
Bimodal Biometric Person Identification System
Under Perturbations

Miguel Carrasco1, Luis Pizarro2, and Domingo Mery1

1 Pontificia Universidad Católica de Chile
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Abstract. Multibiometric person identification systems play a crucial
role in environments where security must be ensured. However, build-
ing such systems must jointly encompass a good compromise between
computational costs and overall performance. These systems must also
be robust against inherent or potential noise on the data-acquisition ma-
chinery. In this respect, we proposed a bimodal identification system that
combines two inexpensive and widely accepted biometric traits, namely
face and voice information. We use a probabilistic fusion scheme at the
matching score level, which linearly weights the classification probabili-
ties of each person-class from both face and voice classifiers. The system
is tested under two scenarios: a database composed of perturbation-free
faces and voices (ideal case), and a database perturbed with variable
Gaussian noise, salt-and-pepper noise and occlusions. Moreover, we de-
velop a simple rule to automatically determine the weight parameter be-
tween the classifiers via the empirical evidence obtained from the learning
stage and the noise level. The fused recognition systems exceeds in all
cases the performance of the face and voice classifiers alone.

Keywords: Biometrics, multimodal, identificacion, face, voice, proba-
bilistic fusion, Gaussian noise, salt-and-pepper noise, occlusions.

1 Introduction

Human beings possess a highly developed ability for recognising certain physio-
logical or behavioral characteristics of different persons, particularly under high
levels of variability and noise. Designing automatic systems with such capabili-
ties comprises a very complex task with several limitations. Fortunately, in the
last few years a large amount of research has been conducted in this direction.
Particularly, biometric systems aim at recognising a person based on a set of in-
trinsic characteristics that the individual possesses. There exist many attributes
that can be utilised to build an identification system depending on the applica-
tion domain [1,2]. The process of combining information from multiple biometric
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traits is known as biometric fusion or multimodal biometrics [3]. Multibiometric
systems are more robust since they rely on different pieces of evidence before
taking a decision. Fusion could be carried out at three different levels: (a) fusion
at the feature extraction level, (b) fusion at the matching score level, and (c)
fusion at the decision level [4].

Over the last fifteen years several multimodal schemes have been proposed
for person identification [5,6,7]. It is known that the face and voice biometrics
have lower performance compared to other biometric traits [8]. However, these
constitute some of the most widely accepted by people, and the low cost of the
equipment for face and voice acquisition makes the systems inexpensive to build.
We refer to [9] for a relatively recent review on identity verification using face
and voice information. We are interested in setting up a bimodal identification
system that makes use of these two biometrics.

Traditional recognition systems are built assuming that the biometrics used in
the learning (or training) process are noiseless. This ideal condition implies that
all variables1 susceptible to noise must be regulated. However, keeping all these
variables under control might be very hard or unmanageable under the system’s
operation conditions. There are two alternatives to handle this problem. On the
one hand, if the nature of the noise is known a suitable filter can be used in
a preprocessing step. On the other hand, without any filtering, it is possible to
build the recognition system with noisy data and make the biometric classifiers as
robust as possible to cope with the perturbations. In this paper we are concerned
with the latter alternative.

We propose a probabilistic fusion scheme performed at the matching score
level, which linearly combines the classification probabilities of each authenti-
cated person in both the face and the voice matching processes. The identity
of a new input is associated with the identity of the authenticated person with
the largest combined probability. We assess the robustness of the proposed bi-
modal biometric system against different perturbations: face images with addi-
tive Gaussian and salt-and-pepper noise, as well as with partial occlusions, and
voice signals with additive white Gaussian noise. The performance of the fused
system is tested under two scenarios: when the database is built on perturbation-
free data (ideal case), and when it is built considering variable perturbations.
Moreover, we develop a simple rule to automatically determine the weight para-
meter between the classifiers via empirical evidence obtained from the learning
stage and the noise level. We show that combining two lower performance clas-
sifiers is still a convenient alternative in terms of computational costs/overall
performance.

In Section 2 we describe classical techniques utilised in face and voice recog-
nition. Section 3 details the proposed fused biometric system, which is tested
under several perturbation conditions in Section 4. We conclude the paper in
Section 5 summarising our contribution and delineating some future work.

1 In the case of face and voice signals: calibration of audio/video recording devices,
analog-digital data conversion, illumination conditions, background noise and inter-
ference, among others.
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2 Face and Voice Recognition

Face recognition. At present there are three main approaches to the problem
of face recognition: i) based on appearance, ii) based on invariant characteristics,
and iii) based on models [10,11]. In the first approach the objective is to extract
similar characteristics present in all faces. Usually statistical or machine learning
techniques are used, and dimensionality reduction tools are very important for
improving efficiency. One of the most widely used unsupervised tools in this re-
spect is principal component analysis (PCA) [12]. This method linearly projects
the high-dimensional input space onto a lower-dimensional subspace contain-
ing all the relevant image information. This procedure is applied over all the
face images –training set– used for the construction of the identification system.
This projection space is known as eigenfaces space. To recognize a new face the
image is transformed to the projection space, and the differences between that
projection and those of the training faces are evaluated. The smallest of these
differences, which in turn is smaller than a certain threshold, gives the identity of
the required face. The second approach is based on the invariant characteristics
of the face, e.g., color, texture, shape, size and combinations of them. The objec-
tive consists in detecting those patterns that allow the segmentation of the face
or faces contained in an image [13]. The third approach consists in the construc-
tion of models in two and three dimensions. Control points that identify specific
face positions are determined robustly, and they are joined to form a nonrigid
structure. Then this structure is deformed iteratively to make it coincide with
some of the structures recognized by the identification system [14]. Unfortu-
nately, this technique is very slow and requires the estimation of precise control
points, and therefore the image must have high resolution. Also, because of the
iteration process, it can be trapped in local optima, and is therefore dependent
on the position of the control points chosen initially.

The different face recognition algorithms depend on the application’s domain.
There is no system that is completely efficient under all conditions. Our study is
limited to developing an identification mechanism considering images captured
in controlled environments. The approach chosen is that based on appearance
and its implementation through PCA-eigenfaces.

Voice recognition. Voice recognition is the process of recognizing automati-
cally who is speaking by means of the information contained in the sound waves
emitted [15,16]. In general, voice recognition systems have two main modules:
extraction of characteristics, which consists in obtaining a small but representa-
tive amount of data from a voice signal, and comparison of characteristics, which
involves the process of identifying a person by comparing the characteristics ex-
tracted from its voice with those of the persons recognized by the identification
system. Voice is a signal that varies slowly with time. Its characteristics remain
almost stationary when examined over a sufficiently short period of time (ca.
5-100 ms). However, over longer time periods (more than 0.2 s) the signal’s char-
acteristics change, reflecting the different sounds of voice. Therefore, the most
natural way of characterizing a voice signal is by means of the so-called short-time
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Fig. 1. Proposed framework for person identification

spectral analysis. One of the most widely used techniques in voice recognition is
mel-frequency cepstrum coefficients (MFCC) [17,18], which we also use in this
study. Basically, MFCC imitates the processing by the human ear in relation to
frequency and band width. Using filters differentiated linearly at low frequencies
(below 1000 Hz) and logarithmically at high frequencies, MFCC allows captur-
ing the main voice’s characteristics. This is expressed in the literature as the
mel-frequency scale. We use this approach for voice characterisation.

3 Fusion of Face and Voice Under Perturbations

As previously mentioned, face and voice biometrics have lower performance com-
pared to other biometric traits [8]. Nevertheless, it is relatively inexpensive to
set up systems based on such biometrics. Moreover, PCA-eigenfaces and MFCC
techniques require simple computation compared to other more sophisticated
techniques [11].

Probabilistic fusion framework. Our proposal consists in fusing these lower
performance classifiers by means of a simple probabilistic scheme, with the aim
of obtaining an identification system with better performance and robust against
different perturbations. The construction of such a system consists of the follow-
ing five phases outlined in Fig. 1 and described next.

I. Preprocessing. In this phase k face images and k voice signals are con-
sidered for each one of the t persons in the system. With the purpose of
examining the behaviour of the classifiers constructed with altered data,
both signals are intentionally contaminated with different kinds of pertur-
bations. The face images are contaminated with Gaussian, salt-and-pepper
noise, or partial occlusions, while the voice signals are perturbed with ad-
ditive white Gaussian noise. This also allows us to verify the performance
of the algorithms used in our study for the extraction of characteristics. All
signals belonging to a person j, perturbed or not, are associated with the
person-class C(j), for all j = 1, . . . , t.
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Fig. 2. Vector transformation of each image of the training set and later normalization
and calculation of the mean image of the set of training images
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Fig. 3. Generation of the eigenfaces by means of PCA using the normalized data

II. Face feature extractor. To extract the face features we use the method
known as eigenfaces [19]; see figures 2 and 3. All the images of the training
set are transformed into column vectors and are concatenated in a matrix
S. This matrix is normalized (N) by subtracting the mean and dividing
by the standard deviation of each column. This improves contrast and de-
creases the effect of changes in illumination. Then, by averaging its rows,
matrix N is reduced to a column vector M which represents the mean im-
age of the training set. Then, applying PCA to normalization matrix N we
obtain eigenfaces matrix P . Column vectors e1, . . . , en represent the eigen-
faces, and they are ordered from more to less information content. Finally,
matrix W is obtained which contains the characteristics of the training set.
This is calculated as the cross product between corresponding columns in
the normalization and projection matrices, i.e. Wi = Ni ·Pi, for all columns
i = 1, . . . , n.
Voice feature extractor. The process of generation of the MFCC coef-
ficients requires a set of steps that transform a voice signal into a matrix
that contains its main characteristics. Initially, the audio signal is divided
into a set of adjacent frames. Then each frame is filtered through a Ham-
ming window, allowing the spectral distortion to be minimized both at the
beginning and at the end of each frame. Then a transformation is made in
each frame to the spectral domain with the Fourier transform; the result of
this transformation is known as a spectrum. The next step transforms each
spectrum into a signal that simulates the human ear, known as a mel scale.
Finally, all the mel-spectra are transformed into the time domain by means
of the discrete cosine transform. The latter step generates as a result the
mel frequency cepstrum coeficients (MFCC) of the voice signal. For details
we refer to [20].
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Fig. 4. Determination of the difference image using the general mean of the training
set and the calculation of the characteristics vector Wi of face i

III. Template generation. The process of storing the biometric characteristics
extracted before is called enrolment. In the case of the face, the characteris-
tics matrix W is stored. For the voice, a compressed version of the signals of
each person is stored. For that purpose, we make use of the LBG clustering
algorithm [21], which generates a set of vectors called VQ-Codebook [22]. The
registered features are considered as templates with which the features of an
unknown person must be compared in the identification process.

IV. Face matching. To determine probabilistically the identity of an unknown
person i, first the difference Di between its normalized image Ii and the mean
image M of the training set is calculated. Then the characteristics vector Wi

is generated as the dot product between Di and each column of the projec-
tion matrix P ; see Fig. 4. Later, the Euclidian distances between the vector
Wi and all the columns of the characteristics matrix W are computed. The k
shortest distances are used to find the most likely person-class C(j) to which
the unknown person i is associated with.
Voice matching. In the case of voice, the process consists in extracting the
ceptrum coefficients of the unknown speaker i by means of the calculation of
the MFCCs, and calculating their quantized vector qvi. Then the Euclidian
distances between qvi and all the vectors contained in the VQ-codebook are
determined. The same as with the face, the k shortest distances are used
to find the most likely person-class C(j) to which the unknown speaker i is
associated with.

V. Fusion. Finally, the response of the fused recognition system is given as a
linear combination of the probabilistic responses of both the face classifier
and the voice classifier. Since each person in the database has k signals of
face and voice, the nearest k person-classes associated to an unknown person
i represent those that are more similar to it. Thus, if the classification
were perfect, these k classes should be associated with the same person,
such that the classification probability would be k/k = 1. The procedure
consists of two steps: Firstly, we determine the classification probability of
each person j for face matching Pf (j), as well as for voice matching Pv(j):

Pf (j) =
Vf (j)

k
, Pv(j) =

Vv(j)
k

, for all j = 1, . . . , t; (1)

where Vf (j) and Vv(j) is the number of representatives of the person-class
C(j) out of the k previously selected candidates in the face matching and
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in the voice matching stages, respectively. Secondly, we infer the identity of
an unknown person i with the person-class C(j) associated with the largest
value of the combined probability

P (j) = α · Pf (j) + (1 − α) · Pv(j), for all j = 1, . . . , t. (2)

The parameter α ∈ [0, 1] weights the relative importance associated with
each classifier. In the next section we present a simple rule to estimate this
parameter.

Estimation of the weight parameter α. The weight α is the only free
parameter of our probabilistic fusion model and it is in connection with the
reliability that the recognition system assigns to each classifier. Therefore, its
estimation must intrinsically capture the relative performance between the face
classifier and the voice classifier in the application scenario. In general, as it will
be shown in the experimental section, estimating this parameter depends on the
input data.

Heuristically, the feature learning process provides empirical evidence about
the performance of the face and voice classifiers. Once the learning is done, the
identification capabilities of the system are tested on faces and voices belonging
to the set of t recognisable persons, though these data have not been previously
used for learning. In this way, we have quantitative measurements of the clas-
sifiers’ performance at our disposal. Thus, a simple linear rule for estimating α
based on these measurements is given by

α̂ =
1 + (qf − qv)

2
, (3)

where qf , qv ∈ [0, 1] are the empirical performance of the face and voice clas-
sifiers, respectively. This formula assigns more importance to the classifier that
performs better under certain testing scenario. When both classifiers obtain
nearly the same performance, their responses are equally considered in equa-
tion (2). This scheme agrees with the work by Sanderson and Paliwal [9], since
assigning a greater weight to the classifier with better performance clearly in-
creases the performance of the fused recognition.

4 Experimental Results

The data base used consists of 18 persons, with eight different face and voice
versions for each one. The faces used are those provided by the Olivetti Re-
search Laboratory (ORL) [23]. The faces of a given person vary in their fa-
cial expressions (open/closed eyes, smiling/serious), facial details (glasses/no-
glasses), and posture changes. The voices were generated using an electronic
reproducer in MP3 format at 128 kbps. A total of 144 recordings (8 per person)
were made.
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Fig. 5. One of the voice signals used in the experiments and some of its noisy versions
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Fig. 6. (a) Original face sequence of an individual with eight different expressions. (b)
Sample with variable Gaussian noise. (c) Sample with variable salt-and-pepper noise.
(d) Sample with variable textured occlusions.

Face and voice classifiers alone. We performed two types of experiments
to analyse the effect of noisy data on the performance of the face and voice
classifiers without fusion. In the first experiment (Exp.1 ), the recognition sys-
tem is constructed with perturbation-free data, but later it is tested on noisy
data. In the second experiment (Exp.2 ), the recognition system is constructed
considering various perturbations of the face and the voice signals, and tested
then on perturbation-free data. Different perturbation levels were considered.
The voice signals contain additive white Gaussian noise with zero mean and
variable standard deviation σ = {0, 10, . . . , 100} of their mean power weighted
by a factor of 0.025. The faces contain additive Gaussian noise with zero mean
and standard deviation σ = {0, 10, . . . , 100} of the maximal grey value, additive
salt-and-pepper noise that varies between 0% and 100% of the number of pixels,
or randomly located textured occlusions whose size varies between 0% and 100%
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of the image area [24]. Figures 5 and 6 show examples of the data utilised in
testing.

The experiment Exp.1 in Fig. 7(a) shows, on the one side, that the MFCC
method has a low capability of recognising noisy data when only clean samples
have been used for training. On the other side, we observe that PCA-eigenfaces2

deals quite well with all types of noise till 70% of perturbation, and it is spe-
cially robust against Gaussian noise. Surprisingly, the experiment Exp.2 in Fig.
7(b) reveals an improvement on the voice recognition when this classifier is con-
structed considering noisy samples. However, the face recognition is now able
to satisfactorily manage up to 30% of perturbations. Notice that when no per-
turbations at all are considered (ideal case), the performance of the classifiers is
around 90%.

Fused voice and face recognition. In this section we aim at combining the
responses of both the face classifier and the voice classifier using the relation
(2). A crucial aspect of this objective is the proper estimation of the weight
parameter α. In the experiments of the previous section we varied the noise level
over a large range, and the results logically depended on the amount of noise. We
would like to use the formula (3) to adjust the computation of the parameter α
to the noise level. This assumes that we should have quantitative measurements
of the noise level on the voice and face samples, but in a real application the
amount of noise is not known in advance. The estimation of these quantities for
the different signals used here is out of the scope of this paper. However, we cite
several strategies appear in the literature for noise estimation in audio [25,26,27]
and image [28,29,30,31,32,33] signals.

If we assume that we have reliable estimations of the noise level in voice and
face signals, and since the empirical performances of the classifiers are known
from the learning stage under different testing scenarios, it is possible to compute
the parameter α using the relation (3). For example, considering voice signals
with variable white Gaussian noise and face images with salt-and-pepper noise,
the figures 8(a) and 8(b) show the estimated α̂ curves for the experiments Exp.1
and Exp.2 of the figures 7(a) and 7(b), respectively. Evidently, the weight α
increases as the noise in the voice signal increases, because voice recognition is
more sensitive to noise than face recognition.

Again, we measure the performance of the fused recognition under two exper-
imental scenarios: Exp.3 : system built with perturbation-free data and tested
then on noisy samples; and Exp.4 : system built with noisy data and tested then
on noiseless samples. Figures 9 and 10 show the recognition performance for these
two operation settings, respectively. The missing α̂ curves have been omitted for
the sake of space and readability. Notice that the performance of the ideal case
now reaches 100%. Similarly, under the same experimental settings, the fused
recognition outperforms the voice and face classifiers alone. The performance

2 Although PCA may require a precise localisation of the head, the set of faces used in
the experiments were not perfectly aligned, as shown in Fig. 6. However, satisfactory
results are still achievable.
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Fig. 7. Independent performance of voice recognition (VR) and face recognition (FR)
systems. (a) Exp.1 : Recognition systems built with perturbation-free data and tested
on samples with variable noise. (b) Exp.2 : Recognition systems built with variable
noisy data and tested on noiseless samples.
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Fig. 8. Estimated α̂ curves when voice signals with variable white Gaussian noise and
face images with salt-and-pepper noise are considered in (a) Exp.1, and (b) Exp.2

stability of the experiment Exp.3 is in accordance with the much larger influ-
ence of the face classifier as outlined the Fig. 7(a). Although such an influence
is not so large in Fig. 7(b), the experiment Exp.4 also enjoys certain stability.

With respect to the robustness of the arbitrarily chosen feature extraction
tools, it was shown that occlusions cause greater impact than Gaussian or salt-
and-pepper noise on the eigenfaces analysis, and the analysis of the voice signals
via MFCC is much more sensitive to white noise. However, even when the face
and voice classifiers might reach a low performance independently, it is possible
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Fig. 9. Exp.3 : Performance of a bimodal person identification system by fusing voice
and face classifiers. The system is built with perturbation-free data and tested then
on noisy samples. Voice signals with white Gaussian noise and image faces with (a)
Gaussian noise, (b) salt-and-pepper noise, and (c) textured occlusions, are considered.
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Fig. 10. Exp.4 : Performance of a bimodal person identification system by fusing voice
and face classifiers. The system is built with noisy data and tested then on noiseless
samples. Voice signals with white Gaussian noise and image faces with (a) Gaussian
noise, (b) salt-and-pepper noise, and (c) textured occlusions, are considered.

to obtain a much better recognition system when the responses of both classifiers
are fused in a probabilistic manner. Similarly, by improving the performance of
the independent classifiers the overall performance increases too.

It has been shown that, depending on the learning and operation conditions
of the identification system, it might be worthwhile to consider not only ideal
noiseless samples when building the classifiers, but also inherent or potential
sources of noise, which may improve the whole identification process.

For a particular application, the impact of every source of noise in the learning
step as well as in the operation step should be evaluated before the identification
system is set up. In the light of that study, the decision of building the system
under noise samples or not should be taken.
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5 Conclusions and Future Work

This work presents a biometric person identification system based on fusing two
common biometric traits: face and voice. The fusion is carried out by a simple
probabilistic scheme that combines the independent responses from both face
and voice classifiers. The performance of the recognition system is assessed un-
der different types of perturbations: Gaussian noise, salt-and-pepper noise and
textured occlusions. These perturbations might affect the samples used to build
the classifiers, and/or the test samples the system must identify. It is shown
that the proposed probabilistic fusion framework provides a viable identification
system under different contamination conditions, even when the independent
classifiers have low single performance. We present a simple formula to automat-
ically determine the weight parameter that combines the independent classifiers’
responses. This formula considers the empirical evidence derived from the learn-
ing and testing stages, and it depends in general on the noise level. As future
work, we will investigate more robust feature extraction tools that provide bet-
ter results under this probabilistic scheme. We also seek for alternative ways to
estimate the weight parameter.
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