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Abstract. In order to describe anisotropy in image processing models
or physical measurements, matrix fields are a suitable choice. In diffusion
tensor magnetic resonance imaging (DT-MRI), for example, information
about the diffusive properties of water molecules is captured in symmet-
ric positive definite matrices. The corresponding matrix field reflects the
structure of the tissue under examination. Recently, morphological par-
tial differential equations (PDEs) for dilation and erosion known for grey
scale images have been extended to matrix-valued data.
In this article we consider an adaptive, PDE-driven dilation process for
matrix fields. The anisotropic morphological evolution is steered with a
matrix constructed from a structure tensor for matrix valued data. An
important novel ingredient is a directional variant of the matrix-valued
Rouy-Tourin scheme that enables our method to complete or enhance
anisotropic structures effectively. Experiments with synthetic and real-
world data substantiate the gap-closing and line-completing properties
of the proposed method.

1 Introduction

The enhancement and extraction of shape information from image objects is
one of the principle tasks of mathematical morphology. Traditionally this task
is successfully tackled with morphological operations based on the fundamen-
tal dilation process. Dilation and erosion can be realised in a set-theoretic or
ordering based framework, see e.g. [17, 21, 18, 22–24], but it may also be imple-
mented within the context of partial differential equations (PDE) [1, 2, 7, 20, 25]
and their numerical solution schemes (see [6] as well as the extensive list of lit-
erature cited there). On a set-theoretic basis, locally adaptive linear structuring
elements whose directions are inferred from a diffused squared gradient field have
been introduced for binary images in [26]. The PDE-based approach is concep-
tually attractive since it allows for digital scalability and even adaptivity of the
represented structuring element. This versatility was exploited, for example in
[5] to create a adaptive, PDE-based dilation process for grey value images. In
[9] the idea of morphological adaptivity has been transferred to the setting of



matrix fields utilising the operator-algebraic framework proposed in [11]. The
goal of [9] was to enhance line-like structures in diffusion tensor magnetic reso-
nance imaging (DT-MRI), the main source of matrix fields consisting of positive
semidefinite matrices.

In this article we propose a concept for PDE-based adaptive morphology for
matrix fields, involving directional derivatives in the formulation of the PDE-
based dilation process. In contrast to the work in [9] the numerical realisation
employed in this article takes advantage of the accurate calculation of directional
derivatives that relies on bi-linear interpolation.

We will start from a scalar adaptive formulation for d-dimensional data u in
form of the dilation PDE

∂tu = ‖M(u) · ∇u‖ (1)

with a data dependent, symmetric, positive semidefinite d×d-matrix M = M(u).

Let us consider greyvalue images (d = 2): Then one has M =
(

a b
b c

)
=(

‖(a, b)‖ν>
‖(b, c)‖η>

)
with unit vectors ν = 1

‖(a,b)‖
(

a
b

)
and η = 1

‖(b,c)‖

(
b
c

)
. This turns

(1) into

∂tu =
√

(a∂xu + b∂yu)2 + (b∂xu + c∂yu)2 , (2)

=
√
‖(a, b)‖2(∂νu)2 + ‖(b, c)‖2(∂ηu)2 . (3)

In [9] the partial derivatives ∂xu and ∂yu in (2) were approximated with the
standard Rouy-Tourin scheme [19] to obtain a directional derivative, which might
lead to numerical artifacts. Now, however, we calculate the directional derivatives
necessary for the steering process directly by means of equation (3). Hence it is
decisive for our approach to implement the directional derivatives ∂νu and ∂ηu
in (3) via a directional version of the Rouy-Tourin scheme as will be explained
in Section 4.

Equation (1) describes a dilation with an ellipsoidal structuring element since
an application of the mapping (x, y)> 7→ M(x, y)> transforms a sphere centered
around the origin into an ellipse. The necessary directional information of the
evolving u contained in the matrix M may be derived from the so-called structure
tensor. The structure tensor, dating back to [15, 4], allows to extract directional
information from an image. It is given by

Sρ(u(x)) := Gρ ∗
(
∇u(x) · (∇u(x))>

)
=

(
Gρ ∗

(
∂xiu(x) · ∂xj u(x)

))
i,j=1,...,d

(4)

Here Gρ∗ indicates a convolution with a Gaussian of standard deviation ρ. For
more details the reader is referred to [3] and the literature cited there. In [8,
14] Di Zenzo‘s approach [13] to construct a structure tensor for multi-channel
images has been extended to matrix fields yielding a standard structure tensor

Jρ(U(x)) :=
m∑

i,j=1

Sρ(Ui,j(x)) (5)



with matrix entries Ui,j , i, j = 1, . . . ,m. This tensor is a special case of the full
structure tensor concept for matrix fields as proposed in [12]. For our purpose
it suffices to use the standard tensor Jρ(U(x)) to infer directional information
from matrix fields.

The article is structured as follows: In Section 2 we will briefly give an account
of basic notions of matrix analysis needed to establish a matrix-valued PDE for
an adaptively steered morphological dilation process. We introduce the steering
tensor that guides the dilation process adaptively in Section 3. It is explained
how the numerical scheme of Rouy and Tourin is turned into a directional variant
that can be used on matrix fields in Section 4. An evaluation of the performance
of our approach to adaptive morphology for matrix fields is the subject of Section
5. The remarks in Section 6 conclude this article.

2 Elements of Matrix Analysis

This section provides the essential notions for the formulation of matrix-valued
PDEs. For a more detailed exposition the reader is referred to [11].

A matrix field is considered as a mapping F : Ω ⊂ IRd −→ Symm(IR) from a
d-dimensional image domain into the set of symmetric m×m-matrices with real
entries, F (x) = (Fp,q(x))p,q=1,...,m . The set of positive semi-definite matrices,
denoted by Sym+

m(IR), consists of all symmetric matrices A with 〈v,Av〉 :=
v>Av ≥ 0 for v ∈ IRm . DT-MRI produces matrix fields with this property.
Note that at each point x the matrix F (x) of a field of symmetric matrices can
be diagonalised yielding F (x) = V (x)>D(x)V (x), where V (x) is a orthogonal
matrix, while D(x) = diag(λ1, . . . , λm) represents a diagonal matrix with the
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λm ∈ IR of F (x) as entries.

The extension of a function h : IR −→ IR to Symm(IR) is standard [16]: We set
h(U) := V >diag(h(λ1), . . . , h(λm))V ∈ Sym+

m(IR). Specifying h(s) = |s|, s ∈ IR
as the absolute value function leads to the absolute value |A| ∈ Sym+

m(IR) of a
matrix A. The partial derivative for matrix fields at ω0 is handled componentwise:
∂ωU(ω0) = (∂ωUp,q(ω0))p,q where ∂ω stands for a spatial or temporal derivative.
We define the generalised gradient ∇U(x) at a voxel x = (x1, . . . , xd) by

∇U(x) := (∂x1U(x), . . . , ∂xd
U(x))> (6)

which is an element of (Symm(IR))d, in close analogy to the scalar setting where
∇u(x) ∈ IRd. For (extended) vectors W ∈ (Symm(IR))d with matrix components
we set |W |p := p

√
|W1|p + · · ·+ |Wd|p for p ∈]0,+∞[ . It results in a positive

semidefinite matrix from Sym+
m(IR), the direct counterpart of a nonnegative real

number as the length of a vector in IRd. Since the product of two symmetric
matrices is in general not symmetric we employ the so-called Jordan product

A •B :=
1
2
(AB + BA) . (7)

It produces a symmetric matrix, and it is commutative but neither associative
nor distributive. In the proposed numerical scheme we will use the maximum



and minimum of two symmetric matrices A,B. In direct analogy with relations
known to be valid for real numbers one defines [10]:

max(A,B) =
1
2
(A + B + |A−B|) , min(A,B) =

1
2
(A + B − |A−B|) , (8)

where |F | stands for the absolute value of the matrix F . Now we are in the
position to formulate the matrix-valued counterpart of (1) as follows:

∂tU = |M(U) • ∇U |2 (9)

with an initial matrix field F (x) = U(x, 0). Here M(U) denotes a symmetric
md×md-block matrix with d2 blocks of size m×m that is multiplied block-wise
with ∇U employing the symmetrised product ”•”. Note that | · |2 stands for
the length of M(U) •∇U in the matrix valued sense. The construction of M(U)
is detailed in the next section.

3 Steering Matrix M(U) for Matrix Fields

With these notions at our disposal we propose the following construction of the
steering matrix M in the adaptive dilation process for matrix fields.

First, the directional information is deduced from the standard structure
tensor Jρ(U) in (5); this symmetric d×d-matrix Jρ(U) is spectrally decomposed,
and the following mapping is applied:

H :
{

IRd
+ −→ IRd

(λ1, . . . , λd) 7−→ c
λ1+···+λd

(λd, λd−1, . . . ,
K
c · λ1)

, (10)

with constants c,K > 0. H applied to Jρ(U) yields the steering matrix M ,

M := H
(
Jρ(U)

)
.

The eigenvalues of Jρ(U) fulfil λ1 ≥ · · · ≥ λd. Hence, the ellipsoid associated
with the quadratic form of M is flipped, and, depending on the choice of K,
more excentric if compared with Jρ(U). In this way we enforce dilation towards
the direction of least contrast, i. e. along structures.

Second, in order to enable a proper matrix-vector-multiplication we enlarge
the d× d-matrix M to a md×md-matrix M by an extension operation utilising
the m×m-identity matrix Im and the so-called Kronecker product [16]:

M = M ⊗

 Im · · · Im

...
. . .

...
Im · · · Im

 =

M11Im · · · M1dIm

...
. . .

...
Md1Im · · · MddIm

 (11)

which yields a suitably sized (block-) matrix.



4 Matrix-Valued Directional Numerical Scheme

The first-order finite difference method of Rouy and Tourin [19] may be used to
solve the scalar PDE (3) in the isotropic case with M = Id. Let us denote by un

ij

the grey value of a scalar 2D image u at the pixel centred in (ihx, jhy) ∈ IR2 at
the time-level nτ of the evolution. Furthermore, we employ standard forward and
backward difference operators, i.e., Dx

+un
i,j := un

i+1,j − un
i,j and Dx

−un
i,j :=

un
i,j−un

i−1,j with spatial grid size hx, hy in x− and y−direction, respectively. The
Rouy-Tourin method utilises an upwind approximation in the pixel (ihx, jhy) of
the partial derivative ux (and analogously uy):

ux ≈ max
(

1
hx

max
(
−Dx

−un
i,j , 0

)
,

1
hx

max
(
Dx

+un
i,j , 0

))
. (12)

For a unit vector ν = (ν1, ν2)> the directional derivative ∂νu of u may be
approximated by ∂νu = 〈ν,∇u〉 = ν1∂xu + ν2∂yu . Hence it is close at hand
to approximate numerically equation (2) directly. However, this favours mass
transport along the directions of the x- and y-axis leading to a poor representa-
tion of the directional derivative. Instead we take advantage of equation (3) in
this article and propose an alternative involving an interpolated function value
ui+ν1,j+ν2 defined by the subsequent bi-linear1 approximation (13).

ui,j+1 ui+1,j+1

ui+1,j
ui,j

ui+1,j−1

ui+ν1,j+ν2

ui−ν1,j−ν2

ui+ν1,j+ν2

= ui,j · (1− hx|ν1|) · (1− hy|ν2|)
+ ui+sign(ν1),j · hx|ν1| · (1− hy|ν2|)
+ ui,j+sign(ν2) · (1− hx|ν1|) · hy|ν2|
+ ui+sign(ν1),j+sign(ν2) · hx|ν1| · hy|ν2|

(13)

Fig. 1. Interpolated image value ui+ν1,j+ν2 with
√

ν2
1 + ν2

2 = 1. It allows for backward
and forward finite differences in the direction of (ν1, ν2)

>.

This leads to forward and backward difference operators in the direction of ν
with ‖ν‖ = ‖(ν1, ν2)‖ =

√
ν2
1 + ν2

2 = 1:

Dν
+un

i,j := un
i+ν1,j+ν2

− un
i,j and Dν

−un
i,j := un

i,j − un
i−ν1,j−ν2

(14)

1 For the sake of efficiency we use bi-linear interpolation, although higher order alter-
natives such as bi-cubic or spline interpolation can be employed as well.



and to a direct approximation of the directional derivative

∂νu = uν ≈ max
(

1
h

max
(
−Dν

−un
i,j , 0

)
,

1
h

max
(
Dν

+un
i,j , 0

))
(15)

where h := min(hx, hy) . The extension to higher dimensions poses no prob-
lem. Furthermore, the resulting approximation of the directional derivatives is
also consistent: Note that bi-linear approximation implies ui+ν1,j+ν2 = u((i +
ν1)hx, (j + ν2)hy) +O(hx · hy), and hence

1
h

Dν
+ui,j =

1
h

(
u((i + ν1)hx, (j + ν2)hy)− u(ihx, jhy)

)
+O(max(hx, hy))

= uν +O(max(hx, hy)) . (16)

Analogous reasoning applies to Dν
−ui,j . With the calculus concept presented in

Section 2 it is now straightforward to define one-sided directional differences in
ν-direction for matrix fields of m×m-matrices:

Dν
+Un(ihx, jhy) := Un((i+ν1)hx, (j+ν2)hy)−Un(ihx, jhy) ∈ Symm(IR) , (17)

Dν
−Un(ihx, jhy) := Un(ihx, jhy)−Un((i−ν1)hx, (j−ν2)hy) ∈ Symm(IR) . (18)

In order to avoid confusion with the subscript notation for matrix components
we wrote U(ihx, jhy) to indicate the (matrix-) value of the matrix field evaluated
at the voxel centred at (ihx, jhy) ∈ IR2. The η-direction is treated accordingly.
The notion of supremum and infimum of two matrices – as needed in a matrix
variant of Rouy-Tourin – has been provided in Section 2 as well. Hence, having
these generalisations at our disposal a directionally adaptive version of the Rouy-
Tourin scheme is available now in the setting of matrix fields simply by replacing
grey values un

ij by matrices Un(ihx, jhy) and utilising the directional derivative
approximations.

5 Experiments

Each matrix of the field is represented and visualised as an ellipsoid resulting
from the level set of the quadratic form {x>A−2x = const. : x ∈ IR3} associated
with a matrix A ∈ Sym+

3 (IR). By employing A−2 the length of the semi-axes of
the ellipsoid correspond directly with the three eigenvalues of the matrix. We
apply our PDE-driven adaptive dilation process to synthetic 2D data as well as
to real DT-MRI data. For the explicit numerical scheme we used a time step size
of 0.1, grid size h = hx = hy = 1, and c = 0.01 ·K in (10).

Figure 2(a) exhibits a 32 × 32 synthetic matrix field used for testing. It is
composed of two interrupted diagonal stripes with different thickness, built from
cigar-shaped ellipsoids of equal size but different orientation. The lines intersect
the x-axis with an angle of about −63 degrees. Figure 2(b) shows the result of
applying the proposed adaptive dilation process using a directional Rouy-Tourin
(D-RT) scheme (9). Note that the direction and amount of anisotropic dilation



does not depend on the orientation of the ellipsoids, but on the orientation and
strength of the structural conformations.

Figure 2(c) displays another 32× 32 testing image, namely a spiral-like field
where large portions of the spiral have been removed. Figures 2(d), 2(e) and 2(f)
depict the results of applying isotropic dilation [10], adaptive dilation with the
classical Rouy-Tourin (RT) scheme [9], and the proposed adaptive dilation em-
ploying a directional Rouy-Tourin (D-RT) scheme (9). Comparatively, classical
isotropic dilation requires much more time to fill in the missing ellipsoids and
it also broadens the structures in all directions. Adaptive dilation with the RT
scheme as in [9] does close the gaps in an anisotropic manner. However, numer-
ous artifacts appear due to the numerical scheme bias to the coordinate axes.
This problem is successfully solved in our PDE-based adaptive dilation process
by utilising a D-RT scheme for approximating the partial derivatives. Evidently,
relying on the D-RT scheme is much more accurate for longer dilation times.

We also tested the proposed method on a real DT-MRI data set of a human
head consisting of a 128 × 128 × 38-field of positive definite matrices. Figure
3(a) shows the lateral ventricles in a 40× 55 2D section. Adaptive dilation with
the classical RT scheme [9] and the proposed adaptive dilation process with a
D-RT scheme (9) are shown in Figures 3(b) and 3(c), respectively. For a better
comparison we scale-up these images around the genu area in Figures 3(d)-(g),
including isotropic dilation [10] in Fig.3(e). Due to measurement errors the fibre
tracts are interrupted in the original data. These holes are quickly and anisotrop-
ically filled by our directional-adaptive dilation process while enhancing slightly
the directional structure of the fibres and preserving the shape of the ventricles.
The adaptive dilation process with the classical RT scheme presented in [9] is
affected by numerical artifacts and isotropic dilation [10] is too dissipative.

6 Conclusion

In this article we have presented a method for an adaptive, PDE-based dilation
process in the setting of matrix fields. The evolution governed by a matrix-valued
PDE is guided by a steering tensor. In order to enable proper directional steer-
ing we extended the classical Rouy-Tourin method in two ways: First, turning it
into a directional Rouy-Tourin scheme based on directional finite differences via
interpolation. Second, by means of matrix calculus, extending this directional
scheme to matrix fields solving the matrix valued adaptive dilation PDE. Pre-
liminary tests on synthetic and real DT-MRI data reveal a good performance of
the method when it comes to filling in of missing data and segmentation of image
structures involving directional information. As such the proposed approach may
have its merits, for example, as a preprocessing step for fiber tracking algorithms.

Clearly, it is within our reach to formulate the anisotropic counterparts of
other morphological operations such as erosion, opening, closing, top hats, gra-
dients etc., which can be employed in more advanced image processing tasks for
tensor fields, e.g. filtering and segmentation. In addition, the extension to the
3D setting is straightforward.
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17. G. Matheron. Eléments pour une théorie des milieux poreux. Masson, Paris, 1967.
18. G. Matheron. Random Sets and Integral Geometry. Wiley, New York, 1975.
19. E. Rouy and A. Tourin. A viscosity solutions approach to shape-from-shading.

SIAM Journal on Numerical Analysis, 29:867–884, 1992.
20. G. Sapiro, R. Kimmel, D. Shaked, B. B. Kimia, and A. M. Bruckstein. Imple-

menting continuous-scale morphology via curve evolution. Pattern Recognition,
26:1363–1372, 1993.

21. J. Serra. Echantillonnage et estimation des phénomènes de transition minier. PhD
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Fig. 2. Synthetic data sets. (a) Top left: Ellipsoids in line-like arrangement. (b) Top
right: Proposed adaptive dilation with D-RT scheme; K = 20, ρ = 4, t = 1. (c)
Middle left: Ellipsoids in spiral arrangement. (d) Middle right: Isotropic dilation;
t = 1. (e) Bottom left: Adaptive dilation with RT scheme; K = 20, ρ = 2, t = 1. (f)
Bottom right: Proposed adaptive dilation with D-RT scheme; K = 20, ρ = 2, t = 1.



Fig. 3. Real data, 2D-slice of a 3D DT-MRI matrix field, and enlarged regions.
(a) Top left: Original data set. (b) Top center: Adaptive dilation with RT scheme;
K = 10, ρ = 1, t = 1.5. (c) Top right: Proposed adaptive dilation with D-RT scheme;
K = 10, ρ = 1, t = 1.5. (d) Middle left: Zoomed original data set. (e) Middle right:
Zoomed isotropic dilation after t = 1.5. (f) Bottom left: Zoomed adaptive dilation
with RT scheme. (g) Bottom right: Zoomed adaptive dilation with D-RT scheme.


