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Abstract. Inpainting techniques are becoming increasingly important
for lossy image compression. In this paper, we investigate if successful
ideas from inpainting-based codecs for images can be transferred to lossy
audio compression. To this end, we propose a framework that creates a
sparse representation of the audio signal directly in the sample-domain.
We select samples with a greedy sparsification approach and store this
optimised data with entropy coding. Decoding restores the missing sam-
ples with well-known 1-D interpolation techniques. Our evaluation on
music pieces in a stereo format suggests that the lossy compression of our
proof-of-concept framework is quantitatively competitive to transform-
based audio codecs such as mp3, AAC, and Vorbis.

1 Introduction

Inpainting [23] originates from image restoration, where missing or corrupted
image parts need to be filled in. This concept can also be applied for compression:
Inpainting-based codecs [13] represent an image directly by a sparse set of known
pixels, a so-called inpainting mask. This mask is selected and stored during
encoding, and decoding involves a reconstruction of the missing image parts with
a suitable interpolation algorithm. Such codecs [26, 27] can reach competitive
quality to JPEG [25] and JPEG2000 [31], which create sparsity indirectly via
cosine or wavelet transforms.

In lossy audio compression, all state-of-the-art codecs use a time-frequency
representation of the signal and are thereby also transform-based. This applies
to mp3 (MPEG layer-III) [17], advanced audio coding (AAC) [18], and the open
source alternative Vorbis [34]. They resemble the classic image codecs, whereas
inpainting-based compression has so far not been explored for audio data. There-
fore, we propose to select and store samples directly for sparse audio represen-
tations that act as known data for inpainting.
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The transition from images to audio creates some unique challenges, since
visual and audio data differ in many regards. As has been shown for 3-D medical
images [27], the effectiveness of inpainting-based codecs increases with the di-
mensionality of the input data. Audio signals only have a single time dimension,
but feature a high dynamic range compared to the 8-bit standard in images.
Moreover, more high-frequent changes can be expected in audio files. So far it
is unknown how these differences affect the performance of interpolation and
data selection strategies. In the following, we want to investigate the potential
of inpainting-based audio compression.

Our Contribution. We propose a framework for lossy audio compression
that is designed to transfer successful ideas from inpainting-based image com-
pression to the audio setting. Based on this framework, we implement two proof-
of-concept codecs that rely on different 1-D inpainting techniques: linear and
cubic Hermite spline interpolation. Moreover, we integrate two core concepts
from inpainting-based compression: sparsification [22] for the selection of known
data locations, and tonal optimisation [22, 27] of the corresponding values. Our
input data, music pieces in a stereo format, contain significantly more data than
standard test images. Therefore, we need to adapt the optimisation techniques
to the audio setting. Localised inpainting allows us to decrease computation time
significantly without affecting quality. Moreover, we propose a greedy sparsifi-
cation approach with global error computation instead of the stochastic, local
methods common in image compression. A combination of quantisation, run-
length encoding (RLE) and context-mixing for storage of the known audio data
complements these optimisation strategies. We compare our new codecs to mp3,
AAC, and Vorbis w.r.t. the signal-to-noise ratio.

Related Work. The reconstructing of missing image areas was first investi-
gated by Masnou and Morel [23] who referred to this as a disocclusion problem.
Later, Bertalmı́o et al. [4] coined the term inpainting for this application of in-
terpolation in image restoration. Many successful contemporary inpainting op-
erators rely on partial differential equations (PDEs), for instance homogeneous
diffusion [16] or edge-enhancing anisotropic diffusion (EED) [33] inpainting. An
overview of methods can be found in the monograph of Schönlieb [28]. These
methods achieve a filling-in effect based on physical propagation models. An-
other popular approach to inpainting are exemplar-based strategies that restore
missing values by nonlocal copy-paste according to neighbourhood similarities
[12]. For audio, the term inpainting is rarely used. However, interpolation is an
important tool for signal restoration (e.g. [20]) or synthesis (e.g. [24]). Adler et
al. [2] were the first to apply the core ideas of inpainting to audio signals: They
presented a framework for filling in missing audio data from a sparse representa-
tion in the time domain. Their dictionary approach relies on discrete cosine and
Gabor bases. There is also a vast number of publications that deal with specific
scenarios such as removal of artefacts from damaged records [20] or noise in voice
recognition applications [14] that rely on interpolation and signal reconstruction
in a broader sense. Since a complete review is beyond the scope of this paper,
we refer to the overview by Adler et al. [2].
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It should be noted that while interpolation is not widely used for audio com-
pression, linear prediction has been applied successfully, for instance by Schuller
et al. [29]. However, the core technique behind common codecs are transforms.
For instance, MPEG layer-III [17] (mp3) uses a modified discrete cosine trans-
form (MDCT) on a segmented audio signal. The sophisticated non-uniform quan-
tisation strategies and subsequent entropy coding are augmented with psychoa-
coustic analysis of the signal’s Fourier transform. Advanced audio coding (AAC)
[18], the successor of mp3, and the open source codec Vorbis [34] rely on the same
basic principles. They also combine the MDCT with psychoacoustic modelling,
but can achieve a better quality due to an increased flexibility of the encoder. A
more detailed discussion of these codecs and a broader overview of the field can
be found in the monograph by Spanias et al. [30].

A major competitor to transform-based audio compression arose from the
so-called sinusoidal model [20, 24]. It represents an audio signal as the weighted
sum of wave functions that have time-adaptive parameters such as amplitude and
frequency. Sinusoidal synthesis approaches have also been applied for compres-
sion. These use interpolation, but only in the domain of synthesis parameters.
Such parametric audio compression [11] also forms the foundation of the MPEG4
HILN (harmonic and individual lines plus noise) standard [19]. HILN belongs to
the class of object-based audio codecs: It is able to model audio files as a com-
position of semantic parts (e.g. chords). Vincent and Plumbley [32] transferred
these ideas to a Bayesian framework for decomposing signals into objects.

Since we use ideas from image compression to build our framework, some
inpainting-based codecs are closely related to our audio approach. The basic
structure of the codec is inspired by the so-called exact mask approach by Peter
et al. [26]. It is one of the few codecs that allows to choose and store known data
without any positional restrictions. However, we do not use optimal control to
find points as in [26]. Instead, we rely on sparsification techniques that resemble
the probabilistic approach of Mainberger et al. [22]. Our greedy global sparsifi-
cation differs from probabilistic sparsification in a few key points: In accordance
to the findings of Adam et al. [1], we use global error computation instead of lo-
calised errors. Moreover, our approach does not rely on randomisation for spatial
optimisation anymore, but is a deterministic, greedy process that always yields
the same known data positions. Our choice of PAQ [21] for the storage of the
sample data is motivated by several works that have evaluated different entropy
coding techniques for inpainting-based compression [26, 27].

Organisation of the Paper. We introduce our framework for inpainting-
based audio compression in Section 2. Details on inpainting and data optimisa-
tion for two codecs follow in Section 3. These codecs are evaluated in Section 4,
and we conclude our paper with a summary and outlook in Section 5.

2 A Framework for Inpainting-based Audio Compression

Our proof-of-concept framework follows the common structure of current inpain-
ting-based compression methods [26, 27]. An input audio file f : Ω ⊂ N → Zc
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Input: Original audio signal f ∈ Zn, desired final mask density d.
Initialisation: Mask m = (1, 1, ..., 1)> ∈ {0, 1}n is full. Heap structure h is empty.

Update set A = {1, ..., n} contains all samples. Reconstruction error cache e = 0.
Compute:

do
for all k in A do

Remove the sample fk temporarily from the mask (i.e. mk = 0).
Inpaint reconstruction r(m,f) with error ek.
Set mk ← 1, add sample fk to heap with reconstruction error he,k ← ek.

end for
do

Get the sample fj from top of heap h.
if mj = 1 and he,j = ej
then remove fj permanently from mask (mj ← 0).

while no sample has been permanently removed.
Define A as set of samples whose error value is affected by removal of fj .

while pixel density of m larger than d.
Output: Mask m of density d.

Algorithm 1: Greedy Global Mask Sparsification.

maps time coordinates Ω = {1, ..., n} to samples of the waveforms from c ≥ 1
audio channels. Encoding aims to select and store a subset K ⊂ Ω of known
data. During decoding, inpainting uses these data for a lossy restoration of the
missing samples on Ω \K.

In the following, we describe the individual steps of the encoding pipeline:
This includes sample selection and optimisation, as well as efficient storage with
prediction and entropy coding. Our optimisation are very flexible w.r.t. the in-
painting method: We only assume that a deterministic inpainting algorithm com-
putes a reconstruction r(K, g): Ω → Z from samples g: K → Z on the set K.
In Section 3 we discuss the actual inpainting methods for our experiments in
Section 4. Our codec is designed to be easily extendable with other inpainting
techniques, such as the dictionary-based approach of Adler et al. [2].

Step 1: Sample Quantisation. First, we apply a coarse quantisation that
reduces the number of sample values to q ≥ 2. In order to adapt to the coding
pipeline from image processing, this involves a global shift to a non-negative
sample range {0, . . . , p− 1} which is reversed again during decoding. A uniform
quantisation partitions this sample range into q subintervals of length p/q, map-
ping to quantised values {0, . . . , q−1}. For inpainting, we assign the quantisation
index k to the corresponding quantised value ` from the original range:

` =

⌊
kp

q
+

1

2

⌋
. (1)

All following optimisation steps use quantised values for inpainting and coding.
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Step 2: Greedy Global Sparsification. A popular method for selecting
the spatial location of known pixels in inpainting-based compression is prob-
abilistic sparsification [22]: It starts with a full pixel mask, removes a set of
randomly selected candidate points. and performs inpainting. A subset of candi-
dates with the lowest local error are then permanently removed, since they are
considered easy to reconstruct. We iterate these steps until the desired number
of mask points, the target density, is reached. This method is easy to implement
and supports all inpainting techniques. However, a recent analysis [1] revealed
that the local error computation in this approach yields a suboptimal point se-
lection. Therefore, we use a different sparsification strategy that relies on global
error computation as proposed by Adam et al [1]. Moreover, we remove the ran-
dom component for candidate selection and obtain a greedy global sparsification
that is described in Algorithm 1.

For each audio sample in the mask we compute the increase in the reconstruc-
tion error that would result from its removal. With this global reconstruction
error, we sort the samples in a heap. Then we iteratively remove in every step
the sample on top of the heap (i.e. with the lowest effect on the error) perma-
nently from the mask. Afterwards, all mask samples that are affected by this
removal are updated and reinserted into the heap. Which mask samples need to
be updated depends on the inpainting approach (see Section 3). Note that, in
order to avoid a costly purging of the heap in each iteration, the unmodified heap
elements remain. If the sample at the top has been already removed or its error is
not up-to-date, the algorithm moves on to the next one. For image compression,
the global impact of individual changes in the mask cannot be considered due
to runtime issues. In Section 3 we explain how we can reduce the computational
load with an update strategy for the audio setting.

Step 3: Sample Optimisation. It is well-known in inpainting-based image
compression that optimising not only the location of known data, but also the
function value in the stored pixels can yield large improvements [7, 15, 22, 27].
Since we aim for a flexible framework, we use the technique from [27], as it does
not require a specific inpainting technique. It performs a random walk over all
mask samples: If a change to the next higher or lower quantisation level improves
the reconstruction, it is kept, otherwise it is reverted. As for sparsification, we
address runtime questions in Section 3.

Step 4: Location Encoding. Current state-of-the-art codecs [26] employ
block coding in 2-D to store exact masks with unrestricted placement of known
points. A natural substitute for this in 1-D is run-length encoding (RLE) [5]. We
represent the mask as a sequences of ones (known samples) and zeroes (unknown
samples). In sparse masks, we expect isolated ones with long runs of zeroes in-
between. Therefore, we only encode runs of zeroes together with a terminating
one. This allows us to store the mask as a sequence of 8bit symbols. Runs up to
length 254 require only one symbol while longer runs are split accordingly (e.g.
300 is represented by 255, 45).
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(a) local sparsification update for cubic Hermite spline
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(b) local sample update for cubic Hermite spline

Fig. 1: Local Update Intervals for the cubic Hermite spline. The coloured
solid lines mark the update intervals and the associated dotted lines show which
known samples are involved in the corresponding reconstruction.

Step 5: Prediction and Entropy Encoding. Due to recurring patterns
in audio files (in particular for music recordings), prediction can be used to
achieve higher compression ratios. To this end, many publications on inpainting-
based compression (e.g. [26, 27]) apply the context-mixing algorithm PAQ [21].
It predicts the next bit in a stream containing different data types according
to numerous predefined and learned contexts. The weighting of these contexts
adapts to the local file content with a gradient descent on the coding cost. We
use PAQ for an additional joint encoding of the output data from Steps 3–4.

3 Localised Sample Optimisation with 1-D Inpainting

So far, we have not specified concrete inpainting operators for our general frame-
work. In the following, we transfer popular inpainting techniques from image
compression to the audio setting. For these inpainting operators, we develop
new techniques for the acceleration of the corresponding data optimisation.

Inpainting Techniques. For our first proof-of-concept implementation of
the framework, we explore the potential of successful inpainting approaches from
image compression. So far, three operators have shown convincing performance
[7, 13, 27]: homogeneous diffusion [16], biharmonic [10], and edge-enhancing aniso-
tropic diffusion (EED) inpainting [33]. EED has been particularly successful,
since it allows to reconstruct image edges due to a direction dependent propa-
gation. However, due to the 1-D nature of audio data, EED is not an option.
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Homogeneous diffusion inpainting keeps all of the known data points on K ⊂
Ω unchanged, while the unknown data on Ω \K must fulfil the Laplace equation
∆u = 0 with ∆u = ∂xxu + ∂yyu. In 1-D, this implies a vanishing second order
derivative, which leads to a straightforward linear interpolation between the
known data points. This comes down to a minimisation of the energy

EL(u) =

∫
Ω\K

(u′(x))
2
dx. (2)

In the following sections we benefit from the compact support of the correspond-
ing interpolation function: For the reconstruction u(x) at a location x ∈ Ω \K
in the inpainting domain, we need a small amount of neighbouring known val-
ues (xk, uk). In the following, the indices k = ±1,±2, ... denote the respective
closest known samples in positive/negative x-direction. For linear interpolation,
we only require the two known samples (x−1, u−1) and (x1, u1) to obtain the
reconstruction

u(x) =
x− x−1
x1 − x−1

u1 +

(
1− x− x−1

x1 − x−1

)
u−1. (3)

Biharmonic inpainting is a higher-order approach that imposes the constraint
−∆2u = 0 to the inpainted data, thereby providing a smoother reconstruction
compared to the homogeneous case. Cubic splines are a natural 1-D counterpart
to this approach. They have been originally motivated by a physical elasticity
model for draftman’s splines [9] and minimise the energy

ECS(u) =

∫
Ω\K

(u′′(x))
2
dx. (4)

However, since we aim to reach a similar locality as for the linear interpolation,
we consider a specific variant of cubic splines, the cubic Hermite spline inter-
polation [6] (Catmull-Rom spline). It yields an interpolant with C1-smoothness
using a finite support. Since it does not require equidistant sampling, it is there-
fore compatible with sparsification. With α := x−x−1

x1−x−1
, the interpolant of cubic

Hermite spline interpolation is

u(x) = (2α3 − 3α2 + 1)u−1 + (α3 − 2α2 + α)
u1 − u−2
x1 − x−2

+ (−2α3 + 3α2)u1 + (α3 − α2)
u2 − u−1
x2 − x−1

.
(5)

For the interpolation techniques above, we round to the next 16bit integer. Note
that this rounding is explicitly not restricted to the quantisation levels according
to Step 3 of our compression pipeline from Section 2. From a very small set of
quantised values, the inpainting can potentially recover a much broader sample
range, if the known data is chosen appropriately. In the following, we discuss
how the locality of our inpainting methods can accelerate the data optimisation.
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Local Interpolation Updates. Both the greedy sparsification from Algo-
rithm 1 and the sample optimisation from Step 3 require a global reconstruction
error. Recomputing the whole reconstruction after a change of a single mask
point is a significant drawback of these approaches in 2-D. However, in our 1-D
audio signal setting using interpolations methods with finite support, the influ-
ence of each mask sample is limited. In the following, we always assume a sample
x0 is changed by an optimisation algorithm, and x−1, x−2, ... denote it left mask
neighbours while x1, x2, ... are its right mask neighbours.

In a sparsification step, we remove the known sample value y0 with time co-
ordinate x0 from the mask. For linear interpolation, this removal affects exactly
the reconstruction of the samples x ∈ (x−1, x1), which are now reconstructed
with the known data x−1 and x1. For the cubic Hermite spline, the situation
is similar, but due to the larger support, the interval (x−2, x2) is affected now.
Moreover, it has to be split into three subintervals that are inpainted with dif-
ferent combinations of the known data x−3, ..., x3 (see Fig. 1(a)).

The update strategy for sample optimisation follows the same principle, but
more subintervals need to be considered, since we now change the value y0 at
location x0 instead of removing the sample completely. Thus, for linear interpo-
lation, the optimisation algorithm needs to recompute the intervals (x−1, x0) and
(x0, x1) with the new known sample (x0, y0). Since the cubic Hermite spline relies
on four samples, the sample change affects four intervals: (x−2, x−1), (x−1, x0),
(x0, x1), and (x1, x2). Fig. 1(b) illustrates the associated samples. Note that we
also need the samples x−3 and x3 to compute these reconstructions.

4 Experiments

Experimental Setup. We present detailed results for a royality-free sound file
of the song Exploring the Forest [8] (linear 16bit pulse coded modulation (PCM)
with 44.100 kHz sampling rate and two channels). Results for additional music
pieces from a variety of genres as well as playable soundfiles are available online
as supplementary material1. As a quantitative measure, we use the signal to
noise ratio (SNR) that is defined by

SNR(f, g) = 10 log10

( ∑n
i=1 f

2
i∑n

i=1(fi − gi)2

)
. (6)

Comparison of Inpainting Methods. In a first experiment, we compare
the performance of the two inpainting methods from Section 3. A quantitative
SNR comparison in Fig. 2(a) reveals that linear interpolation yields almost the
same SNR and outperforms the Hermite cubic spline for small compressed file
sizes. The increased smoothness of the cubic spline comes at the cost of over- and
undershoots close to the known samples. These can only be compensated ade-
quately if most of the samples are known. Moreover, for linear interpolation, the

1 https://www.mia.uni-saarland.de/Publications/peter-ssvm19-supplement.zip
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Fig. 2: SNR Comparisons. Fig. 2(a) reveals that linear interpolation mostly
outperforms the cubic Hermite spline. In Fig. 2(b), our inpainting-based codec
with linear interpolation compares favourably with established methods like
AAC, mp3, and Vorbis for low to medium compression ratios.

best density and quantisation parameters increase proportionally to the file size.
Hermite cubic spline interpolation is more sensitive in this regard. Therefore, we
choose linear interpolation for our comparison to established codecs.

Comparison to Established Codecs. Our second series of experiments
evaluates the compression performance of our best inpainting codec (with linear
interpolation) to the established codecs mp3, Vorbis, and AAC. Our evaluation
in Fig. 2(b) yields a surprising result: For medium to high compression ratios,
our codec surpasses all three transform-based approaches w.r.t. the SNR. This
demonstrates that concepts from inpainting-based compression can be viable in
an audio setting, even with simple inpainting methods. For small compression
ratios, our codec falls slightly below the SNR of AAC. Inpainting-based methods
show similar behaviour for near-lossless coding of images (see e.g. [27]). This is
natural, since the impact of inpainting diminishes for dense masks.

Fig. 3 provides a visualisation of the inpainting results for the lowest and
highest compression ratios from Fig. 2(a) with linear interpolation. On first
glance, even with a low density of 10 % and a very coarse quantisation (q = 32)
the reconstructed waveform in Fig. 3(b) looks similar to the original in Fig. 3(a).
However, some of the peaks are flattened (especially apparent at the end of the
signal). On a temporal average, this is still close to the original signal in terms
of SNR, but there are some audible artefacts like background noise. A higher
density and finer quantisation leads to increasingly improved results in Fig. 3(c)
and Fig. 3(d). Simple linear interpolation can reproduce the original waveform
from carefully optimised known samples with surprising accuracy.
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(a) Exploring the Forest (original) (b) linear interpolation, q = 32,
10% density, SNR 10.00

(c) linear interpolation, q = 64,
50% density, SNR 22.77

(d) linear interpolation, q = 1024,
90% density, SNR 28.40

Fig. 3: Visual Comparison of Waveforms. Waveforms of the original file
Exploring the Forest and the reconstructions corresponding to low, medium,
and high compression ratios from Fig. 2.

5 Conclusions and Outlook

Our modular framework for audio compression demonstrates the potential of
inpainting with data optimisation for the sparse representation of sample data.
Even with fairly simple ingredients, our proof-of-concept codecs are able to com-
pete with established audio codecs w.r.t. quantitative analysis. In particular, this
discovery is relevant for recent approaches in inpainting-based video compres-
sion [3]: Inpainting-based audio codecs would augment them in a natural way
by offering a consistent way of encoding the corresponding audio tracks.

In our future work, we plan to investigate more sophisticated inpainting
techniques that have been designed specifically for the audio setting (e.g. [2]),
and address practical issues such as random access. Moreover, we will incorporate
the psychoacoustic modelling used by transform-based codecs: Prefiltering the
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signal to eliminate frequencies that are unimportant for human perception might
further improve the performance of inpainting-based audio compression.
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