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Abstract. Recently, an energy-based unified framework for image de-
noising was proposed by Mrazek et al. [I0], from which existing nonlinear
filters such as M-smoothers, bilateral filtering, diffusion filtering and reg-
ularisation approaches, are obtained as special cases. Such a model offers
several degrees of freedom (DOF) for tuning a desired filter. In this pa-
per, we explore the generality of this filtering framework in combining
nonlocal tonal and spatial kernels. We show that Bayesian analysis pro-
vides suitable foundations for restricting the parametric space in a noise-
dependent way. We also point out the relations among the distinct DOF
in order to guide the selection of a combined model, which itself leads
to hybrid filters with better performance than the previously mentioned
special cases. Moreover, we show that the existing trade-off between the
parameters controlling similarity and smoothness leads to similar results
under different settings.

1 Introduction

Many denoising techniques have been proposed in literature, many of them are
application-dependent. However, there are only few strategies that combine dif-
ferent approaches and allow further generalizations. One of them is the energy-
based approach proposed by Mrazek et al. [I0], which combines the well-known
M-smoothers [5] with bilateral filtering [I7]. By extending the spatial influence
that neighbouring pixels have on a central pixel, they end up with a general
nonlocal filtering framework that rewards similarity to the input image and pe-
nalises large deviations from smoothness. Many other existing nonlinear filters
are obtained as special cases of this framework. In this paper we explore the
relations among the different degrees of freedom available for tuning a specific
filter. Particularly, we focus on degradation processes governed by Gaussian and
impulse perturbations. Moreover, in Bayesian analysis we find suitable founda-
tions to instantiate probabilistically this model. Finally, we point out that the
use of combined (nonlocal) data and (nonlocal) smoothness constraints leads to
better denoising results than considering those filters obtained as special cases
of this general approach. Our paper is organised as follows: Section ] presents
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the Nonlocal Data and Smoothness (NDS) filtering framework. Section Bl pro-
vides brief insides into Bayesian analysis that will help us in tuning the model
parameters in Section @l Finally, some conclusions are outlined in Section [l

2 The NDS Framework

Let f € IR"™ be a given degraded version of the unknown 1-D or 2-D image
u € IR", and let 7,7 be pixel indices running along the set 2 = {1,...,n}. In
[10] a unifying variational approach to restore the original image u was proposed.
It minimises the energy function

B(u) = o 2 Vp(Jui — fi1*) wp (|2 — ;]%)
+1=0) % Bllu— ;P ws(le— ) M

This energy-based approach comprises a linear combination of two constraints,
i.e. E(u) = aEp(u) 4+ (1 — ) Eg(u), where the constant a € [0, 1] determines
the relative importance of both assumptions. The data term Ep(u) rewards
similarity to the input image f, while the smoothness term Eg(u) penalises
deviations from (piecewise) homogeneity in the restored w. On one hand, the
kernels ¥(-) are increasing functions that penalise large tonal distances s?; that
is, the distance between two pixel grey values s; and s;. On the other hand, the
kernels w(-) are nonnegative and (possibly) nonlocal windows that ponder the
influence of distant pixels; the Fuclidean distance between two pixel locations x;
and x; is called spatial distance 22, See Table[Mland Table [ for a non-exhaustive
list of kernels ¥(-) and w(-) proposed in literature.

Table 1. Popular choices for tonal weights ¥

W(s%) ' (s?) known in the context of
&2 1 Tikhonov regularisation
6]
~ 1 regularised total variation
2(Vs24+e2—¢ s 4?2
( ) FH vy o
1 . . .
2 2 2\ "2 nonlinear regularisation,
2A (\/1 to 1) (1 + A2) Charbonnier et al. [4]

9 <2 2\ ~! nonlinear diffusion, Perona-
Nlog 1+ 33) (1+5)  Maikd ]

9 <2 &2 nonlinear diffusion, Perona-
2 (1 TP (_N)) P (_ N) Malik 2 [14]

. /9 \2 1 |s| <A segmentation, Mumford and
min(s”, A%) \/ {0 else Shah [11]




Evaluating a General Class of Filters for Image Denoising 603

Table 2. Possible choices for spatial weights w

w(s?) known in the context of

locally orderless images, Koenderink

1 |s| <@ .

{0 else hard window and van Doorn [§]
2

e (-3) |\

soft window  Chu et al. [5]

Table 3. Nonlinear filters derived as special cases of the NDS framework ()

Filter Model
(a) histogram operations 2oy Yllui — fil?)
(b) M-smoothing > Uo(jui — L) wp(|z: — x5]?)
(c) bilateral filtering Z” Us (Jui — u;|*) ws (| — ;%)
(d) Bayesian /regularisation/diffusion J (Jlu—=fP? 4+ a¥s(|Vul?))dx

The NDS function (]) presented above exhibits wide generality in choosing
the parameters ¥p,Ws, wp,ws and « to derive a desired filter. In particular,
Table ] shows some well-known nonlinear filters obtained as special cases by
tuning the different degrees of freedom.

To minimise the expression (Il) we make use of the Jacobi method. See [6] for a
comparison study among different minimisation methods for the NDS functional.

3 Statistical Background

The most common degradation model is given by f = u + 7, where u is the
true image, n represents a zero-mean additive noise with standard deviation o,
and f is the recorded image. In the following we consider these quantities as
realisations of the random variables U, 11, and F', denoting as py, py, and pp
their probability density function (pdf), respectively. In Bayesian analysis [1§],
the mazimum a posteriori (MAP) estimator

inap = arg max log py|r(ulf)
= argmin (—log ppjv (f|u) —logpu (u)) (2)

yields the most likely image u given f. The conditional distribution pp|y, also
called likelihood, models the degradation process of U to F' and is therefore
considered as the noise distribution, i. e. ppy(flu) = py(n) = Hpn(fi —u;),
assuming that the noise is independent and identically distributed (i.i.d.). We
will focus on Gaussian and impulse noise. These types of noise are well modelled
by the Gaussian and Laplacian distributions, being respectively their pdf’s
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pe=( o, ) e (—2; > ml2> 7 ®)

€2

oo = () e (Sl ) (1)
(2‘7) (Uz’en )

Pluging these noise models into the MAP estimator (2), and observing the struc-
tural resemblance to our NDS function (I]), suggests that the penalisers for
the data term can be instantiated as ¥p(s?) = s? for Gaussian noise, and as
Wp(s?) = |s| for impulse noise, see Table [

The previous noise distributions are special cases of a more general proba-
bilistic law: the generalized Gaussian distribution [7], with parameters mean pu,
variance 02, and v > 0 (Gaussian case v = 2, Laplacian case v = 1); and pdf

wI(3/v)2 |z —pl|Y (T(3/v) v/2
pz(z) = 20T (1 /)32 exp <_ oV (F(l/u)) ) ’ (5)

where I'(+) is the Euler Gamma function. This distribution has been also utilized
for modelling probabilistic prior knowledge about the signal u to recover. In (2,
this information is represented in terms of the prior distribution py of the grey
values of U. Besag [2] proposed the Laplacian law as model for py, which was
later extended by Bouman & Sauer with their generalized Gaussian Markov
Random Field [3] based on the distribution () for v € [1,2]. Since choosing a
particular model for the prior distribution is essentially equivalent to specify the
penaliser g for the smoothness term in our NDS framework, we can instantiate
such tonal kernel as Wg(s?) = |s|”. This function is nonconvex for 0 < v < 1,
what may give rise to local minima in (Il). However, nonconvex penalisers can
allow almost exact restoration quality [9UI2/T3].

In summary, the Bayesian framework provides a founded basis for choosing
appropriate tonal kernels ¥(-) for the data and smoothness terms in (). Studying
other types of noise and the properties of the signal to recover, will lead to
different criteria for selecting the penalisers.

4 Tuning the Model Parameters

4.1 Linear Combination of Kernels

The problem of determining « for the image simplification approach described
in the Section [ is crucial to obtain an optimal combination of similarity and
smoothness. We intend to justify the use of such framework for a ¢ {0, 1}, i. e.
for a wider spectrum of filters than those special cases outlined in Table [l

A function ¢ : [0,1] — R is called unimodal on [0, 1] if it contains a single
minimum in that interval. Then, we obtain an estimate of the true image u as

@ = argmin p(a), (6)
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assuming that we deal with the unimodal function ¢(a) := ||u — ua||1, where u,
is the solution image for a specific value of o from (). Exploiting the empirical
unimodalityEl of ¢ on [0,1], we employ the Fibonacci Search method to find an
optimal value for « that solves (). This line-search strategy ensures fast conver-
gence. For multimodal functions it is better to utilize the Simulated Annealing
technique as minimization strategy, which guarantees finding a global minimum
in finite time. See [I] for the implementation details.

Another important ingredient to achieve an appropriate mixture of similarity
and smoothness is the determination of the support of the spatial kernels w(-) in
both terms of ([Il). Moreover, we want to find out if there is a certain interrelation
between both supports. In the following, we use as spatial kernels the disk-shaped
hard window function of Table 2], denoted by B(-) with supporting radius 0, i. e.
with diametrical support (20 + 1).

Let us first consider the case of Gaussian noise. As suggested by the statistical
framework, we select the penaliser ¥p(s?) = s? for the data term, and the
function Wg(s?) = |s|” for the smoothness term, focusing on v € {1,2}. Thus,
our designed nonlocal filter for Gaussian noise reads

Eu) =« Z lu; — fi* + (1 —a) Z lui — uj;|”. (7)

i€2,j€B() i€2,jE€B(i)

Let us apply this model to reconstruct the Gaussian noise signal depicted in top
left of Fig. [l All model parameters were optimised and the best five results for
both values of v are shown in the first two sections of the left-hand side of Table[dl
In the third section we present the performance of those filters from Table Bl(d),
also optimising their parameters. Mean and median stand as representatives
of M-smoothers, and four instantiations of ¥g for regularisation were included.
Without exceptions, our designed model outperforms all the well known filters
obtained as particular cases of the unifying NDS filtering framework.

Now, if we have data contaminated by impulse noise, for instance salt-and-
pepper noise, we just need to modify from our previous model the penaliser in
the data term by Wp(s?) = |s|, as it is proposed in the Bayesian framework. Our
new model reads

Buy=a Y  |u—fil+0=a) > |u—ul" (8)

i€02,j€B(4) i€02,5€B(4)

We use this filter for denoising the salt-and-pepper noise signal plotted on top
right of Fig.[Il We conduct the same comparative analysis as before, and conclude
again that our model beats all the other particular filters.

Exploiting the NDS image denoising framework for a ¢ {0,1} and nonlocal
window functions leads to hybrid methods for image simplification. It is impor-
tant to mention that we have deliberately chosen penalisers that do not require
any gradient threshold parameter. This keeps our model simple and efficient.

! Even though we can guarantee neither the continuous dependence of ¢ with re-
spect to a nor a unique solution, we have observed this behavior in most of our
experiments.
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Fig. 1. Examples of signal denoising using the NDS function. Original signal in solid
line. Top left: Noisy signal perturbed by zero-mean Gaussian noise with ¢ = 40 in
dashed line, ¢! = 27.30. Bottom left: Recovered version of the Gaussian noise signal
in dashed line, ¢! = 13.83. Top right: Noisy signal perturbed by 40% of a zero-mean
salt-and-pepper noise in dashed line, ' = 48.04. Bottom right: Recovered version of
the salt-and-pepper noise signal in dashed line, ¢! = 4.61.

4.2 Smoothing Effects

Trade-off Between o and the Radius of wp. If we consider a functional
which only consists of a data term, we notice that increasing the support of the
spatial window leads to smoothing. On the other hand, if we leave the spatial
window of the data term small and add a smoothness term, this has visually
almost the same effect. In this experiment we want to quantify the difference
more accurately and search for a corresponding to a certain support. To this
end we consider the two following functions. The first function

ED(U) = Z (uz — fj)zwD (|$z — .73j|2) (9)

i,jES
consists only of a data term, but allows for a larger window given by the disc-
shaped hard window function wp with supporting radius #p. The second func-

tion has a local data term and a smoothness term which only takes the direct
neighbours A/ (7) of pixel ¢ into consideration

Ec(u)=a) (ui—f)* + (1-a) Y (ui-u)’ (10)

S 1€802,7EN(7)
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Table 4. Numerical comparison of different filters. Left: Denoising results of the
Gaussian noise signal of Fig. [Il Right: Denoising results of the salt-and-pepper noise
signal of Fig. [l The best results are written in bold letters and plotted in Fig. [0l

Filter Op 0s « A Filter Op s « A
3 1 0.223 14.18 0 1 0.903 4.61
3 2 0.572 14.24 3 1 0.810 4.67
model (@), v =2 2 1 0.208 14.26 model @), »=2 3 2 0.936 4.80
2 2 0.542 14.30 4 1 0.793 4.90
3 3 0.793 14.32 2 1 0.757 4.91
2 2 0.07213.83 3 8 0.895 5.20
2 3 0.133 13.83 3 9 0910 5.27
model M), »=1 2 4 0.178 13.85 model @), »=1 3 10 0.921 5.38
2 5 0.223 13.93 4 9 0918 5.59
3 2 0.098 14.00 3 7 0.892 5.51
mean 4 - 1.000 14.93 mean 6 - 1.000 23.95
median 4 - 1.000 14.90 median 6 - 1.000 6.98
Tikhonov 0 1 0.329 14.57 Tikhonov 0 1 0.096 23.22
TV 0 1 0.001 15.62 TV 0 1 0.001 35.04
Perona-Malik 1 0 1 0.298 14.47 Perona-Malik 1 0 1 0.095 23.21
Charbonnier 0 1 0.314 14.53 Charbonnier 0 1 0.096 23.21

Fig. 2. Example of the trade-off between different parameters. Top left: Original image
(256 x 256 pixels). Top middle: Smoothed version with Ep, radius p = 5. Top right:
Smoothing with Ec, a = 0.503. Bottom left: Image with additive Gaussian noise,
standard deviation o = 50. Bottom middle: Denoising with Ep, radius 0p = 5. Bottom
right: Denoising with Ec, o = 0.424.

Here, only changing the value « is used to steer the amount of smoothness. Fig.
shows two examples of the trade-off between these parameters. We see that in
both cases with and without noise it is possible to obtain very similar results
with both functionals. We are interested in knowing how far away the results
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Fig.3. Trade-off between large kernels and small o. Top left: £1-error between Ep
and F¢ depending on «, for noise-free image. Top right: Optimal value of a depending
on the radial support 0p. Bottom: Same plots for the noisy input image.

obtained with the functions Ep and E¢ are from each other, and how they
approach each other by means of tuning 6p and «, respectively. In Fig. B, we
display some measurements to quantify the trade-off between these parameters.
In the left column, each curve stands for a certain radius size, and there is one
value of o that minimizes the ¢! distance between their estimates. The minimum
distance achieved for every pair (6p, «) is displayed in the right column.

Trade-off Between a and the Radius of wg. Similarly to the previous
experiment, we want now to quantify the trade-off beetween decreasing the value
of a and increasing the support of the spatial window in the smoothness term;
both procedures lead to smoothing. Let us assume a level 0 = 20 of Gaussian
noise. From our experiments in Section L1l we know that the following function
produces satisfactory results under Gaussian perturbations:

Eu) =« Z lu; — fi* + (1 —a) Z lui — ujl. (11)

i€2,jE€B(i) i€2,jE€B()

Keeping fixed §p = 1, Fig. @ shows the ¢! distance between the original and the
restored images for a ranging in [0, 1] and different radial support fg. One can
see that slightly better results are attained when both « and fg are small. Fig.
shows an example where similar restoration quality is achieved under different
parameterization.

These experiments show that it is possible to interchange certain smoothing
approaches by some others. This is important when one is searching for fast and
efficient denoising algorithms. By using the NDS framework one does not has
necessarily to give up quality for speed of computation.
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Fig. 4. Denoising properties of the functional ([I). The plot outlines the ¢! distance
between the original and the denoised images for different values of the smoothing
parameters « and fg. Original image in Fig. [l left, and noisy image in Fig. [l middle
left.

Fig. 5. Denoising properties of the functional (). Left: original image. Middle left:
disturbed image with Gaussian noise o = 20, ¢! = 16.02. Middle right: restored image
with a = 0.2, 05 = 2, ¢* = 4.88. Right: restored image with o = 0.8, 05 = 6, £* = 5.18.

5 Conclusions

We have shown the capabilities of the NDS framework as unifying filtering ap-
proach. We saw that excellent results can be obtained when terms that reward
fidelity to the observations and penalise smoothness in the solution are non-
locally combined. By tuning its different degrees of freedom it is possible to
design hybrid filters that outperform the performance of classical filters. The
NDS functional possesses such a versatility that it is even possible to attain very
similar results by tuning the parameters with different criteria and directions,
what is particularly useful in looking for alternative ways to solve a denoising
problem.
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