.

Finally let us compare the method to some methods of the current state-
of-the-art. Table 1 holds the RMSIEs for six sequences from the Middlebury
Optical Flow benchmark and results for a number of methods. While the results
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Ground truth Forward Backward Symmetric

Fig. 5: Details of the interpolated Mequon frame from Figure 4.

Table 1: RMSIE for different Middlebury sequences. Bold indicates the best
result. † Results are taken from [12]. ‡ Marked algorithms have not been imple-
mented by their respective authors, but by the Middlebury authors [9].

Method Dimetrodon Venus Hydrangea RubberWhale MiniCooper Walking

Symmetric TV-L1 1.93 3.45 3.36 1.46 3.96 2.89
Chen & Lorenz [16] 1.95 3.63 — — — —

Werlberger et al. [11] 1.93 — — — 4.55 3.97
Stich et al. [12] 1.78 2.88 2.57 1.59 — —

Bruhn et al. [17]†,‡ 2.59 3.73 — — — —

Pyramid Lukas-Kanade†,‡ 2.49 3.67 — — — —

cannot fully match the results of Stich et al. [12], which gives significantly better
results on 3 of the sequences, our method outperforms all other approaches,
including the recent and much more complex methods of Chen and Lorenz [16]
and Werlberger et al. [11].

Real-time Performance

In the presented setup we only have to compute a single flow field between two
images and fill in the intermediate frame from the trajectories. The runtime of
the interpolation is dominated by the time it takes to compute the flow field,
and at a slight cost in accuracy (5 pyramid levels with a scale factor of 2, and
30 warps per level, 1 level of median filtering) the flow fields can be computed in
real-time (∼35 fps) for 640 × 480 images using an NVIDIA Tesla C2050 GPU,
which in turn means that we can do real-time frame doubling of 30fps video
footage at a resolution of 640× 480.
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6 Conclusion and Outlook

We have proposed a method for motion compensated frame interpolation that is
based on interpolation along the motion vectors. The main contribution is to use
the assumption that an in-between frame can be reached by linearly following the
motion vectors for reparametrizing the optical flow energy, such that the coordi-
nate system of the flow matches that of the in-between frame. We have showed
that one can improve frame interpolation methods substantially using this pow-
erful and generic symmetric parametrization, and that the parametrization can
be incorporated in existing frame interpolation methods with only little adapta-
tion. Using a simple TV-L1 optical flow algorithm as prototype we demonstrated
results that are competitive with recent methods that are highly sophisticated.
The proposed method can be implemented very efficiently, and using graphics
hardware we succeeded in doubling the frame rate of 640 × 480 video in real
time.

The presented work can be extended in a number of directions. The most ob-
vious extension would be to use the symmetric data term with a more advanced
optical flow method. If the goal is to improve viewing experience, a spatial regu-
larization of the interpolated frames could probably improve the perceived qual-
ity. Spatial regularization could be done by means of total variation (see e.g.
[14] and [11]) or by edge enhancing diffusion [18]. The latter has been shown to
have very good interpolation properties, and has been successfully used in im-
age compression [19] and for motion compensated deinterlacing [20]. To improve
reconstruction quality in terms of e.g. RMSIE, one could do occlusion reason-
ing and selectively interpolate from the non-occluded frame, or compute motion
trajectories over several frames [21] and use this information for interpolation.
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