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Abstract Recently, Automated Multiple View Inspection

(AMVI) has been developed for automated defect detection

of manufactured objects, and the framework was success-

fully implemented for calibrated image sequences. How-

ever, it is not easy to be implemented in industrial

environments because the calibration is a difficult and an

unstable process. To overcome these disadvantages, the

robust AMVI strategy, which assumes that an unknown

affine transformation exists between each pair of uncali-

brated images, is proposed. This transformation is esti-

mated using two complementary robust procedures: a

global approximation of the affine mapping is computed by

creating candidate correspondences via B-splines and

selecting those which better satisfy the epipolar constraint

for uncalibrated images. Then, we use this approximation

as initial estimate of a robust intensity-based matching

approach, which is applied locally on each potential defect.

The result is that false alarms are discarded, and the defects

of an industrial object are actually tracked along the un-

calibrated image sequence. The method is successful as

shown in our experiments on aluminum die castings.

Keywords Automated visual inspection � Uncalibrated

images � Image matching � Sequence tracking � Robustness �
X-ray imaging � Radioscopic imaging system

1 Introduction

Recently, the Automated Multiple View Inspection (AMVI)

approach was developed for automated defect detection

[1]. This method is able to detect defects in two steps. In

the first step called identification, potential defects are

automatically identified in each image of the sequence

using a single filter without any prior knowledge of the test

object. The second step, called tracking, attempts to track

the identified potential defects along the image sequence.

As a result, only existing defects (and not the false detec-

tions) are successfully tracked in the image sequence

because they are located in positions dictated by the motion

of the test object. The preliminary results obtained using

AMVI methodology are promising for calibrated image

sequences. However, this approach is not suitable for all

industrial applications, because calibration is a difficult

process, and vibrations of the imaging system may induce

inaccuracies in the estimated parameters of the multiple

view geometric model. Thus, calibration is not stable and

the imaging system must be re-calibrated periodically. A

simple method was proposed in [2] to inspect objects on

uncalibrated image sequences, where structural points are

used to track the potential defects in the sequence via

bifocal constraints. The method achieves good perfor-
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mance in some sequences, but fails when the structure

points cannot be matched. In this case the estimation of the

fundamental matrix is incorrect, therefore the tracking also

fails.

Following the concept of camera multiplicity or multi-

ple views, a reconfigurable array for machine inspection

(RAMVI) was proposed in [3], where the calibration pro-

cess requires manual intervention. The authors remark on

the importance of the calibration for accurate inspection

and propose a methodology to perform it automatically [4].

The advantage of using multiple views is also described in

[5], where a visual inspection system that utilises a single

camera and mirrors for simulating multiple cameras is

proposed. A suitable pattern object is used to find the

camera parameters before combining all views.

Calibration might be an extremely complicated proce-

dure for real-time applications and manufacturing systems

that cannot be halted for calibration purposes. Therefore,

we aim to perform visual inspection avoiding an imprac-

ticable, expensive, and/or time-consuming calibration

process. To overcome these drawbacks, we propose in this

paper a new approach for automated visual inspection that

can be directly applied on uncalibrated image sequences.

To deal with the geometric distortions we assume that an

unknown affine transformation exists between every pair

of consecutive or non-consecutive images. We formulate

the search for this affine mapping as a robust local esti-

mation problem by means of an intensity-based matching

approach. In implementing a good tracking algorithm, it is

important to put special effort into finding the first (global)

matching between every pair of images. This match is

used to provide the initial estimate of the local optimisa-

tion process applied on each potential defect, which is

crucial to attaining convergence. This is why another ro-

bust procedure is introduced at this step, which takes

advantage of the geometric characteristics of the object

being inspected. Using the RANSAC algorithm [6] we

select the best candidate correspondences created via B-

splines which better satisfy the epipolar constraint for

uncalibrated images.

The rest of the paper is organised as follows: Section 2

explains our robust approach for uncalibrated AMVI.

Section 3 shows preliminary results obtained with the

proposed methodology. Finally, Sect. 4 delineates the

concluding remarks and perspectives for future works.

2 Proposed method

Our proposed framework for automated visual inspection

consists of five steps (A to E), which are outlined in Fig. 1.

Before describing each step in detail, a brief introduction to

each step is given.

The X-ray imaging systems are widely employed in

non-destructive testing. They are particularly useful in

automotive and aerospace industries for detecting different

types of flaws: porosity, cracks, corrosion, inclusions,

debris, rivets and thickness variations, among others [7–

11]. The X-ray systems exploit the fact that most of the

material defects are not visible. However, even in radio-

scopic images the signal-to-noise ratio (SNR) is low, so

that the flaw signal is slightly greater than the background

noise. For this reason, the identification of real defects with

poor contrast can involve detection of false alarms as well.

In some applications1 one view is probably enough for

examining material defects. However, the robustness of the

inspection process can be increased when redundant

information is used to validate flaw detection. Thus, two or

more views of the same object taken from different view-

points confirm and improve the diagnosis done by analy-

sing only one image. This is a convenient and powerful

alternative for examining complex objects where uncer-

tainty leads to misinterpretation. A similar idea is also used

by radiologists who analyse two different X-ray views of

the same breast tissue to detect cancer at early stages. See

for example [12], where the proposed method automati-

cally finds correspondences between two views. Detection

of delamination defects in rocket boosters is another

example recommending the use of radiographic sequences

[13]. Section 2.1 explains how the uncalibrated radioscopic

image sequence in our experiments is obtained (Fig. 1,

block A).

Once the image sequence is acquired, we search for

potential defects on each view. Due to the low SNR of the

images, detection of false alarms is likely. However, the

detection of the real defects must be ensured in order to

make the subsequent tracking possible. Potential defects

are segmented and their features extracted in order to

match them in a posterior correspondence analysis stage.

Section 2.2 shows how the identification of potential de-

fects is performed (Fig. 1, block B).

Going one step further, we postulate that only real de-

fects can be followed along the image sequence, and log-

ically false alarms discarded. Nevertheless, the

uncalibrated imaging system generates images perturbed

by geometric distortions, what makes any attempt to search

for corresponding defects in two or more views cumber-

some. To deal with this problem, we model geometric

distortions as affine transformations2. Let H be a non-sin-

gular 3 · 3 matrix defining an affine mapping from all the

homogeneous points mi in one view to the points m0i’ in

another view, i.e. m0i’ = H mi. Three non-collinear corre-

1 For instance in printed circuit board (PCB) inspection.
2 In this paper we use affine transformations, although it is also

possible to implement perspective transformations.
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sponding points form the following linear system of

equations [chap.9, 14]

x01 x02 x03
y01 y02 y03
1 1 1

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
M0

¼ H
x1 x2 x3

y1 y2 y3

1 1 1

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
M

; ð1Þ

from which H can be computed as H = M¢ M–1.

Additional corresponding points allow a more accurate

approximation of the mapping. For n points we compute

H ¼M0MTðMMTÞ�1: ð2Þ

If some unequivocal corresponding points between two

consecutive or non-consecutive views were known, the

problem of matching potential defective regions between

these images would be solved by applying the mapping H

to find corresponding coordinates for those regions, and

comparing their extracted features obtained in the previous

identification step. However, such corresponding points are

not known. To find a reliable subset of such points, we first

create candidate correspondences via B-splines, and then

apply the RANSAC method to select the best points that

satisfy the epipolar constraint. With the resulting points, a

global mapping between two views is estimated by equa-

tion (2). Section 2.3 describes this procedure in detail

(Fig. 1, block C).

The preceding stage presents a reliable mechanism to

obtain a global approximation of the geometric mapping

between two uncalibrated views. Furthermore, it is feasible

to consider that the geometric distortion is non-uniform

over the entire image. In fact, potential defects may be

located in different parts of the image, where a slightly

different distortion was induced by the uncalibrated

imaging system. Thus, we want to estimate these local

deformations considering the previous global computation

as an initial local approximation. Therefore, we formulate

the search for each potential defect from one view to

another as an intensity matching problem, where the

intensities of the potential defect in the first view are to be

iteratively tracked in the second view. Starting from the

global affine transformation a local affine transformation

for every potential defect is refined in each iteration.

Moreover, it is possible to strengthen this process against

illumination variations and partial occlusions3 looking at

the robust formulation of the visual matching problem.

Section 2.4 details how the tracking of potential defects is

performed (Fig. 1, block D).

The coordinates of every potential defective region are

tracked from the first view to the second one where, in the

best case, another potential defective region with similar

feature was also found during the identification stage. As a

direct result of the tracking process, three criteria must be

fulfilled to consider a region as defective: (i) identifiability,

(ii) spatial proximity, and (iii) feature proximity. Sec-

tion 2.5 specifies the correspondence analysis carried out to

verify the fulfillment of such requirements (Fig. 1, block

E).

The proposed approach seems to be complicated, which

is true from the computational point of view. However, the

inspection itself is quite simple because the test object does

not require placement accuracy; we only need to place and

rotate the object, the rest is done by computer automati-

cally. The bottom part of Fig. 1 shows a synthetic example

where any two views of a test object are inspected. The

object contains only one defect, but false alarms may ap-

pear. Ideally, the inspection system detects the flaw and

discards all false alarms.

2.1 Acquisition of the image sequence

In order to facilitate the defect-tracking over the images,

similar projections of the inspected object must be regis-

tered along the sequence. For this reason, and for sim-

Fig. 1 Block diagram of the proposed robust automated multiple view inspection system

3 Occlusions appear when small flaws move in front (or behind) of a

thick cross section of the casting, where X-rays are highly absorbed;

and when flaws are located in the outer limits of the visible area of the

casting.
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plicity, different views are taken by rotating the casting at

smaller angular intervals (e.g. 5�, see Fig. 2). Each cap-

tured scene consists of only one rigid object in motion,

whose 2D trajectories are smooth because there is no sig-

nificant frame-to-frame motion, the velocity of the test

object is constant, and the motion of the test object is

generally only rotational or translational. Since many

images are captured, the time of the data acquisition is

reduced by taking the images without frame averaging4.

The usual setup utilised for automatic visual inspection

(AVI) on aluminum die castings is detailed in [1].

2.2 Identification of potential defects

The identification of potential defects aims at segmenting

regions that may correspond to real defects. Two general

characteristics of the defects are used for identification: (i)

a defect can be considered as a connected subset of the

image, and (ii) the grey-level difference between a defect

and its neighbourhood is significant. The potential defects

are identified without prior knowledge. First, a Laplacian-

of-Gaussian (LoG) kernel and a zero-crossing algorithm

are used to detect edges on the X-ray image. In real defects,

the resulting binary edge image should produce closed and

connected contours which outline regions. However, a

defect may not be perfectly enclosed if it is located at one

edge of a regular structure as shown in Fig. 3c. In order to

complete the remaining edges of these defects, a thickening

of the edges in regular structure is performed as follows:

(a) the gradient of the original image is calculated (see

Fig. 3d); (b) by thresholding the gradient image at a high

grey level, a new binary image is obtained; and (c) the

resulting image is added to the zero-crossing image (see

Fig. 3e), and afterwards, each closed region is segmented.

In order to identify the potential defects, features are ex-

tracted from crossing line profiles of each segmented re-

gion. Crossing line profiles are grey-level profiles along

straight lines that cross each segmented region in the

middle. If the variance of the crossing line profiles is high,

the segmented region is classified as potential defect [15,

16]. Later on, the extracted features are used in the stage of

correspondence analysis (Sect. 2.5) to match tracked

potential defects. This is a very simple detector with more

than 85% detection rate

2.3 Estimation of the global affine mapping

At this stage we look for a global approximation of the affine

mapping H between any two different views. As suggested in

Eq. (2), such a transformation can be accurately estimated

from a set of n corresponding points. This set of points can be

found by performing the following five steps:

i. Segmentation. It consists of isolating object parts in

which the intensity values are clearly distinguishable

from the background. We use the Otsu’s segmentation

method [17] for this task, which estimates the best

separation for bimodal histograms. See Fig. 4.

ii. Feature extraction. For every segmented region three

features are extracted: area; centre of mass

ði; jÞ ¼ m10

m00
; m01

m00

� �
; in terms of the statistical moment of

order (r + s) mrs =
P

(i,j) 2Wir js, where W is the set of

pixels of the segmented region; and the group of four

affine moment invariants derived by Flusser and Suk

[18].

iii. Region matching. This step establishes correspon-

dences among segmented regions by measuring their

similarity. The smallest norm of the difference be-

tween the normalised feature vectors of two regions in

different images is used to label those regions as

corresponding (see Fig. 5). In accordance with how

the image sequence is generated, it is plausible to

consider that corresponding segmented regions in two

consecutive frames have similar shapes, except for

correspondences that run out of the limits of the vis-

ible area of the casting.

iv. Introducing artificial points. The corresponding

centres of mass found in the previous step can be used

to compute the mapping H as in (2). However, in

practice we need more correspondences to improve

the accuracy of such a computation. We increase the

number of matches by interpolating artificial points

among the centres of mass via B-splines5. The Cox-de

Boor’s recursive formulation of B-splines can be

found in [19]. We use cubic B-splines for knots ti
2[0,1] with four control points {P–2,P–1,P0,P1}. Its

matrix form is given by

Fig. 2 Segment of a real image

sequence used in the

experiments. Each frame is

rotated 5� in the die casting

4 Digital radioscopic images are generated using a frame grabber,

which averages n samples of the scene taken at infinitesimal time

intervals in order to reduce noise and improve the signal-to-noise

ratio.

5 B-splines are invariant under affine transformations. In practice,

linear splines can also be utilised with enough number of knots.
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BðtiÞ ¼ t3
i t2

i t1
i 1

� � 1

6

�1 3 �3 1

3 �6 3 0

�3 0 3 0

1 4 1 0

2
664

3
775

P�2

P�1

P0

P1

2
664

3
775:

ð3Þ

Varying the number of knots (t1,...,tk) among the control

points (centres of mass) we regulate the set of artificial

points which act as candidate corresponding points (see

Fig. 6).

v. Selection of corresponding points. According to the

principle of multiple view geometry [6], all corre-

sponding coordinates between two views are related by

the fundamental matrix6 F, such that

m0Ti F mi ¼ 0: ð4Þ

This relation is known as epipolar constraint for

uncalibrated images and indicates that the point m0ican

Fig. 3 Detection of flaws: a
radioscopic image with a small

flaw at an edge of a regular

structure, b Laplacian-filtered

image with r = 1.25 pixels

(kernel size = 11 · 11), c zero

crossing image, d gradient

image, e edge detection after

adding high-gradient pixels, and

f detected flaw using the

variance of the crossing line

profile

Fig. 4 Top Three views of our

real image sequence. Bottom
Otsu’s segmentation method

applied on each view

Fig. 5 Result of matching

regions according to their

similarity

6 Do not confuse the fundamental matrix F with the affine mapping H.
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only lie on the epipolar line l’ = F mi of the point mi. Then,

from the k candidate points created via B-splines we

choose the set of n (n < k) correspondences that allow the

most accurate computation of the fundamental matrix. This

is done by the well-known RANSAC [6] algorithm, which

is robust against noise perturbations of the data. This

algorithm requires three parameters: the number N of

samples/iterations, the threshold t that measures the

maximum distance at which a pair of correspondences

satisfy (4), and the number n of expected correspondences.

We use the Sampson distance [20] and set t = 2 pixels. N

can be computed as

N ¼ logð1� pÞ
logð1� ð1� �ÞsÞ ; ð5Þ

using a probability p = 0.99 to ensure that at least one

sample of s points is free from outliers, and s = 7 points

necessary to compute the matrix F; and the pessimistic case

of having a fraction e = 0.5 of contaminated correspon-

dences in the input data. From the set of k potential

matching points generated by B-splines, we expect to find

n = (1–e)k pair of correspondences. For k = 1,000 knots,

n = 500 correspondences are expected. See [6] for imple-

mentation details. Finally, the selected n points are used to

compute the global approximation of the affine mapping H

via equation (2). This approximation of the affine distortion

is iteratively refined at every potential defect found in the

identification stage (Sect. 2.2), as we will see next.

2.4 Robust local defect tracking

Once potential defective regions have been identified in

two consecutive or non-consecutive uncalibrated images,

and given a preliminary estimation of the global geometric

distortion between them, we attempt to track the intensities

of each potential defect from the first view onto the second

view. Only real flaws should be tracked, whereas false

alarms must be consequently discarded. Here, we face the

well-known visual matching problem, which has been dealt

with in literature by means of two approaches: feature-

based matching (e.g. [21, 22]) and intensity-based match-

ing (e.g. [23, 24]). Our inspection system combines both

strategies.

Using the notation presented in [25], the goal of our

intensity-based matching algorithm is to align a template

image T(x) with another image I(x), where x = (x,y,1)T is a

column vector of homogeneous pixel coordinates. A tem-

plate T(x) represents a potential defective region in the first

view and I(x) is the second view where the template has to

match. Classical formulations aim to minimise the sum-of-

squared-differences (SSD) of the intensities between the

template T and image I warped onto the coordinate frame

of the template, which is known as the least-squares (LS)

formulation

X
x

IðWðx; pÞÞ � TðxÞ½ �2; ð6Þ

where the sum is performed over all pixels in the template

image, and W(x;p) is the warping map obtained by

applying the affine transformation H to the template

coordinates, i.e.

Wðx; pÞ :¼
x0

y0

1

0
@

1
A ¼

1þ p1 p3 p5

p2 1þ p4 p6

0 0 1

0
@

1
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
H

x
y
1

0
@

1
A:

ð7Þ

The affine mapping H is parameterised by an unknown

vector p = (p1,...,p6)T. In literature there are several

methods for minimising (6). In particular, the Lucas–

Kanade algorithm [26] assumes that a current estimation of

p is known and then it solves iteratively for additive

increments Dp:

X
x

IðWðx; pþ DpÞÞ � TðxÞ½ �2; ð8Þ

updating the parameter vector as p pþ Dp: In general,

the Eq. (8) is not robust in presence of outliers like

Fig. 6 The corresponding

points are taken from the centres

of mass of complete regions.

Artificial corresponding points

are added by using B-spline

curves that join the determined

centres of mass

26 Pattern Anal Applic (2008) 11:21–32
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occlusions, illumination changes and non-gaussian noise,

because its quadratic error measure assigns a high influence

to gross errors, i.e. large deviations cause undesirable

distortions in the resulting matching process. In order to

downweigh the effect of outliers in the minimisation

process, we derive a robust formulation of the matching

problem. We seek for the M-estimator of Dp as the

minimum of the global energy function

Dp̂ ¼ arg min
Dp

EðDpÞ; ð9Þ

where the energy function EðDpÞ is defined in terms of a

symmetric, positive-definite robust loss function7 q, which

has an unique minimum at zero, and it is chosen to be less

increasing than square [28], i.e.

EðDpÞ ¼
X

x

qðzxÞ; ð10Þ

where zx is the normalised residue given by

zx ¼
rx �MedianðrÞ

r̂
: ð11Þ

r̂ is the robust standard deviation of the residual vector

r ¼ IðWðx; pþ DpÞÞ � TðxÞ; and it is computed through

the median absolute deviation (MAD) [29] as

r̂ ¼ f Medianðjr�MedianðrÞjÞ: ð12Þ

The factor f = 1//–1(0.75) = 1.4826 (where / is the

cumulative distribution function of the standard normal

distribution) is introduced in the Eq. (12) to obtain a con-

sistent estimator of r, which reaches the same efficiency as

the least-squares estimator when only Gaussian noise

exists. Moreover, it has been statistically proven that the

median is more robust against outliers than the mean as

estimator of the central tendency [29].

To solve the robust estimation problem we use the

iteratively reweighted least squares (IRLS) algorithm

proposed in [30]. Performing a first-order Taylor expan-

sion, the residual vector is linearised as

r ¼ IðWðx; pÞÞ þ oI

op
Dp� TðxÞ; ð13Þ

and setting to zero the partial derivative of the expression

(10) with respect to delta_p, we obtain

X
x

wðzxÞ
oI

op

� �T

IðWðx; pÞÞ þ oI

op
Dp� TðxÞ

� �
¼ 0; ð14Þ

where wðuÞ ¼ oqðuÞ
ou and wðuÞ ¼ wðuÞ

u are the first partial

derivative and the weight of the robust loss function q(u),

respectively. Finally, the solution of the Eq. (9) is given by

Dp̂ ¼ �H�1
X

x

wðzxÞ
oI

op

� �T

IðWðx; pÞÞ � TðxÞ½ �; ð15Þ

where the Jacobian and the Hessian are respectively

defined as

oI

op
¼ oI

oW

oW

op
¼ rI

oW

op
;

H ¼
X

x

wðzxÞ
oI

op

� �T
oI

op

� �T

:

As commented before, we consider the geometric distor-

tions induced by the uncalibrated imaging system over the

image domain as non-uniform. Therefore, it is necessary to

apply the intensity-matching algorithm on each potential

defect in order to estimate more accurately the local

deformation at that location. In addition, the set of features

extracted from each potential defect during the identifica-

tion stage are now used to distinguish between true and false

flaws. The following section describes such a procedure.

2.5 Correspondence analysis

Once individual projections for each hypothetical flaw

have been found in both views by applying the local

matching algorithm, a correspondence analysis is carried

out to determine which of them are real and which are false

alarms. A region will be classified as defective if the fol-

lowing three criteria are fulfilled:

i. Identifiability. The detection of existing defects must

be ensured in the stage of identification of potential

defects (Sect. 2.2). If we do not segment the defects at

that step, we cannot detect them later on8. Thus, to be

considered as a flaw, a potential defect must be de-

tected on both views.

ii. Spatial proximity. A discontinuity in the first image

must be projected to a position in the second image

near a hypothetical defect with similar characteristics.

To be considered in the vicinity of a flaw in the second

image, the projected centre of mass of the defect can

be at the most 5 pixels apart—on each coordinate—

from its candidate correspondence.
7 Alternatives to choose q, for instance, are: Cauchy, Huber, Tukey,

Geman-McClure and Lorentzian robust functions [27]. In our

experiments we use the Geman-McClure one.

8 Inspection approaches which make use of only one view are also

affected by this problem.
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iii. Feature proximity. To be considered similar to a

flaw in the second image, at least four out of six shape

characteristics of the projected region might differ by

at most 30%, which is measured by taking the norm of

the difference between the two normalised vectors of

features. The following characteristics are taken into

account: area of the segmented defect, average grey

value, second derivative, and three different values of

contrast.

To overcome the identifiability problem, correspon-

dences in more views can be investigated. For instance,

even if we identify a defect in the frames 1 and 3 (but not in

frame 2), we can track it if we check the correspondences

between views 1 and 3. This strategy was implemented by

Mery and Filbert in [1] under the calibrated approach. They

were able to track correspondences between a frame i and

the following frames i + 1, i + 2 and i + 3. However, the

trade-off between the computational time demanded by

these calculation and the performance requirements im-

posed by a particular application, must be carefully

analysed.

3 Experimental results

In this section we apply our approach for automated defect

detection in a sequence of 72 uncalibrated radioscopic

images of an aluminum wheel. A segment of six views was

shown in Fig. 2. The dimensions of the wheel are 470

[mm] diameter and 200 [mm] height. The image size is

572 · 768 pixels with a dynamic range of 8 bits. The

wheel has 12 known flaws. Three of these defects are

existing blow holes with diameter ˘ = 2.0 – 7.5 [mm] (see

Fig. 7). They were initially detected by a visual human

inspection. The remaining nine flaws were produced by

drilling small holes (˘ = 2.0 – 4.0 [mm]) in positions of

the casting which were known to be difficult to detect (see

Fig. 3). A pattern of 1 [mm] in the middle of the wheel is

projected as a pattern of three pixels in the image, i.e. the

defects are actually very small. In addition, because the

signal-to-noise ratio in our radioscopic images is low, the

flaws signal is slightly greater than the background noise,

as illustrated in Fig. 7. In our experiments, the mean grey

level of the flaw signal (without background) ranges from

2.4 to 28.8 grey values with a standard deviation of 6.1.

Analysing a homogeneous background in different areas of

interest we obtain a noise signal within ±13 grey values

with a standard deviation of 2.5. For this reason, the seg-

mentation of real defects with poor contrast can as well

involve the detection of false alarms.

The results of the segmentation stage are summarised in

Table 1 and partially shown in Fig. 8. One observes that

there are 7.74 false alarms per image. Nevertheless, the

detection performance in this experiment is still good,

because it is possible to identify 86% of all projected flaws

along the sequence, whereas 14% of the existing 238 flaws

are not identified because of their poor contrast with the

background or because they are located at edges of regular

structures.

The performance of both least-squares (6) and robust

matching (10) algorithms are detailed in Table 2. Notice

that the least-squares method might be equivalently ob-

tained by setting q(z) = z2 in the robust formulation (10).

Each column subdivides the set of detected potential flaws

into separate categories according to their actual condition

and the classification given by each algorithm. The first

four rows show the false negatives, i.e. real defects that

could not be matched in the second frame. The first row

enumerates the real defects that were not detected in the

segmentation stage; the second row reflects the real de-

fects that were impossible to register because they ran out

of the image, which made looking for correspondences

unfeasible. In both cases the errors do not count as bad

performance of either the algorithms or the correspon-

dence analysis, but they are considered as segmentation

problems. The third and fourth rows show these defects in

which the matching method either diverges or converges

on a wrong location, respectively. In both cases the errors

count as limitations of the matching algorithm. Finally,

the fifth, sixth and seventh rows enumerate the detected

defects, false alarms remaining after the matching, and the

false alarms of the segmentation eliminated through the

matching process, respectively. The detection perfor-

mance of the matching algorithms is computed as the

ratio number of detected defects to the number of

detectable defects, excluding those not identified by the

segmentation. The robust algorithm detects almost 87% of

the flaws with only 0.76 false alarms per image. The

computation time required to process one image pair was

in average 24.3 [s] on a Pentium 4, 2.8 GHz desktop

computer.

We have used the same image sequence as in [1], where

flaws were tracked over previously calibrated images. Since

our approach implements tracking over uncalibrated ima-

ges, the results might not be fairly comparable. However,

Table 3 outlines the comparative performance of both ap-

proaches. The methodology based on calibrated images

detects 100% of the defects when using three views,

whereas 83% when using five views. This is because it is

more probable to find flaws correctly segmented in three

views than in five views. Nevertheless, using more views

helps to reduce the percentage of false alarms (relative to

the number of potential defects). On the other hand, our

robust approach for uncalibrated images makes use of only

two views and achieves an acceptable compromise between
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detected defects and false alarms. Ways to improve these

results are discussed further in the concluding section.

As an extended step of our method, postprocessing of

detected flaws could be introduced. For example, defective

objects can be automatically taken out from the manufac-

turing line if the quality control system requires the pro-

duction of flawless pieces only; or, before removing them,

a human inspector could verify the identified flaws by

means of a computer-assisted tool. Moreover, in automated

inspection of castings we should identify flaws with

diameter greater than 2 [mm], which were imaged as re-

gions of approximately 12 pixels in our experiments early

on. This allowed us to segment them correctly together

with many other false alarms that should be discarded. Our

application on aluminum wheels requires that every flaw be

detected, i.e. no defects of certain size should remain at any

particular location of the casting. However, for other

inspection tasks this requirement might be relaxed.

4 Conclusions and future work

The multiple view strategy is opening up new possibilities

for non-destructive testing by taking into account corre-

spondences between different views of a test object. In this

paper, we present the Robust AMVI strategy for tracking

potential defects on uncalibrated image sequences. Mod-

elling the geometric distortion between each pair of con-

secutive or non-consecutive views as an unknown affine

mapping, this framework introduces two complementary

robust procedures to accurately estimate such a transfor-

mation. Firstly, a global approximation of the mapping is

computed through a set of selected corresponding points of

the inspected object. Secondly, the intensities of each

potential defect in the first view are iteratively matched

onto the second view. As a result, only real defects are

successfully tracked and false alarms are discarded. The

practical importance of our method lies in avoiding the

calibration process. The defect detection is carried out di-

rectly on the distorted views produced by an uncalibrated

imaging system. This might help in manufacturing pro-

cesses or in real-time applications that cannot be halted for

calibration purposes, or it entails a difficult, unstable, and

time-consuming process.

In our experimental results on aluminum die castings we

have shown that flaw detection in uncalibrated images is

promising. Our framework recognises 86.7% of all existing

defects with only 0.76 false alarms per image. The utilised

Table 1 Performance of the identification step

Existing defects (D) 238

Segmented potential defects 761

Detected defects (TP) 204

False alarms (FP) 557

Detection performance (TP/D) 85.71%

False alarms per image 7.74

Fig. 8 Segmentation of flaws.

The existing defects were

successfully detected; however,

there are also false alarms

Fig. 7 Radioscopic image of a

casting with grey-level profiles

of three defects
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image sequence is truly representative of those employed

in labs to test algorithms for detecting potential flaws. Each

image along the sequence contained 12 physical defects

synthetically placed in a way that their detection is not

evident due to their form, miniature size, location, inten-

sity, and deepness; some of them are almost imperceptible.

The proposed methodology is straightly generalisable to

any manufacturing system of regular structures. Indeed,

this framework is not limited to X-rays, and can be em-

ployed in uncalibrated sequences acquired from other

imaging systems.

Our tracking scheme is based merely on two views be-

cause the quote of false alarms is low, but it can be run for

three or more views. In the future we plan to extend this

framework from image-pairs to image-triplets by means of

trifocal tensors. Instead of using centres of mass to generate

artificial points, we will consider structural edges of the

objects to avoid lack of closed regions at the outer limits of

the visible casting area, where most of the mismatches took

place.

To improve the computational performance of our

approach it would be worth considering more efficient

algorithms that solve the visual matching problem. In

particular, the inverse compositional approach proposed in

[31] is an interesting alternative that pre-computes the

Jacobian and Hessian matrixes, which are updated at each

iteration in our implementation. On the other hand, it is

also valuable to look into coarse-to-fine strategies like

multigrid methods. These allow the implementation of

highly efficient real-time applications. See for example

[32], where speedups of several hundreds are reached in

estimating real-time motion.

5 Originality and contribution

In the last 15 years, imaging systems have revolutionised

many industrial processes. These systems make use of

cameras to obtain discretised visual representations of the

process being inspected, then specialised algorithms per-

form the necessary computations and the corresponding

data analysis. Such systems make it possible to correct

deviations from the expected behaviour of the process

automatically or in a computer-assisted human way. In

order to obtain accurate results, the camera parameters

must be precisely calibrated. Nevertheless, calibration of

an imaging system is often a difficult, an unstable and time-

consuming process. Moreover, in certain environments the

systems must be re-calibrated periodically. To avoid the

calibration process, in this paper we propose the Robust

AMVI strategy, a methodology to work with uncalibrated

images on industrial visual inspection problems. Applying

two complementary robust procedures, we attempt to track

identified potential defects of an inspected object along an

image sequence. As a result, only existing defects can be

successfully tracked while false alarms are discarded. We

show experiments on aluminum die casting in the context

of X-ray imaging, although this framework is straightly

generalisable to any manufacturing system of regular

structures. Since no calibration is required, it is indeed

possible to implement an automated multiple view

inspection for industrial environments where calibration is

not available or it cannot be afforded.
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