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Abstract. Diffusion-based image compression methods can surpass
state-of-the-art transform coders like JPEG 2000 for cartoon-like images.
However, they are not well-suited for highly textured image content.
Recently, advances in exemplar-based inpainting have made it possible
to reconstruct images with non-local methods from sparse known data.
In our work we compare the performance of such exemplar-based and
diffusion-based inpainting algorithms, dependent on the type of image
content. We use our insights to construct a hybrid compression codec that
combines the strengths of both approaches. Experiments demonstrate
that our novel method offers significant advantages over state-of-the-art
diffusion-based methods on textured image data and can compete with
transform coders.
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1 Introduction

From the initial compression approach with diffusion proposed by Galić et al.
[9], a whole class of diffusion-based codecs has evolved during the last years. The
R-EED codec by Schmaltz et al. [23] has demonstrated that diffusion coders can
beat JPEG [18] and JPEG 2000 [25] on greyscale images. Peter and Weickert
have shown in [20] that this is also possible on colour data.

The key element to the success of these methods is the ability of edge-
enhancing anisotropic diffusion (EED) [26] to reconstruct images from sparse
pixel data. Unfortunately, EED is not well-suited for reproducing fine-scale tex-
tures from small amounts of data. This implies that the performance of diffusion-
based algorithms degrades with increasing amount of texture content in the orig-
inal images. In such cases, transform-based coders still provide superior results.
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In 1999, Efros and Leung [7] pioneered exemplar-based inpainting for the
purpose of extending images and filling in missing or corrupted image parts. More
recently, Facciolo et al. [8] have proposed exemplar-based inpainting methods
that are suited for sparse known data. In our work we explore the potential of
this sparse exemplar-based inpainting for image compression.

Our contribution. We assess the suitability of exemplar-based inpainting
for image compression and compare it to diffusion-based inpainting. Following
the results of this analysis, we construct a novel compression codec that combines
the strengths of both approaches while minimising the effect of their drawbacks.
In our experiments on well-known test images we demonstrate that this hybrid
inpainting approach can beat established diffusion-based methods and is com-
petitive to transform codecs also for images with rich texture.

Related work. Regarding diffusion-based compression, we rely on the an-
isotropic approach by Schmalz et al. [22, 23]. While our novel codec is the only
diffusion-based method that deals specifically with textured images, there are
PDE-based coders dedicated to other classes of data such as cartoon images
[16], 3-D data [19], or depth maps [10, 12, 13].

The exemplar-based inpainting on sparse images by Facciolo et al. [8] that
we use in our paper is related to a long line of classic patch-based approaches,
starting with texture synthesis methods like the influental work of Efros and
Leung [7]. Since a full review of the field is beyond the scope of our paper, we
focus on selected publications that are related to our own work and refer to Arias
et al. [2] for an in-depth review.

During the last decade, the concept of combining structure adaptive inpaint-
ing with exemplar-based ideas has been explored in several different directions.
The approach of Bertalmı́o et al. [3] comes closest to our method since it also em-
ploys an explicit decomposition into a cartoon and a texture image. The cartoon
reconstruction relies on an inpainting process that propagates information along
isophotes. Patch-based inpainting restores missing parts of the texture image.
However, in contrast to our paper, their decomposition is additive. This doubles
the amount of original data, which is disadvantageous for compression.

Many patch-based approaches incorporate the image structure as additional
guidance information. Sun et al. [24] perform patch-based texture reconstruction
along manually specified curves, while Criminisi et al. [6] prioritise the recon-
struction of missing image points in such a way that existing image structures
are continued. In the work of Cao et al. [4], level lines extracted from a simplified
version of the image are the guidance feature for exemplar-based inpainting. A
different approach is pursued by Arias et al. [2] who include gradient information
in a variational model for exemplar-based inpainting.

All aforementioned publications focus on image inpainting. In regards to ac-
tual compression, there are two related approaches that modify existing transform-
based coders with exemplar-based inpainting. Rane et al. [21] propose a scheme
that removes selected JPEG blocks and reconstructs them either with the method
of Efros and Leung [7] or structure inpainting. The method of Liu et al. [14] fo-
cuses on removing visual redundancy in transform coders like H.264 or JPEG
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without minimising the pixel-wise error. To this end, the image is decomposed
into edge-regions that are reconstructed with a combination of structure propa-
gation and exemplar-based inpainting and texture regions that are synthesised
with purely patch-based methods. Moreover, there are distantly related meth-
ods from the area of compressed sensing. These dictionary approaches (e.g. [1,
11]) use databases of image prototypes or patches for reconstruction instead of
relying on partially known data like the exemplar-based methods. Aharon et al.
[1] also explicitly propose compression as one application of their approach.

Organisation of the paper. First we explain the concepts of the two in-
painting techniques that we combine in our paper: Section 2 covers diffusion-
based inpainting, while exemplar-based inpainting is reviewed in Section 3. In
Section 4 we assess the strengths and weaknesses of both approaches with re-
spect to image compression. From these conclusions we motivate a novel hybrid
compression scheme in Section 5 and analyse its performance in Section 6. We
conclude our paper with a summary and outlook on future work in Section 7.

2 Diffusion-based Inpainting

Let us consider an image f : Ω → R that maps a rectangular image domain Ω to
the corresponding grey values. In image compression, diffusion-based inpainting
is used to reconstruct an image from a small amount of known data. Known
data is only provided on the subset K ⊂ Ω, the so-called inpainting mask.

The role of the diffusion process is to propagate the known information to the
inpainting domain Ω \K. Thereby, the missing parts are filled in. This process
of data propagation follows the partial differential equation (PDE)

∂tu = div(D∇u) on Ω \K, (1)

with reflecting boundary conditions on ∂Ω. Note that the known data on K
imposes Dirichlet boundary conditions on the PDE. This implies that the diffu-
sion process converges to a nontrivial steady-state for t → ∞ which yields the
reconstruction of the image. Experiments show that the reconstruction does not
depend on the initialisation in the inpainting domain Ω \K.

The most important part of the diffusion equation (1) is the diffusion tensor
D ∈ R2×2. It guides the diffusion process in terms of its eigenvalues λ1 and
λ2 that specify the amount of diffusion in the direction of the corresponding
eigenvectors v1 and v2. Thus, the choice of D is essential for the quality of the
reconstruction.

For the task of image compression, Schmaltz et al. [22] have shown that edge-
enhancing anisotropic diffusion (EED) [26] is particularly well-suited. EED uses
an anisotropic, structure-adaptive diffusion tensor of the form

D := λ1(∇uσ)v1v
>
1 + λ2v2v

>
2 , (2)

v1 ‖∇uσ, λ1(∇uσ) := g(|∇uσ|2), (3)

v2⊥∇uσ, λ2 := 1, (4)
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where uσ := Kσ∗u denotes a convolution of the evolving image u with a Gaussian
Kσ of standard deviation σ. The tensor design in Eq. (2) implies that diffusion
across edges is inhibited by the Charbonnier diffusivity [5]

g(s2) :=
1√

1 + s2/λ2
(5)

with some contrast parameter λ > 0. Full diffusion along edges is achieved with a
constant second eigenvalue λ2 := 1. Optimising both the positions of the known
data, i.e. the inpainting mask K, as well as the contrast parameter λ can improve
the reconstruction quality.

Experiments in [22] show that the Gaussian convolution with Kσ in Eq. (2)
plays an important role for the application of EED in image compression. It
propagates structural information into the neighbourhood of each pixel and
thereby allows reconstruction of edges from a very sparse inpainting mask. In
EED-based compression codecs, the set K therefore usually contains scattered,
isolated known pixels.

3 Exemplar-based Inpainting

The so-called non-local inpainting (NLI) approach of Facciolo et al. [8] follows
the core idea of all patch-based methods: Missing information is filled in by
exchanging information between image patches. However, in contrast to other
algorithms from the field, it allows inpainting from sparse data. Therefore, we
can compare it to the inpainting capabilities of EED from Section 2. For the sake
of comprehensibility, we only discuss a special case of the flexible NLI framework:
We have chosen algorithm AB with patch-wise non-local means from [8] for the
specific task at hand.

Let us consider the same inpainting problem as in the previous section,
namely finding a reconstruction u of the missing data on Ω \K from the sparse
known data on K ⊂ Ω. In essence, NLI reconstructs u by minimising a patch
similarity function V between pairs of image patches. It forces unknown pixel
values in one patch to be similar to known values in the other patch. To this end,
consider two disk-shaped patches centred in image points x and x′, respectively.
The similarity function V is defined as the weighted squared difference

V (x,x′) =

∫
D

g(x,x′,y)
(
u(x + y)− u(x′ + y)

)2
dy. (6)

Here, D is a disk around the origin, and y a coordinate relative to the respective
patch centre. A common practice in patch-based methods is to rescale the indi-
vidual pixel differences u(x + y)− u(x′ + y) with Gaussian weights that reflect
descending importance with the distance to the patch centres. However, in NLI,
the weights g additionally account for the fact that, given a sparse inpainting
mask, both patches can contain similar amounts of known data. Thus, a mutual
exchange of information can be beneficial. The weights are defined as

g(x,x′,y) =
Kσ(y)

ρ(x,x′)
(χK(x + y) + χK(x′ + y)), (7)
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(a) initialisation (b) mask (c) EED (d) exemplar-based

Fig. 1. Experiment: Structure Propagation Known data is only given at black
locations in the mask. EED (λ = 0.01, σ = 4) continues the edge structures into the
inpainting domain and reconstructs an almost perfect triangle. The exemplar-based
method (h = 100) propagates structure only locally and creates copies of structure.

where ρ(x,x′) is a normalisation term that ensures
∫
D
g(x,x′,y)dy = 1 and Kσ

is a Gaussian with standard deviation σ. The characteristic function χK of the set
of known data indicates where similarities between patches should be enforced.
Let x1 := x+y denote an image point from the first patch and x2 := x′+y the
corresponding point in the second patch. If both points are unknown, i.e. not
contained in K, g becomes 0 and thus, no information exchange takes place. If
at least one of the two points x1 and x2 is known, we have g > 0 and thus V
enforces similarity between those two pixels.

The second important ingredient of NLI is the decision, for which pairs of
patches the similarity function V should be minimised. To this end, Facciolo et
al. introduce a patch similarity weight function w and minimise the energy

E(u,w) =
1

h

∫
Ω

∫
K

w(x,x′)V (x,x′) dx dx′ −
∫
Ω

H(x, w) dx, (8)

s.t.

∫
K

w(x,x′) dx′ = 1. (9)

Optimal weights w minimise the weighted total patch error according to V while
maximising the entropy

H(x, w) = −
∫
K

w(x,x′) logw(x,x′) dx′. (10)

For a given u, the patch similarity weights w impose a Gaussian-like weighting
of the patch differences V (x,x′):

w(x,x′) = exp
(
− 1

h
V (x,x′)

)
. (11)

Thus, the parameter h ∈ R from Eq. (8) steers the standard deviation of the
Gaussian weights w. In practice, the reconstruction u is found by alternating
minimisation of u and w.
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(a) original (b) mask (c) EED (d) exemplar-based

Fig. 2. Experiment: Texture. Known data from the original image is only given at
black locations in the mask. EED with σ = 0.8 and λ = 0.9 completely fails to recon-
struct the texture and creates a coarser pattern instead. Exemplar-based inpainting
(h = 150) reconstructs regular texture very well, but has problems at the interface
between textures.

4 Strengths and Weaknesses of the Inpainting Techniques

In the following sections we assess the advantages and drawbacks of diffusion and
exemplar-based inpainting in the context of image compression. To this end, we
demonstrate specific properties with simple synthetic examples and discuss their
implications for practical purposes.

Let us first consider the capabilities of both algorithms in respect to structure
propagation. To this end, we consider a variation of the well-known Kanizsa
triangle that was used in [22] to demonstrate the capabilities of EED. For a
human observer, the known data in Fig. 1(a) suggests that three corners of a
triangle are given here, since human perception tends to continue sharp edges.

EED is able to preserve sharp edges and propagates image structure due to
the locally adaptive diffusion tensor. Therefore, with adequate parameter choices,
it is possible to match the expected reconstruction very well (see Fig. 1(c)). In
contrast, exemplar-based inpainting continues structures only in close vicinity
to the known data (Fig. 1(d)). In regions of the inpainting domain where known
data is far away, structures are copied and multiplied.

For image compression, this behaviour implies that EED is well-suited to
reconstruct coarse-scale image features from sparse known data, if they consist of
mostly homogeneous areas that are separated by high contrast edges. Exemplar-
based inpainting, however, tends to create visually distracting artefacts in such
a setting. The reconstructions of the test image barbara in Fig. 3(a) and (b)
illustrate the practical effects well. For example in the face region, exemplar-
based inpainting repeats vertical structures of the hood in the cheeks, while
EED produces a much more convincing reconstruction. Similar effects can be
observed throughout the whole image.

In a second synthetic experiment we consider the reconstruction of textured
areas. Fig. 2 displays the test image interface from [8], a representative for
another extreme type of image content, namely repetitive texture. Here, EED
completely fails to reconstruct the texture in a satisfying way. If an isolated
region like e.g. a grey dot in the left hand side of the image is not represented
by several known pixels that encode both its grey value and its shape, EED has
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(a) EED (b) NLI (c) block decomposition

Fig. 3. Reconstruction of the image barbara with EED (a) and NLI (b) from the same
known data. The reconstructions correspond to intermediate results from steps 1 and
2 of the hybrid algorithm for a compression rate of ≈ 18 : 1. The block decomposition
(c) with b = 48 indicates where EED (black) and NLI (white) yield better results.

no chance to recreate it. In contrast, exemplar-based inpainting benefits from
its tendency to copy structure and create regular patterns. Its reconstruction in
Fig. 2(d) is fairly close to the original, except for the sharp boundary between
both repetitive patterns.

In practical compression applications, EED struggles with repetitive small-
scale structure even when a lot of known data is given (e.g. Barbara’s trousers
in Fig. 3(a)). Therefore, compression algorithms that purely use EED for re-
construction have to store textures almost verbatim to achieve a good recon-
struction. NLI produces a visually much more pleasing texture inpainting (see
Fig. 3(b)) that is also close to the ground truth in regard to quantitative error
measures. Therefore, a sparse inpainting mask in combination with NLI inpaint-
ing can potentially be used for compression.

5 A Hybrid Compression Algorithm for Textured Images

Block Decomposition. The core idea of our hybrid algorithm is to combine
the strengths of diffusion- and exemplar-based inpainting by decomposing the
image into EED and NLI blocks. From a common set of known data, EED blocks
are reconstructed with diffusion inpainting and NLI blocks with exemplar-based
inpainting. Shared known data for both methods offers two distinct advantages:
storage efficiency and direct decomposition. Since the inpainting mask is only
stored once, the only overhead generated by employing two different inpainting
methods is the block decomposition and the respective model parameters. In
addition, no a priori method for texture/cartoon decomposition is needed. Blocks
can be directly classified as EED and NLI blocks by comparing the corresponding
reconstructions to the original file, which is (in contrast to the inpainting case)
available during compression.
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Point Selection and Storage. In the previous sections we have only dis-
cussed diffusion and patch-based ideas in an inpainting context, where the in-
painting mask K ⊂ Ω is already known. For compression, in addition to the
right reconstruction method, also a good inpainting mask must be chosen and
stored efficiently.

To this end, we employ a rectangular subdivision technique that proves to
be successful in the R-EED codec [23, 22]. It limits the choice of the known
data positions K to a rectangular adaptive grid that can be represented by a
binary decision tree. We iteratively refine this grid by adding known pixels in
image regions, where the local reconstruction error with EED inpainting exceeds
a given threshold. This strategy yields a mask that is optimised for a good
diffusion-based reconstruction and efficient storage in form of a binary tree. As
soon as the mask is known, we apply a so-called brightness optimisation step:
Introducing errors to the small amount of known pixel values can improve the
reconstruction quality in the large inpainting domain Ω \K. For more details,
we refer to [22]. The optimised grey values are finally quantised and stored with
the entropy coder PAQ [15].

Our goal to create a hybrid algorithm requires some modifications to this
point selection strategy. Since the subdivision grid adapts to the reconstruction
abilities of EED, the point density in an R-EED inpainting mask is low in ho-
mogeneous regions, medium near coarse scale edges and very high in textured
areas. Since our goal is to reconstruct homogeneous areas and sharp edges with
EED and textures with exemplar-based inpainting, this point distribution is not
ideal. In particular, textured areas are over-represented in the inpainting mask
at the cost of more coarsely quantised grey values. Therefore, we limit the depth
N of the binary tree and by that also the minimum grid size of the adaptive
inpainting mask.

Avoiding Block Artefacts. For compression algorithms that use block
decomposition steps, there is always the danger of visually very distracting dis-
continuities at block boundaries. In order to keep such effects to a minimum and
simultaneously improve the overall reconstruction quality, we propose a modi-
fied diffusion-reconstruction in the decompression step. In addition to the known
data on K, we also consider the reconstructed NLI blocks as Dirichlet boundary
data for the final EED reconstruction. This ensures smoother transitions between
NLI and EED blocks and can even improve the EED block reconstructions due
to the good approximation of additional known data.

Compression Algorithm. The complete compression pipeline for our hy-
brid scheme consists of five steps.

1. Depth-Limited Subdivision: Perform rectangular subdivision with a max-
imum tree depth N to avoid oversampling in highly textured areas. Create
a preliminary diffusion reconstruction of the whole image with EED.

2. Exemplar-Based Inpainting: Reconstruct the image with NLI and the
inpainting mask acquired in the previous step. In order to provide a good
prior for structure propagation in non-texture areas to the exemplar-based
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Fig. 4. (a)+(b) Original images bridge (No. 22090 in the Berkeley database [17]) and
barbara. (c) Error comparison of barbara at different compression rates.

method, we initialise the inpainting domain Ω \K with the diffusion recon-
struction from Step 1.

3. Block Decomposition: Compute a block decomposition: If the mean square
error (MSE) of the diffusion reconstruction is lower than the MSE of the
exemplar-based inpainting in a given block, consider it to be an EED block,
otherwise mark it as an NLI block. Optimising the number b of blocks in x-
and y-direction can improve the overall compression quality.

4. Encoding: Store the known data in a modified R-EED file format (see [22])
with the number of blocks in the file header. Encode the block decomposition
row-wise as a sequence of binary flags for each block (1: EED block, 0: texture
block). Here, the context mixing method PAQ [15] yields the best results by
encoding the binary tree, block decomposition and grey values jointly.

Decompression Algorithm. Decompression comes down to three straight-
forward inpainting steps, since the compressed file provides all parameters, known
data and the cartoon/texture-decomposition.

1. Diffusion-Based Reconstruction: Extract the inpainting mask and R-
EED parameters from the compressed file and reconstruct all missing data
on Ω \K with EED inpainting.

2. Exemplar-Based Reconstruction: Initialise Ω \K with the result from
step 1 and perform an NLI reconstruction of the inpainting domain.

3. Final Inpainting: Reconstruct the EED blocks with EED inpainting. Use
the data of the inpainting mask Ω as well as the reconstructed NLI blocks
as known data to improve the final reconstruction.

6 Experiments

In the following we evaluate the performance of our hybrid approach in com-
parison to the R-EED codec and the transform-based coders JPEG and JPEG
2000. For the first step in our hybrid algorithm and the results of R-EED we
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use the same reference implementation with PAQ for entropy coding. We opti-
mise all model parameters as described in [23]. In our R-EED experiments, we
allow larger tree depths N than in the depth-restricted hybrid step wherever
this improves the result. For the implementation of NLI in our hybrid scheme
we use the publicly available reference implementation of Facciolo et al. [8]. In
particular, we apply the fast approximation to the variational NLI scheme AB
that is referred to as algorithm O in [8]. All JPEG and JPEG 2000 images were
created with the converter from ImageMagick 6.8.3-6 2013-03-04 Q16.

The results on the test image barbara in Fig. 4(c) and Fig. 5 demonstrate
that on images with significant amounts of regular texture content, the hybrid
scheme offers a significant quality gain over R-EED. R-EED stores some of the
texture almost completely as known data (e.g. in the trouser region) and fails
to reconstruct other parts completely (e.g. parts of the hood and tablecloth).
Depending on the compression rate, the hybrid algorithm improves the mean
square error (MSE) by more then 50% and is visually much more compelling. It
also surpasses JPEG quantitatively by a large margin and does not suffer from
similarly obvious artefacts. For compression rates larger than 25:1, the hybrid
algorithm is quantitatively on par with JPEG 2000. While is not able to beat
JPEG 2000, yet, it is the first time that a diffusion-based algorithm achieves
comparable results on images with such a high amount of texture.

On images with irregular texture, e.g. bridge from Fig. 4(a), the quality
gain of the hybrid algorithm over R-EED is less significant, but can still reach
around 10% depending on the compression rate. While the image quality is
quantitatively worse than JPEG, it is subjectively better due to the absence of
block artefacts, especially in zoom-ins.

7 Conclusion

With the first combination of diffusion-based and exemplar-based inpainting
from sparse data, textured images can be compressed efficiently. Our hybrid al-
gorithm uses the full spectrum of inpainting ideas for compression while keeping
the resulting overhead small. This is an important step towards closing the gap
between the widely accepted general purpose encoders JPEG and JPEG 2000
and diffusion-based methods that have thus far shown their advantages primarily
in more specialised applications like depth-map encoding.

For future work it would be particularly interesting to investigate how far
the quality could be further improved if exemplar-based inpainting is treated
equally with EED instead of using it as a post processing step. In particular, a
lot of additional potential lies in optimising the choice of known data for a good
trade-off between quality in EED and NLI reconstructions instead.
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