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Kurze Zusammenfassung

In dieser Arbeit beschäftigen wir uns mit zwei klassischen Störungsquellen in der
Bildanalyse, nämlich mit Rauschen und unvollständigen Daten. Klassische Grauwert-
und Farb-Fotografien wie auch matrixwertige Bilder, zum Beispiel Diffusionstensor-
Magnetresonanz-Aufnahmen, können durch Gauß- oder Impulsrauschen gestört wer-
den, oder können durch fehlende Daten gestört sein. In dieser Arbeit entwickeln wir
neue Rekonstruktionsverfahren zum zur Bildglättung und zur Bildvervollständigung,
die sowohl auf skalar- als auch auf matrixwertige Bilddaten anwendbar sind. Zur
Lösung des Bildglättungsproblems schlagen wir diskrete Variationsverfahren vor, die
aus nichtlokalen Daten- und Glattheitstermen bestehen und allgemeine auf Bildauss-
chnitten definierte Unähnlichkeitsmaße bestrafen. Kantenerhaltende Filter werden
durch die gemeinsame Verwendung solcher Maße in stark texturierten Regionen
zusammen mit robusten nichtkonvexen Straffunktionen möglich. Für das Problem
der Datenvervollständigung führen wir adaptive anisotrope morphologische partielle
Differentialgleichungen ein, die Dilatations- und Erosionsprozesse modellieren. Diese
passen sich der lokalen Geometrie an, um adaptiv fehlende Daten aufzufüllen, unter-
brochene gerichtet Strukturen zu schließen und sogar flussartige Struturen anisotrop
zu verstärken. Die ausgezeichneten Rekonstruktionseigenschaften der vorgestellten
Techniken werden anhand verschiedener synthetischer und realer Datensätze demon-
striert.
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Short Abstract

In this work we deal with two classic degradation processes in image analysis, namely
noise contamination and incomplete data. Standard greyscale and colour photographs
as well as matrix-valued images, e.g. diffusion-tensor magnetic resonance imaging,
may be corrupted by Gaussian or impulse noise, and may suffer from missing data. In
this thesis we develop novel reconstruction approaches to image smoothing and image
completion that are applicable to both scalar- and matrix-valued images. For the image
smoothing problem, we propose discrete variational methods consisting of nonlocal
data and smoothness constraints that penalise general dissimilarity measures. We
obtain edge-preserving filters by the joint use of such measures rich in texture content
together with robust non-convex penalisers. For the image completion problem, we
introduce adaptive, anisotropic morphological partial differential equations modelling
the dilation and erosion processes. They adjust themselves to the local geometry
to adaptively fill in missing data, complete broken directional structures and even
enhance flow-like patterns in an anisotropic manner. The excellent reconstruction
capabilities of the proposed techniques are tested on various synthetic and real-world
data sets.



Zusammenfassung

Das Problem der Rekonstruktion eines beschädigten Bildes stellt eine sehr gros̈e
Herausforderung dar, in Abhängigkeit von der Art des Bildes selbst, der Art der
Beschädigung, die das Bild erlitten hat, und der speziellen Rekonstruktionsan-
forderungen. In dieser Dissertation arbeiten wir mit klassischen Grauwert- und
Farb-Fotografien – als skalarwertige Bilder bezeichnet – und mit matrixwertigen
Bildern, wie sie etwa durch Diffusionstensor-Magnetresonanz-Bildgebung (DT-MRI)
erzeugt werden. Wir betrachten die Situation gestörter Bilddaten durch Gauß- oder
Impulsrauschen und das Problem fehlender oder unvollständiger Daten. Ziel ist
die Entwicklung neuer Verfahren zur Bildglättung, zum Entrauschen und zur Ver-
vollständigung bei folgenden Anforderungen: Die Methoden sollen kanten erhalten
und strukturadaptive sein, und sie sollen mit den nötigen Anpassungen sowohl auf
skalarwertige als auch auf matrixwertige Daten anwendbar sein. Darüber hinaus
erzeugt DT-MRI physikalisch interpretierbare positiv semidefinite Matrixfelder, eine
Eigenschaft, die unter Anwendung der entwickelten Verfahren erhalten werden soll.

Diese Arbeit besteht aus zwei Teilen: Im ersten Teil werden diskrete Varia-
tionsansätze zum Vereinfachen von Bilddaten untersucht. Im skalarwertigen Fall
schlagen wir ein Energiefunktional vor, das aus nichtlokalen Daten- und Glattheit-
stermen besteht, die allgemeine auf Bildausschnitten definierte Unähnlichkeitsmasse
bestrafen. Das Erhalten von Kanten wird durch durch die gemeinsame Verwendung
solcher Masse bei stark texturierten Inhalten zusammen mit robusten nichtkonvexen
Straffunktionen erreicht. Unser Modell verallgemeinert frühere Arbeiten in der
Literatur zu nichtlokalen Methoden, liefert bessere Ergebnisse als andere Auschnitts-
basierte Verfahren und ist qualitativ vergleichbar mit dem aktuellen Stand der
Forschung. Wir erweitern diese nichtlokale Herangehensweise auf zwei verschiede-
nen Arten auf matrixwertige Daten: zunächst isotrop, indem die Energieterme
auf skalaren Unähnlichkeitsmassen für Matrizen wirken, danach anisotrop, durch
Vermeiden solcher skalarwertiger Masse, durch direktes Einsetzen von Matrizendif-
ferenzen in die Straffunktionen. In beiden Fällen werden Bedingungen für den Erhalt
positiver Definitheit diskutiert. Schließlich gehen wir auf die Verbindungen zwischen
beiden hier vorgestellten Verfahren und anderen aktuellen skalar- und matrixwertigen
Ansätzen ein.

Im zweiten Teil der Arbeit lösen wir das Vervollständigungsproblem mit Hilfe
des Formalismus der mathematischen Morphologie. Modelliert durch partielle
Differentialgleichungen (PDEs) schlagen wir skalarwertige Dilatations- und Erosion-
sprozesse vor, die an die lokale Geometrie adaptiert werden können. Auf diese Weise
können fehlende Daten erfolgreich rekonstruiert, unterbrochene gerichtete Strukturen
vervollständigt und sogar flussartige Strukturen anisotrop verstärkt werden. Der
Schlüssel zu solch einer Struktur-Adaptivität ist die Einführung einer Steuerungsma-
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trix, die die Richtung ändert, in die sich die Wellenfront ausbreitet. Die Verwendung
des Strukturtensors macht eine zuverlässige Schätzung der Vorzugsrichtung lokaler
Strukturen und damit eine angepasste Steuerung der morphologischen Operationen
möglich. Die adaptiven PDEs werden durch neue numerische Methoden gelöst,
die als gerichtete Realisierungen des Rouy-Tourin- und FCT-Schemas konstruiert
werden. Um dieses Modell auf Matrixfelder zu erweitern, verwenden wir ein
vor kurzem vorgeschlagenes operator-algebraisches Konzept, das es erlaubt, die
reellwertige (skalare) Algebra durch die Algebra der symmetrischen Matrizen in
der Formulierung skalarwertiger PDEs auszutauschen. Zusammen mit einer Verall-
gemeinerung des Strukturtensors auf Matrixfelder erlaubt uns dieses Konzept, ma-
trixwertige PDEs für die adaptive Dilatation/Erosion sowie matrixwertige gerichtete
numerische Schemata zu formulieren. Basierend auf diesen zwei Basisoperationen
konstruieren wir schlies̈lich adaptive Versionen komplexerer morphologischer Op-
erationen wie Öffnung, Schließung, Gradienten und Schockfiltern für skalar- und
matrixwertige Daten.

Die ausgezeichneten Rekonstruktionseigenschaften der vorgestellten Techniken
werden anhand verschiedener synthetischer und real gemessener Datensätze demon-
striert. Da es in den Ingenieurswissenschaften und der Physik auch andere Quellen
von Matrix- und Tensorfeldern neben DT-MRI gibt, ist unsere Hoffnung, dass diese
Methoden weitere Anwendung über Bildverarbeitung hinaus finden werden.



Abstract

The problem of reconstructing a degraded image imposes significant challenges
depending on the image type itself, the kind of degradation the image has undergone,
and the specific reconstruction requirements. In this dissertation we work with
standard greyscale and colour photographs – referred to as scalar-valued images –
and with matrix-valued images such as those obtained by diffusion-tensor magnetic
resonance imaging (DT-MRI). We confront the situation where these images are
contaminated by Gaussian or impulse noise and suffer from missing or incomplete
data. We therefore pursue to develop novel methods for image smoothing and image
completion under the following requirements: they should exhibit edge-preserving
and structure-adaptive properties, and they should be applicable to both scalar- and
matrix-valued images with the necessary adjustments. Moreover, DT-MRI produces
physically meaningful positive semidefinite matrix fields, property that should be
maintained under the action of the developed techniques.

This thesis consists of two parts. The first part is devoted to discrete variational
methods to solve the image smoothing problem. In the scalar-valued setting we
propose an energy functional consisting of nonlocal data and smoothness constraints
that penalise general dissimilarity measures defined on image patches. Edge-
preservation is achieved by the joint use of such measures rich in texture content
together with robust non-convex penalisers. Our model generalises previous work
in the literature on nonlocal methods, outperforms other patch-based approaches
and compares very well to the state-of-the-art. We further extend the nonlocal
framework to the matrix-valued setting in two different ways: isotropically, by
allowing the energy constraints act on scalar dissimilarity measures for matrices; and
anisotropically, refraining from using such scalar measures and letting the penalisers
act directly on the matrix differences. In both cases we discuss the conditions for
the preservation of positive semidefiniteness. Last but not least, we report on the
connections between the proposed approaches and other recent scalar- and matrix-
valued methods.

In the second part of this thesis we solve the image completion problem via
the formalism of mathematical morphology. Focusing on the framework of partial
differential equations (PDEs), we propose scalar-valued dilation/erosion processes
that can be adapted to the local geometry. This way, we can successfully fill in missing
data, complete broken directional structures and even enhance flow-like patterns in an
anisotropic manner. The key element to achieve such a structure-adaptiveness is to
introduce a steering matrix that changes the direction along which the wavefronts
propagate. By making use of the structure tensor concept we can reliably estimate
the orientation of the local structures and hence steer the morphological operations
conveniently. The adaptive PDEs are solved by novel numerical methods constructed
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as directional realisations of the Rouy-Tourin and the FCT schemes. In order to extend
our model to matrix fields, we use a recently proposed operator-algebraic framework
that allows one to replace the real (scalar) algebra by the algebra of symmetric
matrices in the formulation of scalar-valued PDEs. This framework, together with a
previous generalisation of the structure tensor to matrix fields, enables us to formulate
matrix-valued PDEs for adaptive dilation/erosion as well as matrix-valued directional
numerical schemes. Finally, based on these two basic processes we build up adaptive
versions of more complex operations such as opening, closing, gradients and shock
filtering for scalar and matrix fields.

The excellent reconstruction capabilities of the proposed techniques are tested on
various synthetic and real-world data sets. It is our hope that these methods find further
applications beyond image processing, considering that there exist other sources of
matrix and tensor fields aside from DT-MRI in engineering and the physical sciences.
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1 Introduction

In this dissertation we deal with two fundamental problems in image processing and
analysis: image smoothing and image completion. Despite the enormous volume of
research in these areas, novel imaging modalities rendering compelling applications
impose new theoretical and practical challenges. Such is the case of diffusion-tensor
magnetic resonance imaging (DT-MRI) that provides tensor- or matrix-valued images
carrying information about the microstructure and connectivity of the brain, which
drives numerous clinical applications. As in standard greyscale/colour photographs –
referred to as scalar-valued images – DT images are as well affected by noise and
suffer from missing or incomplete data. In this work we develop novel methods
for image smoothing and image completion that are applicable to both scalar- and
matrix-valued images. We address these challenges from the perspectives of nonlocal
smoothing and adaptive morphology.

In this chapter we present a brief literature background to the techniques that will
be at the core of this thesis. Further bibliographic aspects regarding connections
between the proposed approaches and other methods from the literature will be
detailed in subsequent chapters.

1.1 Nonlocal Smoothing
Image smoothing is a fundamental task in image processing. It serves as a noise
removal tool for improving the visual quality of noisy images taken from digital
cameras or scanners, as well as for providing simplified input images that are further
processed in tasks such as segmentation, feature extraction and texture analysis. There
exist numerous approaches to image smoothing emerging from statistical methods,
information theory, transforms in the frequency domain, partial differential equations
(PDEs) and variational methods [220, 7, 234, 58]. Establishing equivalences and
relations between the different approaches has been focus of intense research in recent
years [14, 76, 77, 148, 180, 184, 213, 198, 236].

In this thesis we concentrate on the framework of discrete variational methods.
We follow a recent model for nonlocal smoothing due to Mrázek et al. [148] that
unifies different and widely used filters in the literature. More precisely, Mrázek
et al. pointed out the relations between several nonlinear smoothing methods such
as M-estimators [66, 236], bilateral filtering [206], diffusion filters [167, 219], and
regularisation/Bayesian techniques [19, 84, 149, 236]. Although these methods seem

1



2 Introduction

very different at the first glance and originate in different mathematical theories,
Mrázek et al. showed that they lead to highly similar discrete algorithms, and that
all these methods can be cast in a single unified framework of discrete regularisation
theory. The unifying model is formulated as an energy functional with nonlocal data
and smoothness (NDS) terms – hence called NDS model. The data term rewards
similarity of the filtered image to the input (noisy) image, while the smoothness term
penalises high deviations from regularity on the solution. These terms can consider
not only information from a small region around a pixel but also make it possible to
involve large neighbourhoods. Nevertheless, the integration of nonlocal information
is limited in practice since this model relies on single pixel differences, which do not
carry reliable structural information too far away from a chosen pixel. This is actually
the main drawback of all single differences-based approaches.

Two equivalent and simultaneously proposed methods, namely the non-local
means (NL-means) filter [40, 41] and the unsupervised, information-theoretic, adap-
tive (UINTA) filter [9, 10] are able to overcome this problem. Both methods
consider a whole neighbourhood (or patch) around a pixel to measure similarity. In
this way, if the corresponding neighbourhoods of two pixels are similar, the pixels
themselves will be considered alike even if they are spatially distant from each other.
This simple idea allows a real incorporation of nonlocal pixel interactions in the
smoothing process, providing impressive denoising results. The NL-means filter
belongs to the class of neighbourhood filters [125, 237, 195, 206, 42] that average
similar pixels based on their photometric and spatial proximities – where the spatial
distance does not play a role in NL-means. In particular, it can be seen as a bilateral
filter [206] with a patch-based photometric similarity measure. Several variational
formulations of the NL-means filter have been proposed [117, 88, 11, 38, 129, 207]
together with acceleration techniques [134, 23, 69, 71, 38, 158] and invariant patch
similarity measures [217, 119, 242, 130]. This method has inspired numerous patch-
based approaches for image smoothing, deblurring, segmentation, inpainting, super-
resolution, texture analysis, among others.

Our contribution is threefold: First, we propose a generalisation of Mrázek et al.’s
approach to the space of patches by introducing a discrete variational approach with
nonlocal constraints that penalise general dissimilarity measures defined on image
patches. This leads to a more robust smoothing process since the pixels selected for
averaging are more coherent with the local image structure. Our framework leads to
a novel family of filters suitable for removing Gaussian and impulse noise in scalar-
valued images. Second, we further extend the NDS approach to the setting of matrix
fields in two different ways, namely isotropically and anisotropically by allowing the
energy penalisers to act on scalar- and matrix-valued similarity measures, respectively.
We test our novel approaches on synthetic and DT-MRI data sets. We also discuss the
conditions for preservation of positive semidefiniteness of DT-MRI fields. Third, we
establish connections between the proposed approaches and other recent smoothing
methods for scalar and matrix fields.



1.1 Nonlocal Smoothing 3

Figure 1.1 exemplifies the application of the proposed nonlocal smoothing methods
to scalar- and matrix-valued images.

Figure 1.1: Nonlocal smoothing. Left column: Original image, noisy version
with white Gaussian noise, and smoothed version with our scalar-valued nonlocal
approach. Right column: Synthetic 2D tensor field of 3×3 symmetric matrices, noisy
version with random positive definite matrices, and smoothed version with the our
matrix-valued nonlocal approach. Our smoothing methods successfully reconstruct
subtle image details. Tensors are visualised as ellipsoids (cf. Section 1.3).
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1.2 Adaptive Morphology

Mathematical morphology aims at extracting and enhancing and shape information
from image objects. It originated in 1964 at the École des Mines de Paris in the works
of Matheron [140] and Serra [187]. A detailed chronology of the birth of mathematical
morphology has recently been published by Matheron and Serra in [142]. Initially
developed to study the structure of materials in geological samples, current application
domains of this technique range from biology to astronomy.

Classical morphology refers to the so-called set-theoretical approach developed
by its founders and is based on set theory, integral geometry and lattice algebra. It
consists of matching an image with a bounded set of known shape called structuring
element (SE) such as squares, diamonds, hexagons, discs or ellipses defined on the
discrete pixel grid. The two fundamental morphological operators are dilation and
erosion, which respectively expand and shrink the boundaries of an object to an extent
specified by the shape of the chosen SE. These operators are utilised as the building
blocks of more complex morphological processes upon which advanced algorithms
can be constructed for image filtering, segmentation, classification and analysis of
textures, among others.

Until the end of the ’80s, all morphological processes and their applications were
modelled and implemented under the umbrella of the discrete lattice theory. At the
beginning of the ’90s, inspired by the Gaussian scale-space generated by the linear
diffusion PDE, several groups of researchers [35, 211, 4, 2] independently published
nonlinear PDEs modelling the continuous morphological scale-space, referred to as
continuous-scale approach. These morphological PDEs describe a new representation
for the evolution of the object’s boundaries during dilation and erosion with digitally
scalable SEs, which provides sub-pixel accuracy in the resulting morphological
operations/applications. For a comprehensive account of the classical aspects of math-
ematical morphology we refer the reader to the monographs [141, 188, 189, 100, 196],
for the continuous-scale framework to the texts [181, 54, 95], and for the successive
developments and applications in the area we recommend the proceedings of the nine
versions of the International Symposium on Mathematical Morphology held from
1993 to 2009 [190, 191, 136, 102, 91, 203, 177, 12, 233].

In this thesis we focus on the PDE framework which is conceptually attractive
since it allows for digital scalability and even adaptivity of the represented SE. Our
contribution is threefold: First, we propose scalar-valued morphological PDEs with
spatially-variant elliptical SEs. They can adaptively change the direction along which
the wavefronts propagate depending on the orientation of the local structures. Second,
we introduce directional solution schemes for these PDEs, avoiding the numerical bias
to the coordinate axes of classical schemes. Third, we transfer the proposed PDEs and
numerical schemes to the matrix-valued setting using a recently proposed operator-
algebraic framework (Section 1.4) that allows one to replace the real (scalar) algebra
by the algebra of symmetric matrices in the formulation of scalar-valued PDEs.
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Figure 1.2 exemplifies the application of the proposed adaptive morphological
PDEs to scalar- and matrix-valued images.

Figure 1.2: Adaptive morphology. Left column: Original image, isotropically eroded
version, and anisotropically eroded version with our scalar-valued adaptive approach.
Right column: Synthetic 2D spiral of 3× 3 symmetric matrices with missing tensors,
isotropically dilated version, and anisotropically dilated version with our matrix-
valued adaptive approach. Our steerable methods are able to complete directional
structures accurately. Tensors are visualised as ellipsoids (cf. Section 1.3).
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1.3 Definition and Visualisation of Matrix Fields
In this thesis we regard a matrix or tensor field as a mapping

U : Ω ⊂ Rd −→ Symm(R) (1.1)

from a d-dimensional image domain into the set of symmetric m ×m-matrices with
real entries, U(x) = (Up,q(x))p,q=1,...,m . The set of positive (semi-)definite matrices,
denoted by Sym++

m (R) (resp. Sym+
m(R)), consists of all symmetric matrices A with

〈v, Av〉 := v>Av > 0 (resp., ≥ 0) for v ∈ Rm \ {0} . Note that at each point x the
matrix U(x) of a field of symmetric matrices can be diagonalised yielding

U(x) = V (x)>D(x)V (x) , (1.2)

where V (x) is a real orthogonal matrix whose columns correspond to the m
eigenvectors of U(x) denoted by v1, . . . , vm ∈ Rm, and D(x) is a diagonal matrix
whose entries are the corresponding m eigenvalues denoted by λ1, . . . , λm ∈ R.
Without loss of generality, let us assume that λ1 ≥ λ2 ≥ · · · ≥ λm.

The matrix data are visualised as an ellipsoid in each voxel via the level sets of
quadratic form

u>U−2(x)u = c , (1.3)

with u ∈ R3, c ∈ R+. By using U−2 the length of the semi-axes of the ellipsoid
correspond directly with the three eigenvalues of the matrix. Changing the constant c
amounts to a mere scaling of the ellipsoids. Note that only positive definite matrices
produce ellipsoids as level sets of its quadratic form.

Matrix fields offer the opportunity of describing anisotropy in physical measure-
ments and in image processing models, see [225],[123] for an overview. In diffusion-
tensor magnetic resonance imaging (DT-MRI), for example, information about the
diffusive properties of water molecules is captured in symmetric positive definite
matrices. The corresponding matrix field reflects the structure of the tissue under
examination [16]. Figure 1.3 shows the axial view of a full DT-MRI data set of a
human head (128×128×30 voxels) and a 2D slice (32×32 voxels). We use the most
common colour scheme in the literature [164] which is driven by the orientation of the
principal eigenvector. Ellipsoids with normalised v1 := (vx1 , v

y
1 , v

z
1)> oriented along

the x−, y−, z−axis are shown in red, green and blue tones, respectively. Therefore,
tensors are displayed in the (normalised) RGB colour space according to

R = 1−W (1− |vx1 |) ,
G = 1−W (1− |vy1 |) , (1.4)
B = 1−W (1− |vz1|) ,

where W is a weighting factor influencing the colour purity by the degree of
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(a) 3D scan of a human head (b) Axial 2D slice

Figure 1.3: Diffusion-tensor magnetic resonance imaging (DT-MRI) data set. Tensors
are visualised as ellipsoids with principal eigenvector colour coding.

anisotropy. We use the so-called fractional anisotropy (FA) measure [17]

FA =

√
3

2

√
(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2

λ2
1 + λ2

2 + λ2
3

, (1.5)

with λ̄ := (λ1 + λ2 + λ3)/3. Note that FA ∈ [0, 1]: FA = 0 means that the diffusion
is isotropic at that voxel, while FA = 1 indicates that diffusion occurs only along v1.

To conclude this section, let us make the observation that aside from DT-MRI
there exist other sources of matrix/tensor fields in engineering and the physical
sciences: stress-strain tensors in material science, geomechanics, elastography and
fluid dynamics; permittivity tensors in electromagnetism and optics; permeability
tensors in fluid mechanics and earth sciences; among others.
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1.4 Operator-Algebraic Framework for Matrix Fields
The operator-algebraic framework proposed by Burgeth et al. in [48, 47] will help
us extend the proposed scalar-valued methods for nonlocal image smoothing and
adaptive morphology to the setting of matrix fields. The basic idea behind this
approach is to consider symmetric matrices as a natural generalisation of real
numbers with a rich algebraic structure. Provided that the matrices are self-adjoint
operators that can be added, multiplied with a scalar, and concatenated, they thus
form an algebra. Consequently, this approach aims at replacing the field R by the
algebra Symm(R) in the scalar, that is, R-based formulation of PDEs used in image
processing. This framework provides the grounds to translate scalar-valued techniques
to the matrix-valued setting, as well as to directly define novel processing techniques
for matrix fields, positive definite or not.

Existing scalar PDE-based processes that have been successfully transferred to
the matrix-valued case using this approach are: TV diffusion, mean curvature motion,
self-snakes [48], Perona-Malik diffusion [47], coherence-enhancing diffusion [49, 52],
relaxed inverse scale-space flow [127] and isotropic morphology [43]. The obtained
PDEs are truly matrix-valued and they do not require the additional coupling of the
matrix channels as it is necessary in other PDE approaches for tensor fields [224].
This framework, however, is not restricted to PDEs.

Here we present a brief description of the key elements we utilise in Chapters 4
and 6. For an extended exposition the reader is referred to [48, 47]. With the definition
of matrix fields given in the previous section, let us consider the following aspects of
the algebra of symmetric matrices:

Functions of matrices. The extension of a function h : R −→ R to Symm(R) is
standard [107]: With a slight abuse of notation we set

h(U) := V >diag(h(λ1), . . . , h(λm))V ∈ Sym+
m(R) , (1.6)

h denoting now a function acting on matrices as well. Observe that the systems
of eigenvectors remains untouched. Specifying h(s) = |s|, s ∈ R as the absolut
value function leads to the absolute value |A| ∈ Sym+

m(R) of a matrix A. Similarly,
multivariate functions H : Rm −→ Rm can be extended to symmetric matrices via

H(U) := V >diag(H1(λ1 . . . λm), . . . , (Hm(λ1 . . . λm))V ∈ Sym+
m(R) . (1.7)

Partial derivatives and generalised gradient. It is natural to define the partial
derivative for matrix fields componentwise:

∂ωU = (∂ωUp,q)p,q=1,...,m (1.8)

where ω ∈ {t, x1, . . . , xd}, that is, ∂ω stands for a spatial or temporal derivative.
Viewing a matrix as a tensor (of second order), its gradient would be a third order
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tensor according to the rules of differential geometry. However, we adopt a more
operator-algebraic point of view by defining the generalised gradient ∇U(x) at a
voxel x = (x1, . . . , xd) by

∇U(x) := (∂x1U(x), . . . , ∂xdU(x))> (1.9)

which is an element of (Symm(R))d, in close analogy to the scalar setting where
∇u(x) ∈ Rd.

Symmetrised product of matrices. There will be the need for a symmetric
multiplication of symmetric matrices. The product of two symmetric matrices A,B ∈
Symm(R) is not symmetric unless the matrices commute. The following alternatives
are possible [107, 47, 6]:

Jordan product (JP): A •J B := (AB +BA)/2 , (1.10)

Pre-conditioning product (PP): A •P B := A
1
2BA

1
2 , (1.11)

Logarithmic product (LP): A •L B := exp(log(A) + log(B)) . (1.12)

In general, the JP does not preserve the positive (semi-)definiteness of its arguments.
The PP preserves the property in B if A is non-singular. The LP preserves positive
definiteness, but it is only defined for matrices holding that property – excluding its
application to indefinite matrices.

Maximum and minimum of symmetric matrices. For later use in numerical
schemes we have to clarify the notion of maximum and minimum of two symmetric
matrices A,B. In direct analogy with relations known to be valid for real numbers
one defines [45]:

max(A,B) =
1

2
(A+B + |A−B|) (1.13)

min(A,B) =
1

2
(A+B − |A−B|) (1.14)

where |F | stands for the absolute value of the matrix F . For F ∈ (Symm(R))d we set
|F |p := p

√
|F1|p + · · ·+ |Fd|p for 0 < p < +∞ . It results in a positive semidefinite

matrix from Sym+
m(R), the direct counterpart of a nonnegative real number as the

length of a vector in Rd.
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1.5 Outline

The novel approaches developed in this dissertation have been published at inter-
national conferences [173, 171, 44, 170] and journals [174, 51]. For clarity of
presentation, we have divided the exposition of our work in two parts.

Part I: Nonlocal Smoothing for Scalar- and Matrix-Valued Images

Chapter 2
We provide an overview of well-known smoothing approaches from the literature,
which have recently been cast in a single unified framework of discrete regularisation
theory. We also report on new connections we have discovered between this
framework and classical diffusion/regularisation methods and graph regularisation
methods. Moreover, we study its parameter configuration and show that it indeed
outperforms its special cases filters for the task of denoising scalar-valued images
degraded with Gaussian and impulse noise.

Chapter 3:
Based on the previous approach, we formulate a discrete variational framework
for nonlocal smoothing whose data and regularisation constraints penalise general
dissimilarity measures defined on image patches. We describe how our model
generalises previous work on nonlocal methods and show that it outperforms other
patch-based approaches and compares very well to the current state-of-the-art, being
our approach much simpler.

Chapter 4:
Also in the framework of discrete variational methods, we further propose nonlocal
isotropic and anisotropic approaches for smoothing matrix fields. We discuss the
conditions for the preservation of positive semidefiniteness of the original data sets as
it occurs in DT-MRI. We additionally show that several filters for symmetric matrices
recently appeared in the literature can be seen as particular cases of the proposed
approaches.

Part II: Adaptive Morphology for Scalar- and Matrix-Valued Images

Chapter 5:
We first review the elementary concepts of scalar-valued isotropic morphology from
the two points of view it has been treated in the literature: the classical discrete
set-theoretical framework and the modern continuous-scale framework, providing a
summary of the advantages and shortcomings of both approaches. Focusing on the
latter PDE-based method, we report on its recent extension to the setting of matrix
fields and we further describe two numerical schemes to solve these PDEs.



1.5 Outline 11

Chapter 6:
In the context of continuous-scale morphology, we concentrate on adaptive, anisotropic
morphological operators for scalar- and matrix-valued images. We propose a steerable
PDE-driven approach that can adapt itself according to the orientation of the local
geometry. This way, it is possible to complete directional structures, filling in missing
data and even enhance flow-like patterns in an adaptive, directional manner. We as
well propose directional versions of the numerical solution schemes that allow a more
accurate implementation of the steerable morphological PDEs.

Finally, in Chapter 7 we briefly summarise our contributions and sketch future
research directions.
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Nonlocal Smoothing
for Scalar- and Matrix-Valued Images
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2 Nonlocal Data and Smoothness (NDS)
Framework

In this chapter, we describe in detail the Nonlocal Data and Smoothness (NDS)
framework proposed by Mrázek et al. [148], whose numerical aspects were further
treated in Didas et al. [74]. We provide an overview of the various smoothing
methods that can be considered special cases of this unifying approach for discrete
regularisation theory. We as well report novel insights into relations of this model
with diffusion/regularisation methods as well as with some recently proposed graph
regularisation techniques. We explore the generality of the NDS framework in
combining nonlocal tonal and spatial kernels to tune hybrid filters with better
performance than the previously mentioned special cases. We show that Bayesian
analysis provides suitable foundations for restricting the parametric space in a noise-
dependent way. Moreover, we show that the existing trade-off between the parameters
controlling similarity and smoothness leads to similar results under different settings.
We particularly focus on degradation processes governed by Gaussian and impulse
noise. This chapter is based on [173, 174].

2.1 NDS Functional and its Minimisation
Let f, u : Ω −→ R be scalar images defined on the discrete image domain Ω. f
stands for the (noisy) original image while u represents a processed version of it. Let
J = {1, . . . , N} be the index set of all pixels in the images. The pixel position in
the bi-dimensional grid is indicated by xi (i ∈ J). The discrete energy function E
of the NDS filter presented in [148] is a convex combination of a nonlocal data (or
similarity) term ED and a nonlocal smoothness term ES:

ED(u) =
∑
i,j∈J

ΨD

(
|ui − fj|2

)
wD
(
|xi − xj|2

)
, (2.1)

ES(u) =
∑
i,j∈J

ΨS

(
|ui − uj|2

)
wS
(
|xi − xj|2

)
. (2.2)

Here Ψ() : R+
0 −→ R+

0 are increasing functions that penalise large (greyvalue) tonal
distances. The weights w() : R+

0 −→ R+
0 are nonnegative functions downweighting

large spatial distances. See Table 2.1 and Table 2.2 for a non-exhaustive list of kernels
Ψ andw proposed in literature. For a more comprehensive list of penalisers, see [153].

15
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Table 2.1: Popular choices for tonal weights Ψ.

Ψ(s2) Ψ′(s2) source

(a) s2 1
Whittaker [231]
Tikhonov [204]

(b) 2|s| |s|−1 Rudin et al. [179]

(c) 2
(√

s2 + ε2 − ε
)

(s2 + ε2)
− 1

2 Acar and Vogel [1]

(d) 2λ2

(√
1 + s2

λ2
− 1

) (
1 + s2

λ2

)− 1
2

Charbonnier et al. [59]

(e) λ2 log
(

1 + s2

λ2

) (
1 + s2

λ2

)−1 Holland and Welsch [106]
Perona and Malik [167]

(f) 2λ2
(

1− exp
(
− s2

2λ2

))
exp

(
− s2

2λ2

)
Perona and Malik [167]

(g) min(s2, λ2)

{
1 |s| < λ
0 else

Hampel et al. [99]
Mumford and Shah [150]

The data term ED rewards similarity of the filtered image to the input (noisy) image,
while the smoothness term ES penalises high deviations from regularity on the
solution. These terms can consider not only information from a small region around a
pixel but also make it possible to involve large neighbourhoods by adjusting the extent
of the spatial weights.

The complete NDS model can be regarded as a discrete nonlocal variational
method combining both the data (2.1) and the smoothness (2.2) terms:

E(u) = (1− α)ED(u) + αES(u) (2.3)

= (1− α)
∑
i,j∈J

ΨD

(
|ui − fj|2

)
wD
(
|xi − xj|2

)
+α

∑
i,j∈J

ΨS

(
|ui − uj|2

)
wS
(
|xi − xj|2

)
with regularisation parameter α ∈ [0, 1].
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Table 2.2: Possible choices for spatial weights w.

w(s2) source

(a)
{

1 s2 ≤ $2

0 else hard window Koenderink and van Doorn [120]

(b) exp
(
− s2

$2

)
soft window Chu et al. [66]

We now consider a robust and stable iterative procedure for minimising the energy
functional. Even if the presented iterative fixed point approach is very simple, we
will see that it satisfies a maximum-minimum principle for a general set of penaliser
functions, and we will prove the existence of a fixed point.

Taking the partial derivatives of the data term (2.1) yields

∂ED
∂uk

= 2
∑
j∈J

Ψ′D
(
|uk − fj|2

)
(uk − fj)wD

(
|xk − xj|2

)
, (2.4)

where Ψ′ denotes the derivative of Ψ w.r.t. its argument. In a similar way we calculate
the derivatives of the smoothness term (2.2) which leads to

∂ES
∂uk

= 4
∑
j∈J

Ψ′S
(
|uk − uj|2

)
(uk − uj)wS

(
|xk − xj|2

)
. (2.5)

It is clear that the complete derivatives then have the form

∂E

∂ui
= (1− α)

∂ED
∂ui

+ α
∂ES
∂ui

. (2.6)

For a critical point u of the energy functional E we have

∇E(u) = 0 ⇐⇒ ∂E

∂ui
= 0 for all i ∈ J . (2.7)

We define the abbreviations

di,j := Ψ′D
(
|ui − fj|2

)
wD
(
|xi − xj|2

)
, (2.8)

si,j := 2Ψ′S
(
|ui − uj|2

)
wS
(
|xi − xj|2

)
(2.9)

which help us to rewrite (2.7) as

0 = (1− α)
∑
j∈J

di,j(ui − fj) + α
∑
j∈J

si,j(ui − uj) (2.10)
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where we use the partial derivatives shown in (2.4) and (2.5). This can be transformed
into fixed point form

ui =
(1− α)

∑
j∈J di,j fj + α

∑
j∈J si,j uj

(1− α)
∑

j∈J di,j + α
∑

j∈J si,j
. (2.11)

To have a positive denominator we assume that Ψ′D(s2) > 0 and Ψ′S(s2) > 0, i. e., the
penalisers are monotonically increasing. Furthermore we assume that wD(s2) ≥ 0,
wS(s2) ≥ 0 as well as wD(0) > 0 and wS(0) > 0 for the spatial weights. We use
this equation to build up a first iterative method to minimise the value of E where the
upper index k denotes the iteration number. Note that di,j and si,j also depend on the
evolving image uk and thus also get a superscript to denote the iteration level involved.
The corresponding fixed point iteration then reads as

u0
i := fi , (2.12)

uk+1
i :=

(1− α)
∑

j∈J d
k
i,j fj + α

∑
j∈J s

k
i,j u

k
j

(1− α)
∑

j∈J d
k
i,j + α

∑
j∈J s

k
i,j

. (2.13)

In the following we will write this scheme (2.13) in the form uk+1 = F (uk) with
F : RN −→ RN . We note that we calculate uk+1 using only components of the vector
uk of the old iteration level:

uk+1
i := F i(uk) for all i ∈ J, k ∈ N0 . (2.14)

Such a method can also be called a nonlinear Jacobi method.

Let us now state two important results.

Proposition 2.1.1 (Maximum-Minimum Principle) [73]
With the assumptions on ΨD, ΨS , wD, and wS as above, the scheme (2.13) satisfies a
maximum-minimum principle:

min
j∈J

fj ≤ uki ≤ max
j∈J

fj for all i ∈ J, k ∈ N . (2.15)

Proof: With our assumptions on the tonal and spatial weights from above we know
that dki,j ≥ 0 and ski,j ≥ 0 for all i, j, k. That means in (2.13), uk+1

i is calculated as a
convex combination of grey values of the initial image f and of the last iteration step
uk. Thus we have

min
j∈J
{ukj , fj} ≤ uk+1

i ≤ max
j∈J
{ukj , fj} for all i ∈ J, k ∈ N . (2.16)
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Induction shows that the fixed point scheme (2.13) satisfies a maximum-minimum
principle, i. e.

min
j∈J

fj ≤ uki ≤ max
j∈J

fj for all i ∈ J, k ∈ N . (2.17)

�

In the next proposition, we see that this property is not only useful from a practical
point of view: Together with continuity, it gives us the existence of a fixed point.

Proposition 2.1.2 (Existence of a Fixed Point) [73]
The fixed point equation (2.11) has a solution.

Proof: Let us consider the set M :=
{
u ∈ RN | ‖u‖∞ ≤ ‖f‖∞

}
with the norm

‖u‖∞ := maxj∈J |uj|. M is nonempty, compact and convex. Then the maximum-
minimum stability implies that F (M) ⊆ M . With our requirements on the tonal and
spatial weights, the denominator in (2.13) is always larger than zero. This means that
each component Fi : RN −→ R is continuous with respect to the norm ‖ · ‖∞. Since
this holds for all i, we know that F : (RN , ‖ · ‖∞) −→ (RN , ‖ · ‖∞) is continuous.
Then Brouwer’s fixed point theorem (see [36] or [238, page 51], for example) shows
that F has a fixed point in M . �

From the derivation it is clear that a fixed point corresponds to a critical point of
E. If we have chosen our penaliser functions such that the energy functional is strictly
convex, this is equivalent to the unique minimum of E.

Alternatively, the solution of the NDS energy (2.3) can be obtained by gradient
descent optimisation:

uk+1
i − uki
τ

= − ∂E
∂uki

for all i ∈ J , (2.18)

with step size τ > 0. Considering (2.7)–(2.11), the energy minimiser is computed as

u0
i := fi , (2.19)

uk+1
i := (1− τ)uki (2.20)

+ τ
(1− α)

∑
j∈J d

k
i,j fj + α

∑
j∈J s

k
i,j u

k
j

(1− α)
∑

j∈J d
k
i,j + α

∑
j∈J s

k
i,j

.

Note that by setting τ = 1 one obtains the fixed point iteration (2.13).
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2.2 Important Special Cases
Recall that the NDS functional (2.3) can be optimised using the fixed point itera-
tions (2.11). Let us introduce the following notation for the tonal weights,

gDi,j := Ψ′D
(
|ui − fj|2

)
, (2.21)

gSi,j := 2 Ψ′S
(
|ui − uj|2

)
, (2.22)

and for the spatial weights,

wD,$i,j := wD
(
|xi − xj|2

)
, (2.23)

wS,$i,j := wS
(
|xi − xj|2

)
, (2.24)

where the spatial weights w implicitly contain a scale parameter $ specifying how
quickly the weight decreases: Small$ means a local operation (or a smaller window),
larger $ leads to operations with large-scale effects. The window sizes for the data
and smoothness terms may differ.

Using this notation, equation (2.11) can be written as

ui =

(1− α)
∑
j∈J

gDi,j w
D,$
i,j fj + α

∑
j∈J

gSi,j w
S,$
i,j uj

(1− α)
∑
j∈J

gDi,j w
D,$
i,j + α

∑
j∈J

gSi,j w
S,$
i,j

. (2.25)

In the following sections we show that many well known filtering and estimation
methods can be derived from equation (2.25) (and thus from the NDS functional) by
a simple choice of the parameter α which balances the smoothness and data terms,
the window size $, and by an appropriate selection of the weighting functions gD,
gS , wD, and wS . Fig. 2.1 gives an overview of the NDS landscape and the methods
covered below.

2.2.1 M-Estimators and Local M-Smoothers
When estimating the underlying constant signal from noisy samples, the selected
method should depend on the type of noise present in the data. For Gaussian
noise, taking the sample mean is a good choice, providing the maximum a posteriori
(MAP) estimate. For noise with heavier tails (caused either by the noise properties
themselves, or because e.g. the samples were mixed from two distributions due to
signal discontinuity), one has to use methods from robust statistics that are less
effected by outliers, such as an M-estimator [108, 99]. An M-estimate of a constant
value u from noisy data fj is found by minimising

E(u) =
K∑
j=1

Ψ
(
|u− fj|2

)
. (2.26)
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Figure 2.1: Overview of methods covered by the NDS functional. Left to right, the
parameter α balances the data and smoothness terms. Bottom to top, the window size
$ determines the spatial extent of the methods, from local to global.

Some of the error penalisers Ψ previously shown in Table 2.1 lead to a direct
statistical interpretation of the element that minimises the functional (2.26). For the L2

norm (a), the solution is the mean of the noisy samples. The L1 norm (b) is minimised
by the median. For the robust error norms (f) and (g), the influence of outliers is very
much reduced, and the solution uminimising (2.26) approximates a mode (maximum)
of the probability density underlying the noisy samples. The mode ideally corresponds
to the most frequent value present in the data. For the discrete noisy samples, the
maximum of the density can be only estimated e.g. using suitable smoothing kernels;
see [65] for some examples and a connection to iterative solvers. Note that while the
L2 and L1 norms lead to a convex functional minimisation, the robust error norms (f)
and (g) in Table 2.1 are nonconvex, and their corresponding functionals E(u) may
exhibit multiple local minima.

The M-estimators were introduced to robustly estimate a single value from noisy
samples. For images, we have to consider also the spatial distribution of the data.
Such a generalisation is known as local M-smoothers, and the functional to minimise
has the following structure [66, 236]:

E(u) =
N∑
i=1

∑
j∈B(i)

Ψ
(
|ui − fj|2

)
w
(
|xi − xj|2

)
(2.27)

where w represents the spatial weight depending on sample distance. The local
window B(i) is introduced in (2.27) for computational convenience only, to make
the index j run through the neighbourhood of xi where w(|xi − xj|2) exceeds some
threshold of contribution importance.
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The energy functional (2.27) can be minimised using an iterative scheme called
W-estimator [236],

uk+1
i =

∑
j∈B(i) g

(
|uki − fj|2

)
w
(
|xi − xj|2

)
fj∑

j∈B(i) g
(
|uki − fj|2

)
w
(
|xi − xj|2

) (2.28)

where the process is initialised with u0
i := fi. This iterative scheme converges to a

local minimum of (2.27) close to the input data. Depending on the penaliser Ψ, the
iterations may lead e.g. to a local mode approximation [92, 214, 210, 213, 67], or to
an approximation of a windowed median filter or Gaussian smoothing.

Comparing equation (2.28) with our scheme (2.25), we observe that the local M-
smoothers and the W-estimator correspond to the data term of the NDS model. To
obtain the W-estimator from (2.25), simply set the smoothness parameter α = 0. The
spatial weight w will be chosen so that it covers some area around the current pixel,
typically larger than the immediate neighbourhood.

2.2.2 Bilateral Filtering
Contrary to the previous section, let us analyse the situation for the maximum
smoothness parameter, α = 1. Then, the data term from equations (2.3) and (2.25)
vanishes, and the full scheme consists of the smoothness term only. The resulting
energy functional

ES(u) =
∑
i,j∈J

ΨS

(
|ui − uj|2

)
wS
(
|xi − xj|2

)
(2.29)

can be minimised by the fixed point iterations

uk+1
i =

∑
j∈J gS

(
|uki − ukj |2

)
wS
(
|xi − xj|2

)
ukj∑

j∈J gS
(
|uki − ukj |2

)
wS
(
|xi − xj|2

) . (2.30)

Equation (2.30) is known as bilateral filter [8, 195, 206]. While bilateral filtering was
originally proposed as a heuristic algorithm, we have shown that it can be derived as a
special case from the NDS energy functional (2.3) where only the smoothness term is
considered, and the local smoothness of the signal u is evaluated in a nonlocal window
wS .

2.2.3 Regularisation Methods
In this section we reveal novel insights into relations between the NDS filter and
diffusion/regularisatio methods.

Consider the optimality condition ∂ES
∂uk

= 0 for (2.2) written as

0 =
∑
j∈B(k)

ΨS

(
|uk − uk+j|2

)
(uk − uk+j)wS

(
|xk − xk+j|2

)
, (2.31)
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with B(k) = {j ∈ Z : |xk − xk+j| ≤ $S}, and the hard window

wS
(
|xk − xk+j|2

)
=

{
1 if |xk − xk+j| ≤ $S

0 otherwise
.

Then, following [218, 75], equation (2.31) can be regarded as a crude approximation
of the steady state of the rotationally invariant PDE

∂tu =
2

π

π∫
0

∂eϕ

(
gS
(
|∂eϕuδ|2

)
∂eϕu

)
dϕ (2.32)

when the kernel size δ in uδ := Gδ ∗ u vanishes, gS := Ψ′S , and eϕ = (cosϕ, sinϕ)>.
Furthermore, equation (2.32) is equivalent to the anisotropic model

∂tu = div
(
D · ∇u

)
(2.33)

with the diffusion tensor

D :=
2

π

π∫
0

eϕ e
>
ϕ gS

(
|∂eϕuδ|2

)
dϕ .

In [218] it is shown that the eigenvectors and eigenvalues of D are given by

v‖(ϕ) =

(
− sinϕ
cosϕ

)
, v⊥(ϕ) =

(
cosϕ
sinϕ

)
;

λ‖
(
r2
)

=
4

π

π/2∫
0

sin2 ϕ gS
(
|r cosϕ|2

)
dϕ ,

λ⊥
(
r2
)

=
4

π

π/2∫
0

cos2 ϕ gS
(
|r cosϕ|2

)
dϕ ,

where (r, ϕ) are the polar coordinates of∇u. In our case, i.e. δ → 0, the process (2.33)
becomes isotropic with scalar diffusivity g̃ := λ⊥:

∂tu = div
(
g̃ · ∇u

)
. (2.34)

This means that the solution of the smoothness term (2.2) approximates a Perona-
Malik filter that diffuses in direction ∇u⊥ perpendicular to the gradient, i.e. along
edges.
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If we now include the data term (2.1) with a local spatial window

wD
(
|xk − xk+j|2

)
=

{
1 if xk = xk+j

0 otherwise
,

the resulting process approximates

u− f
2α

1−α
= div

(
g̃ · ∇u

)
, (2.35)

which can be regarded as a fully implicit time discretisation of the diffusion
process (2.34) with a single time step of size 2α

1−α > 0. Following Scherzer
and Weickert [184], it can be shown that (2.35) corresponds to the Euler-Lagrange
equation of the continuous functional

E(u) =

∫
Ω

(
(1− α) ΨD

(
|u− f |2

)
+ α Ψ̃S(|∇u|2)

)
dx , (2.36)

where Ψ̃′S := g̃. The continuous functional is the classical energy functional from
regularisation or Bayesian frameworks; see e.g. [19, 84, 149, 236]. As an example, the
continuous Mumford–Shah functional fits into this framework if we choose ΨD(s2) :=
s2 and ΨS(s2) := min(s2, λ2). Also, the diffusion filters [167, 219] and diffusion-
reaction processes [156, 185, 199, 60] can be derived from equation (2.36).

2.2.4 Histogram Quantisation

For the sake of completeness, let us consider the case when the spatial support
window grows to ‘infinite’ size, and all the pixels are connected with the same weight
regardless of their position in the image, wD,S ≡ 1. Then, the NDS functional
simplifies to

E(u) = (1− α)
∑
i,j∈J

ΨD

(
|ui − fj|2

)
+ α

∑
i,j∈J

ΨS

(
|ui − uj|2

)
.

Because the spatial information does not appear in the formula, the solution can
be equivalently found in a space where the spatial information was omitted and only
the tonal information remains: the image histogram. For example, minimizing the
functional for the robust penaliser Ψ from Table 2.1 (f) or (g) corresponds to replacing
each pixel value with the local mode of the corresponding image histogram. The
resulting image will have a smaller number of gray values, adaptively quantised. The
data and smoothness terms in this context correspond to the non-blurring or blurring
mean shift process, respectively [65].
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2.3 NDS vs Graph Regularisation

In this section we show that the discrete NDS framework is closely related to graph
regularisation techniques and that it extends recent developments in the context of
image and manifold regularisation on weighted graphs.

A discrete image is usually defined on a regular domain, e.g. on a rectangular
grid. However, for more general image domains it is more appropriate to represent
an image as a graph with arbitrary topology. Every vertex (pixel) i of the graph
encodes both the pixel location xi and the pixel intensity fi. The edge connecting two
vertices i and j represents the similarity between both pixels, expressed as a weight
function w(i, j) > 0. Employing such graph representation and special calculus on
graphs [240, 241], several regularisation models for general data living on discrete
spaces have been recently proposed. In the context of image denoising Weickert [220]
developed a space-discrete theory for diffusion filtering that is directly applicable to
functions defined on graphs, and Chan et al. [57] introduced the digital TV filter
as a discrete version of the continues ROF model [179]. In the context of semi-
supervised learning Zhou and Schölkopf [240, 241] proposed a discrete analogue of
classical regularisation [205] with a p–Dirichlet regulariser; and Zhou and Burges
[239] introduced a discrete analogue of the Laplace-de Rham operator as a regulariser.

Following the ideas from graph theory presented in [240, 241], Gilboa and
Osher [88] proposed the use of nonlocal operators to extend some known PDEs and
variational techniques in image processing to a nonlocal framework. In particular,
they use discretised differential operators such as gradient and divergence. The
discretisations involve pixel differences that are weighted by a patch-based similarity
between pixels as in [41]. Bougleux et al. [29, 78, 30] designed a discrete graph
regularisation framework that can be seen as a digital extension of the continuous
framework [88] employing a p–Dirichlet regulariser. The same discrete framework has
been applied in image segmentation tasks [202]. Furthermore, nonlocal differential
operators have been used to derive nonlocal morphological PDEs [79].

We now show that the discrete variational NDS model (2.3) can be regarded as
a common regularisation method for general data defined on discrete spaces. Let us
consider the smoothness term (2.2) of the NDS model using Ψ(s2) = 1

p
|s|p, p > 0, as

penaliser:

ES(u) =
∑
i∈J

∑
j∈J

Ψ
(
|ui − uj|2

)
w(i, j)

=
1

p

∑
i∈J

∑
j∈J

|ui − uj|pw(i, j)

=
1

p

∑
i∈J

‖∇wui‖pp , (2.37)
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where ‖∇wui‖p =
(∑

j∈J |ui − uj|pw(i, j)
) 1
p

is the weighted Lp norm. Other
definitions of the weighted gradient norm are possible using alternative weighted
difference operators (see [104] and references therein). The regulariser (2.37) has
been used in [241, 29, 78, 30] for regularisation on arbitrary graphs. In particular, the
following energy functionals have been proposed in [30]:

Eiso(u) =
∑
i∈J

(
λ

2
(ui − fi)2 +

1

p
‖∇wui‖p2

)
, (2.38)

Eani(u) =
∑
i∈J

(
λ

2
(ui − fi)2 +

1

2p
‖∇wui‖pp

)
. (2.39)

The functional (2.38) corresponds to an isotropic model whose minimiser is obtained
by solving a linear system, whereas (2.39) is an anisotropic model leading to a
nonlinear system. The nonlocal interactions between graph nodes are introduced via
the weight function w. In the general case the weight w(i, j) := w(Fi,Fj) measures
the similarity between the nodes i and j with respect to a certain feature vector F . For
instance, a weighted L2 norm between image patches [41] can be used for the task of
image smoothing.

There exist three main differences between the NDS framework and the graph
regularisation (GR) approach:

(i) in the NDS we allow the use of any penaliser for both the data similarity and the
smoothness term, whereas GR only considers penalisers of the form Ψ(s2) =
1
p
|s|p for p ∈]0, 2];

(ii) in the NDS model nonlocal interactions are present in both the data and
the smoothness term, while in the GR techniques the non-localities are only
considered in the regularisation term; and

(iii) in the NDS framework the functions w only depend on the spatial node/pixel
locations, whereas in the GR approaches w can be defined in terms of several
node characteristics.

The point (iii) suggests that the NDS model (2.3) can be generalised by extending
the definition of the weighting functions w. However, we do not further develop this
idea here. That will be part of future work. In Chapter 3 we will consider another
generalisation of the NDS framework, where we rather concentrate on the penalisers
Ψ, which we allow to act on more general constraints.
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2.4 Tuning the NDS Parameters
In [148], Mrázek et al. performed preliminary experiments to show the smoothing
properties of the NDS model with data and smoothness constraints acting over
neighbourhoods of varying size. In [74], Didas et al. compared several minimisation
strategies for the energy functional. Here we focus on two main issues: (i) show that
the NDS model can outperform a wide range of well-known filters, and (ii) study the
relations among its smoothing parameters. Before developing these points, we briefly
describe the classical statistical interpretation of energy-based image restoration
models, which sheds some light on the selection of the energy penalisers [173].

2.4.1 Statistically-Based Selection of Tonal Kernels
The most common degradation model is given by f = u + η, where u is the true
image, η represents a zero-mean additive noise with standard deviation σ, and f is the
recorded image. In the following we consider these quantities as realisations of the
random variables U , η, and F , denoting as pU , pη, and pF their probability density
function (pdf), respectively. In Bayesian analysis [109, 84, 235], the maximum a
posteriori (MAP) estimator

ûMAP = arg max
u

log pU |F (u|f)

= arg min
u

(− log pF |U(f |u)− log pU(u)) (2.40)

yields the most likely image u given f . The conditional distribution pF |U , also called
likelihood, models the degradation process of U to F and is therefore considered as
the noise distribution, i. e. pF |U(f |u) = pη(η) =

∏
pη(fi − ui), assuming that the

noise is independent and identically distributed (i.i.d.). We will focus on Gaussian and
impulse noise. These types of noise are well modelled by the Gaussian and Laplacian
distributions, being respectively their pdf’s

pηG =

(
1√
2πσ

)n
exp

(
− 1

2σ2

∑
i∈Ω

|ηi|2
)
, (2.41)

pηI =

(
1

2σ

)n
exp

(
− 1

σ

∑
i∈Ω

|ηi|

)
. (2.42)

Pluging these noise models into the MAP estimator (2.40), and observing the
structural resemblance to our NDS function (2.3), suggests that the penalisers for the
data term can be instantiated as ΨD(s2) = s2 for Gaussian noise, and as ΨD(s2) = |s|
for impulse noise.

The previous noise distributions are special cases of a more general probabilistic
law: the generalised Gaussian distribution [105], with parameters mean µ, variance
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σ2, and ν > 0 (Gaussian case ν = 2, Laplacian case ν = 1); and pdf

pZ(z) =
νΓ(3/ν)1/2

2σΓ(1/ν)3/2
exp

(
−|z − µ|

ν

σν

(
Γ(3/ν)

Γ(1/ν)

)ν/2)
, (2.43)

where Γ(·) is the Euler Gamma function. This distribution has been also utilised for
modelling probabilistic prior knowledge about the signal u to recover. In (2.40), this
information is represented in terms of the prior distribution pU of the grey values of U .
Besag [20] proposed the Laplacian law as model for pU , which was later extended by
Bouman & Sauer with their generalised Gaussian Markov random field [31] based on
the distribution (2.43) for ν ∈ [1, 2]. Since choosing a particular model for the prior
distribution is essentially equivalent to specify the penaliser ΨS for the smoothness
term in our NDS framework, we can instantiate such tonal kernel as ΨS(s2) = |s|ν .
This function is nonconvex for 0 < ν < 1, what may give rise to local minima
in (2.3). However, nonconvex penalisers can allow almost exact restoration quality
[122, 152, 153].

The Bayesian framework thus provides a founded basis for choosing appropriate
tonal kernels Ψ(·) for the data and smoothness terms in (2.3). Studying other types
of noise and the properties of the signal to recover will lead to different criteria for
selecting the penalisers. It is interesting to note that Nikolova [154, 155] has recently
shown that classical MAP estimators introduce distortions to the assumed models for
the noise and the signal to recover.

2.4.2 Linear Combination of Kernels
The problem of determining the regularisation parameter α in (2.3) is crucial to obtain
an optimal balance beetween data similarity and smoothness. We intend to justify the
use of such framework for α /∈ {0, 1}, i. e. for a wider spectrum of filters than those
special cases outlined in Table 2.1.

A function ϕ : [0, 1] → R is called unimodal on [0, 1] if it contains a single
minimum in that interval. Then, we obtain an estimate of the true image u as

û = arg min
α

ϕ(α), (2.44)

assuming that we deal with the unimodal function ϕ(α) := ‖u − uα‖1, where uα
is the solution image for a specific value of α from (2.3). Exploiting the empirical
unimodality1 of ϕ on [0, 1], we employ the Fibonacci Search method to find an optimal
value for α that solves (2.44). This line-search strategy ensures fast convergence. For
multimodal functions it is better to utilise the Simulated Annealing [118, 55] technique
as minimization strategy, which guarantees finding a global minimum in finite time.
See [15] for the implementation details.

1. Even though we can guarantee neither the continuous dependence of ϕ with respect to α nor a
unique solution, we have observed this behavior in most of our experiments.
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(a) (b)

(c) (d)

Figure 2.2: Signal denoising with the NDS functional. Original signals in solid lines,
noisy and denoised signals in dashed lines. (a) Noisy signal perturbed by zero-mean
Gaussian noise with σ = 40, L1 = 27.30 and (b) its denoised version L1 = 13.83.
(c) Noisy signal perturbed by 40% of salt-and-pepper noise, L1 = 48.04 and (d) its
denoised version L1 = 4.61.

As suggested by the statistical framework, our designed nonlocal filters for
Gaussian noise and impulse noise read

E(u) = (1− α)
∑

i∈J,j∈BD(i)

|ui − fj|2 + α
∑

i∈J,j∈BS(i)

|ui − uj|ν (2.45)

and

E(u) = (1− α)
∑

i∈J,j∈BD(i)

|ui − fj|+ α
∑

i∈J,j∈BS(i)

|ui − uj|ν , (2.46)

respectively, where B() is the disk-shaped hard window function used as spatial kernel
with radius $. Here we focus on ν ∈ {1, 2}. We apply these models to reconstruct
the noisy signals depicted in Fig. 2.2. All parameters were optimised and the best five
parameterisation for each model are shown in Table 2.3, with L1 denoting the absolute
difference between the original (uncorrupted) signal and the denoised version. We
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Table 2.3: Quantitative comparison of different filters. Left: Denoising results of the
signal perturbed with Gaussian noise shown in Fig. 2.2(a). Right: Denoising results of
the signal perturbed with salt-and-pepper noise shown in Fig. 2.2(c). The best results
are written in bold letters and plotted in Fig. 2.2(b) and Fig. 2.2(d), respectively.

Filter $D $S α L1

model (2.45),
ν = 2

3 1 0.78 14.18
3 2 0.43 14.24
2 1 0.79 14.26
2 2 0.46 14.30
3 3 0.21 14.32

model (2.45),
ν = 1

2 2 0.93 13.83
2 3 0.87 13.83
2 4 0.82 13.85
2 5 0.78 13.93
3 2 0.90 14.00

mean 4 - 0.00 14.93
median 4 - 0.00 14.90
Tikhonov 0 1 0.67 14.57
TV 0 1 0.99 15.62
Perona-Malik 0 1 0.70 14.47
Charbonnier 0 1 0.69 14.53

Filter $D $S α L1

model (2.46),
ν = 2

0 1 0.10 4.61
3 1 0.19 4.67
3 2 0.06 4.80
4 1 0.21 4.90
2 1 0.24 4.91

model (2.46),
ν = 1

3 8 0.11 5.20
3 9 0.09 5.27
3 10 0.08 5.38
4 9 0.08 5.59
3 7 0.11 5.51

mean 6 - 0.00 23.95
median 6 - 0.00 6.98
Tikhonov 0 1 0.90 23.22
TV 0 1 0.99 35.04
Perona-Malik 0 1 0.90 23.21
Charbonnier 0 1 0.90 23.21

also report on the performance of the mean and median filters as representatives of M-
smoothers (Section 2.2.1), and classical regularisation filtering (Section 2.2.3) with
four different penalisers. Without exceptions, our designed models outperform all the
well known filters obtained as particular cases of the NDS framework. Note that we
have deliberately chosen penalisers that do not require any contrast parameter. This
keeps our models simple and efficient.

2.4.3 Smoothing Effects

Trade-off between α and $S

As it is noticeable in Table 2.3 there exists a trade-off between the parameter α
and the radii $D, $S of the spatial kernels. For example, it is possible to achieve
similar filtering results either by decreasing α or by increasing $S . On the one hand
decreasing α reduces the influence of the smoothness term, but on the other, increasing
$S considers contributions to the smoothness term from a larger neighbourhood. To
illustrate this effect let us consider the original image shown in Fig. 2.3(a)-top left
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(a) (b)

Figure 2.3: Trade-off between α and $S . (a) Original image (top left); noisy image
perturbed with zero-mean Gaussian with σ = 20, L1 = 16.02 (top right); restored
image with α = 0.8, $S = 2, L1 = 4.88 (bottom left); restored image with α = 0.2,
$S = 6, L1 = 5.18 (bottom right). (b) L1 distance between the original and the
denoised image for different values of α and $S .

and its degraded version with Gaussian noise of Fig. 2.3(a)-top right that we restore
employing the model (2.45) with ν = 1. The radius$D of the spatial kernel in the data
term was fixed to 1. Fig. 2.3(b) displays the filtering results for a range of values α and
$S . Fig. 2.3(a)-bottom shows examples where similar restoration quality is achieved
under different parameterisation. Moreover, slightly better results are attained for α
large and $S small, which implies less operations and more efficiency.

Trade-off between α and $D

If we consider a functional which only consists of a data term, we notice that
increasing the support of the spatial window leads to smoothing. On the other hand, if
we leave the spatial window of the data term small and add a smoothness term, this has
visually almost the same effect. In this experiment we want to quantify the difference
more accurately and search for α corresponding to a certain support for wD. To this
end we consider the two following functions. The first function

ED(u) =
∑
i,j∈Ω

(ui − fj)2wD
(
|xi − xj|2

)
(2.47)

consists only of a data term, but allows for a larger window given by the disc-shaped
hard window function wD with radius $D. The second function has a local data term
and a smoothness term which only takes the direct neighbours N (i) of pixel i into
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Figure 2.4: Top left: Original image, 256 × 256 pixels. Top middle: Smoothed
version with ED, radius $D = 5. Top right: Smoothing with EC , α = 0.50. Bottom
left: Image with additive Gaussian noise, standard deviation σ = 50. Bottom middle:
Denoising with ED, radius $D = 5. Bottom right: Denoising with EC , α = 0.58.

consideration

EC(u) = (1− α)
∑
i∈Ω

(ui − fi)2 + α
∑

i∈Ω,j∈N (i)

(ui − uj)2 (2.48)

Here, only changing the value α is used to steer the amount of smoothness. Fig. 2.4
shows two examples of the trade-off between these parameters. We see that in both
cases with and without noise it is possible to obtain very similar results with both
functions. We are interested in knowing how far away the results obtained with the
functionsED andEC are from each other, and how they approach each other by means
of tuning $D and α, respectively. In Fig. 2.5, we display some measurements to
quantify the trade-off between these parameters. In the left column, each curve stands
for a certain radius size, and there is one value of α that minimises the L1 distance
between their estimates. The minimum distance achieved for every pair ($D, α) is
displayed in the right column. These curves confirm our intuition that although the
functions ED and EC are completely different, it is possible that both models produce
similar results when their tuning parameters are accordingly adjusted.
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Figure 2.5: Trade-off between α and $D. Top row: Noiseless case. L1-error curves
between the models ED and EC for varying α and $D (left), and optimal values that
minimise the L1-error (right). Bottom row: Same plots for the noisy case.

2.5 Summary
In this chapter we have shown the NDS model as a framework that unifies a number of
filtering approaches from the literature and have provided novel connections to recent
graph regularisation methods. The flexibility of the NDS model allowed us: First, to
design hybrid filters that outperform the others obtained as special cases. Second, to
establish parametric correspondences between different filters.

Despite the fact that the NDS framework allows for nonlocal pixel interactions
by extending the support of the spatial windows w{D,S}, note in Table 2.3 that the
radii $D and $S do not take very large values for the best denoising results. This
suggests that the effective utilisation of larger neighbourhoods is hindered in practice.
In Chapter 3 this issue will be further discussed and a generalisation of the NDS
framework will be proposed that overcomes this limitation.
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3 Generalised NDS Framework

The NDS model of the previous chapter was termed nonlocal data and smoothness
(NDS) because of the interactions between more distant pixels than the immediate
neighbourhood. However, the tonal weights in depend on the single differences
between pairs of connected pixels. These single differences have a limited ability
to express local image structure and geometry, and for practical purposes, the pixel
interactions have to be kept to a relatively small neighbourhood.

Many recent approaches for image denoising make use of self-similarity of the
whole image, or similarity between several images. For filtering, pixels from very
distant locations could also contribute to the result. To distinguish which pixels are
compatible, a more powerful measure is needed to evaluate the similarity: Not just
pixel difference, but the similarity of a whole region of interest, or image patch around
the central pixel, is considered. Two equivalent filters such as NL-means [40, 41] and
UINTA [9, 10] are typical examples of this class of filters.

In this chapter, we combine the idea of patch similarity with the NDS functional,
which leads to a Generalised Nonlocal Data and Smoothness, or GNDS model. We
keep the discrete variational framework involving both data and smoothness terms,
and allow for different ways to calculate the distance of the image patches. We
will show which iterative filter can be derived as a minimiser of the GNDS energy
functional. Inspired by its form, we will relax a constraint and present a new family
of patch-based GNDS filters. This chapter is based on [174].

3.1 GNDS Functional and its Minimisation

First, let us introduce the tonal distance functions dD, dS : R2p −→ R+
0 in the data

and the smoothness term. For example, in the data term, such a function calculates
the distance between two image patches u(Pi) of the evolving image and f(Pj) of the
initial image. The index sets Pi and Pj define image patches as neighbourhoods of
the pixels i and j, respectively. Both patches are assumed to have the same size p ∈ N
and the same shape.

As distance function, for example the weighted L2 norm can be used, i. e.∣∣d(u(Pi), f(Pj))
∣∣2 =

∑
p

Gσ(p) (ui+p − fj+p)2 , (3.1)

35
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where Gσ(p) := exp(−p2/(2σ2)). This has also been used as a patch distance in the
NL-means algorithm.

With these definitions, the Generalised Nonlocal Data and Smoothness (GNDS)
model reads

EG(u) = (1− α)EGD(u) + αEGS(u) (3.2)

= (1− α)
∑
i,j∈J

ΨD

(∣∣dD(u(Pi), f(Pj))
∣∣2)wD (|xi − xj|2)

+ α
∑
i,j∈J

ΨS

(∣∣dS(u(Pi), u(Pj))
∣∣2)wS (|xi − xj|2) .

As we did for the NDS model, we now obtain the corresponding fixed point form
for (3.2). The minimiser u of (3.2) necessarily satisfies

∂EG
∂ui

= (1− α)
∂EGD
∂ui

+ α
∂EGS
∂ui

= 0 for all i ∈ J . (3.3)

Using the distance function (3.1) in both the data and the smoothness terms, we have:

∂EGD
∂uk

= 2
∑
j∈J

Gσ ∗Ψ′D
(
d2
D;k−·,j−·

)
(0)(uk − fj)wD

(
|xk − xj|2

)
(3.4)

∂EGS
∂uk

= 4
∑
j∈J

Gσ ∗Ψ′S
(
d2
S;k−·,j−·

)
(0)(uk − uj)wS

(
|xk − xj|2

)
(3.5)

where the operator ‘∗’ stands for convolution. Then, with help of the abbreviations

gGDi,j := Gσ ∗Ψ′D

(∣∣dD(u(Pi−·), f(Pj−·))
∣∣2) (0) (3.6)

gGSi,j := 2 Gσ ∗Ψ′S

(∣∣dS(u(Pi−·), u(Pj−·))
∣∣2) (0) , (3.7)

and with the spatial weights defined as in (2.23)-(2.24), the fixed point for the GNDS
model reads

ui =

(1− α)
∑
j∈J

gGDi,j w
D,$
i,j fj + α

∑
j∈J

gGSi,j w
S,$
i,j uj

(1− α)
∑
j∈J

gGDi,j w
D,$
i,j + α

∑
j∈J

gGSi,j w
S,$
i,j

, (3.8)

for all i ∈ J . This equation can be embedded in a fixed point iteration scheme similar
to (2.12)-(2.14). A maximum-minimum principle and the existence of a fixed point
can be proven following Propositions 2.1.1 and 2.1.2. Analogously to (2.18), the
energy minimiser can be obtained via gradient descent.
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The data similarity and smoothness constraints in our generalised model (3.2)
penalise tonal distances between patches rather than between single pixels as in the
original NDS approach (2.3). Comparing (3.8) with the fixed point form of the
NDS model (2.25) we note that the patch distances induce convolutions with the
neighbouring tonal weights. In Sections 3.2 and 3.3 we discuss the implications of
this fact and how it inspires the modelling of new filters.

For the sake of completeness, we provide a detailed derivation of the term (3.4),
which holds analogously for (3.5):

∂EGD
∂uk

=
∂

∂uk

∑
i,j∈J

ΨD

(
d2
D;i,j

)
wD
(
|xi − xj|2

)
=

∑
i,j∈J

Ψ′D
(
d2
D;i,j

) ∂

∂uk

(
d2
D;i,j

)
wD
(
|xi − xj|2

)

=
∑
i,j∈J

Ψ′D
(
d2
D;i,j

) ∂

∂uk

(∑
p

Gσ(p)(ui+p − fj+p)2

)
wD
(
|xi − xj|2

)
(i=k−p)

= 2
∑
j∈J

∑
p

Ψ′D
(
d2
D;k−p,j

)
Gσ(p)(uk − fj+p)wD

(
|xk−p − xj|2

)
(j=l−p)

= 2
∑
l∈J

∑
p

Gσ(p)Ψ′D
(
d2
D;k−p,l−p

)
(uk − fl)wD

(
|xk−p − xl−p|2

)
= 2

∑
j∈J

Gσ ∗Ψ′D
(
d2
D;k−·,j−·

)
(0)(uk − fj)wD

(
|xk − xj|2

)
.

3.2 Double Weighting
Considering the data term of eq. (3.8) only (the situation for the smoothness term
is analogous), and expanding the convolution (3.6), the fixed point equation for the
filtered pixel ui becomes

ui =
1

Mi,j

∑
j,p

Gσ(p)Ψ′

(∑
q

Gσ(q)|ui+p+q − fj+p+q|2
)
wi,jfj (3.9)

where Mi,j is the usual normalisation by the sum of all applied weights:

Mi,j =
∑
j,p

Gσ(p)Ψ′

(∑
q

Gσ(q)|ui+p+q − fj+p+q|2
)
wi,j .
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In (3.9), Gσ is the Gaussian of radius rσ which represents the patch size in the patch
similarity computation (3.1). Note that this weighting appears twice in formula (3.9):
Once during the patch similarity calculation (summed over q) before the nonlinearity
Ψ′ is applied. We call this Gσ the inner weighting of patch pixels. Moreover, Gσ

appears also for a second time in (3.9), in the sum over p. We call this the outer
weighting which is applied when summing the results of the function Ψ′ after it is
applied to individual patch distances. Figure 3.1 demonstrates this: the tonal weight
(3.6) entering in (3.9) not only involves the comparison of the patches about the
pixels i and j, but also the patch similarity between their corresponding neighbours is
considered.

Equation (3.9), and particularly this double weighting, deserve a detailed discus-
sion. The estimated pixel value ui in (3.9) is obtained as a weighted average of some
data samples fj . Let us consider a single data pixel fj , and analyse what is the weight
by which this pixel contributes to the weighted result. For a single value of the dummy
variable p, the sum ∑

q

Gσ(q) |ui+p+q − fj+p+q|2

evaluates the weighted L2 distance between an image patch around pixel ui+p on one
hand, and an image patch around pixel fj+p on the other hand (where the size of the
patches is given by the weighting function Gσ). In the notation used earlier in this
chapter, this patch distance is denoted d (u(Pi+p), f(Pj+p)). Note that the compared
patches are offset with respect to the estimation and data positions i and j, respectively,
by a common shift p.

Coming back to equation (3.9), after evaluating the patch distance, the nonlinearity
Ψ′ is applied next. We remark that this nonlinearity can be related to robust statistical
estimation; its role is to downweight outliers, and convert patch distance to (robust)
patch similarity. Then, the resulting patch similarities are summed over variable p in

Figure 3.1: The weight computation in (3.9) between two pixels i and j involves
the patch comparison – using patches Gσ (dashed lines) – between every pair of
corresponding neighbours i+ p and j + p within a neighbourhood Gσ (solid lines).
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a second patch neighbourhood, again defined by the weighing function Gσ. Note that
the inner and outer weighing functions are identical, which originates in the functional
EGD of (3.2) and the derivatives with respect to ui which duplicated the inner weight
also out of the nonlinearity.

Summarising it in words, the equation (3.9) has the following meaning: For pixels
ui and fj , calculate the patch distances of all patches at positions i+ p and j+ p taken
with the offset p around ui and fj , respectively. Then, average these patch distances
(transformed first by the nonlinearity Ψ′) using the outer weightingGσ. Thus, the pixel
fj will contribute to the result ui with a hight weight not only if the patches around ui
and fj are similar, but also if the neighbouring patches ui+p and fj+p resemble each
other.

3.3 GNDS Filter Family
In the previous section we discussed the roles of the inner (patch) weighting Gσ and
the outer (similarity integration) weighting. Derived from the energy functional, these
two weightings are identical. In the fixed point iteration though, these two weighting
functions have a different role, and it is instructive to analyse what changes if they are
decoupled.

In the following, we keep the parameter rσ for the radius of the GaussianGσ of the
inner pixel weighing for patch similarity calculation. The outer integration scale will
use a different weighting function Gρ of radius rρ, and the pixel averaging equation
becomes

ui =
1

Mi,j

∑
j,p

Gρ(p)Ψ
′

(∑
q

Gσ(q) |ui+p+q − fj+p+q|2
)
wi,jfj (3.10)

where Mi,j is the corresponding normalisation factor.
Let us now study what is the effect of varying the parameters σ and ρ which

determine the size of the inner and outer weighting windows, respectively.
First, let ρ→ 0, leading to the following outer weighting:

G0(p) =

{
1 if p = 0

0 if p 6= 0
. (3.11)

The equation (3.10) then simplifies to

ui =
1

Mi,j

∑
j

Ψ′

(∑
q

Gσ(q) |ui+q − fj+q|2
)
wi,jfj , (3.12)

which, using Ψ(s2) = 2λ2 (1− exp (−s2/(2λ2))), corresponds to the non-iterative
NL-means filter introduced by Buades et al. in [40, 41]. NL-means weights the
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contribution of the pixel fj using a single patch distance comparing patches around ui
and fj , and omits any additional integration of these patch similarities using the outer
summation.

Second, let σ → 0. This leads to

ui =
1

Mi,j

∑
j,p

Gρ(p)Ψ
′ (|ui+p − fj+p|2)wi,jfj . (3.13)

Comparing (3.13) with (3.12), we observe that these two equations have a highly
similar structure, with a single difference: The position where the nonlinearity Ψ′

is applied. For NL-means (3.12), we first sum the differences of individual pixels,
thus evaluating the weighted L2 similarity, and then apply the robust weighting Ψ′.
In the other case of equation (3.13), we apply the nonlinearity Ψ′ to individual pixel
differences, and then integrate the result over the window Gρ. Even in this case, the
weight of pixel fj is influenced by the whole patches around ui and fj . The difference
lies in the way the patch similarity is evaluated. Due to the structural resemblance
of the filters (3.12) and (3.13) to isotropic and anisotropic penalisation [226] we call
(3.13) anisotropic NL-means.

As a third example, let both σ → 0 and ρ → 0. Then, the generalised NDS
scheme (3.10) simplifies to the classical NDS scheme (2.11) which is based on simple
pixel differences instead of patch distances.

Following the previous analysis, if we allow the inner and outer Gaussian kernels
in (3.6)-(3.7) to operate on different integration scales, i.e. σ (inner), ρ (outer),

g̃GDi,j := Gρ ∗Ψ′D

(∣∣dD(u(Pi−·), f(Pj−·))
∣∣2) (0) (3.14)

g̃GSi,j := 2 Gρ ∗Ψ′S

(∣∣dS(u(Pi−·), u(Pj−·))
∣∣2) (0) , (3.15)

the modified fixed point equation (3.8)

ũi =

(1− α)
∑
j∈J

g̃GDi,j w
D,r
i,j fj + α

∑
j∈J

g̃GSi,j w
S,r
i,j uj

(1− α)
∑
j∈J

g̃GDi,j w
D,r
i,j + α

∑
j∈J

g̃GSi,j w
S,r
i,j

(3.16)

can be regarded as a full family of highly nonlinear and robust filters. A single member
of this family with ρ = σ can be derived from the energy functional (3.2). The well
known NL-means method belongs to this family. It represents the case when α ∈
{0, 1} and the outer scale vanishes. Some of these special cases are summarised in
Table 3.1.
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Table 3.1: Examples of filtering methods belonging to the GNDS family (3.16) with
varying regularisation parameter α, patch size σ and integration scale ρ.

Regularisation parameter Patch size Integration scale Method
0 ≤ α ≤ 1 σ > 0 ρ = σ Generalised NDS (3.10)
α ∈ {0, 1} σ > 0 ρ→ 0 NL-means (3.12), [41]
α ∈ {0, 1} σ → 0 ρ > 0 Anisotropic NL-means (3.13)
0 ≤ α ≤ 1 σ → 0 ρ→ 0 Classical NDS (2.3), [148]

Practically, the inner and outer scales both act in the direction that by increasing
them, we increase the area used to evaluate image similarity: Higher values lead to
a more thorough (and costly) patch comparison. Consider the special situation when
this combined scale is kept constant, the amount of integration just shifts between the
inner and outer scales. Such a setting forms a family of filters with approximately
the same spatial extent of operations. What changes is the position at which the
nonlinearity Ψ′ enters the chain. The NL-means (3.12) and the summation of robust
pixel similarities (3.13) represent the two extremes of this family.

Considering an image of N pixels, a squared search window w of s2 pixels, and
circular patch of radius r, the computational complexity of the filter family (3.16)
is O(N × s2 × r2

ρ × r2
σ). Fig. 3.2 illustrates the effect of varying rρ and rσ while

keeping rρ + rσ constant. The different configurations correspond to different ways of
computing pixel similarity.

Figure 3.2: The tonal weight in (3.10) is computed over an area determined by the
integration neighbourhood (solid lines) – GaussianGρ of radius rρ – and the patch size
(dashed lines) – Gaussian Gσ of radius rσ. From left to right, different configurations
where the total area described by a Gaussian of radius rρ + rσ (dotted line) is kept
constant. The first and the last configurations correspond to the weighting scheme of
the filters (3.12) and (3.13), respectively.
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3.4 Alternative Formulations of the NL-Means Filter

Using the Whittaker-Tikhonov penaliser Ψ(s2) = s2 we obtain Ψ′(s2) := ∂s2Ψ(s2) =
1 and both filters (3.12) and (3.13) become equivalent to

ui =
1

Mi,j

∑
j

wi,j fj . (3.17)

In our setting the spatial function w acts uniquely as a search window, i.e. it
delimits the spatial extent where the pixels j, neighbours of i, are taken from.
However, in various works [87, 29, 61] it is argued that (3.17) can be regarded as
the NL-means filter by redefining the weights via

w̃i,j := wi,j · exp

(
−
∣∣d(f(Pi), f(Pj))

∣∣2
h

)
, (3.18)

with h > 0 as a filter parameter. Note that the additional weighting term is constant as
it depends on the input image f . This indicates that the filter (3.17) could be directly
derived from the data term (2.1) of the NDS functional employing Ψ(s2) = s2 and w̃.
Analogously, a filter that averages over the evolving image u can be obtained from the
smoothness term (2.2). Similar ideas have been considered in [86, 11, 38].

In [114, 64, 169] energy functionals with weights depending on the unknown
solution u via d(u(Pi), u(Pj)) have been considered. However, all these methods
assume constant weights in the computation of the optimality conditions∇E(u) = 0.
The variational filter proposed by Brox et al. in [38] also considers nonlocal weights
depending on u. Although they do not assume constant weights in the derivation
of the Euler-Lagrange equations, these become very complex and computationally
expensive. To a certain extent, the mentioned filters could be obtain from the original
NDS framework (2.3) by extending the definition of the weights w as in (3.18)
(see also a related discussion in Section 2.3). In the proposed GNDS framework
we keep regarding the weights w only as (nonlocal) spatial functions. Instead, we
generalise the constraints being penalised in the energy functional. That is, in (3.2)
we have replaced the single pixel similarity constraints of (2.3) by patch similarity
constraints using the weighted L2 distance between patches, obtaining a new family of
neighbourhood filters. The use of other similarity measures is discussed in Section 3.7.
It is important to mention that we do take into account the dependency of the distance
measures on the solution u when deriving the optimality conditions. As a result, the
classical and also some iterative versions of the NL-means filter can be obtained as
special cases of the proposed filter family (3.16) without need of redefining the spatial
weights w.
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3.5 (Non-) Iterative and Steady-State Solutions
In Section 3.3 we explored the full family of filters that can be obtained from
the proposed GNDS model by varying the inner and outer scales in the patch
similarity computation. This entails the immediate extension of the filters presented
in Section 2.2 to work with image patches rather than with single pixel differences.

Let us consider the fixed point (3.8) that iteratively minimises the energy functional
(3.2). For 0 ≤ α < 1 this process will converge to a stationary state due to the data
term dependency on the input image. Note that for α = 0 we obtain a generalised
nonlocal M-smoothing process. In this case we can think, for instance, of a novel NL-
means filter with a steady-state solution. For α = 1 we obtain a generalised nonlocal
Bilateral filter, which needs to be stopped after certain number of iterations before the
image gets completely smoothed away. This can be done by using the decorrelation
criterion devised by Mrázek and Navara [147].

3.6 Extension to Multichannel Images
The extension of the GNDS model to multichannel images is straightforward. Let
f ,u : Ω −→ Rd be the noisy image and the unknown noise-free image, respectively,
both with d channels. To obtain the multichannel counterpart of the scalar GNDS
model (3.2) we just need to redefine the patch distance (3.1) as∣∣d(u(Pi), f(Pj))

∣∣2 =
∑
p

Gσ(p) ‖ui+p − fj+p‖2
2 , (3.19)

where ‖ · ‖2 is the Euclidean norm. Computing the optimality conditions∇E(u) = 0
we obtain a fixed point for every channel um (m = 1, . . . , d), cf. (3.8):

umi =

(1− α)
∑
j∈J

gGDi,j w
D,$
i,j fmj + α

∑
j∈J

gGSi,j w
S,$
i,j umj

(1− α)
∑
j∈J

gGDi,j w
D,$
i,j + α

∑
j∈J

gGSi,j w
S,$
i,j

. (3.20)

All channels are coupled via the tonal weights

gGDi,j := Gσ ∗Ψ′D

(∣∣dD(u(Pi−·), f(Pj−·))
∣∣2) (0) (3.21)

gGSi,j := 2 Gσ ∗Ψ′S

(∣∣dS(u(Pi−·),u(Pj−·))
∣∣2) (0) , (3.22)

which avoid the formation of discontinuities at different locations for the different
image channels. Note that the fixed point (3.20) can be modified as in (3.16) to obtain
a more flexible and robust filter.
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3.7 Extension to Other Distance Measures
The proposed energy functional (3.2) is very general in the sense that one could
choose any suitable distance measures dD, dS to impose similarity of particular
image characteristics. Once the distances have been chosen, the optimality conditions
∇E(u) = 0 need to be derived in order to prescribe the corresponding energy
minimiser, for instance, via a fixed point or a gradient descent scheme.

In the proposed GNDS model we have used the weighted L2 norm (3.1) to measure
similarity between image patches. However, one can employ different distance
measures as well. For example, Kervrann and Boulanger [114] use∣∣d(u(Pi),u(Pj))

∣∣2 = vec
(
u(Pi)− u(Pj)

)>
V −1
ij vec

(
u(Pi)− u(Pj)

)
, (3.23)

where Vij is a diagonal matrix whose entries are averaged local variances of the image
patches. Similarly, Goossens et al. [90] replace Vij by a local estimation of the noise
covariance matrix to filter images corrupted by correlated noise.

Another example where the selection of the patch distance is driven by the noise
type corrupting the image data is due to Coupé et al. [68]. Based on the Bayesian
non-local means filter [115] and on the Speckle noise model introduced in [132], the
authors propose a non-local filter for ultrasound images that uses the so-called Pearson
distance for computing patch similarity:

∣∣d(u(Pi), u(Pj))
∣∣2 =

∑
p

(ui+p − uj+p)2

uj+p
. (3.24)

These and other measures of similarity can be utilised in the proposed functional (3.2)
with accordingly derived minimisation algorithms. In addition, as classically done
in variational methods, the choice of the data similarity constraint can be driven by
the statistical properties of the type of noise present, whereas the smoothness term
must reflect desirable properties of the solution. Therefore, the issue of selecting
appropriate patch distances for the data and smoothness terms of the proposed GNDS
model is still open. We will explore these issues in a future work.

3.8 Numerical Experiments

3.8.1 Comparison of similarity measures
The filter (3.10) induces a novel similarity measure between two pixels ui, uj that can
be considered as an extended patch similarity measure

Sext(ui, uj) :=
∑
p

Gρ(p) ·Ψ′
(∑

q

Gσ(q) · |ui+p+q − uj+p+q|2
)
. (3.25)
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Choosing ρ→ 0 one obtains an isotropic similarity measure

Siso(ui, uj) := Ψ′

(∑
q

Gσ(q) · |ui+q − uj+q|2
)
, (3.26)

while with σ → 0, equation (3.25) becomes an anisotropic similarity measure

Sani(ui, uj) :=
∑
p

Gρ(p) ·Ψ′
(
|ui+p − uj+p|2

)
. (3.27)

Considering the penaliser of Leclerc [124] and Perona/Malik [167]

Ψ(s2) = 2λ2

(
1− exp

(
− s2

2λ2

))
(3.28)

with filter parameter λ, (3.26) corresponds exactly to the similarity measure used by
Buades et al. [41] in their NL-means filter. A couple of recent works have proposed
the use of other robust penalisers as well [90, 168]. We test these three measures on
the noisy images displayed in Fig. 3.3. For each one of the 16 textures we select 30
random pixels and compute their similarity to all other pixels in the image. For every
chosen pixel we take its best 20 matches (pixels with the largest similarity) and check
whether they belong to the same texture or not. Table 3.2 shows the average number
of matches within the same texture and the overall performance of each similarity
measure. In the case of Gaussian noise we used the Leclerc penaliser and for salt-and-
pepper noise the regularised L1 norm Ψ(s2) =

√
s2 + ε2. The radii of the Gaussians

were set to rρ = rσ = 4.
The results show that the extended similarity measure is more robust and perform

best under Gaussian degradation. This is due to the fact that, via the outer Gaussian
weighting, the selection of similar pixels relies more strongly on the underlying image
structures. On the other hand, it performs poorly under impulse noise. In this case

Figure 3.3: Left: Original image with 16 textures, each one identified by its
coordinates in matrix notation T (x, y), x, y = {1, 2, 3, 4}. Middle left: Zoom of the
original image. Middle right: Added zero-mean Gaussian noise with σ = 20. Right:
Added 20% of salt-and-pepper noise.
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the best choice is the anisotropic similarity measure, which acts as a noise detector
at every pixel location. The same holds for higher levels of noise. Smoothing
experiments will be presented in the following sections.

Table 3.2: Quantitative comparison of the three similarity measures Siso, Sani and Sext
induced from the GNDS filter (3.10). Sext is more suitable for images degraded with
Gaussian noise, while Sani is more robust under salt-and-pepper noise.

Gaussian noise (σ = 20) salt-and-pepper noise (20%)

Siso Sani Sext Siso Sani Sext

T(1,1) 3 4 13 1 3 2

T(1,2) 19 19 19 19 19 19

T(1,3) 20 16 20 10 19 13

T(1,4) 10 8 12 11 10 8

T(2,1) 20 18 20 20 20 18

T(2,2) 14 5 19 9 18 12

T(2,3) 20 13 20 1 11 2

T(2,4) 16 6 15 4 11 6

T(3,1) 12 5 20 4 16 7

T(3,2) 18 17 19 11 20 14

T(3,3) 14 7 20 3 12 3

T(3,4) 12 13 18 1 13 3

T(4,1) 10 8 14 8 10 8

T(4,2) 20 14 20 4 20 5

T(4,3) 9 7 11 1 5 1

T(4,4) 17 10 16 1 18 6

matches 234 170 276 108 225 127

% 73.1 53.1 86.2 33.7 70.3 39.7

3.8.2 Comparison of several patch-based methods

We now evaluate the smoothing capabilities of the proposed GNDS model on the set
of test images Barbara, House, Lena, Peppers, Boats from Portilla et al. [175] which
already contain Gaussian noise. The proposed GNDS filter is run iteratively via a
gradient descent scheme. In all experiments we use the penaliser (3.28) with fixed
contrast parameter λ for successive iterations of the filter, a search window of size
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21 × 21 and patches of radius rσ = 5 (implemented as squares of (2rσ − 1)2 pixels).
The radius rρ of the outer patch weighting was chosen between 0 and 2 pixels. With
this configuration, one iteration of (3.16) on a 256 × 256 image took between 17 and
95 seconds on a Pentium IV 2.8GHz implemented in C. Table 3.3 juxtaposes several
patch-based filters proposed in the literature. We employ the peak signal-to-noise ratio
(PSNR) as criterion for quality measure:

PSNR (dB) = 10 log10

(
2552

1
|J |
∑

i∈J(oi − ui)2

)
, (3.29)

where o denotes the original noise free image and u the estimated denoised version.
The shown results for [41, 10, 86, 87] were taken from [38]. From those most
competitive methods related to the proposed GNDS filter: Brox et al. [37, 38] run
an iterative NL-means algorithm that uses the noisy image for averaging and updates
the weights from the estimated solution u of the previous iteration. A similar strategy
is due to Kervrann et al. [113, 114] who additionally adapt the size of the averaging
neighbourhood at each pixel location to better capture local geometries. Azzabou et al.
[11] developed a variational filter structurally similar to [88] and [38] that adapts the
spatial extent of the local neighbourhoods. We also compare with the nonlocal TV
filter as in [30] (see [88] as well). Although the proposed GNDS filter does not utilise
sophisticated adaptive strategies, it also allows for a robust selection of similar pixels
by making use of the extended patch similarity measure defined in (3.25). Note that
in some cases the GNDS filter outperforms the more elaborated methods, though it is
still below the state-of-the-art results provided by Dabov et al. [70].

It is worth mentioning that the nonlocal smoothness term of GNDS model (3.2)
reaches higher PSNRs than the nonlocal data term, which is more pronounced for
higher levels of noise. Interestingly, the combined use of both terms leads to slightly
better results than the smoothness term alone. We also run experiments considering
models such as (i) local data terms

∑
i∈J Ψ (|ui − fi|2) with a nonlocal smoothness

term, and (ii) a nonlocal data term combined with semilocal smoothness terms∑
i∈J,j∈N (i) Ψ (|ui − uj|2), where the set N (i) contains the 4 direct neighbours of

pixel i. However, both models led to poorer results. This is in concordance with
the findings in [86, 87], where the proposed variational filters perform better when a
nonlocal regulariser is used and the data fidelity term is disregarded.

As was mentioned above, the GNDS filter was implemented using a steepest
descent algorithm. We run the iterative scheme for different time-step size τ =
0.1, 0.2, . . . , 1.0. Fig. 3.4 shows the performance of the GNDS-D filter applied to
the noisy test image House as a function of the time step τ and the filter parameter λ.
Similar curves are obtained with the GNDS-S filter. As noted from Table 3.3 the best
denoising results are attained with τ in the range [0.8, 1.0], in which case the number
of iterations needed to reach the highest PSNR ranges between 1 and 3.

Fig. 3.5 shows a visual comparison of the proposed GNDS filter with the two
most competitive methods [70, 114]. The absolute method noise (AMN) |o− u| (×5)
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Table 3.3: Denoising results of several patch-based filters on standard test images
degraded with additive zero-mean Gaussian noise with standard deviation {20, 50}.
The method of Dabov et al. [70] reaches the highest PSNRs. The second best
results are highlighted. The parameters (λ, τ, iterations) are displayed for the GNDS–
D and GNDS–S filters (data and smoothness terms of (3.16), respectively). GNDS,
i.e. the combination of both terms, yields better results than applying each of them
independently, outperforming most of the listed methods.

Gaussian noise (σ = 20)

Filter \ PSNR (dB)
Barbara House Lena Peppers Boats

22.18 22.11 22.13 22.19 22.17

Buades et al. [41] 30.31 32.49 31.78 29.62 29.34
Awate et al. [10] 30.14 32.59 31.79 29.75 29.54
Gilboa et al. [86] 29.43 32.17 31.39 30.04 29.53
Gilboa et al. [87] 30.20 32.55 31.95 30.28 29.89
Dabov et al. [70] 31.78 33.77 33.05 31.29 30.88
Azzabou et al. [11] 30.46 32.34 32.12 30.67 29.94
Brox et al. [38] 30.33 32.74 32.08 30.04 29.69
Kervrann et al. [114] 30.37 32.90 32.64 30.59 30.12
Bougleux et al. [30] 30.41 32.72 31.95 30.17 29.57

GNDS-D
30.62 32.66 31.98 30.21 29.78

(14,1.0,1) (15,1.0,1) (14,1.0,1) (13,1.0,1) (12,1.0,1)

GNDS-S
30.62 32.75 32.03 30.21 29.78

(14,1.0,1) (11,0.8,2) (10,0.8,2) (13,1.0,1) (12,1.0,1)

GNDS 30.64 32.78 32.05 30.22 29.80

Gaussian noise (σ = 50)

Filter \ PSNR (dB)
Barbara House Lena Peppers Boats

14.76 14.56 14.62 14.68 14.59

Dabov et al. [70] 27.17 29.37 28.86 26.41 26.64
Kervrann et al. [114] 24.09 28.67 28.38 25.29 25.93

GNDS-D
25.40 27.66 27.30 25.25 25.16

(23,1.0,2) (24,1.0,2) (24,1.0,2) (24,1.0,2) (23,1.0,2)

GNDS-S
25.75 28.38 27.77 25.64 25.58

(20,0.9,2) (19,1.0,2) (19,1.0,2) (19,1.0,2) (20,0.9,2)

GNDS 25.78 28.40 27.81 25.67 25.60
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Figure 3.4: Performance of the GNDS-D filter (see Table 3.3) on the test image House
degraded by Gaussian noise with standard deviation 20 (Left) and 50 (Right). The
PSNR curves are displayed as functions of the time step size τ and the filter parameter
λ. The plots show that there exists an optimally global λ∗ for a chosen time step size.
Considering all the experiments carried out, the best results were obtained with τ in
the range [0.8, 1.0].

between the noise free images o and the restored versions u are shown in Fig. 3.6.
All three approaches provide very good results, while the method of Dabov et al. [70]
gives the highest PSNRs. Although our GNDS approach does not outperform these
two methods in terms of PSNR, our results look much more pleasant and natural than
those from Kervrann et al. [114]. That filter tends to over-enhance edges, creating
staircasing artifacts that make the images look less natural, which can be observed in
Fig. 3.7. Another visible effect of the method of Kervrann et al. is noticeable in the
AMN images of Fig. 3.6. The black areas reveal that many edges remain untouched
in the filtering process, i.e. no noise is removed at those locations. Our GNDS results
do not show any visible artifacts and almost no loss of structures is perceived in
the method noise images. These findings suggest that PSNR is not a fully reliable
measure for denoising capability and perceptual quality altogether. Alternative ways
of assessing these criteria are necessary, but this goes beyond the scope of our work.

Fig. 3.8 demonstrates the application of our GNDS filter to denoising colour
images. The noisy Boy images were created adding zero-mean Gaussian noise in
every {R,G,B} channel independently. As it was indicated in Section 3.6 we apply the
filter (3.20) on every image channel using the so-called channel coupling technique in
order to avoid the formation of false colours and the dislocation of edges. That is, the
same tonal weights (3.21)–(3.22) are used in all channels. The accurate localisation
and restoration of edges can be observed in the zoomed images of Fig. 3.9. This is
especially visible in the transition between the Boy’s cheek and the red collar. Our
filter is able to restore gentle facial features and to preserve small details such as the
pullover’s zip.
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(a) Barbara, PSNR =
22.18

(b) Boats, PSNR = 22.17 (c) Lena, PSNR = 22.13

(d) PSNR = 31.78, [70] (e) PSNR = 30.88, [70] (f) PSNR = 33.05, [70]

(g) PSNR = 30.37, [114] (h) PSNR = 30.12, [114] (i) PSNR = 32.64, [114]

(j) PSNR = 30.64, GNDS (k) PSNR = 29.80, GNDS (l) PSNR = 32.05, GNDS

Figure 3.5: Comparison to state-of-the-art methods. Top Row: Test images degraded
by Gaussian noise with standard deviation 20. 2nd Row: Restored images by Dabov
et al. [70]. 3rd Row: Restored images by Kervrann et al. [114]. Bottom Row:
Restored images by the proposed GNDS model (3.2).
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(a) AMN for the restored Barbara, Boats and Lena by Dabov et al. [70].

(b) AMN for the restored Barbara, Boats and Lena by Kervrann et al. [114].

(c) AMN for the restored Barbara, Boats and Lena by the proposed GNDS model (3.2).

Figure 3.6: Absolute method noise (AMN) |o − u| (×5) for the smoothing results
shown in Fig. 3.5 obtained by (a) Dabov et al. [70], (b) Kervrann et al. [114], and (c)
the proposed GNDS filter.

We finally test our approach for restoring impulse noise. Fig. 3.10 compares
several filters: (c) iterative median filtering within a 3 × 3 window; (d) NDS
model (2.46) with parameters (α;$D;$S) = (0.05; 2; 1); (e) GNDS model (3.16)
with penalisers ΨD(s2) = |s|, ΨS(s2) = λ2 ln

(
1 + s2/λ2

)
and parameters

(α;$D, rDρ , rDσ ;$S, rSρ , rSσ) = (0.05; 2, 0, 0; 2, 0, 3); and (f) the method of Chan
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(a) Noisy test images degraded by Gaussian noise with standard deviation 20.

(b) Restored images by Dabov et al. [70].

(c) Restored images by Kervrann et al. [114].

(d) Restored images by the proposed GNDS model (3.2).

Figure 3.7: Zoomed restored images from Fig. 3.5. All methods provide pleasant
visual results, although the method by Kervrann et al. [114] also shows some
staircasing artifacts that make the images look less natural.
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(a) Original Boy image (b) PSNR = 22.43 (c) PSNR = 16.85

(d) PSNR = 38.61 (e) PSNR = 33.76 (f) PSNR = 29.70

Figure 3.8: GNDS filtering on colour images. Top Row: From left to right: Original
noise free image and noisy versions degraded by Gaussian noise with standard
deviation {20, 40}. Bottom Row: From left to right: Slightly smoothed original image
and the corresponding restored images by the proposed GNDS filter.

et al. [56] with parameters as described in their paper. Note that we have used the
anisotropic similarity measure (3.27) in the smoothness term of the GNDS model. The
other similarity measures (3.25)–(3.26) do not provide better results. Our approach
slightly improves the results obtained by the NDS model. It is worth mentioning that
the method of Chan et al. initially detects the noisy pixels (salt or pepper) which
are subsequently restored, while the other pixels remain unchanged. Although our
approach does not recourse to a noise detector as a pre-processing step, it provides
reasonable results for high levels of noise. Other interesting approaches dealing with
simultaneous restoration and deblurring can be found in [13, 53, 128, 111].
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Figure 3.9: Zoomed images from Fig. 3.8. Gentle facial features are well restored,
and the edges are well localised thanks to the channel coupling.

(a) Original image (b) PSNR = 8.31 (c) PSNR = 21.98

(d) PSNR = 22.80 (e) PSNR = 22.91 (f) PSNR = 24.99

Figure 3.10: Filtering impulse noise. (a) Original image. (b) Degraded with 50% salt-
and-pepper noise. (c) Restored by iterative median filtering. (d) Restored by the NDS
model. (e) Restored by our GNDS model. (f) Restored by Chan et al.’s method [56].
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3.9 Summary
We have introduced a general nonlocal discrete variational framework for image
smoothing. It arises as a generalisation of the Nonlocal Data and Smoothness
(NDS) filtering approach of Mrázek et al. [148]. Although the NDS model allows
nonlocal interactions between pixels, these are effective only semi-locally. This is
caused by that fact that its model constraints just penalise single pixel differences that
cannot propagate reliable information about the local geometry too far away from
a chosen pixel. Therefore, we propose the Generalised NDS (GNDS) model with
data and smoothness terms penalising general dissimilarity measures defined on image
patches. They allow us to incorporate structured pixel information from truly nonlocal
neighbourhoods in the smoothing process. We showed that by using the weighted
L2 norm as distance measure the energy minimiser results in a robust and versatile
neighbourhood filter that can be adjusted to restore vector-valued images corrupted
by Gaussian and salt-and-pepper noise. With respect to restoration quality our GNDS
approach can outperform other related patch-based methods and compares fairly well
to more advanced approaches [70, 114].

Our discrete variational framework includes as special cases patch-based generali-
sations of M-smoothers and bilateral filtering. We showed that a slight modification of
the fixed-point solution leads to a more general familiy of nonlocal nonlinear filters,
from which the NL-means filter of Buades et al. [41] and some of its iterative variants
can be obtained. The proposed smoothing framework is closely related to the methods
of Kervrann et al. [114], Azzabou et al. [11], Brox et al. [38] as well as to the
approaches of Gilboa et al. [86, 87] and Bougleux et al. [30] inspired from graph
regularisation techniques. Some of these filters can be derived from our energy model
by employing a different similarity measure and/or by redefining the spatial weight
functions that we use as search windows.

In this work we have mainly exploited the use of the weighted L2 norm to compute
patch distances. However, there is a rich opportunity for future work concerning
alternative similarity measures better suited for different types of noise contamination
as well as for other applications such as deblurring, inpainting, super-resolution and
segmentation.
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4 Matrix-Valued NDS Framework

In Chapter 2 we showed that the NDS model, thanks to its structural flexibility,
outperforms all other methods that can obtained as special cases from it. Later, in
Chapter 3 we obtained a more nonlocal general framework, the GNDS filter, by
combining the NDS model with the idea of penalising different dissimilarity measures.
We are now interested in extending these ideas to the formulation of a nonlocal
variational approach for matrix fields. In this chapter, we propose two different matrix-
valued counterparts of the NDS model: The isotropic matrix-valued NDS (iMNDS)
approach and the anisotropic matrix-valued NDS (aMNDS) approach. The distinction
between the isotropic and the anisotropic case is in the sense of [227, 223]. As an
inherited property from the original NDS model, our approaches generalise several
methods for filtering, regularisation and interpolation of matrix fields proposed in the
literature, which can be seen as special cases. We demonstrate the reconstructing
capabilities and the differences between our two approaches on several experiments
with synthetic and real-world data sets such as those displayed in Figure 4.1. This
chapter is based on [171, 172].

There exist multiple sources of matrix and tensors fields in engineering and the
physical sciences [139]. In this chapter we work with matrix-valued images obtained
by diffusion-tensor magnetic resonance imaging (DT-MRI). This modern medical
imaging modality associates a real symmetric positive-definite 3 × 3-matrix to each
voxel of the volume under consideration. These matrices, visualised by ellipsoids,
indicate the diffusive behaviour of water molecules under thermal Brownian motion,
and as such reflect the structure of the surrounding tissue. However, symmetric but
possibly indefinite matrix-fields also appear, for example in physics and engineering as
general descriptors of anisotropic behaviour. In any case, the data are often corrupted
by noise and therefore developing filtering and simplification techniques for matrix
fields is compelling. In the literature, smoothing processes for positive definite matrix-
fields, namely DT-MRI data, based on diffusion and regularisation concepts have
been proposed in [208, 223], while based on differential geometric considerations in
[63, 18, 144, 145, 166, 6, 82, 96]. Other approaches relying on the operator-algebraic
view of symmetric matrices (cf. Section 1.4) have been proposed for filtering and
regularisation of matrix fields, positive definite or not, in [48, 47, 197, 193].

57
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Figure 4.1: Examples of matrix fields of 3 × 3 symmetric positive semidefinite
matrices. Left: Synthetic data with 32 × 32 voxels showing a blend between the
original field and its noisy version with random positive definite matrices. Right: 2D
slice extracted from a 3D DT-MRI data set, 128× 128 voxels.

4.1 Isotropic Matrix-Valued NDS Model
Matrix-valued images are mappings U : Ω ⊂ Rd −→ Symm(R), where Symm(R) is
the set of all symmetric real-valued m ×m matrices. Here, we typically set d = 2, 3
and m = 3. We denote by U = (Ui)i∈J a processed version an original (noisy) field
F = (Fi)i∈J , where J = {1, . . . , N} and N is the total number of voxels.

Recall from the NDS model 2.3 in Chapter 2 that the penalisers Ψ in the similarity
and in the smoothness term act on scalar differences of the form |ui − fj| and |ui −
uj|, respectively. These quantities were termed tonal distances as they measure the
distance between the intensity values at the pixel locations xi and xj . Transferring
this concept to the matrix-valued setting amounts to computing distances between
real symmetric matrices A,B:

d : Symm(R)× Symm(R) −→ R+
0

(A,B) 7→ d(A,B) .
(4.1)

This allows us to redefine the penalisers Ψ as a composition of two functions:

Ψ ◦ d : Symm(R)× Symm(R) −→ R+
0

(A,B) 7→ Ψ (d(A,B)2) ,
(4.2)

where Ψ can be any of the tonal functions listed in Table 2.1, Chapter 2.
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With these definitions, we propose the following isotropic matrix-valued NDS
(iMNDS) model for nonlocal regularisation of matrix-valued images

EI(U) = β
∑
i,j∈J

ΨD

(
d(Ui, Fj)

2
)
wD
(
|xi − xj|2

)
+ (1− β)

∑
i,j∈J

ΨS

(
d(Ui, Uj)

2
)
wS
(
|xi − xj|2

)
, (4.3)

where we have replaced β := (1 − α) to give a more general interpretation of
this weight. In fact, β could be taken inside the sum to make it a spatially-variant
function. For classical regularisation with a local similarity term [223], β is constant
everywhere. For interpolation, a function β(x) : Ω −→ [0, 1] allows to fill in missing
data at voxels xj where β(xj) = 0, while reproducing Fj where β(xj) = 1. At
locations where 0 < β(xj) < 1 one obtains regularised estimates. The function β
can be seen as an indicator of the local confidence in the data [228]. For example, if
there exists a noise model from which local noise statistics can be estimated [163, 97],
β can be chosen inversely proportional to the local noise variance of the input tensor
field.

The minimiser of (4.3) must satisfy the conditions ∂
∂Ui
EI(U) = 0 for all i ∈ J .

For a tensor Ui at voxel xi this condition can be written in a fixed-point form as

Ui =
1

ci
H−1

(
β
∑
j∈J

Ψ′D
(
d(Ui, Fj)

2
)
wD(x2

i,j)H(Fj)

+2 (1− β)
∑
j∈J

Ψ′S
(
d(Ui, Uj)

2
)
wS(x2

i,j)H(Uj)

)
, (4.4)

where ci is the normalisation constant given by

ci = β
∑
j∈J

Ψ′D
(
d(Ui, Fj)

2
)
wD(x2

i,j)

+2 (1− β)
∑
j∈J

Ψ′S
(
d(Ui, Uj)

2
)
wS(x2

i,j) . (4.5)

Again, Ψ′(s2) denotes the derivative of Ψ(s2) w.r.t. its argument. The function H :
Symm(R) −→ Symm(R) is associated with a specific distance measure d. Please
refer to Section 1.4 for the definition of functions of matrices. For the Euclidean and
log-Euclidean distance measures shown in Table 4.1, the function H and its inverse
can be derived straightforwardly. In the case of the affine-invariant distance, these
functions need to be coupled with the pivot point Ui in a geodesic marching style as
motivated in [166].
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Table 4.1: Distance measures: Euclidean (E), log-Euclidean (LE), and affine-
invariant (AI), with their corresponding mapping H and its inverse H−1. ‖C‖ :=√

trace(C>C) denotes the Frobenius norm of the matrix C ∈ Symm(R).

d(Ui, Fj) H(Fj) H−1(Fj)

E ‖Ui − Fj‖ Fj Fj

LE ‖ lnUi − lnFj‖ lnFj expFj

AI
∥∥∥ln
(
U
− 1

2
i Fj U

− 1
2

i

)∥∥∥ U
1
2
i ln

(
U
− 1

2
i Fj U

− 1
2

i

)
U

1
2
i U

1
2
i exp

(
U
− 1

2
i Fj U

− 1
2

i

)
U

1
2
i

By writing equation (4.4) in the form Uk+1 := Υ(Uk) with Υ : RN −→ RN , we
can build a matrix fixed-point iteration scheme. A restored version U = (Ui) of a
noisy tensor field F = (Fi) can be thus obtained via

U0
i := Fi ,

Uk+1
i := Υi(Uk) , for all i ∈ J , k ∈ N0 .

(4.6)

An important property of this fixed-point scheme (4.6) is that it preserves positive
semidefiniteness of the input field F . This can be easily seen in equation (4.4) where
the filtered tensor Ui is obtained as a convex combination of positive semidefinite
tensors with β,Ψ′, w > 0.

In the context of classical variational regularisation, Weickert and Welk [228]
proposed a continuous scalar-valued approach that is structurally similar to our model
(4.3) without the nonlocal spatial weights. They obtain a PDE for interpolation and
regularisation of scalar-valued images. In its extension to matrix fields, the PDE is
applied to each matrix channel separately, but all channels are coupled via the joint
diffusion tensor to ensure preservation of discontinuities. In our framework we directly
work on the space of symmetric matrices. Our scheme (4.4) is truly matrix-valued and
automatically ensures proper interaction of the matrix channels without additional
channel coupling techniques. Other approaches related to ours will be discussed in
Section 4.3.

To explain why we regard our method as isotropic, let us consider the matrices
A,B ∈ Symm(R) and the squared difference matrix C2 = (A − B)2, which
results in a positive (semi-)definite matrix. The spectral decomposition of C2 reveals
directional and shape information of the local structure between the matrices A and
B. Nevertheless, such information is reduced to a scalar quantity when a distance
measure, such as those shown in Table 4.1, is applied to the difference matrix. In that
sense, our model (4.3) can be regarded as isotropic.
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4.2 Anisotropic Matrix-Valued NDS Model
We now present an alternative approach where we refrain from using distance
measures and directly penalise squared difference matrices in the energy functional,
keeping thus the structural local information. We need to redefine the penalisers as

Ψ̃ : Symm(R)× Symm(R) −→ R

(A,B) 7→ trace
(

Ψ
(
(A−B)2

))
,

(4.7)

where Ψ can be any of the tonal functions listed in Table 2.1, Chapter 2. Note that
we have used the linear trace operator as the simplest way of getting a scalar energy
that can be properly minimised, which is standard in the literature [227]. Then, the
proposed anisotropic matrix-valued NDS (aMNDS) model for matrix fields reads

EA(U) = β
∑
i,j∈J

Ψ̃D (Ui, Fj)wD
(
|xi − xj|2

)
+ (1− β)

∑
i,j∈J

Ψ̃S (Ui, Uj)wS
(
|xi − xj|2

)
. (4.8)

The minimiser of (4.8) must satisfy the conditions ∂
∂Ui
EA(U) = 0 for all i ∈ J .

Following the rules of matrix differential calculus [133, 197] we have that

∂

∂Ui
trace

(
ΨD

(
(Ui − Fj)2

))
= 2 Ψ′D

(
(Ui − Fj)2

)
•J (Ui − Fj) , (4.9)

where the symbol “•J” denotes the Jordan product of matrices defined by A •J B :=
(AB +BA)/2. Using the distributive property of this product, the result in (4.9), and
the abbreviations w(·)

i,j := w(·) (|xi − xj|2), the optimality conditions read

∂

∂Ui
EA(U) = Xi •J Ui − Yi = 0 , for all i ∈ J , (4.10)

with the following matrix expressions

Xi := β
∑
j∈J

Ψ′D
(
(Ui − Fj)2

)
wDi,j + 2 (1− β)

∑
j∈J

Ψ′S
(
(Ui − Uj)2

)
wSi,j ,

Yi := β
∑
j∈J

Ψ′D
(
(Ui − Fj)2

)
•J Fj wDi,j

+2 (1− β)
∑
j∈J

Ψ′S
(
(Ui − Uj)2

)
•J Uj wSi,j .

Finally, we solve (4.8) by the following iterative solution scheme

U0
i := Fi ,

Uk+1
i =

(
Xk
i

)−1 •J Y k
i ,

(4.11)
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for all i ∈ J , k ∈ N0. Despite the fact that the Jordan product does not ensure the
preservation of positive semidefiniteness (cf, Section 1.4) in the solution (4.11), we
did not experience violations of this property in our experiments. Moreover, using
this product enables us to apply our approach to indefinite matrices also, which may
occur at locations with missing and noisy data in DT-MRI. The alternative logarithmic
product is however not defined for indefinite matrices.

4.3 Related Filters within This Framework
An important consequence of our matrix-valued models (4.3) and (4.8) is that they
represent a generalisation of several filters for matrix fields proposed in the literature.
Before referring to those approaches, note that our models provide matrix-valued
representatives of M-smoothing when β = 1 and bilateral filtering when β = 0, cf.
Sections 2.2.1 and 2.2.2. Below we list various methods that can either be obtained
as particular cases or be seen as related approaches to our models.

M1. Affine-invariant weighted average [18, 144, 166, 82], obtained from the iMNDS

• β = 0, ΨD and wD do not play any role,

• ΨS(d2
AI) = d2

AI , wS = Gaussian.

M2. Log-Euclidean weighted average [6], obtained from our iMNDS with

• as in M1, but with dLE .

M3. Affine-invariant regularisation and interpolation via a discrete geodesic march-
ing scheme [166], obtained from our iMNDS with

• β = 2
2+λ

, ΨD(d2) = d2, wD = Gaussian,

• ΨS(d2
AI) = any, wS = unit disk.

M4. Log-Euclidean regularisation and interpolation via a discrete geodesic march-
ing scheme [81], obtained from our iMNDS with

• as in M3, but with dLE .

M5. A modified version of bilateral filtering [98], obtained from our iMNDS with

• β = 0, ΨD and wD do not play any role,

• ΨS(d2
LE) = d2

LE , wS = µ1 · dT + µ2 · |xi − xj|,
with several possibilities of tensor distances dT and weights µ1, µ2 > 0.

M6. NL-means for DT-MRI [232], related to our iMNDS with

• β = 0, ΨD and wD do not play any role,
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• ΨS(d2
LE) = d2

LE , wS = 1
z

exp
(
− d2

P/(σ
2)
)
,

where dP is a patch distance as in (3.1), using dAI between two tensors.

M7. Component-based regularisation [197, 193], continuous approach related to our
iMNDS with

• β = 2
2+α

, ΨD(d2
E) = d2

E , wD = local,

• ΨS(d2
E) =

√
d2
E + ε2, wS = unit disk.

M8. Operator-based regularisation [193], continuous approach related to our aM-
NDS with

• β = 2
2+α

, Ψ̃D

(
C2
)

= trace
(
C2
)
, wD = local,

• Ψ̃S

(
C2
)

= trace
(√

C2 + ε2
)
, wS = unit disk.

Note that most of these methods do not exploit the utilisation of nonlocal
information in the data similarity term (β = 0) or the radius of action of their
smoothness term is restricted to the unit circle. Our MNDS approaches are more
general and provide additional degrees of freedom to set up specialised filters for
particular applications. In the following section we demonstrate the capabilities of
our approaches for regularising synthetic and real-world matrix fields.

4.4 Numerical Experiments
Let us consider a 2D synthetic field U = (Ui)i∈J ∈ Sym+

3 (R) and its degraded version
F = (Fi)i∈J ∈ Sym+

3 (R) obtained according to the noise model Fi = |Ui + Ni|. The
eigenvalues of the noise matrix Ni stem from a Gaussian distribution with vanishing
mean and standard deviation σ. Its eigenvectors are obtained by choosing three
uniformly distributed angles and rotating Ni by these angles about the coordinate
axes. Finally, we take its absolute value for positive definiteness. Considering that
the eigenvalues of the original field U are in the range [1000, 4000], we create three
noisy fields with σ = 500, 1000, 2000. Figure 4.2 shows our test data sets.

4.4.1 Two Isotropic Models: iMNDS-E and iMNDS-LE
We first focus on our isotropic MNDS (iMNDS) approach, which offers more degrees
of freedom than the anisotropic model. Let us consider two realisations: The models
iMNDS-E and iMNDS-LE when choosing the distances dE and dLE from Table 4.1,
respectively. We do not test our approach with the distance dAI as it has been shown in
the literature [6] that it provides very similar results compared to using dLE , although
it is much more computationally demanding.
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Figure 4.2: Detail of the synthetic data shown in Figure 4.1. Left to right: Original
matrix field displaying four textures built up from tensors with different degrees of
anisotropy, and its degraded versions by our noise model with σ = 500, 1000, 2000,
which correspond to the 12.5%, 25% and 50% of the largest eigenvalue in the data.

(a) iMNDS-E model (b) iMNDS-LE model

Figure 4.3: Influence of the parameter β on the reconstruction error ||F − U || for
varying levels of noise σ = 500, 1000, 2000. The penalisers P2 are used in both
models. The spatial support of the weight functions were set to $D = $S = 1.

Independently of the model, the choice for the tonal penalisers ΨD and ΨS is made
following two strategies:

P1. Penalisers requiring no parameters at all. We use the Whittaker-Tikhonov
penaliser for the data term ΨD(d2) = d2, and the Nashed-Scherzer penaliser
[151] for the smoothness term ΨS(d2) = γd2 +

√
d2 + ε2, with ε = 1 and

γ = 1
10ε

.

P2. Penalisers with better edge-preservation properties, paying the price of intro-
ducing an additional contrast parameter λ. We use the classic Perona-Malik
penaliser Ψ(d2) = λ2 ln

(
1 + d2

λ2

)
in both energy terms, choosing λ as the 1%-

quantile of the distribution of distances in the noisy matrix field.

We use the soft window w(h2) = exp
(
− h2

2$2

)
for the spatial weights wD and wS ,

with support $D and $S respectively.
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4.4.2 Influence of Parameters
Although we have specified the iMNDS-E and the iMNDS-LE models in the previous
section, note that there are still some free parameters that will directly influence the
denoising capabilities of our filters. Namely, the parameter β that counterbalances
the contributions of the data and the smoothness term in (4.3)–(4.4), and the supports
$D and $S of the spatial weighting functions that allow smoothing within larger
neighbourhoods. Figure 4.3 shows the influence of the parameter β on the models
iMNDS-E and iMNDS-LE with respect to the reconstruction error measured by

||F − U || :=

(
N∑
i=1

||Fi − Ui||F

)1/2

, (4.12)

where F denotes the original, uncorrupted matrix field and U stands for its denoised
version. The non-trivial steady-state is shown for β ∈ (0, 1]. We see that there is a
value β̂ for which the restoration is optimal.

We now want to quantify the influence of the spatial supports $D, $S . Naturally,
making them larger will increase the number of arithmetic operations in (4.4).
However, the restoration quality could be improved and the steady-state solution could
be reached in a shorter time. If we vary these parameters in the range [0, 4], there are
25 possible combinations for the pair ($D, $S), which we arrange as O0, . . . , O24

following the ordering shown in Figure 4.4 (top). The diagonal lines in the figure
group the combinations according to complexity order (CO), that is, configurations
with equal or increasing number of operations. Figure 4.4 (bottom) shows the
restoration error (left), the logarithmic computational time (middle), and the overall
performance (right) of the iMNDS-E model. The last measurement is simply the mean
between the first two normalised measurements. We see that the configuration with
the best performance in terms of quality and convergence is O8 = ($D, $S) = (1, 2)
for β = 0.9. It is worth mentioning that the configurations O5 = (2, 0), O6 = (3, 0)
and O14 = (4, 0), lead to good results despite the fact that they allow only for the
incorporation of neighbourhood information in the data term. This is actually in
agreement with our findings in Subsection 2.4.3, where we showed that nonlocal
M-smoothers produce similar results compared to classical regularisation methods.
These observations also hold for the iMNDS-LE model.

4.4.3 Performance
Now that we have seen how the different parameters influence our filtering approach,
let us now report on the best results achieved by both models iMNDS-E and iMNDS-
LE, as well as our anisotropic MNDS (aMNDS) model. All results are computed with
optimised free parameters β,$D, $S .
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Figure 4.4: Top: Ordering O0, . . . , O24 for the different combinations for the pair
($D, $S), grouped according to complexity order COi (i = 1, . . . , 8). Bottom, left
to right: Normalised restoration quality, computational time, and overall performance
of the iMNDS-E model with P2 penalisers. Test run on the noisy tensor field with
σ = 1000 from Figure 4.2.
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(a) iMNDS-E model (b) iMNDS-LE model

Figure 4.5: Restoration error for both models iMNDS-E and iMNDS-LE. They are
tested with both set of penalisers P1 and P2. All other parameters have been optimised.
As expected, the edge-preserving penalisers P2 provide better results.

Table 4.2: Best filtering results for our models iMNDS-E, iMNDS-LE and aMNDS
under the noise level σ = 500, 1000, 2000. All parameters have been optimised.
Figure 4.6 displays the corresponding filtered images.

σ model $D $S β ||F − U || #iter time(sec.)

iMNDS-E 2 3 0.9 167 33 0.69

500 iMNDS-LE 1 2 0.9 264 71 19.31

aMNDS 2 3 0.9 219 29 18.00

iMNDS-E 1 2 0.9 409 72 0.71

1000 iMNDS-LE 2 0 0.2 568 236 57.97

aMNDS 1 2 0.9 494 120 35.49

iMNDS-E 2 0 0.1 1238 256 1.91

2000 iMNDS-LE 2 1 0.9 1214 32 9.50

aMNDS 2 0 0.1 1230 40 9.10

Figure 4.5 depicts the restoration error achieved by our models iMNDS-E and
iMNDS-LE with optimised parameters. We notice that in both cases the best
performance is obtained with the Perona-Malik penalisers P2. Numerically, these
results are outlined in Table 4.2. The table also shows the best results of the aMNDS
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Figure 4.6: First row, from left to right: Degraded matrix fields with noise level σ =
500, 1000, 2000. Second row: Corresponding best filtering results for the iMNDS-E
model, cf. Table 4.2. Third row: Corresponding results for the iMNDS-LE model.
Fourth row: Corresponding results for the aMNDS model.
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model obtained with Perona-Malik penalisers. It is clear that all models benefit from
nonlocal smoothing by considering $D, $S > 0. Note that the iMNDS-E model is
considerably faster the other two models: iMNDS-LE is burdened with computation
of logarithms and exponentials of matrices, while aMNDS needs to perform spectral
decompositions and multiplications of matrices. Computations have been performed
on a 1.86 GHz Intel Core 2 Duo processor (without exploiting multitasking) executing
C code.

Figure 4.6 shows the filtered matrix fields for the results presented in Table 4.2. At
any noise level, the iMNDS-E model performs slightly better than the iMNDS-LE and
the aMNDS models. This is clearly observable for the case σ = 1000, but it can also
be seen when σ = 500 at the lower part of the inner ring. Particularly noticeable in the
example σ = 1000 is that both the edges of the image structures and the anisotropy of
the matrices are better preserved with the iMNDS-E model. Moreover, the eigenvalue-
swelling-effect at the edges is less perceptible in the iMNDS-E model than in the other
two models.

4.4.4 3D DT-MRI data
In DT-MRI, noisy diffusion weighted images (DWIs) are used to estimate the
diffusion tensors via regression analysis. It is known that DWIs are perturbed by
Rician noise [93]. However, the noise distribution of the diffusion tensors obeys a
multivariate Gaussian distribution, as it has been statistically proven by Pajevic and
Basser [163]. Here, as it was done in the previous section, we directly apply our
filtering framework to the tensor field, and not to the scalar DWIs. We consider the
3D DT-MRI dataset of a human head consisting of a 128× 128× 30-field of positive
definite matrices displayed earlier in Section 1.3.

The left column in Figure 4.7 shows two magnified areas about the genu and the
corpus callosum where it can be observed that the original data is significantly affected
by noise. Moreover, there exist several locations where the data is completely missing,
specially in the anisotropic regions. The FA map, computed according to (1.5), shows
isotropic areas in dark, while the anisotropic areas appear bright. It can be noticed that
the FA map is also affected by the presence of noise.

The middle and right columns of Figure 4.7 exhibit the smoothing results provided
by our isotropic MNDS model along 2D slices and in full 3D, respectively. In both
settings, we used Perona-Malik type penalisers, the Euclidean distance dE and the
parameters ($D, $S, β) = (1, 2, 0.9). Both results look visually pleasant, with edges
well preserved and localised. The 3D iMNDS however can better reconstruct the
missing data thanks to the utilisation of the full 3D structural information. Despite the
poor resolution (40× 55 pixels) of the FA maps, the distinction between isotropic and
anisotropic areas seems much more notorious now. The FA map corresponding to the
3D filtering looks better smoothed and it still preserves the edge-structures along the
anisotropic (bright) areas.
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We now compare our results to those obtained with another matrix-valued
approach, namely the 2D and 3D coherence-enhancing diffusion filter for matrix fields
(MCED) proposed in [49, 52]. Figure 4.8 shows the corresponding results under
of the MCED filter with evolution time t = 2. Note that the 3D filtering respects
better the underlying structure of the ventricles, which can also be observed in its FA
map. Compared to our approach, the MCED filter produces slightly more diffusive
structures, but thanks to its coherence-enhancing properties the anisotropic areas look
stronger (brighter) than in our approach.

Finally, we show in Figure 4.9 that our MNDS approach is a powerful preprocess-
ing technique that provides algorithms such as tractography [146] with filtered and
gap-completed tensors fields, which results in much better fibre tracts. These charac-
teristics are important for the study of diseases associated with certain abnormalities
in brain anatomy [157].

4.5 Summary
In this chapter, the original scalar-valued NDS filtering framework has been extended
in full generality to the matrix-valued setting. We presented two alternative matrix-
valued filters, namely an isotropic and an anisotropic approach. The isotropic model
provides more degrees of freedom to tune a desired filter and it is computationally
inexpensive compared to its anisotropic model. In practice, both models provide
similar filtering results on synthetic and DT-MRI data sets.

It is important to mention that our matrix-valued NDS (MNDS) framework
generalise several known approaches suggested in the literature for the filtering
and interpolation of DT-MRI data, including those employing the log-Euclidean
framework to preserve positive definiteness of the data. We emphasise that our
methodology is generic and thus not restricted to DT-MRI denoising. It can be applied
to any multi-valued image with values in the space of symmetric matrices, positive
(semi-)definite or not.
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Figure 4.7: 2D vs 3D filtering with our iMNDS approach. Left column: Scaled-up
images showing details of the anisotropic zones around the genu (top) and the corpus
callosum (middle), which appear with high intensity in the FA map (bottom). Middle
column: Smoothing results with the iMNDS approach in 2D, with its corresponding
FA map. Right column: Results with the 3D iMNDS.
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Figure 4.8: 2D vs 3D filtering with the matrix-valued CED (MCED) approach [49,
52]. Left column: Scaled-up images showing details of the anisotropic zones around
the genu (top) and the corpus callosum (middle), which appear with high intensity in
the FA map (bottom). Middle column: Smoothing results with MCED in 2D, and its
corresponding FA map. Right column: Results with 3D MCED.
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Figure 4.9: Tractography performed on the original 3D DT-MRI volume (top) and
after smoothing with our iMNDS model (bottom). Fibre tracking algorithm courtesy
of Thomas Schultz, University of Chicago.
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5 Introduction to Mathematical Morphology

Mathematical morphology aims at extracting and enhancing and shape information
from image objects. It originated in 1964 at the École des Mines de Paris in the
works of Matheron [140] and Serra [187]. The so-called set-theoretical approach
developed by its founders is based on set theory, integral geometry and lattice algebra.
All morphological operations are based on two basic processes: dilation and erosion,
which respectively expand and shrink the boundaries of an object to an extent specified
by the shape of a pre-defined convex set called structuring element (SE).

A different approach to morphology is the so-called continuous-scale framework.
In this context, the morphological operators are described by partial differential
equations (PDEs). This approach allows for digital scalability of the SE, which
provides all morphological operators and their applications with sub-pixel accurate
results. In this chapter we briefly review both frameworks, commenting on their
advantages and shortcomings. After describing these methods for scalar-valued
images we focus on the extension of the PDE-based approach to matrix fields, which
will be the basis for our work in the subsequent Chapter 6.

5.1 Scalar-Valued Morphology

5.1.1 Set-Theoretical Approach
Classical morphology consists of a number of operations that match a d-dimensional
scalar-valued signal f : Rd −→ R with a bounded set of known shape B ⊂ Rd called
structuring element (SE). For ease of presentation, let us focus on bi-dimensional
images (d = 2). In this case, the pre-defined shapes forB could be squares, diamonds,
discs or ellipses defined on the discrete pixel grid. The fundamental dilation and
erosion processes are defined by [188, 194, 135, 35, 196]

dilation: (f ⊕B)(x) := sup
z∈B
{f(x− z)} , (5.1)

erosion: (f 	B)(x) := inf
z∈B
{f(x+ z)} . (5.2)

On discrete lattices, the dilated (resp. eroded) value at a given pixel x is the maximum
(resp. minimum) value of the image in the window defined by the SE centred at x.
Erosion is the dual operation of dilation. That is, eroding an image corresponds to

77
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dilating its background (or the inverse image). Applying dilation/erosion to an object
leads to the expansion/shrinking of its boundaries.

These two operations are the basis to define more complex operators. For instance,
another pair of dual operations, opening and closing, can be obtained by concatenation
of dilation and erosion:

opening: (f ◦B)(x) := ((f 	B)⊕B)(x) , (5.3)
closing: (f •B)(x) := ((f ⊕B)	B)(x) . (5.4)

These operators act as smoothers, allowing the removal of small objects and small
holes, respectively. They are also the basis of other morphological filters [196]. The
first row of Figures 5.2 and 5.3 show the dilation, erosion, opening and closing of a
greyscale image with a disc of radius 3 pixels as SE.

5.1.2 Continuous-Scale Approach
For convex structuring elements there exists an alternative formalisation of the dilation
and erosion processes in terms of partial differential equations (PDEs) due to [35,
211, 4, 2]. In this context, the SE is represented as tB with a parameter t ≥ 0 that
allows for continuous-scaling. Thus, the solutions to u(x, t) = (f ⊕ tB)(x) and
u(x, t) = (f 	 tB)(x) can be equivalently obtained by solving respectively

dilation: ∂tu(x, t) = sup
z∈B
〈z,∇u(x, t)〉 , (5.5)

erosion: ∂tu(x, t) = inf
z∈B
〈z,∇u(x, t)〉 , (5.6)

with initial condition u(x, 0) = f(x) and homogeneous Neumann boundary condi-
tions at the image boundary, i.e. 〈∇u, n〉 = 0. Here n is the unit normal vector
pointing outside the image domain, ∇ = (∂x, ∂y)

> is the spatial nabla operator, and
〈·, ·〉 denotes the Euclidean vector product. In particular, choosing the unitary disc
B := {z ∈ R2, ‖z‖2 ≤ 1}, the processes (5.5)–(5.6) become

dilation: ∂tu(x, t) = ‖∇u(x, t)‖2 , (5.7)
erosion: ∂tu(x, t) = −‖∇u(x, t)‖2 . (5.8)

That is, the solution u(., t) at “time” t is the dilation/erosion of f with a disc of radius
t and centre 0 as SE. Similarly, other PDE evolutions can be obtained for squares
and diamonds as SE, see [35, 182]. The operations of opening and closing in the
PDE framework are obtained by concatenating the solutions of (5.5)–(5.6) in (5.3)–
(5.4). The second and third rows of Figures 5.2 and 5.3 show the PDE-based dilation,
erosion, opening and closing of a greyscale image with a disc of radius t = nτ = 3
(n = 15, τ = 0.2) using two different numerical schemes to discretise the PDEs,
which are described later in Subsection 5.1.4.
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5.1.3 Set-Theoretical vs. Continuous-Scale Approach

In the previous two sections we showed that the set-theoretical and the continuous-
scale approaches provide equivalent formulations of the dilation and erosion pro-
cesses. However, they have important differences that make one approach or the other
more suitable for certain applications.

The set-theoretical framework is computationally inexpensive and very easy to
implement. It just amounts to computing the maximum/minimum value within the
structuring element at each pixel location. However, as this approach is based on set
and lattice theory, the structuring elements are defined in the discrete setting. This
leads to the problem that shapes such as circles and ellipses can only be represented
by discrete approximations, e.g. discs represented by squares or hexagons, which is
eventually reflected on the dilated/eroded edges. See Figure 5.2(a)–(b) and Figure
5.3(a)–(b).

The PDE-based framework allows for a proper digital representation of structuring
elements via the continuous scaling parameter t, which provides sub-pixel accuracy
in the resulting morphological operations. This approach originates the concept
of morphological scale-space, opening up the analysis of shapes under continuous
morphological evolutions. These benefits come at the price of more complex and
demanding implementations of the PDEs, which usually introduce an undesirable
blurring of edges. See Figure 5.2(c)–(d) and Figure 5.3(c)–(d).

In the sequel, we adopt the PDE-based framework due to its several advantages,
versatility, and because it will be the main topic of Chapter 6. In the following
section we review two algorithms to solve the morphological PDEs. The first one
is a classical scheme that introduces dissipative numerical artifacts, and the second
one is a predictor-corrector scheme that removes these blurring effects. See Figure
5.2(e)–(f) and Figure 5.3(e)–(f).

5.1.4 Numerical Schemes for Continuous-Scale Morphology

The evolutionary equations (5.5)–(5.6) belong to the class of first-order hyperbolic
PDEs that describe the propagation of wavefronts [126, 116]. Numerical algorithms
to solve these PDEs with first-order accuracy are the Osher-Sethian (OS) scheme
[162, 192, 159] and the Rouy-Tourin (RT) scheme [178, 212]. Both alternatives suffer
from significant blurring at discontinuities. Higher-order accuracy algorithms that
correct these dissipative artifacts are the high-resolution OS scheme [162] and the
flux-corrected transport (FCT) scheme [33].

5.1.4.1 The Rouy-Tourin Scheme

To describe this scheme we first need to introduce some basic notation. Let hx, hy by
the spatial grid size and uni,j the grey value of a 2D image u at the pixel centred in
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(ihx, jhy) ∈ IR2 at the time-level t = nτ of the evolution, with n the iteration number
and τ the time step. Furthermore, we employ standard forward, backward, and central
difference operators, i.e.,

Dx
+u

n
i,j := uni+1,j − uni,j (5.9)

and
Dx
−u

n
i,j := uni,j − uni−1,j (5.10)

and finally
Dx
cu

n
i,j :=

(
uni+1,j − uni−1,j

)
/2 (5.11)

here in x− but analogously in y−direction.
Rouy and Tourin [178] proposed an upwinding first-order finite difference method

to discretise the dilation process (5.7) as

∂tu =
(
(∂xu)2 + ∂yu)2

)1/2 (5.12)

un+1
i,j − uni,j

τ
=

(
max

(
1

hx
max

(
−Dx

−u
n
i,j, 0

)
,

1

hx
max

(
Dx

+u
n
i,j, 0

))2

+ max

(
1

hy
max

(
−Dy

−u
n
i,j, 0

)
,

1

hy
max

(
Dy

+u
n
i,j, 0

))2
)1/2

,

and the erosion process (5.8) as

∂tu = −
(
(∂xu)2 + ∂yu)2

)1/2 (5.13)

un+1
i,j − uni,j

τ
= −

(
min

(
1

hx
min

(
−Dx

−u
n
i,j, 0

)
,

1

hx
min

(
Dx

+u
n
i,j, 0

))2

+ min

(
1

hy
min

(
−Dy

−u
n
i,j, 0

)
,

1

hy
min

(
Dy

+u
n
i,j, 0

))2
)1/2

,

where the time derivative ∂tu is discretised by Euler forward differences. The spatial
derivatives ∂xu, ∂yu are approximated by upwind schemes: one-sided differences in
direction from which information comes, see details in [178, 192]. This algorithm
is numerically stable for τ ≤ 1/

√
2. Its performance is very similar to that of the

first-order OS scheme, hence we refrain from describing the latter.
In the second row of Figures 5.2 and 5.3 we can observe the blurring artifacts

produced by the RT-scheme. Despite this shortcoming, these blurred solutions can be
corrected by the FCT-scheme that we describe in the following subsection.
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5.1.4.2 The Flux-Corrected Transport Scheme

As mentioned earlier, first-order difference schemes introduce dissipative artifacts
at discontinuities. Osher and Sethian [162] proposed a high-resolution scheme that
compensates for the blurring with a second-order correction step. This method
however does not completely remove the dissipative artifacts. Breuß and Weickert
[33] introduced the flux-corrected transport (FCT) scheme as an alternative predictor-
corrector method that achieves much sharper edges. The FCT scheme results in
accurate and (largely) rotationally invariant discrete representations of continuous-
scale morphological dilation/erosion. It can be realised as a new variant of a technique
originally proposed by Boris and Book [24, 25, 26] in the context of fluid flow
simulation.

The FCT scheme also relies on one-sided upwind differences, but it additionally
quantifies the undesirable blurring effects introduced by the upwinding which are
subsequently corrected by stabilised inverse diffusion. To see this, let us consider
the quantities (cf. [33])⌈

xuni,j :=
τ

2hx
|Dx

cu
n
i,j|+

τ

2hx
Dx

+u
n
i,j −

τ

2hx
Dx
−u

n
i,j , (5.14)⌈

yuni,j :=
τ

2hy
|Dy

cu
n
i,j|+

τ

2hy
Dy

+u
n
i,j −

τ

2hy
Dy
−u

n
i,j , (5.15)

which describe the upwinding incorporated in the spatial derivatives of the dilation
process (5.12). Note that the central differences above incorporate a second-order
error which is nondiffusive, while the one-sided differences are discrete diffusive
fluxes. Thus, a spatial discretisation relying on (5.14)–(5.15) such as the Rouy-Tourin
scheme introduces exactly these diffusive fluxes. The FCT procedure then inverts the
corresponding numerical diffusion using the predicted data in the corrector step.

Focusing on the dilation process, let us denote by un+1,pred
i,j the predicted solution

computed with the Rouy-Tourin method (5.12). Then, the corrected solution obtained
by the FCT method reads

un+1
i,j = un+1,pred

i,j + qn+1,pred
h − qn+1,pred

d . (5.16)

One can identify the higher-order term qn+1,pred
h in (5.16) as

qn+1,pred
h :=

((
τ

hx

∣∣∣Dx
cu

n+1,pred
i,j

∣∣∣)2

+

(
τ

hy

∣∣∣Dy
cu

n+1,pred
i,j

∣∣∣)2
)1/2

. (5.17)

For the lower-order term qn+1,pred
d in (5.16) we make use of the quantities

gi+1/2,j := mm

(
Dx
−u

n+1,pred
i,j ,

τ

2hx
Dx

+u
n+1,pred
i,j , Dx

+u
n+1,pred
i+1,j

)
(5.18)

gi,j+1/2 := mm

(
Dy
−u

n+1,pred
i,j ,

τ

2hy
Dy

+u
n+1,pred
i,j , Dy

+u
n+1,pred
i,j+1

)
(5.19)
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where mm(·, ·, ·) is the scalar minmod-function defined for three arguments as

mm(a1, a2, a3) :=


inf(a1, a2, a3) for a1, a2, a3 > 0,

sup(a1, a2, a3) for a1, a2, a3 < 0,

0 else .

(5.20)

With these abbreviations we set

δxun+1,pred
i,j :=

τ

hx

∣∣∣Dx
cu

n+1,pred
i,j

∣∣∣+ gi+1/2,j − gi−1/2,j (5.21)

δyun+1,pred
i,j :=

τ

hy

∣∣∣Dy
cu

n+1,pred
i,j

∣∣∣+ gi,j+1/2 − gi,j−1/2 (5.22)

which finally yields the second new term in (5.16) as

qn+1,pred
d :=

((
δxun+1,pred

i,j

)2

+
(
δyun+1,pred

i,j

)2
)1/2

. (5.23)

For the sake of completeness, let us describe the FCT scheme for the erosion
operation. Using the predicted solution un+1,pred

i,j of the Rouy-Tourin scheme (5.13),
the FCT method provides a corrected solution un+1

i,j as defined in (5.16) utilising the
definitions

qn+1,pred
h := −

((
τ

hx

∣∣∣Dx
cu

n+1,pred
i,j

∣∣∣)2

+

(
τ

hy

∣∣∣Dy
cu

n+1,pred
i,j

∣∣∣)2
)1/2

, (5.24)

qn+1,pred
d := −

((
δxun+1,pred

i,j

)2

+
(
δyun+1,pred

i,j

)2
)1/2

, (5.25)

with

δxun+1,pred
i,j :=

τ

hx

∣∣∣Dx
cu

n+1,pred
i,j

∣∣∣− gi+1/2,j + gi−1/2,j , (5.26)

δyun+1,pred
i,j :=

τ

hy

∣∣∣Dy
cu

n+1,pred
i,j

∣∣∣− gi,j+1/2 + gi,j−1/2 . (5.27)

As the method of Rouy and Tourin, the FCT approach is numerically stable for
τ ≤ 1/

√
2. We refer to [33] for the complete details of this scheme and to [34] for

its extension to dilation/erosion processes with diamonds and ellipses as structuring
elements.

In the third row of Figures 5.2 and 5.3 we show the ability of the FTC-scheme to
correct the blurring artifacts produced by the RT-scheme. This results in very sharp
edges. Furthermore, note the ball-shaped structuring element has a much better digital
representation in the PDE-based approach compared to the set-theoretical framework.
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5.2 Matrix-Valued Morphology
Defining morphological operations for matrix fields is not straightforward. In the set-
theoretical approach (Section 5.1.1), the notions of maximum and minimum in the
scalar-valued case do not carry over directly to matrix-valued setting. Based upon
the Loewner ordering for symmetric matrices, Burgeth et al. [50, 46] extended the
maximum/minimum operations to matrix fields, allowing a proper definitions of the
dilation/erosion processes in a set-theoretic style. In the continuous-scale approach
(Section 5.1.2), Burgeth et al. [45, 43] proposed matrix-valued versions of the PDEs
governing dilation/erosion. In the following two subsections we describe these PDEs
and the numerical schemes to solve them.

5.2.1 PDE-Based Morphology for Matrix Fields
Recalling our notation, a matrix field is considered as a mapping U : Ω ⊂ Rd −→
Symm(R) from a d-dimensional image domain into the set of symmetric m × m-
matrices with real entries. Our aim is to transfer the scalar-valued PDEs

∂tu = ±‖∇u‖2 (5.28)

governing dilation (+) and erosion (−) with a ball-shaped structuring element to
the matrix-valued setting. Equations (5.28) contain three operators that need to be
analogously formalised for matrix fields: the partial derivatives ∂(·), the gradient
operator ∇ and the Euclidean vector norm ‖ · ‖2. An elegant tool for doing so is
operator-algebraic framework for matrix fields proposed by Burgeth et al. [48, 47],
which we summarised in Section 1.4. The basic idea behind this approach is to
consider symmetric matrices as a natural generalisation of real numbers with a rich
algebraic structure. Following such principles, the 3D matrix-valued counterpart of
(5.28) reads

∂tU = ±|∇U |2 (5.29)

= ±
√
|∂xU |2 + |∂yU |2 + |∂zU |2 ,

where ∂(·), ∇, | · |p and | · |q are characterised in Section 1.4. The initial condition of
these PDEs is U(x, 0) = F (x), with F : Ω −→ Symm(R) the input tensor field.

5.2.2 Matrix-Valued Numerical Schemes
From Section 5.1.4 we know that the nonlinear PDEs (5.28) can be numerically solved
by first-order finite difference methods such as the Osher-Sethian (OS) scheme [162,
192, 159] and the Rouy-Tourin (RT) scheme [178, 212]. They are capable of correctly
capturing propagating shocks, however, at the price of introducing some dissipation
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and blurring of edges. A remedy is provided by the high-resolution OS scheme [162]
and the flux-corrected transport (FCT) scheme [33]. All these methods have been
transferred to the matrix-valued setting to solve (5.29), see [45, 43].

Here we provide the necessary elements to generalise the scalar-valued RT-scheme
(Section 5.1.4.1) and FCT-scheme (Section 5.1.4.2) to matrix fields. These numerical
methods include several scalar operations that need to be analogously formulated for
symmetric matrices. Once again we make use of the operator-algebraic framework
described in Section 1.4 to define functions operating on matrices such as square,
square-root and absolute value. Moreover, in correspondence with (5.9)–(5.11) it
is straightforward to define one-sided and central differences of 3D matrix fields in
Symm(R) as

Dx
+U

n(ihx, jhy, khz) (5.30)
:= Un((i+ 1)hx, jhy, khz)− Un(ihx, jhy, khz) ,

Dx
−U

n(ihx, jhy, khz) (5.31)
:= Un(ihx, jhy, khz)− Un((i− 1)hx, jhy, khz) ,

Dx
cU

n(ihx, jhy, khz) (5.32)
:= (Un((i+ 1)hx, jhy, khz)− Un((i− 1)hx, jhy, khz)) /2 ,

here in x− but equivalently in y− and z−direction. To avoid confusion with the
subscript notation for matrix components we wrote U(ihx, jhy, khz) to indicate the
(matrix-) value of the matrix field evaluated at the voxel centred at (ihx, jhy, khz) ∈
IR3. We also need the notion of supremum/infimum (maximum/minimum) of two
matrices provided in Section 1.4 to generalise the minmod function as

mm(A1, A2) :=


inf(A1, A2) for A1 > 0 and , A2 > 0,

sup(A1, A2) for A1 < 0 and , A2 < 0,

0 else ,

(5.33)

in the case of two matrices, while for three matrices we define

mm(A1, A2, A3) :=


infopt(A1, A2, A3) for Ai > 0, i = 1, 2, 3,

supopt(A1, A2, A3) for Ai < 0, i = 1, 2, 3,

0 else .

(5.34)

The functions infopt and supopt are given by

infopt(A1, A2, A3) = −supopt(−A1,−A2,−A3) , (5.35)
supopt(A1, A2, A3) := Sm − λoptIm , (5.36)
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with Im the m×m-identity matrix and

Sm := (S1 + S2 + S3)/3 , (5.37)
S1 := sup(A1, sup(A2, A3)) , (5.38)
S2 := sup(A2, sup(A1, A3)) , (5.39)
S3 := sup(A3, sup(A1, A2)) , (5.40)
λopt := min

i=1,2,3

j=1,...,m

(µij) , (5.41)

where µij is the j-th eigenvalue of the matrix Sm − Ai, i = 1, 2, 3 (cf. [43]).

With these definitions at our disposal, the original scalar-valued RT-scheme and
FCT-scheme are directly translated to the 2D and 3D matrix-valued setting. Let us now
see how the new schemes work in practice. Figures 5.4 and 5.5 show the operations
of dilation, erosion, opening and closing applied to a matrix field of 3× 3-symmetric
matrices using the PDE approach and solved by both the RT-scheme and FCT-scheme.
One can observe that the behaviour of both methods is as in the scalar-valued setting.
That is, the FCT-scheme produces sharp results, being able to correct the blurring
artifacts of the RT-scheme.

5.3 Summary
In this chapter we have introduced the elementary notions of mathematical mor-
phology in the classical set-theoretical context as well as in the scope of partial
differential equations (PDEs), commenting on the advantages and shortcomings of
both frameworks. We covered both the scalar- and matrix-valued realisations of the
two fundamental processes, dilation and erosion, that serve as building blocks for
more complex morphological operations. We focused on the PDE-based approach,
particularly on the matrix-valued dilation/erosion with a ball-shaped structuring
element. We showed how to solve these PDEs with matrix-valued versions of the
popular Rouy-Tourin scheme and the high-resolution flux-corrected transport scheme.

The approaches to mathematical morphology presented in this chapter can be
considered as isotropic processes where all pixel/voxel locations are treated equally.
For example, the operation of dilation (resp. erosion) grows (resp. shrinks) the
object’s boundaries by the same factor in all directions. Despite the numerous
applications of these operations, they are not suitable for completing broken lines
or curves that underlie anisotropic structures. In the next chapter we propose a PDE-
based formulation for adaptive, anisotropic morphology for scalar and matrix fields
that allows for reconstructing/enhancing broken lines and other coherent, flow-like
structures.
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Figure 5.1: MRI slice of a human head
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(a) Dilation, set-theoretical (b) Erosion, set-theoretical

(c) Dilation, PDE, RT-scheme (d) Erosion, PDE, RT-scheme

(e) Dilation, PDE, FCT-scheme (f) Erosion, PDE, FCT-scheme

Figure 5.2: Scalar-valued morphology: Set-theoretical vs PDE-based dilation/erosion
with a dis of radius 3 as structuring element. Original image shown in Fig. 5.1.



88 Introduction to Mathematical Morphology

(a) Opening, set-theoretical (b) Closing, set-theoretical

(c) Opening, PDE, RT-scheme (d) Closing, PDE, RT-scheme

(e) Opening, PDE, FCT-scheme (f) Closing, PDE, FCT-scheme

Figure 5.3: Scalar-valued morphology: Set-theoretical vs PDE-based opening/closing
with a dis of radius 3 as structuring element. Original image shown in Fig. 5.1.
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(a) Original matrix field

(b) Dilation, RT-scheme (c) Erosion, RT-scheme

(d) Dilation, FCT-scheme (e) Erosion, FCT-scheme

Figure 5.4: Matrix-valued morphology. PDE-based dilation and erosion with a dis of
radius 1.5 as structuring element. FCT-scheme successfully corrects the dissipative
artifacts produced by the RT-scheme.



90 Introduction to Mathematical Morphology

(a) Original matrix field

(b) Opening, RT-scheme (c) Closing, RT-scheme

(d) Opening, FCT-scheme (e) Closing, FCT-scheme

Figure 5.5: Matrix-valued morphology. PDE-based opening and closing with a dis of
radius 1.5 as structuring element. FCT-scheme successfully corrects the dissipative
artifacts produced by the RT-scheme.



6 Adaptive Continuous-Scale Morphology

The PDE-based approach is conceptually attractive since it allows for digital scalabil-
ity and even adaptivity of the represented structuring element (SE). The current chap-
ter, based on [51, 170, 44], exploits this versatility to propose an anisotropic approach
to continuous-scale morphology that adapts itself to the local spatial structure. The
concept of adaptivity in mathematical morphology is not new. Spatially-variant SEs
were first proposed in [189] in the set-theoretical framework. For a recent account
of the advances in this context we refer to [27, 28] and the references therein. In
general, research on adaptive morphology follows three trends [138]: (i) adaptivity
w.r.t. the spatial neighbourhood of morphological operators, (ii) adaptivity w.r.t. how
the operators process the different image level sets, and (iii) algebraic principles such
as group and representation theory to unify concepts for adaptive operators.

In the continuous-scale framework, it can be shown [181, 54, 95] that the
dilation/erosion PDEs are related to the PDE describing the geometric deformation
of a curve C(p, t) : [0, 2π] × [0,∞+] −→ R2, p the curve parameterisation and t the
evolution parameter:

∂tC = β · N , (6.1)

with C0(p) as initial condition. The curve is propagated in outer/inner normal direction
N with speed β. Representing the curve C(p, t) as the level set of an image u(x, t)
transforms (6.1) into the image evolution PDE

∂tu = β · ‖∇u‖ . (6.2)

The simplest case β = ±1 corresponds to the dilation/erosion PDEs (5.7)–(5.8).
The evolution (6.2) can as well be adapted to the underlying image structure. For
instance, letting the speed be a function of the image curvature β := (curv(u))α

leads to curvature-based morphological processes. When α = 1 and α = 1/3 these
processes are called mean curvature motion (MCM) and affine morphological scale-
space (AMSS), respectively. Other adaptations of the speed function in (6.2) are:

• β := −sign(∆u) leads to shock filtering, i.e. shocks are created at edge
locations where the Laplacian (∆u) vanishes [161];
• β := ±(f∗ − u) leads to viscous, intensity-level adaptive dilation/erosion, with
f∗ a chosen (e.g. maximum/minimum) grey value from the input image f [137];
• β := ±| cos θ|γ leads to anisotropic dilation/erosion, with γ ∈ Z+ and θ the

angle between the image gradient and the direction of minimum contrast [32].

91
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6.1 PDE-Driven Adaptive Morphology
We describe our approach to adaptive morphology starting from a scalar formulation
for d-dimensional data u : Ω ⊂ Rd −→ R in form of the dilation PDE

∂tu = ‖M(u) · ∇u‖ (6.3)

with a data dependent, symmetric, positive semidefinite d × d-matrix M = M(u).
Equation (6.3) describes a dilation with an ellipsoidal structuring element since an
application of the mapping (x, y, z)> 7→ M · (x, y, z)> transforms a sphere centred
around the origin into an ellipsoid. In contrast to [32] our steering matrix M allows us
to control the amount of dilation/erosion along different directions. When considering
three-dimensional matrix-fields, for example, in DT-MRI data sets (d = 3) one has

M =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 =


‖(a11, a11, a13)‖ ν>

‖(a21, a21, a23)‖µ>

‖(a31, a31, a33)‖ η>

 (6.4)

with unit vectors ν, µ, and η where, e.g.

ν =
1

‖(a11, a12, a1,3)‖


a11

a12

a13

 . (6.5)

This turns (6.3) into
∂tu =

(
(a11∂xu+ a12∂yu+ a13∂zu)2

+ (a21∂xu+ a22∂yu+ a23∂zu)2

+ (a31∂xu+ a32∂yu+ a33∂zu)2
) 1

2
(6.6)

=
(
‖(a11, a12, a13)‖2 (∂νu)2

+ ‖(a21, a22, a23)‖2 (∂µu)2

+ ‖(a31, a32, a33)‖2 (∂ηu)2
) 1

2
(6.7)

In [44] the partial derivatives ∂xu, ∂yu, and ∂zu in (6.6) were approximated with
the standard Rouy-Tourin scheme [178] in its two-dimensional version to obtain a
directional derivative. However, in [170] the directional derivatives necessary for
the steering process were realised directly by means of equation (6.7) with better
results than in [44]. Hence it is decisive for our approach to implement the directional
derivatives ∂νu, ∂µu, and ∂ηu in (6.7) via a directional version of the Rouy-Tourin
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scheme as a suitable upwind numerical scheme to solve the transport equation (6.7).
As it will be explained in Section 6.4 an important feature of the proposed approach is
the fact that the upwind schemes are employed only in their simplest one-dimensional
variant regardless of the dimensionality of the data set. No specially designed higher-
dimensional versions or operator splitting methods have to be engaged.

This opens the path for using a high resolution method such as the flux-corrected
transport (FCT) scheme of [33] for which its 3D-version is not easily obtained in
adaptive form in the setting of matrix fields. In total the novel features over [44]
and [170] are the realisation of higher morphological operators based on an adaptive
directional version of the FCT scheme in three spatial dimensions.

The necessary directional information of the evolving u contained in the matrix
M(u) may be derived from the so-called structure tensor, dating back to [83, 22]. It
allows to extract directional information from an image and is given by

Sρ(u(x)) := Gρ ∗
(
∇u(x) · (∇u(x))>

)
(6.8)

=
(
Gρ ∗

(
∂xiu(x) · ∂xju(x)

))
i,j=1,...,d

(6.9)

Here Gρ∗ indicates a convolution with a Gaussian of standard deviation ρ. For more
details the reader is referred to [21] and the literature cited therein. In [39, 80] Di
Zenzo‘s approach [72] to construct a structure tensor for multi-channel images has
been extended to matrix fields yielding a standard structure tensor

Jρ(U(x)) :=
m∑

p,q=1

Sρ(Up,q(x)) (6.10)

with U = (Up,q)p,q=1,...,m ∈ Symm(R), and Symm(R) denotes the set of symmetric
m × m-matrices with real entries. This tensor is a special case of the full structure
tensor concept for matrix fields [49] which will be reviewed in Section 6.2.

Matrix-valued PDE. After presenting our PDE-based approach to anisotropic mor-
phology in the scalar-valued setting, we now formulate the matrix-valued counterpart
of (6.3). Building on the same principles described in Section 5.2.1, we employ the
operator-algebraic framework developed by Burgeth et al. [48, 47] (see Section 1.4)
to proposed the following matrix-valued PDE for adaptive, anisotropic dilation

∂tU = |M(U) • ∇U |2 , (6.11)

with an initial matrix field F (x) = U(x, 0). Here M(U) denotes a symmetric md ×
md-block matrix with d2 blocks of size m×m that is multiplied block-wise with∇U
employing the Jordan product “•”. Note that | · |2 stands for the length ofM(U)•∇U
in the matrix valued sense, which makes the right-hand side and thus the solution of
(6.11) positive semidefinite. An alternative to the Jordan product is the logarithmic
product [6], but it is computationally more expensive and only defined for positive
definite matrices, cf. Section 1.4. The construction of M(U) is detailed in Section 6.3
and it relies on the full structure tensor described in the next section.
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6.2 Full Structure Tensor for Matrix Fields
The full structure tensor SL for matrix fields as defined in [49] is used to extract
directional information and it plays a vital role in the steering of evolution processes
(6.11). The full structure tensor, as a generalisation of (6.8)–(6.9), reads

SL (U) := Gρ∗
(
∇U ·(∇U)>

)
(6.12)

=
(
Gρ∗

(
∂xiU · ∂xjU

))
i,j=1,...,d

, (6.13)

with Gρ∗ indicating a convolution with a Gaussian of standard deviation ρ. SL (U(x))
is a symmetric md × md-block matrix with d2 blocks of size m × m, SL (U(x)) ∈
Symd(Symm(IR)) = Symmd(IR). Typically for the 3D medical DT-MRI data one has
d = 3 and m = 3, yielding a 9 × 9-matrix SL . It can be diagonalised as SL (U) =∑md

k=1 λkwkw
>
k with real eigenvalues λk (w.l.o.g. arranged in decreasing order) and an

orthonormal basis {wk}k=1,...,md of IRmd.
In order to extract useful d-dimensional directional information, SL (U) ∈

Symmd(IR) is reduced to a structure tensor S(U) ∈ Symd(IR) in a generalised
projection step [49] using the block operator matrix TrA := diag(trA, . . . , trA)
containing the trace operation. We set Tr := TrIm where Im denotes the m × m
unit matrix. This operator matrix acts on elements of the space (Symm(IR))d as well
as on block matrices via formal block-wise matrix multiplication trA · · · 0

... . . . ...

0 · · · trA


 M11 · · · M1d... . . . ...

Md1 · · · Mdd

 =

 trA(M11) · · · trA(M1d)... . . . ...

trA(Md1) · · · trA(Mdd)

 ,

(6.14)

provided that the square blocks Mij have the same size as A. The projection that is
conveyed by the reduction process condenses the directional information contained
in SL (U), for a more detailed reasoning we refer the reader to [49]. The reduction
operation is accompanied by an extension operation: The Im-extension is the mapping
from Symd(IR) to Symmd(IR) conveyed by the Kronecker product ⊗ :

v11 · · · v1d

... . . . ...

vd1 · vdd

 7−→


v11 · · · v1d

... . . . ...

vd1 · · · vdd

⊗ Im :=


v11Im · · · v1dIm

... . . . ...

vd1Im · · · vddIm

 .

This resizing step renders a proper matrix-vector multiplication with the large
generalised gradient (∇U(x)) possible. By specifying the matrix A in (6.14) one
may invoke a priori knowledge into the direction estimation [49]. The research
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on these structure-tensor concepts has been initiated by [223, 39]. The approaches
to matrix field regularisation suggested in [62] are based on differential geometric
considerations. Comprehensive survey articles on the analysis of matrix fields using
various techniques can be found in [225].

6.3 Steering Matrix for Matrix Fields
We are now in the position to propose the steering matrix M for the adaptive dilation
process for matrix fields (6.11). We proceed in four steps:

(i) The matrix field IRd 3 x 7→ U(x) provides us with a module field of generalised
gradients ∇U(x) from which we construct the generalised structure tensor
SL (U(x)) possibly with a certain integration scale ρ. This step corresponds
exactly to the scalar case.

(ii) We infer d-dimensional directional information by reducing SL (U(x)) with
trA with the help of the block operator matrix given in (6.14). This leads to
a symmetric d× d-matrix S, for example S = Jρ if A = Im:

S(x) := TrA
(
SL (U(x))

)
. (6.15)

(iii) The symmetric d × d-matrix S is spectrally decomposed, and the following
mapping is applied:

H :

 Rd
+ −→ Rd

(λ1, . . . , λd) 7−→ 1∑d
i=1 λi

(c1λ1, . . . , cdλd)
(6.16)

where c = (c1, . . . , cd) is a vector with nonnegative entries. With the choice
of the vector c we select the eigendirection in which the process is steered.
For instance, specifying c1 = . . . = cd−1 = k and cd = K � k one
obtains an ellipsoid associated with the matrix M which is flipped if compared
with S. Depending on the choice of K it can be more excentric than the one
accompanying S. H applied to S yields the steering matrix M ,

M := H(S) . (6.17)

(iv) Finally we enlarge the d×d-matrixM to amd×md-matrixM by the extension
operation

M = M ⊗ Im . (6.18)

The steering matrixM as defined above completes our description of the proposed
adaptive, anisotropic dilation process (6.11). What remains to be characterised is the
numerical schemes we employ to discretise and solve this PDE. This is the subject of
the next section.
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6.4 Directional Numerical Schemes
We now outline the numerical schemes we use to solve the proposed nonlinear PDEs
that describe the proposed scalar- and matrix-valued anisotropic dilation, respectively.
The numerics for the corresponding erosion processes follow analogously.

As discussed earlier, the PDE (6.3) can be rewritten as in (6.7) where it becomes
evident that the steering matrix M introduces directional components into the dilation
process. Therefore, in the following two subsections we sketch the directional
versions of the Rouy-Tourin scheme and the FCT scheme and their extensions to the
matrix-valued setting to solve (6.3) and (6.11).

6.4.1 Directional Rouy-Tourin scheme

The first-order finite difference method of Rouy and Tourin [178] (cf. Section 5.1.4.1)
may be used to solve the scalar PDE (6.7) in the isotropic case withM = Id. However,
in the anisotropic case we need to introduce a few modification to this scheme. Let
us denote by hx, hy, hz the spatial grid size and by uni,j,k the grey value of a scalar 3D
image data set u at the pixel centred in (ihx, jhy, khz) ∈ IR3 at the time-level t = nτ .
In particular, we need to formulate directional adaptations of the standard forward and
backward difference operators

Dx
+u

n
i,j,k := uni+1,j,k − uni,j,k , (6.19)

Dx
−u

n
i,j,k := uni,j,k − uni−1,j,k , (6.20)

as well as of the upwind approximation of the partial derivative ux

ux≈
1

hx
max

(
max

(
−Dx

−u
n
i,j,k, 0

)
,max

(
Dx

+u
n
i,j,k, 0

))
, (6.21)

here in x−, but analogously in y− and z−direction.
For a unit vector ν = (ν1, ν2, ν3)> the directional derivative ∂νu of u may be

approximated by ∂νu = 〈ν,∇u〉 = ν1∂xu+ν2∂yu+ν3∂zu. Hence it is close at hand to
approximate numerically equation (6.6) directly. However, this favours mass transport
along the directions of the x−, y−, and z−axis leading to a poor representation of
the directional derivative. Instead we take advantage of equation (6.7) and propose
an alternative involving an interpolated function value ui+ν1,j+ν2,k+ν3 defined by the
subsequent well-known tri-linear1 approximation (6.23) employing as weights the
volumes of cuboids associated with the grid points (Figure 6.1 shows the bi-linear
case in 2D):

1. For the sake of efficiency we use tri-linear interpolation, although higher order alternatives such as
tri-cubic or spline interpolation can be employed as well.
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ui,j+1 ui+1,j+1

ui+1,j
ui,j

ui+1,j−1

ui+ν1,j+ν2

ui−ν1,j−ν2

ui+ν1,j+ν2
= ui,j · (1− hx|ν1|) · (1− hy|ν2|)

+ui+sign(ν1),j · hx|ν1| · (1− hy|ν2|)
+ui,j+sign(ν2) · (1− hx|ν1|) · hy|ν2|
+ui+sign(ν1),j+sign(ν2) · hx|ν1| · hy|ν2|

(6.22)

Figure 6.1: 2D interpolation of the image value ui+ν1,j+ν2 with
√
ν2

1 + ν2
2 = 1. It

allows for backward and forward finite differences in the direction of (ν1, ν2)>.

ui+ν1,j+ν2,k+ν3 = ui,j,k · (1− hx|ν1|) · (1− hy|ν2|) · (1− hz|ν3|) (6.23)
+ ui+sign(ν1),j,k · hx|ν1| · (1− hy|ν2|) · (1− hz|ν3|)
+ ui,j+sign(ν2),k · (1− hx|ν1|) · hy|ν2| · (1− hz|ν3|)
+ ui+sign(ν1),j+sign(ν2),k · hx|ν1| · hy|ν2| · (1− hz|ν3|)
+ ui,j,k+sign(ν3) · (1− hx|ν1|) · (1− hy|ν2|) · hz|ν3|
+ ui+sign(ν1),j,k+sign(ν3) · hx|ν1| · (1− hy|ν2|) · hz|ν3|
+ ui,j+sign(ν2),k+sign(ν3) · (1− hx|ν1|) · hy|ν2| · hz|ν3|
+ ui+sign(ν1),j+sign(ν2),k+sign(ν3) · hx|ν1| · hy|ν2| · hz|ν3| .

This leads to forward and backward difference operators in the direction of ν with
‖ν‖ =

√
ν2

1 + ν2
2 + ν2

3 = 1:

Dν
+u

n
i,j,k := uni+ν1,j+ν2,k+ν3

− uni,j,k (6.24)

Dν
−u

n
i,j,k := uni,j,k − uni−ν1,j−ν2,k−ν3 (6.25)

and to a direct approximation of the directional derivative

∂νu = uν (6.26)

≈ 1

h
max

(
max

(
−Dν

−u
n
i,j,k, 0

)
, max

(
Dν

+u
n
i,j,k, 0

))
where h := min(hx, hy, hz) . Furthermore, the resulting approximation of the
directional derivatives is also consistent: tri-linear approximation implies

ui+ν1,j+ν2,k+ν3 = u((i+ ν1)hx, (j + ν2)hy, (k + ν3)hz)

+O(max(hx, hy, hz)), (6.27)
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and hence we have

1

h
Dν

+ui,j,k

=
1

h

(
u((i+ ν1)hx, (j + ν2)hy, (k + ν3)hz)− u(ihx, jhy, khz)

)
+O(max(hx, hy, hz)) (6.28)

= uν +O(max(hx, hy, hz)) . (6.29)

Analogous reasoning applies to Dν
−ui,j,k.

With the notation introduced in Section 5.2.2 and the calculus concept presented
in Section 1.4 it is now straightforward to define directional one-sided differences in
ν-direction for fields of m×m-matrices:

Dν
+U

n(ihx, jhy, khz) (6.30)
:= Un((i+ ν1)hx, (j + ν2)hy, (k + ν3)hz)− Un(ihx, jhy, khz) ,

Dν
−U

n(ihx, jhy, khz) (6.31)
:= Un(ihx, jhy, khz)− Un((i− ν1)hx, (j − ν2)hy, (k − ν3)hz) ,

where Dν
+U

n , Dν
−U

n ∈ Symm(IR). The directions µ and η are treated accordingly.
The notion of supremum and infimum of two matrices – as needed in a matrix
variant of Rouy-Tourin – has been provided in Section 1.4 as well. Hence, having
these generalisations at our disposal a directionally adaptive version of the Rouy-
Tourin scheme is available now in the setting of matrix fields simply by replacing
grey values uni,j,k by matrices Un(ihx, jhy, khz) and utilising the directional derivative
approximations.

The numerical scheme for the PDE describing the erosion process can be obtained
analogously by considering the directional version of the Rouy-Tourin approximation
described in Subsection 5.1.4.1 in the previous chapter.

6.4.2 Directional FCT scheme
Here we provide the directional modifications of the FCT method (cf. Section 5.1.4.2)
to solve (6.3) and (6.11) in the three-dimensional case. Let us start with the scalar
setting. Using the solution un+1,pred

i,j obtained with the directional Rouy-Tourin scheme
as a predictor, the FCT method relies on a corrector step, which will finally read as

un+1
i,j,k = un+1,pred

i,j,k + qn+1,pred
h − qn+1,pred

d . (6.32)

The directional version of the correction step (6.32) is now obtained by replacing the
finite differences Dx

(·) in x-direction in the terms defining qn+1,pred
h and qn+1,pred

d by the
weighted finite differences ‖ν̂‖Dν

(·) in ν-direction with ν̂ = (a11, a12, a13), see (6.4).
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We proceed in the same way with the other directions, substituting Dy
(·) by ‖µ̂‖Dµ

(·),
and in the three-dimensional case, exchanging Dz

(·) by ‖η̂‖Dη
(·) with corresponding

interpretations of µ̂ and η̂. Doing so, the higher-order term qn+1,pred
h in (6.32) reads

qn+1,pred
h :=

τ

h

( (
‖ν̂‖

∣∣∣Dν
cu

n+1,pred
i,j,k

∣∣∣)2

(6.33)

+
(
‖µ̂‖

∣∣∣Dµ
c u

n+1,pred
i,j,k

∣∣∣)2

+
(
‖η̂‖

∣∣∣Dη
cu

n+1,pred
i,j,k

∣∣∣)2
)1/2

,

with h := min(hx, hy, hz) and the directional central differences

Dν
cu

n
i,j,k :=

(
un(i,j,k)+ν/2 − un(i,j,k)−ν/2

)
/2 . (6.34)

Consequently, the lower-order term in (6.32) is given by

qn+1,pred
d :=

((
δνun+1,pred

i,j,k

)2

+
(
δµun+1,pred

i,j,k

)2

+
(
δηun+1,pred

i,j,k

)2
)1/2

, (6.35)

using the abbreviations

δνun+1,pred
i,j,k :=

τ

h
‖ν̂‖

∣∣∣Dν
cu

n+1,pred
i,j,k

∣∣∣+ g(i,j,k)+ν/2 − g(i,j,k)−ν/2 , (6.36)

g(i,j,k)+ν/2 := ‖ν̂‖mm
(
Dν
−u

n+1,pred
(i,j,k) ,

τ

2h
Dν

+u
n+1,pred
(i,j,k) , Dν

+u
n+1,pred
(i,j,k)+ν

)
, (6.37)

g(i,j,k)−ν/2 := ‖ν̂‖mm
(
Dν
−u

n+1,pred
(i,j,k)−ν ,

τ

2h
Dν

+u
n+1,pred
(i,j,k)−ν , D

ν
+u

n+1,pred
(i,j,k)

)
, (6.38)

and the minmod-function defined as in (5.20). The directions µ and η are treated
analogously.

The directional version of the FCT-scheme for matrix fields is obtained by
replacing the scalar values uni,j,k by matrices Un(ihx, jhy, khz), utilising the matrix-
valued directional derivative approximations, and the definition of the minmod-
function as in (5.34). We emphasise that the extension to tensor fields follows from
the operator-algebraic framework of Burgeth et al. [48, 47] outlined in Section 1.4,
see also Subsection 5.2.2.

Finally, the numerical scheme for the erosion PDE is obtained analogously by
considering the directional version of the FCT approximation described in Subsection
5.1.4.2 in the preceding chapter.
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6.5 Structure-Adaptive Morphological Operations
As indicated in Section 6.1, the solution u of equation (6.3) mimics the dilation
process with an adaptive ellipsoidal structuring element B which changes according
to the spatial local structure as well as in time since it depends on u: B = Bu. A
minus sign on the right-hand-side of (6.3) and (6.11) gives the PDE-formulation of
the corresponding adaptive erosion process. Using a common notation we express the
dilation and the erosion of an original image f with such a structuring element Bu by

f ⊕Bu and f 	Bu . (6.39)

The combinations of dilation and erosion lead to various morphological operators
such as opening and closing,

f ◦Bu := (f 	Bu)⊕Bu , (6.40)

f •Bu := (f ⊕Bu)	Bu . (6.41)

In an image, boundaries of objects are loci of high grey value variations, and as
such they can be detected by derivative operators. The so-called Beucher gradient

%Bu(f) := (f ⊕Bu)− (f 	Bu) , (6.42)

as well as the internal and external gradient,

%−Bu(f) := f − (f 	Bu) , %+
Bu

(f) := (f ⊕Bu)− f , (6.43)

are morphological counterparts of the norm of the gradient f , ‖∇f‖, if f is considered
as a differentiable image.

In [215] a morphological Laplacian has been introduced. We define a variant by

∆Buf := %+
Bu

(f)− %−Bu(f) (6.44)
= (f ⊕Bu)− 2 · f + (f 	Bu) . (6.45)

This Laplacian is a morphological equivalent of the second derivative ∂ηηf where
η stands for the unit vector in the direction of the steepest slope. It allows us to
distinguish between influence zones of minima and maxima of the image f . This is a
vital property for the construction of so-called shock filters [94, 121, 161].

Shock filtering amounts to applying either a dilation or an erosion to an image,
depending on whether the pixel is located within the influence zone of a minimum or
a maximum:

SBuf :=


f ⊕Bu , ∆Buf < 0,

f , ∆Buf = 0,

f 	Bu , ∆Buf > 0.

(6.46)
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A considerable number of variants of shock filters have been considered in the
literature [3, 89, 160, 176, 183, 222]. When they are applied iteratively, experiments
show that their steady state is given by a piecewise constant image with discontinuities
(“shocks”) between adjacent segments of constant grey value. For more details about
the morphological shock filter as introduced above, see [46].

In the experimental Section 6.6 we will see the results obtained by the various
adaptive, PDE-driven morphological operators when applied to synthetic and real-
world scalar- and matrix-valued images.

6.6 Experiments

6.6.1 Scalar-Valued Images

We first consider scalar-valued images to test our approach to adaptive, anisotropic
continuous-scale morphology (6.3) implemented with both the classical (non-directio-
nal) and the proposed directional Rouy-Tourin scheme. We compare our method to
the standard case of isotropic morphology (M = Id) and to the coherence-enhancing
diffusion (CED) approach of Weickert [221] as another PDE-based method useful for
completing and enhancing flow-like structures. We juxtapose all these methods in the
following figures: Figure 6.2 is a binary image of a ring with missing areas. Figure 6.3
shows a fingerprint with numerous interrupted lines. In both cases we are interested
in reconstructing the missing parts. Figure 6.4 exhibits the ‘Selfportrait’ of van Gogh
where coherent flow-likes structures can be distinguished. Interestingly, we shall see
that the proposed directional approach leads to an anisotropic ‘enhancement’ of these
structures.

It is noticeable in all three experiments that standard isotropic morphology does not
provide the expected results, broadening/shrinking the structures in all directions. On
the other side, our adaptive directional approach successfully completes and enhances
the structures. It is worth to emphasise the importance of working with a directional
numerical schemes as standard, non-directional schemes suffer from numerical bias
to the coordinate axes, whose consequences result evidently disastrous in all our
experiments. Regarding the CED approach, it is well-known the suitability of this
method for denoising and enhancement of flow-like structures. As observed in the
fingerprint and in the ‘Selfportrait’ our adaptive approach delivers similar results,
although noise is as well enhanced by any morphological method. Note also that CED
takes considerably more time than our approach to complete/enhance the underlying
structures.
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6.6.2 Synthetic 2D and 3D Matrix Fields
We now test our matrix-valued approach to adaptive, anisotropic continuous-scale
morphology (6.11) and consider the matrix-valued extensions of both the Rouy-Tourin
and the FCT numerical schemes.

Figure 6.5(a) exhibits a 32×32 matrix field composed of two interrupted diagonal
stripes with different thickness, both built with cigar-shaped ellipsoids of equal size
but different orientation. The line-like structures are tilted with respect to the x-
axis by an angle of about 117 degrees. Figure 6.5(b) shows the result of applying
coherence-enhancing diffusion (CED) [49]. Figure 6.5(c) contains the result of
isotropic (classical) dilation [45] using the standard (non-directional) Rouy-Tourin
scheme. Figure 6.5(d) and Figure 6.5(e) show the result of the proposed adaptive
anisotropic dilation using the Rouy-Tourin scheme in its standard and directional
versions, respectively. The parameters used were chosen in a way that every method
fills in the missing tensors of both stripes. Our approach is able to complete the
line-like structures much faster and more accurate than the other methods. It is
noticeable the improvement introduced by the directional numerical scheme, which
overcomes the numerical bias to the coordinate axes of classical upwind schemes (e.g.
Rouy-Tourin). Moreover, note that the direction and amount of adaptive anisotropic
dilation does not depend on the orientation of the ellipsoids, but on the orientation
and width of the structures. It is worth mentioning that the CED approach decreases
the overall size of matrices since the total mass, that is, the volume of the ellipsoids
is only redistributed due to the property of mass conservation. The same experiment
is performed on a 2D spiral data set with missing information, whose outcome is
depicted in Figure 6.6. Again, only the anisotropic dilation succeeds to close the
gaps satisfactorily preserving the spiral structure of the object. As expected, the
adaptive dilation process is faster than the diffusion based method and the classical
isotropic dilation. Furthermore, the effect of employing a directional numerical
scheme becomes more evident when the anisotropic dilation is steered along circular
structures.

We now use both the directional Rouy-Tourin scheme and the directional FCT
scheme for dilating the test image with an interrupted circular structure shown at the
top of Figure 6.7. In the first test the dilation process is steered in tangential direction
while in a second test the radial direction is selected via the choice of the parameter
c = (c1, c2), namely c = (0.1, 10) in the first case and c = (10, 0.1) in the second
one. Both directional schemes were applied, the results together with a scaled (×5)
absolute difference image are depicted in Figure 6.7. As expected the directional FCT
method performs favourable in terms of edge preservation over the directional Rouy-
Tourin scheme. This can be seen in the difference images at the bottom of Figure 6.7,
which display the (scaled) dissipation introduced by the Rouy-Tourin scheme that has
been corrected by the FCT scheme.
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A much more elaborate matrix field can be seen in Figure 6.8(a). This 3D data
set2 is sparsified by removing 80% of the matrices (Figure 6.8(b)). Both adaptive
anisotropic dilation (Figure 6.8(c)) and closing (Figure 6.8(d)) performed with the
superior directional FCT scheme, provide a reasonable reconstruction of the original
data.

6.6.3 Real World Data: 3D DT-MRI

We also tested the proposed method on a real DT-MRI data set of a human head
consisting of a 128×128×38-field of positive definite matrices. In the experiments on
real-world data we will always juxtapose the results of various adaptive morphological
operations when applied to 2D-slices and truly 3D data. However, in order to avoid
visual cluttering, we will in general extract and depict from the processed 3D data an
appropriate 2D-slice only.

Figure 6.9(a) displays part of the lateral ventricles as an actual three-dimensional
40 × 55 × 3-data set while Figure 6.9(b) shows only a 2D-slice. Adaptive dilation
with the classical Rouy-Tourin scheme [44] and the proposed directional Rouy-Tourin
scheme are shown in Figures 6.9(c) and 6.9(d), respectively. It is evident that the
classical scheme is affected by numerical artifacts, problem that is overcome by using
its directional version.

In Figure 6.10 we zoom into the lateral ventricles to show the effect of applying
adaptive dilation and erosion in both the 3D and 2D setting. We see that the adaptive
dilation and erosion processes on matrix fields respect the underlying shape of the
ventricles if compared to the isotropic case [43]. We notice that the results are quite
similar in the 3D and in the 2D setting. However, the 3D process seems to be more
accurate at the price of a longer evolution time (t = 3), than in the 2D case (t = 1).

The lateral ventricles serve also as a test case for the reconstructing operations
of adaptive opening and closing, Figure 6.11. In 3D the lateral ventricles are
nicely recovered in a slightly simplified form, as expected, since it incorporates also
information from neighbouring slices.

The difference in processing of 2D and 3D data sets becomes prominent in the
case of the morphological derivatives, e.g. the Beucher gradient. The gradient oper-
ations detect the boundary of the ventricles, which are three-dimensional anatomical
structures. This boundary in a cross-section can be seen clearly in Figure 6.12(a). In
contrast to this, the boundaries are less localised in the 2D case, Figure 6.12(b).

For the adaptive version of the morphological shock filter we obtain the matrix
valued equivalent of a piece-wise constant image both in the 3D and the 2D case. In
the three-dimensional setting, Figure 6.12(c), we observe a slightly better localisation
of the shock segments than in 2D, Figure 6.12(d).

2. The 3D spiral data set is freely available at http://teem.sourceforge.net.
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6.7 Summary
We have presented a method for an adaptive, PDE-based dilation and erosion
processes in the setting of scalar- and matrix-valued images. The evolution governed
by matrix-valued PDEs is guided by a steering tensor whose construction relies on the
full structure tensor for matrix data.

In order to enable proper directional steering we extended the schemes of Rouy-
Tourin and the FCT method in two ways: First, turning them into directional
schemes based on directional finite differences via interpolation. Second, by means
of advanced matrix calculus, extending these directional variants to matrix fields
solving the matrix-valued adaptive PDEs of dilation and erosion. Having these two
key operations at our disposal we were able to propose higher order morphological
operators such as morphological derivatives that are adaptive and act on matrix fields.

A special advantage of our approach is that the directional numerical schemes
are utilised only in their basic one-dimensional version, hence avoiding grid effects
and leading to an accurate algorithm to complete or enhance anisotropic structures
effectively. No higher dimensional variants of the schemes themselves are required.

As a proof-of-concept we applied these adaptive morphological operations to syn-
thetic and real DT-MRI data. The tests reveal that the various adaptive morphological
operators behave as one might expected from their scalar counterparts. For instance,
the adaptive dilation and closing are indeed capable of filling in missing data and to
complete directional structures. We also confirmed that the FCT performs preferable
over the scheme of Rouy and Tourin.

The direct application of an elementary morphological operation is usually not
suitable for improving an image or extracting useful information from it. Morphology
(adaptive or not) gains its power from the capability of concatenating and combining
elementary operations according to the task at hand. We hope to have just opened
the adaptive morphological toolbox for matrix fields. In this respect the proposed
approach to adaptive morphology for matrix fields may have its merits, for example, in
the segmentation of directional structures or as a preprocessing step for fibre tracking
algorithms in medical imaging.
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(a) Original image

(b) Coherence-enhancing diffusion (c) Isotropic dilation

(d) Anisotropic dilation (e) Directional anisotropic dilation

Figure 6.2: Comparison of different methods for binary images. (a) Original image
showing a ring with missing areas [216]. (b) Coherence-enhancing diffusion (CED)
as in Weickert [221] with σ = 0, ρ = 10, t = 48. (c) Isotropic (classical) dilation
at t = 12 using the Rouy-Tourin scheme. (d) and (e) show the proposed adaptive,
anisotropic dilation using the classical Rouy-Tourin scheme and the directional Rouy-
Tourin scheme, respectively, with σ = 0, ρ = 10, c = (0.05, 5), t = 12.
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(a) Original image

(b) Coherence-enhancing diffusion (c) Isotropic erosion

(d) Anisotropic erosion (e) Directional anisotropic erosion

Figure 6.3: Comparison of different methods for greyscale images. (a) Original image
showing a fingerprint. (b) Coherence-enhancing diffusion (CED) as in Weickert [221]
with σ = 0.5, ρ = 10, t = 6. (c) Isotropic (classical) erosion at t = 3 using the Rouy-
Tourin scheme. (d) and (e) show the proposed adaptive, anisotropic erosion using the
classical Rouy-Tourin scheme and the directional Rouy-Tourin scheme, respectively,
with σ = 0.5, ρ = 10, c = (0.1, 10), t = 3.
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(a) Original image

(b) CED (c) Isotropic erosion

(d) Anisotropic erosion (e) Dir. anisotropic erosion

Figure 6.4: Comparison of different methods for greyscale images. (a) ‘Selfportrait’
by van Gogh. (b) Coherence-enhancing diffusion (CED) as in Weickert [221] with
σ = 0.5, ρ = 5, t = 2. (c) Isotropic (classical) erosion at t = 2 using the Rouy-
Tourin scheme. (d) and (e) show the proposed adaptive, anisotropic erosion using the
classical Rouy-Tourin scheme and the directional Rouy-Tourin scheme, respectively,
with σ = 0.5, ρ = 5, c = (0.1, 10), t = 2.
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(a) Original 2D line-like structures

(b) Coherence-enhancing diffusion (c) Isotropic dilation

(d) Anisotropic dilation (e) Directional anisotropic dilation

Figure 6.5: Comparison of different methods in 2D. (a) Original matrix field with
ellipsoids in a line-like arrangement. (b) Coherence-enhancing diffusion (CED) as
in Burgeth et al. [49] with σ = 0, ρ = 4, t = 3. (c) Isotropic (classical) dilation
at t = 3 using the Rouy-Tourin scheme. (d) and (e) show the proposed adaptive,
anisotropic dilation using the classical Rouy-Tourin scheme and the directional Rouy-
Tourin scheme, respectively, with σ = 0, ρ = 4, c = (0.2, 20), t = 1.



6.7 Summary 109

(a) Original 2D spiral

(b) Coherence-enhancing diffusion (c) Isotropic dilation

(d) Anisotropic dilation (e) Directional anisotropic dilation

Figure 6.6: Comparison of different methods in 2D. (a) Original spiral with missing
tensors. (b) Coherence-enhancing diffusion (CED) as in Burgeth et al. [49] with σ =
0, ρ = 3, t = 6. (c) Isotropic dilation at t = 3 using the Rouy-Tourin scheme. (d) and
(e) show the proposed adaptive, anisotropic dilation using the classical Rouy-Tourin
scheme and the directional Rouy-Tourin scheme, respectively, with σ = 0, ρ = 3, c =
(0.2, 20), t = 1.
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Figure 6.7: Top row: Synthetic 2D circle with missing information. Second row: From
left to right: Dilation with directional Rouy-Tourin scheme in the tangential direction
and in the radial direction. Third row: The same using the directional FCT scheme.
Bottom row: Scaled absolute differences between both schemes.
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(a) Original 3D spiral (b) Sampled spiral (20%)

(c) Anisotropic dilation of (b) (d) Anisotropic closing of (b)

Figure 6.8: Adaptive, anisotropic dilation and closing in 3D using the directional FCT
scheme with parameters σ = 2, ρ = 2, c = (0.2, 0.2, 20), t = 5.
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(a) Original 3D section of DT-MRI data (b) 2D slice with 40× 55 matrices

(c) Anisotropic dilation of (b) (d) Directional anisotropic dilation of (b)

Figure 6.9: Classical versus directional Rouy-Tourin scheme. (a) Original data set.
(b) 2D section. (c) and (d) show the proposed adaptive, anisotropic dilation using the
classical Rouy-Tourin scheme and the directional Rouy-Tourin scheme, respectively,
with σ = 0, ρ = 1, c = (0.1, 10), t = 1.5.
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(a) Original

(b) 3D dilation (c) 2D dilation

(d) 3D erosion (e) 2D erosion

Figure 6.10: Adaptive, anisotropic dilation and erosion in 3D and 2D using the
directional FCT scheme with parameters σ = 1, ρ = 1, c = (0.05, 0.05, 5), t = 3
in the 3D case, and σ = 1, ρ = 1, c = (0.05, 5), t = 1 in the 2D case.
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(a) Original

(b) 3D opening (c) 2D opening

(d) 3D closing (e) 2D closing

Figure 6.11: Adaptive, anisotropic opening and closing in 3D and 2D using the
directional FCT scheme with parameters σ = 1, ρ = 1, c = (0.05, 0.05, 5), t = 3
in the 3D case, and σ = 1, ρ = 1, c = (0.05, 5), t = 1 in the 2D case.
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(a) 3D Beucher gradient (b) 2D Beucher gradient

(c) 3D shock filtering (d) 2D shock filtering

Figure 6.12: Adaptive, anisotropic Beucher gradient and shock filtering in 3D
and 2D using the directional FCT scheme with parameters σ = 1, ρ = 1, c =
(0.1, 0.1, 10), t = 5 in the 3D case, and σ = 1, ρ = 1, c = (0.1, 10), t = 2 in
the 2D case.
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7 Conclusions and Perspectives

7.1 Conclusions
The main motivation of this work was to develop novel reconstruction methods
for scalar- and matrix-valued images in order to ameliorate the effects of noise
degradation and missing data in practical applications. We addressed these challenges
from the perspectives of nonlocal smoothing and adaptive morphology. In this section
we briefly summarise our contributions in these contexts.

Nonlocal Smoothing

In Chapter 2, after describing the constituent components of the Nonlocal Data
and Smoothness (NDS) filtering approach of Mrázek et al., we established new
connections between this framework and other smoothing approaches such as dif-
fusion/regularisation methods (Subsection 2.2.3) and graph regularisation methods
(Section 2.3). Moreover, our experiments in Section 2.4 showed that NDS models
with L1 and L2 penalisers outperform the classical filters – special cases of the NDS
approach – for the task of denoising greyscale images degraded with Gaussian and
impulse noise. To guide the process of setting up a desired filter, we also studied
parameter configuration from an experimental point of view, showing that there exists
a trade-off between several model parameters that allows one to achieve similar
smoothing results under different configurations.

Despite the fact that the NDS approach allows for nonlocal pixel interactions, in
practice they do not occur within large neighbourhoods. This is due to the fact that
single differences in intensity do not carry reliable information about the local image
structure too far away from a chosen pixel. This problem is overcome by considering
patch-based differences. We thus proposed the Generalised NDS (GNDS) approach in
Chapter 3 as an extension of the NDS framework that allows the data and smoothness
penalisers to act on general dissimilarity measures defined on image patches. In
particular, using the weighted L2 patch distance leads to a filter that induces a new
similarity measure that evaluates the patch similarity of two chosen pixels and their
corresponding neighbours. This similarity measures has three special cases that lead to
the NDS filter, the NL-means filter and a novel filter for removing impulse noise. We
also discussed extensions to multichannel images, the use of other similarity measures
and showed that the GNDS model outperforms other nonlocal patch-based methods
and compares very well to more sophisticated approaches.

117
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We have further studied smoothing approaches for fields of positive semidefinite
matrices (e.g. DT-MRI data). In Chapter 4 we have investigated two different
approaches that extend the NDS framework to matrix fields. Firstly, we introduced
the isotropic matrix-valued NDS (iMNDS) model in Section 4.1 where pixel similarity
in the scalar setting is replaced by matrix similarity, measured by suitable distances
between matrices. Secondly, we proposed the anisotropic matrix-valued NDS
(aMNDS) model in Section 4.2 where we refrain from using such matrix distances
that reduce the directional information contained in the pair of matrices compared
to a single scalar value. Instead, the data and smoothness penalisers act directly on
the matrix differences. We have additionally shown in Section 4.3 that several filters
for symmetric matrices proposed in the literature can be seen as special or related
cases of our matrix-valued approaches, which is an inherited property from the scalar
NDS model. Finally, our experiments in Section 4.4 demonstrated the suitability
of our framework for the regularisation of synthetic and real-world DT-MRI fields.
In particular, we showed that tractography algorithms can provide much better fibre
tracks when the noisy DT-MRI data is preprocessed with our smoothing approach.

Adaptive Morphology

In Chapter 5 we have reviewed the elementary concepts of mathematical morphology
from the discrete, set-theoretical point of view and from the modern continuous-
scale approach. Focusing on the latter, we showed how the scalar-valued dilation
and erosion processes have been recently transferred to the matrix-valued setting by
means of the elegant operator-algebraic framework for matrix fields developed by
Burgeth et al. These isotropic processes treat all pixel/voxel locations equally by
growing/shrinking the object’s boundaries by the same factor in all directions.

Seeking for morphological operations that could affect the object’s boundaries
anisotropically, in Chapter 6 we have proposed a steerable PDE-driven approach for
scalar- and matrix-valued images that adapts itself to the object’s geometry. The
steering process relies on the structure tensor concept for scalar and matrix data that
allows us to accurately estimate the orientation of local structures. In order to enable
proper anisotropic steering we have proposed directional versions of the Rouy-Tourin
and the FCT numerical schemes (Section 6.4). A special advantage is that these
novel schemes are utilised only in their basic one-dimensional version – no higher
dimensional variants required – hence avoiding grid artifacts. Our approach is capable
of completing directional structures, filling in missing data and enhancing flow-like
patterns in an adaptive, anisotropic manner.

We hope that the methods developed in this thesis can serve as building or
preprocessing blocks for other higher-level tasks in image processing and computer
vision. For instance, in the field of biomedical image computing these methods can
help improve the interpretability of 2D/3D datasets affected by missing and corrupted
observations.
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7.2 Perspectives
The fundamental ideas for image smoothing and mathematical morphology studied in
this thesis can be combined and extended to tackle other problems in image and video
analysis. In this section we sketch some future research directions.

• Nonlocal M-smoothers vs regularisation methods. We have experimentally
shown that the NDS framework can be set up with different configurations
yielding similar smoothing results. We observed parametric trade-offs between
nonlocal M-smoothers and regularisation/diffusion methods. It would be
interesting to investigate theoretical connections between both approaches.

• Joint nonlocal smoothing and deconvolution. The discrete variational de-
scription of the GNDS approach could be adapted to jointly solve for image
smoothing and deconvolution. Different models can be investigated for non-
blind and blind deconvolution, Gaussian and impulse noise. Recent variational
approaches with nonlocal regularisers have been studied in [112, 110, 131].
Similarly, our approaches for smoothing of matrix-valued images (MNDS) can
also be extended to nonlocal deconvolution.

• Joint nonlocal smoothing and inpainting. The GNDS framework could also be
suitable for the joint smoothing and inpainting of greyscale and colour images.
This can be achieved by utilising a nonlocal data term or a (semi-)local data
term with a nonlocal regulariser. Related studies can be found in [85, 5].

• Nonlocal optic flow methods. Recent papers have shown that modelling optic
flow with a nonlocal brightness constancy assumption (data term) [229] and
with a nonlocal regulariser [230] results in better motion estimations. As the
structure of the GNDS approach fits both models, it would be interesting to
employ our framework to investigate more general optic flow methods with
different nonlocal constancy assumptions and regularisation terms.

• Joint nonlocal estimation and regularisation of tensor fields. In the context of
diffusion tensor imaging, our variational MNDS framework could be used to
jointly estimate and regularise a single or multiple diffusion tensors per voxel
from diffusion weighted images, extending the original methods presented in
[209, 165].

• Adaptive morphology on arbitrary graphs. Isotropic morphological operations
have been extended to graphs of arbitrary topology in the set-theoretical
approach [101, 103] and in the PDE-based approach [200, 201]. Following
this trend, our framework for adaptive morphology could enable anisotropic
operations on 3D surfaces/objects defined on non-uniform meshes. This
includes the investigation of corresponding numerical schemes on graphs to
ensure proper directional steering.



120 Conclusions and Perspectives

• Non-orthogonal adaptive morphology. The use of the structure tensor in
our morphological framework helps steer the dilation/erosion processes along
orthogonal orientations. To make our approach suitable for more complex
textures outlining multiple non-orthogonal orientations, we can replace the
standard second-order structure tensor by its higher-order generalisation [186]
or by the tensor voting toolbox [143], which allow to estimate multiple local
orientations.

• Reduction-extension adaptivity. In order to extract directional information from
the full structure tensor for matrix fields we applied a projection (reduction) step
followed by an extension step, both parameterised by matrices that we simply
set to the identity. However, one could adjust these matrices in a spatially-
variant manner, making them dependent on the local structure as well or on other
user-specific criteria. This would provide our adaptive morphology approach
with an additional degree of freedom that needs to be further explored.

We further hope that our contributions can be exploited beyond the image
processing arena, considering the generality and adaptiveness of the developed
techniques. For instance, in other areas where tensor fields are commonly used: stress-
strain tensors in material science, geomechanics, elastography and fluid dynamics;
permittivity tensors in electromagnetism and optics; permeability tensors in fluid
mechanics and earth sciences; among others.
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6. L. Pizarro, P. Mrázek, S. Didas, S. Grewenig, J. Weickert. Generalised nonlocal
image smoothing. International Journal of Computer Vision, Vol. 90, No. 1,
62–87, 2010.

7. M. Carrasco, L. Pizarro, D. Mery. Visual inspection of glass bottlenecks
by multiple-view analysis. International Journal of Computer Integrated
Manufacturing, Vol. 23, No. 10, 925–941, 2010.

8. L. Pizarro, D. Mery, R. Delpiano, M. Carrasco. Robust automated multiple view
inspection. Pattern Analysis and Applications, Vol. 11, No. 1, 21–32, 2008.

9. H. Allende, A. Frery, J. Galbiati, L. Pizarro. M-estimators with asymmetric
influence functions: the G0

A distribution case. Journal of Statistical Computation
and Simulation, Vol. 76, No. 11, 941–956, 2006.

Conference Papers:

10. L. Pizarro, J. Delpiano, P. Aljabar, J. Ruiz-del-Solar, D. Rueckert. Towards
dense motion estimation in light and electron microscopy. Proc. of 2011 IEEE
International Symposium on Biomedical Imaging: From Nano to Macro, 2011.

11. R. Garg, L. Pizarro, D. Rueckert, L. Agapito. Dense multi-frame optic flow for
non-rigid objects using subspace constraints. In R. Kimmel, R. Klette and A.
Sugimoto (Eds.): Computer Vision – ACCV 2010. Lecture Notes in Computer
Science, Vol. 6495, 460–473, Springer, Berlin, 2011.

12. L. Pizarro, B. Burgeth, M. Breuß, J. Weickert. A directional Rouy-Tourin
scheme for adaptive matrix-valued morphology. In M.H.F. Wilkinson and
J.B.T.M. Roerdink (Eds.): Mathematical Morphology and Its Application to
Signal and Image Processing. Lecture Notes in Computer Science, Vol. 5720,
250–260, Springer, Berlin, 2009.

13. B. Burgeth, M. Breuß, L. Pizarro, J. Weickert. PDE-driven adaptive morphology
for matrix fields. In X.-C. Tai, K. Mørken, M. Lysaker and K.-A. Lie (Eds.):
Scale Space and Variational Methods in Computer Vision. Lecture Notes in
Computer Science, Vol. 5567, 247–258, Springer, Berlin, 2009.

14. L. Pizarro, B. Burgeth, S. Didas, J. Weickert. A generic neighbourhood filtering
framework for matrix fields. In D. Forsyth and P. Torr and A. Zisserman (Eds.):
Computer Vision – ECCV 2008. Lecture Notes in Computer Science, Vol. 5304,
521–532. Springer, Berlin, 2008.



8.2 Publications 123

15. M. Carrasco, L. Pizarro, D. Mery. Image acquisition and automated inspection
of wine bottlenecks by tracking in multiple views. Proc. of the 8th International
Conference on Signal Processing, Computational Geometry and Artificial
Vision, 82–89, 2008.

16. M. Carrasco, L. Pizarro, D. Mery. Bimodal biometric person identification
system under perturbations. In D. Mery and L. Rueda (Eds.): Advances in
Image and Video Technology. Lecture Notes in Computer Science, Vol. 4872,
114–127, Springer, Berlin, 2007.

17. L. Pizarro, S. Didas, F. Bauer, J. Weickert. Evaluating a general class of filters
for image denoising. In B.K. Ersbøll and K.S. Pedersen (Eds.): Image Analysis.
Lecture Notes in Computer Science, Vol. 4522, 601–610, Springer, Berlin,
2007.
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[62] C. Chefd’Hotel, D. Tschumperlé, R. Deriche, and O. Faugeras. Constrained
flows of matrix-valued functions: Application to diffusion tensor regulariza-
tion. In A. Heyden, G. Sparr, M. Nielsen, and P. Johansen, editors, Computer
Vision – ECCV 2002, volume 2350 of Lecture Notes in Computer Science,
pages 251–265. Springer, Berlin, 2002.
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[69] P. Coupé, P. Yger, S. Prima, P. Hellier, C. Kervrann, and C. Barillot. An op-
timized blockwise nonlocal means denoising filter for 3-D magnetic resonance
images. IEEE Transactions on Medical Imaging, 27(4):425–441, April 2008.

[70] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by sparse
3D transform-domain collaborative filtering. IEEE Transactions on Image
Processing, 16(8):2080–2095, August 2007.

[71] J. Darbon, A. Cunha, T. F. Chan, S. Osher, and G. J. Jensen. Fast nonlocal
filtering applied to electron cryomicroscopy. In Proc. of the 2008 IEEE
International Symposium on Biomedical Imaging: From Nano to Macro, pages
1331–1334, 2008.

[72] S. Di Zenzo. A note on the gradient of a multi-image. Computer Vision,
Graphics and Image Processing, 33:116–125, 1986.

[73] S. Didas. Denoising and Enhancement of Digital Images – Variational
Methods, Integrodifferential Equations, and Wavelets. PhD thesis, Saarland
University, Germany, 2008.
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[216] R. Verdú-Monedero and J. Angulo. Spatially-variant directional mathematical
morphology operators based on a diffused average squared gradient field. In
J. Blanc-Talon et al., editor, Advanced Concepts for Intelligent Vision Systems,
volume 5259 of Lecture Notes in Computer Science, pages 542–553, Berlin,
2008. Springer.

[217] E. R. Vrscay. A simple model for affine self-similarity of images and its
applications. In A. Foi and A. Gotchev, editors, Proc. International Workshop
on Local and Non-Local Approximation in Image Processing, pages 61–76,
2008.

[218] J. Weickert. Anisotropic diffusion filters for image processing based quality
control. In A. Fasano and M. Primicerio, editors, Proc. Seventh European
Conference on Mathematics in Industry, pages 355–362. Teubner, Stuttgart,
1994.

[219] J. Weickert. A review of nonlinear diffusion filtering. In B. ter Haar Romeny,
L. Florack, J. Koenderink, and M. Viergever, editors, Scale-Space Theory in
Computer Vision, volume 1252 of Lecture Notes in Computer Science, pages
3–28. Springer, Berlin, 1997.

[220] J. Weickert. Anisotropic Diffusion in Image Processing. Teubner, Stuttgart,
1998. http://www.mia.uni-saarland.de/weickert/Papers/
book.pdf.

[221] J. Weickert. Coherence-enhancing diffusion filtering. International Journal of
Computer Vision, 31(2/3):111–127, April 1999.

[222] J. Weickert. Coherence-enhancing shock filters. In B. Michaelis and G. Krell,
editors, Pattern Recognition, volume 2781 of Lecture Notes in Computer
Science, pages 1–8. Springer, Berlin, 2003.

[223] J. Weickert and T. Brox. Diffusion and regularization of vector- and matrix-
valued images. In M. Z. Nashed and O. Scherzer, editors, Inverse Problems,
Image Analysis, and Medical Imaging, volume 313 of Contemporary Mathe-
matics, pages 251–268. AMS, Providence, 2002.

http://www.mia.uni-saarland.de/weickert/Papers/book.pdf
http://www.mia.uni-saarland.de/weickert/Papers/book.pdf


145

[224] J. Weickert, C. Feddern, M. Welk, B. Burgeth, and T. Brox. PDEs for tensor
image processing. In J. Weickert and H. Hagen, editors, Visualization and
Processing of Tensor Fields, Mathematics and Visualization, pages 399–414.
Springer, Berlin, 2006.

[225] J. Weickert and H. Hagen, editors. Visualization and Processing of Tensor
Fields. Mathematics and Visualization. Springer, Berlin, 2006.

[226] J. Weickert and C. Schnörr. A theoretical framework for convex regularizers in
PDE-based computation of image motion. International Journal of Computer
Vision, 45(3):245–264, 2001.
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