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Abstract. The Nonlocal Data and Smoothness (NDS) filtering frame-
work for greyvalue images has been recently proposed by Mrazek et al.
This model for image denoising unifies M-smoothing and bilateral fil-
tering, and several well-known nonlinear filters from the literature be-
come particular cases. In this article we extend this model to so-called
matrix fields. These data appear, for example, in diffusion tensor mag-
netic resonance imaging (DT-MRI). Our matrix-valued NDS framework
includes earlier filters developped for DT-MRI data, for instance, the
affine-invariant and the log- Fuclidean regularisation of matrix fields. Ex-
periments performed with synthetic matrix fields and real DT-MRI data
showed excellent performance with respect to restoration quality as well
as speed of convergence.

1 Introduction

Image denoising and simplification is a ubiquitous task in image processing,
and numerous techniques have been developed over the years. These methods
are based e.g. on statistical notions, partial differential equations, variational
principles and regularisation methods. Nevertheless, a common feature for most
of the techniques is an averaging process over the neighbourhood of each pixel.
An early example is the sigma filter of Lee [I], and the M-smoothers of Chu
et al. [2] fall also in this category. Polzehl and Spokoiny proposed a technique
called adaptive weights smoothing [3]. The W-estimator by Winkler et al. [4] has
a close relation to the spatially weighted M-smoothers [B]. The bilateral filter by
Tomasi and Manduchi [6] can be described as a weighted averaging filter as well.

The energy-based approach recently proposed by Mrazek et al. [7] combines
M-smoothers with bilateral filtering. It is a fairly general nonlocal filtering frame-
work that takes advantage of the so-called Nonlocal Data and Smoothness terms,
hence referred to as NDS in this article. These terms allow for the processing
of information from, in principle, arbitrary large neighbourhoods around pix-
els. The data term rewards similarity of our filtered image to the original one,
and hence counteracts the smoothness term which penalises high variations of
the evolving image inside a neighbourhood. A thorough investigation of the
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NDS-framework and its relation to other filters for grey scale images has been
performed in [§] and [9].

The goal of this article is the extension of this rather general filtering frame-
work to matrix-valued data, so-called matrix- or tensor-fields, which we regard
as mappings from points of a set in R? into the set S(k) of real, symmetric
k x k-matrices. Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) is the
most prominent source for this data type: This modern medical image acquisition
technique associates a real symmetric positive-definite 3 x 3-matrix to each voxel
of the volume under consideration. These matrices, visualised by ellipsoids, indi-
cate the diffusive behaviour of water molecules under thermal Brownian motion,
and as such reflect the structure of the surrounding tissue. However, symmetric
but possibly indefinite matrix-fields also appear, for example in physics and engi-
neering as general descriptors of anisotropic behaviour. In any case, the data are
often corrupted by noise and a filtering and simplification of the matrix fields is
necessary. Filtering for processing of positive definite matrix-fields, namely DT-
MRI data, based on diffusion and regularisation concepts have been proposed in
[TO/TT], based on differential geometric considerations in [T2T3TAITHTEIUTS].
An alternative framework relying on an operator-algebraic view on symmetric
matrices provides the ground for filtering and regularisation of matrix fields,
positive definite or not, in [T9J20].

A short review of the NDS framework in the subsequent Section ] will reveal
that for its applicability the data to be processed have to be elements of a
vector space equipped with a metric, and hence be extended to matrix-fields.
In Section [3] we show that various filtering approaches described in the recent
literature are particular cases of the general matrix-valued NDS framework. We
report on experiments in Section €] pointing out the capabilities and prospects
of the NDS methodology. We summarise our contribution in Section Bl

2 NDS Framework and Its Extension to Matrix Fields

Let f,u € R? be discrete d-dimensional scalar images. In this article we assume
d=1,...,3, and f stands for the noisy image while u represents a processed
version of it. Let J = {1,...,n} be the index set of all pixels in the images.
The pixel position in the d-dimensional grid is indicated by z; (i € J) and
h? ; = |&; — x;|* stands for the square of the Euclidean distance between the two
pixel positions z; and ;. Such quantity will be referred to as spatial distance.
The tonal distance then is the distance between grey values of two pixels, for
example |u; — f;|?. The functional E of the NDS filter presented in [7] is a linear
combination of a data and a smoothness term:

B(u)=0a > > Wp (ju; — %) wp (|z: — 2[?)
e jed

+(1—-a ZZWS (\ui—uj\Q) wg (|mi—a:j|2). (1)

ieJ jeJg
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This formulation combines a similarity constraint and a smoothness constraint,
which are weighted by a parameter o € [0,1]. The spatial weights wp and
wg take into account the spatial distance between pixel positions x; and z; in
contrast to the tonal weights ¥p and ¥g penalising high deviations between the
corresponding grey values. Omitting the details which can be found in [§] the
minimiser of this functional is obtained through a fixed-point iteration based on

aZwD (|uz - )fJ wp(h 21)"‘ 2(1-a) Zws (|uz _u1|2) U?ws(h?,j)

k41 jedJ

i QZWDO% fil )wD( )+ 2(1—a) ZLT/S(|uZ—uJ|) s(hi;)
jeJ
(2)

Positivity of the denominator is guaranteed if J/ES’D}(SQ), w{S’D}(hQ) > 0, i.e.,
the penalisers are monotonically increasing, hence the right hand side of () is
a convex combination of grey values u;, f;.

We transfer the scalar fixed point formulation (2) to the matrix-valued setting.
We use capital letters F;, U; to denote matrices of a matrix field at position x;.
An associated fixed point iteration for matrix-fields is given by

@y Wy (d(UF, Fy)?) H(Fy) wp(hy ;) +2(1 = ) > W (d(UF, UF)?) HUS) ws(h? )

ka+1 _ H,l jeJ jeJ
' ad W (d(UF, Fy)?) wp(h? ) +2(1 — )Y W (d(UF,UF)?) ws(h?))
JjEJ jeJ

(3)
where we incorporated the following adjustments: The term d(A, B) denotes a
distance measure between the two matrices A, B € S(n). Two instances are of
relevance in this article: One is the computationally inexpensive Frobenius norm
of matrices,
dr(A,B) == ||A—=B|r (4)
with ||C||F := y/trace(CTC). The second one is the log-Buclidean distance be-
tween matrices in ST(n), i.e., the set of real symmetric positive-semidefinite
n X n-matrices, [16],

dre(A,B) = |[In(A) —In(B)||F - ()

H in @) is a function which is applied to a symmetric matrix M. To this end
let M have the spectral decomposition

M = A diag(Ay, ..., \y) AT

where A is an orthogonal matrix and diag(A1, ..., \,) is a diagonal matrix with
the eigenvalues \; of M as non-zero diagonal entries. Then

H(M) = Adiag(H(M),...,H\,)) AT

provided H is defined for each of the scalar values \;. In the next section we
will see some instances of such mappings that allow us to obtain several filters
suggested in the literature as particular cases of our general NDS framework for
matrix-fields (3.
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3 Related Filters within This Framework

The matrix-valued NDS framework offers many degrees of freedom. It can even
be considered as an unified approach to M-smoothing (a« = 1) and bilateral
filtering (o = 0) for matrix fields. Furthermore, we are able to regain several
filtering approaches known from the literature by specifying relevant quantities

in (B)):
1. Affine-invariant weighted average of diffusion tensors [I3IT4II5IT7] with
e a=0,¥s(d?) = d? ws = Gaussian,
e Up and wp do not play any role,
_1 _ 1 _ 1 _1
o H(A5) = A7 "I (475 4;47%) A72,

2. Log-Euclidean weighted average of diffusion tensors [I6] with
o the same than in[ll but with H(A,;) = In(4;).

3. Affine-invariant regularisation/interpolation of tensors fields via a discrete
geodesic marching scheme [I5] with
o \= 2'(1;&), VUs(d?) = any, wg = unit disk,
o Up(d?) = d? wp = Gaussian,
_1 _ 1 _ 1 _1
o H(A5) = A7 "I (475 4;47%) A72,

4. Log-Euclidean regularisation/interpolation of tensors fields via a discrete
geodesic marching scheme [21] with
o the same than in [ but with H(A;) = In(4;).

5. A version of bilateral filtering for tensor fields [22] with
o a=0,Us(d?) =d? ws = p1-ds + p2 - |lzi —a5] (1, p2 > 0),
e Up and wp do not play any role,
° H(A]) = IH(A])

Note that most of the mentioned methods do not exploit the utilisation of
nonlocal information in the data/similarity term, i.e., & = 0, or the radius of
action of their smoothness term is restricted to the unit circle. In this sense,
we can consider generalised versions of those methods within the scope of the
neighbourhood filtering framework for matrix fields proposed in Section 2l Of
course, further specialised filters for tensor fields can be generated for specific
applications by appropriately setting the matrix-valued NDS model.

In Section @ we will demonstrate the denoising capabilities of our general
framework regarding two prominent special cases. Their performance will be
evaluated with respect to restoration quality and speed of convergence on syn-
thetically generated tensor fields and on real DT-MRI data.

4 Comparative Results

In this section, we test our general filtering framework for matrix fields (@) on
synthetic and real-world data. Fig. [[l shows a 2-D dataset consisting of 32 x 32
matrices. The data are represented as ellipsoids via the level sets of the quadratic
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Fig. 1. Synthetic data. Left: Original matrix field with homogeneous structures con-
sisting of four types of matrices. Middle Top: Scaled-up region of the original matrix
field. Middle Bottom: Version degraded with o = 500. Right Top: Version degraded
with ¢ = 1000. Right Bottom: Version degraded with ¢ = 2000.

form 2T A=22 = const., x € R?, associated with a matrix A € S*(3). By using
A~2 the lengths of the semi-axes of the ellipsoid correspond directly with the
three eigenvalues of the matrix A. To demonstrate the denoising capabilities,
we additively degrade our uncorrupted synthetic matrix field (U;);es with U; €
57 (3), with random positive definite matrices (N;);e s, i.e., F; = |U;+ N;|, where
F;; is the corrupted version of U;. The eigenvalues of the noise matrix IN; stem
from a Gaussian distribution with vanishing mean and standard deviation . The
eigenvectors of the noise matrix result in choosing three uniformly distributed
angles and rotating IV; by these angles around the coordinate axes. Finally, we
take the absolute value for positive definiteness. Considering that the eigenvalues
of the original matrix field are in the range [1000, 4000], the noisy tensor fields
for o = 500, 1000, 2000 are shown in Fig. [l

4.1 Two Prominent Filtering Models: NDS-I and NDS-LE

We focus on two models: The NDS-I model when choosing H(U) = U, and the
NDS-LE (log-Fuclidean) model for H(U) = In(U). Independently of the model,
the choice of the tonal penalisers ¥p and ¥g is done following two strategies:

(P.1) Penalisers requiring no parameters at all. We use the Whittaker-Tikhonov
penaliser for the data term, i.e., ¥p(d?) = d?, and the Nashed-Scherzer
penaliser [23] for the smoothness term, i.e, Ws(d?) = 3d? +Vd? + €2, with
e=1and g = 136.

(P.2) Penalisers with better edge-preservation properties, paying the price of
including a parameter A as a contrast parameter. We use the classic Perona-
Malik penaliser, [24], ¥(d?) = A?In (1 + iz) in both the data and the
smoothness term. In this case the parameter \ is estimated as the 1%-
quantile of the distribution of distances for a particular distance measure
d and noise level o.



526 L. Pizarro et al.

NDS-I model influenced by o NDS-LE model influenced by o

1800

—6— o= 500 A —6—o= 500

1600 —8— o= 1000 1600 —8— o= 1000

—A— o=2000 —A— =2000
1400 14005
1200 1200
> 1000 S 1000

1 1
W 800 L 800
600 600
400 400
200 200
Q
0.1 02 03 0.4 05 0.6 0.7 0.8 0.9 1 0.1 0.2 0.3 0.4 05 06 0.7 0.8 0.9 1
parameter o parameter o.

Fig. 2. Influence of the parameter « on the NDS-TI model (left) and the NDS-LE model
(right) under different levels of noise o = 500, 1000, 2000. The penalisers (P.2) are used
in both models. NDS-I uses dr as tensor distance, while NDS-LE uses drg. The size
parameters of the spatial weight functions were set to rp =rg = 1.

Also independent of the filtering model, we consider two tensor distance mea-
sures: the Frobenius distance dr (@) and the log-Euclidean distance dpg ().

272
function for both the data and the smoothness term, with size parameters rp
and rg, respectively.

Last but not least, we use a soft window w,.(h?) = exp (— h? ) as spatial weight

4.2 Influence of Parameters

Although we have specified the NDS-I and the NDS-LE models in the previous
section, note that there are still some free parameters that will directly influence
the denoising capabilities of our filters. Namely, the parameter « that counter-
balances the contributions of the data and the smoothness term in (), and the
size parameters rp and rg of the spatial weight functions that allow smooth-
ing within large neighbourhoods. Fig. [2] shows the influence of the parameter
« on the NDS-I and NDS-LE models with respect to the reconstruction quality
measured as the norm of the difference between the original matrix field F' and

N 1/2
the denoised field U, i.e., ||[F — Ul := (zizl I|F; — UiHF) . The non-trivial

steady-state is shown for o € (0, 1]. We see that there is a value & for which the
restoration quality is optimal.

We now want to quantify the influence of the size parameters rp, rg. In-
creasing the parameters naturally increases the number of arithmetic operations
in @)). However, the restoration quality might be improved and the steady-
state can be reached in a shorter time. If we vary the parameters in the range
[0, 4] there are 25 possible combinations (rp,rg) that we arrange as O, ..., Oz
following the ordering shown in Fig. [ (top). The diagonal lines in the figure
group the combinations according to complexity order (CO), i.e., configurations
with equal/increasing number of operations. Fig. Bl (bottom) shows the restora-
tion quality (left), the logarithmic computational time (middle), and the overall
performance (right) of the NDS-I model. The last measurement is simply the
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Fig. 3. Top: Ordering O, ..., 02 for the different combinations of (rp,rs) grouped
according to complexity order CO; (i = 1,...,8). Bottom, left to right: Normalised
restoration quality, computational time, and overall performance of the NDS-I model
in filtering the noisy tensor field with noise level ¢ = 1000. The penalisers (P.2) are
used with distance measure dp.

mean between the first two normalised measurements. We see that the config-
uration with the best performance in terms of quality and fast convergence is
Os = (rp,rs) = (1,2) for « = 0.9. It is worth mentioning that the configura-
tions Os = (2,0), O = (3,0) and O14 = (4,0), lead to good results despite the
fact that they allow only for the incorporation of neighbourhood information in
the data term. This is in agreement with the findings in [9]. The authors argued
that filters based only on nonlocal M-smoothers can produce similar results to
those obtained via classical variational /regularisation methods. The observations
presented here are also valid for the NDS-LE filtering model.
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Fig. 4. Left: Restoration quality achieved by the NDS-I model using independently
both type of penalisers (P.1) and (P.2), as well as both distance measures dr and dpg.
Right: The same for the NDS-LE model. All parameters rp, rs and a were optimised.

Table 1. Best filtering results for both the NDS-I and the NDS-LE models under noise
level o = 500, 1000, 2000. All parameters were optimised.

o Model ro rs «a |[F=U|| TIter. Time (s)
NDS-I 2 3 0.9 167 33 0.69
500
NDS-LE 1 2 0.9 264 71 19.31
NDS-I 1 2 0.9 409 72 0.71
1000
NDS-LE 2 0 02 568 236 57.97
NDS-I 2 0 0.1 1238 256 1.91
200
NDS-LE 2 1 0.9 1214 32 9.50

4.3 Comparing the Models

In this section we juxtapose the NDS-I and the NDS-LE models. We evaluate
their performance in filtering the noisy tensor fields shown in Fig. [l for different
levels of noise o = 500, 1000, 2000.

Fig. @ depicts the restoration quality achieved by both the NDS-T and the
NDS-LE frameworks. We notice that both models achieve the best performance
when the Perona-Malik penalisers (P.2) are employed. With respect to the tensor
distance measures, it turned out that the NDS-I model works better with the
Frobenius distance, while the NDS-LE model in principle performs better with
the log-Euclidean distancdl. The best results are outlined in Table[I Tt is clear
that both models benefit from nonlocal smoothing by considering rp,rgs > 0.
Note that the NDS-I model is considerably faster than the NDS-LE variant,
the latter being burdened with the additional computation of logarithms and
exponentials of matrices. Computations have been performed on a 1.86 GHz
Intel Core 2 Duo processor (without exploiting multitasking) executing C code.

L It is slightly worse for the noise level o = 2000.
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Fig. 5. Left Column, Top to Bottom: Matrix-fields degraded with noise level o =
500, 1000, 2000. Middle Column, Top to Bottom: Steady-state results of Table [T
for NDS-I filtering of noisy tensor fields with noise level o = 500, 1000, 2000. Right
Column, Top to Bottom: The same for NDS-LE filtering.

Fig. Bl shows the denoised matrix fields for the results presented in Table [l
At any noise level NDS-I filtering produces a slightly more homogeneous output,
in accordance with the original, than the NDS-LE model. This effect is most
prominent in the case of the filtering of the noisy field with noise level o = 1000,
but it is also present in the filtered version of the noisy field associated with
o = 500, in particular in the lower part of the inner ring. Particularly noticeable
in the example for o = 1000 is that both the edges of the image structures and
the anisotropy of the matrices are better preserved if filtered with the NDS-I
model than with the NDS-LE variant. Moreover, the eigenvalue-swelling-effect
on the edges is more perceptible in the NDS-LE model than in the NDS-I model.

4.4 Test on DT-MRI Data

In DT-MRI, noisy diffusion weighted images (DWIs) are used to estimate the
diffusion tensors via regression analysis. It is known that DWIs are perturbed by
Rician noise [25]. However, the noise distribution of the diffusion tensors obeys a
multivariate Gaussian distribution, as it has been statistically proven by Pajevic
and Basser [26]. Here, as it was done in the previous section, we directly apply
our filtering framework to the tensor field, and not to the scalar DWIs. We use a
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Fig. 6. Denoising capabilities of the NDS-I model on real-world data. Top Left: 2-D
section (50 x 70 x 1 voxels) of a 3-D DT-MRI dataset showing the corpus callosum.
Top Right: Scaled-up region of the corpus callosum. Bottom Left: Filtered region
using the NDS-I model with penalisers (P.2) and distance measure dp, and parameters
A = 140 (0.01%-quantile), rp = 1, rs = 2, and « = 0.9. 386 iterations (=4 seconds)
were needed to reach the steady-state. Bottom Right: The same with parameters
A = 355 (1%-quantile). 184 iterations (=2 seconds) needed.

real-world 3-D DT-MRI dataset of a human head consisting of a 128 x 128 x 30-
field of positive definite matrices. Fig. [6l shows a 2-D section of the corpus callo-
sum, which has been filtered using the NDS-I model. We see that after denoising
edges are well preserved and localised, and zones with different anisotropy are
clearly distinguished. These characteristics are important in applications such as
tractography [27] and the study of diseases associated with certain abnormalities
in the brain anatomy [2§].
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5 Conclusions

In its fixed point form the NDS filtering framework model has been extended in
full generality to the matrix-valued setting. It generalises several known filtering
concepts suggested in the literature for the filtering of DT-MRI data including
those employing the log-Euclidean framework to preserve positive definiteness
of the data. Despite its many degrees of freedom it does not require sophisti-
cated tuning to outperform previous related filtering concepts concerning com-
putational time and denoising quality. We emphasise that our methodology is
generic and thus not restricted to DT-MRI denoising. It can be applied to any
multi-valued image with values in the space of symmetric matrices. In a future
work we will make full use of the directional and shape information of the local
structures to steer the filtering process.
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scher Akademischer Austauschdienst (DAAD), grant A/05/21715.
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