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Abstract. For inpainting with linear partial differential equations
(PDEs) such as homogeneous or biharmonic diffusion, sophisticated data
optimisation strategies have been found recently. These allow high-quality
reconstructions from sparse known data. While they have been explic-
itly developed with compression in mind, they have not entered actual
codecs so far: Storing these optimised data efficiently is a nontrivial task.
Since this step is essential for any competetive codec, we propose two
new compression frameworks for linear PDEs: Efficient storage of pixel
locations obtained from an optimal control approach, and a stochastic
strategy for a locally adaptive, tree-based grid. Suprisingly, our experi-
ments show that homogeneous diffusion inpainting can surpass its often
favoured biharmonic counterpart in compression. Last but not least, we
demonstrate that our linear approach is able to beat both JPEG2000
and the nonlinear state-of-the-art in PDE-based image compression.

Keywords: linear diffusion inpainting, homogeneous, biharmonic, im-
age compression, probabilistic tree-densification

1 Introduction

For a given image, the core task of image compression is to store a small amount
of data from which the original can be reconstructed with high accuracy. Homo-
geneous and biharmonic partial differential equations (PDEs) can restore images
with a high quality from a small fraction of prescribed image points, if their po-
sition and value are carefully optimised [1,2,6,15]. This suggests the viability of
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linear, parameter-free PDEs for image compression. Unfortunately, all these data
optimisation efforts are in vain, as long as one cannot store the data efficiently.

Currently, PDE-based compression is dominated by nonlinear models that
require parameter optimisation, e.g. edge-enhancing anisotropic diffusion (EED)
[25]. In particular, the general purpose codec R-EED by Schmaltz et al. [23] can
beat popular transform-based coders like JPEG [18] and JPEG2000 [24]. In con-
trast, homogeneous diffusion has only been applied for specialised applications
(e.g. cartoon compression in [16]) which do not employ the sophisticated data
optimisation methods mentioned above. Moreover, there is no compression codec
based on biharmonic inpainting at all. This shows the lack of general purpose
codecs with linear inpainting PDEs.

Our contribution. To fill this gap, we investigate how to embed powerful
data optimisation strategies for harmonic and biharmonic inpainting into two
codecs: 1. A compression scheme that combines free choice of known pixels by
optimal control [2,6] with tailor-made entropy coding. 2. A stochastic method
that restricts pixel selection to a locally adaptive grid, but allows to store these
positions efficiently as a binary tree. We evaluate how individual restrictions
and lossy compression steps of both frameworks affect the performance of har-
monic and biharmonic inpainting. In addition, we compare our best methods
against the state-of-the-art in PDE-based compression and the quasi-standards
in transform-based compression.

Related work. Homogeneous diffusion has been applied for the compression
of specific classes of images. In particular, Mainberger et al. [14] have proposed a
highly efficient codec for cartoon images, and there are several successful coders
for depth maps [5,7,12]. However, unlike our approach, these methods rely pri-
marily on semantical image features such as edges. This choice is motivated by
the theoretical results of Belhachmi et al. [1] which suggest to choose known
data at locations with large Laplacian magnitude. Kostler et al. [11] apply ho-
mogeneous diffusion for real-time video playback on a Playstation 3.

General purpose codecs with PDEs are mainly based on edge-enhancing
anisotropic diffusion (EED) [25] and efficient representations of data locations
by binary trees. Initially, this class of methods was proposed by Gali¢ et al. [4],
while the current state-of-the-art is the R-EED codec by Schmaltz et al. [23].
Modifications and extensions of R-EED include colour codecs [19], 3-D data
compression [23], and progressive modes [22].

In addition, there are several works that are closely related to compression,
but do not consider actual encoding [1,2, 6, 15]. Instead, they deal with opti-
mal reconstruction from small fractions of given data. We directly use results
from the optimal control scheme for harmonic PDEs by Hoeltgen et al. [6] and
its biharmonic extension. Our densification approach on restricted point sets is
inspired by the approach of Mainberger et al. [15]. They consider a stochastic
sparsification on unrestricted point sets.

Organisation of the paper. We begin with a short introduction to PDE-
based inpainting and the optimisation of spatial and tonal data in Section 2.
Section 3 proposes solutions to general challenges of PDE-based compression
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algorithms. These form the foundation for our codecs. In Section 4 we describe
a new general compression approach for exact masks, and we apply it to the
optimal control method of Hoeltgen et al. [6]. Section 5 introduces a stochastic,
tree-based method that imposes restrictions on the location of known data. We
evaluate both compression frameworks in Section 6. Section 7 concludes our
paper with a summary and outlook on future work.

2 PDE-based Inpainting

Image Reconstruction. In PDE-based image compression, we want to store
only a small fraction of the original image data and reconstruct the missing
image parts. To this end, consider the original image f : 2 — R. It maps each
point from the rectangular image domain {2 to its grey value. Let us assume that
the set of known locations K C 2, the inpainting mask, is already given and we
want to reconstruct the missing data in the inpainting domain 2\ K.

For a suitable differential operator L, we obtain the missing image parts u
as the steady state for ¢ — oo of the evolution that is described by the PDE

Owu=Lu onN2\K. (1)

Here, we impose reflecting boundary conditions at the image boundary 0f2. In
addition, the known data is fixed on K, thus creating Dirichlet boundary condi-
tions u = f. In our work, we consider two different parameter-free choices for the
differential operator L. In the simplest case, we apply homogeneous diffusion [9]:
Lu = Au = div(Vu). Since experiments suggest that the biharmonic operator
Lu = —A%u may give better reconstructions [2,4,23], it is also considered.

Both operators propagate known information equally in all directions and
behave consistently throughout the whole image evolution. In contrast, more
complex models in compression are nonlinear and anisotropic: edge-enhancing
diffusion (EED) [25] inhibits diffusion across image edges. In principle, this allows
EED to obtain more accurate reconstructions from the same amount of known
data [4,23]. However, the price for this increase in quality are algorithms with
higher computational complexity and the need for parameter optimisation. Note
that the compression frameworks that we propose in the following Sections work
in a discrete setting. To this end we consider the finite difference approximations
of the inpainting equation in the same way as in [15].

3 From Inpainting to Compression

Spatial and Tonal Optimisation. For a pure inpainting problem, predeter-
mined missing image regions are reconstructed from known data. This is funda-
mentally different in compression, where the whole image is known and the en-
coder actively chooses known pixels. Many research results have confirmed that
the choice of known data influences the reconstruction significantly [1,2,6,15]. At
the same mask density, i.e. the same amount of known data, choosing optimal
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Input: Original image f, admissible set of quantised grey values Q := {qi,...,qn},
inpainting mask c.
Initialisation: u:=r(c, f) and g := f.

Compute:
For all ¢ € K:
Compute the inpainting echo b;.
Do
For all : € K:
: _ b (F-w)
1. Compute the correction term « := TV

2. Set u°Y ;= w.
3. Update the grey value g; := g; + a.
4. Apply coarse quantisation: g} := argmin . lg: — ¢
5. Update reconstruction u := u + o’ - b; with o/ = g} — ;.
while [MSE(u, f) — MSE(u®, )| > «.
Output: Optimised quantised grey values g.

Algorithm 1: Quantisation-aware grey value optimisation.

positions and pixel values is vital for a good reconstruction. In our paper we
consider a separate optimisation process of both types of data. First we optimise
the locations of data and then perform a grey value optimisation (GVO) step.

Efficient Storage. In PDE-based image compression, the reconstruction
capability of the inpainting operator is only one of two important factors for the
success of a codec. The other key element is the efficient storage of known data.
There is a straightforward trade-off between a desired sparsity of stored points
and reconstruction quality. In addition, a codec can influence the final file size by
combining multiple other lossless and lossy compression steps. In the following,
we discuss different possibilities for such compression steps and how they can be
combined with the aforementioned spatial and tonal optimisation.

Entropy Coding is an essential concept of compression that is employed in
most successful codecs. It aims at removing redundancy from data and thereby
stores it losslessly, but with a reduced file size. Huffman coding [8], adaptive
arithmetic coding [21] and PAQ [13] have been successfully used in PDE-based
compression [23]. In our setting there are always two different kinds of known
data that must be stored: grey values and locations on the pixel grid. In addition,
some header information like file sizes or parameters need to be stored. Therefore,
we choose to use PAQ for our codecs, since it is a context mixing scheme that
can locally adapt to different types of data. PAQ combines models that predict
the next bit in a file from a history of already compressed bits. With neural
networks, it adapts the weighting of these models to changing content types
throughout a single file. Thus, it can be directly applied as an efficient container
format for both positional and brightness data.

Quantisation. For brightness data, the performance of the aforementioned
entropy coders can be improved by a coarser quantisation. Instead of storing
grey values with float precision, we only consider a finite number ¢ < 256 of
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different discrete brightness values. Since this introduces an error to the known
data, it is a lossy preprocessing step to the lossless entropy coding. In a PDE-
based setting, the benefits of grey value optimisation (GVO) can be diminished
if such a quantisation is applied afterwards. Therefore, grey values should be
optimised under the constraint of the coarse quantisation (see [23]).

To this end, we propose quantisation-aware GVO in Algorithm 1. Since both
PDEs we consider are linear, we can use so-called inpainting echos [15] to speed
up the optimisation. For a given mask ¢ and corresponding grey values g, let
r(c,g) denote the inpainting result according to Section 2. Then, an echo is
computed as r(c, e(2)) where in the image e(2) the ith known pixel is set to 1 and
all other known data is set to zero. Thereby, each echo represents the influence of
a single known data point. As long as the mask c is constant, we can compute the
reconstruction for arbitrary grey values in g as r(c,g) = >_,cx 9(x)r(c, e(7)).
Note that the echoes only need to be computed once.

During optimisation, a Gauss-Seidel scheme successively updates the grey
values at mask positions one by one. The crucial difference to [15] is that we
directly quantise the grey values after every update. In our experiments, we
observe that this algorithm already converges after only a few iterations over
all mask points. Since the inpainting mask remains constant, the echoes can be
reused for arbitrary quantisation parameters ¢q. Thus, in contrast to the non-
linear inpainting case in R-EED [23], we are able to optimise ¢ thoroughly and
efficiently with the help of a simple grid search.

The number ¢ of quantised grey values also influences the overall file size,
since the entropy coding of the grey values becomes more efficient for smaller
numbers of different grey values. Therefore, for smaller ¢, also the file size be-
comes smaller in general. Simultaneously, the error increases, since the con-
straints to the GVO become more strict. For a given mask, the best trade-off
between file size and reconstruction quality must be found, i.e. the inpainting
error and the file size have to be minimised simultaneously. For a given quantisa-
tion g, let s: {0, ...,255} — N be the file size in byte and e : {0, ...,255} — R the
corresponding mean square error. By normalising both quantities to the range
[0,1] and combining them additively, we define the trade-off coefficient p:

The smaller this coefficient, the better the trade-off for a given ¢q. Our goal
is to find the best ¢ for a given mask. In our algorithms, we minimise p with
respect to ¢ in combination with quantisation-aware GVO.

Efficient Representations of Positional Data. In the previous para-
graphs we have covered how compression steps influence tonal optimisation. In
the following sections we propose two different approaches to perform the spatial
optimisation: in Section 4, we allow free choice of point positions on the pixel
grid and in Section 5 we restrict ourselves to a coarser, locally adaptive mesh.
For both cases we discuss efficient storage. Note that for both codecs, decom-
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pression follows the same pattern: first we extract the entropy-coded mask data,
then we apply inpainting to reconstruct the image.

4 Encoding with Exact Masks

Finding optimal positions on the pixel grid for a fixed amount of mask points
is nontrivial. Besides the greedy approaches in [15], the algorithms in [2,6] find
masks by formulating an optimisation problem. As proposed in these papers, a
primal-dual scheme can be employed for finding a solution. While [6] focuses on
homogeneous diffusion, biharmonic inpainting is considered in [2]. Thus, we use
both PDEs to find optimised masks for our compression scheme. Note that we
use the variants of both methods that produce binary masks.

An inpainting mask acquired from the aforementioned algorithms is essen-
tially a binary image of the same size as the original image. This suggests to
use compression schemes like JBIG [10] to store the mask, in particular since it
has been successfully applied in edge-based compression [16]. However, JBIG is
optimised for binary images that obey a connectivity, since its primary intention
was the use in fax machines. This is not the case for sparse inpainting masks
which makes them hard to compress for JBIG.

Therefore, we have also evaluated other compression methods for binary im-
age data. While block coding schemes [3,17,26,27] and coordinate coding [17] are
not competitive to JBIG on their own, they can act as a preprocessing step for
entropy coders such as Huffman Coding [8], arithmetic coding [21] and PAQ [13].
We experimentally found that a simple block coding scheme [27] in combination
with PAQ is a good choice. It reduces the file size by up to 10% in comparison to
JBIG. Together with the grey value and quantisation optimisation from Section
3, we obtain the following three-step compression for exact masks:

1. Select p% of total pixels with the optimal control approach [6].
2. Perform GVO with quantisation optimisation (Algorithm 1).
3. Optimise block size for optimal compression with PAQ.

5 Encoding with Stochastic Tree-Building

In this section, we pursue an approach that imposes restrictions to spatial op-
timisation. To define an adaptive regular grid, we start by storing a fixed point
pattern for a given image: its four corner points and its midpoint. We can refine
this grid by splitting the image in half in its largest dimension and add the same
point pattern to its two subimages. Each split in this partitions the original
image into smaller subimages and thereby refines the grid locally.

Compared to the free choice of the previous sections, this restriction reduces
the size of the search space for optimal known data at the potential cost of
reconstruction quality. In addition, it offers a lower coding cost for the locations
by using binary tree representations. We represent each subimage of a given
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Input: Original image f, fraction a of tree nodes used as candidates for densification,
fraction 8 of candidate nodes that are added in each iteration, desired final mask
density d.

Initialisation: Splitting tree T' containing only the root node to. Initial leaf node set
L := {t1,t2} containing child nodes of ¢g.

Compute:

Do

Compute reconstruction u from mask C(7) and image data f.

Choose randomly a candidate set A C L containing « - |L| nodes.

For all ¢; € A compute the subimage error e(t;).

Add a subset of § - |A| candidate nodes t; with the largest errors e(¢;) to the

tree T'.

5. Update L to contain all children of single split nodes from T
while |C(T)| < d-|92|.

Output: Tree T with corresponding mask C(T") of density d.

W=

Algorithm 2: Stochastic tree densification.

Input: Original image f, binary tree T', parameters n < m.
Compute: Repeat
1. Create a backup copy Toia of the splitting tree T'.

Compute reconstruction ueq from mask C'(Toq) and image data f.
Remove the children of n randomly chosen single split nodes from T'.
Randomly select a set A containing m leaf nodes from 7.
For all t; € A compute the subimage error e(t;).
Add the children of the n nodes with the largest error e(¢;) to T
Compute reconstruction u from mask C(T') and image data f.
If MSE(u, f) > MSE(uold, f)

Reset changes, i.e. T' = Tg4.

until number of maximum iterations is reached.
Output: Optimised tree T'.

@ NSO W

Algorithm 3: Nonlocal node exchange.

partition as a leaf node of the tree. For a tree T consisting of nodes tg, ..., t,, the
root node ty stands for the original image and the root’s children for the halves
of the original. By adding more nodes to the tree, the image corresponding to
their parent node is split further. We can consider leaf nodes as indicators for
termination, i.e.the subimage corresponding to a leaf node is not split further.
This allows us to represent the tree as a bit sequence (0 for leaf nodes, 1 for
other nodes). In [23], such an efficient representation of the point positions is
obtained with a heuristic method. We propose to use a more powerful stochastic
mask selection approach inspired by Mainberger et al. [15] instead.

The original idea in [15] for unrestricted point sets is to start with a full mask
that contains all image points. From this mask, we remove a fixed percentage «
of known data. After inpainting with the smaller mask, we add a fraction 8 of
the removed pixels with the highest reconstruction error back to the mask. This
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sparsification algorithm iterates the aforementioned steps until the target mask
density is reached.

If we transfer this concept to a binary tree representation, there are some
key differences: We have experimentally determined that densification is more
efficient for tree structures than sparsification. Therefore, we start with a small
amount of data and iteratively add more points at locations with large error
until the target density is reached. In addition, we consider to add nodes to the
tree instead of dealing with mask points directly. The tree structure dictates
that only subimages corresponding to leaf nodes may be split. Such a split is
equivalent to adding two child nodes to the former leaf node, each correspond-
ing to one new subimage. Note that several mask points might be added by a
single subdivision and that these mask points can also be contained in several
of the neighbouring subimages. For our probabilistic method, we also need an
appropriate error computation. In order to avoid a distortion of the influence of
each node, we do not consider the mean square error in each subimage, but the
sum e(ty) of unnormalised squared differences

e(ty) = Z (fij — i) (2)

(1,7) €2

where (2;; denotes the image domain of the subimage corresponding to the tree
node t;. Without this unnormalised error measure, the same per-pixel-error in
small subimages would be weighted higher than in large subimages. Taking all of
these differences into account, we define stochastic tree densification in Algorithm
2. For a target density d, it produces an optimised tree T" with a corresponding
pixel mask C(T) C 2.

Just as the original sparsification algorithm, there is a risk that Algorithm 2 is
caught in a local minimum. To avoid this problem, we propose an adapted version
of the nonlocal pixel exchange from [15] in Algorithm 3. The method from [15]
first generates a candidate set containing m non-mask pixels. Afterwards, the
n pixels with the largest reconstruction error are exchanged with n randomly
chosen mask pixels. If the new mask yields a better reconstruction it is kept,
otherwise the change is reverted.

In our case, we have to adapt the node selection to respect the tree structure
in order to define a nonlocal node exchange. In particular, the candidate set that
is removed from the tree can only consist of nodes that are only split once. This is
the case if and only if both children are leaf nodes. We call these nodes single split
node and the reversion of their associated split comes down to removing their
children which converts the single split node to a leaf node. These modifications
lead to Algorithm 3.

The binary trees obtained from the densification and nonlocal node exchange
can finally be stored as a sequence of bits. As in [23], we store a maximum and
minimum tree depth and only save the node-structure explicitly inbetween. As
header data, only the image size and the number of quantised grey values have
to be stored. In total, this leads to the following encoding procedure:

1. Select a fraction p of total pixels with tree densification (Algorithm 2).
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Fig. 1. Comparisons for the test image 256 x 256 image peppers. The top row compares
harmonic and biharmonic versions of our codecs, the bottom row compares our best
methods to transform coders and R-EED. (a) Top Left: Comparison at same mask
density. (b) Top Right: Comparison at same compression ratio. (c) Bottom Left:
Low to medium compression ratios. (d) Bottom Right: High compression ratios.

2. Optimise the splitting tree with nonlocal node exchange (Algorithm 3).
3. Perform GVO with quantisation optimisation (Algorithm 1).
4. Concatenate header, positional, and grey value data and apply PAQ.

6 Experiments

In the following we evaluate the capabilities of harmonic and biharmonic inpaint-
ing for the two compression methods from the previous sections. Our experiments
rely on a set of widely-used test images. We start with a pure comparison of the
inpainting operators on the test image peppers: We optimise exact and restricted
masks with different densities, perform GVO and compare the mean square error
(MSE) at the same mask density. The results in Fig. 1 (a) show that, in general,
biharmonic performs better than harmonic inpainting given the same amount of
known data. This is consistent with previous results [2]. The restriction of the
mask to an adaptive grid has a significant negative impact on the quality. This
affects harmonic inpainting more than its biharmonic counterpart.
Interestingly, an evaluation of the actual compression performance with the
codecs from sections 4 and 5 in Fig. 1(b) shows a significantly different ranking
than in the density comparison. For exact masks, harmonic inpainting can even
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JPEG JPEG2000 R-EED Our Method

MSE 13.64 MSE 10.42 MSE 11.74 MSE 9.74
Fig. 2. Compression results for peppers (256 x 256 pixels) with compression ratio ~ 8:1.
Table 1. MSE comparison on several test images. For the compression rate of 15:1 we

use exact masks with homogeneous inpainting. The high compression rate of 60:1 is
obtained with the biharmonic tree codec.

Ratio ~15:1 ~60:1

Image elaine | lena trui | walter | elaine | lena trui walter
JPEG 34.69 | 20.06 | 16.24 | 6.73 77.39 | 97.37 | 116.98 | 69.40
JPEG2000 31.23 | 14.73 | 12.27 | 5.70 54.18 | 60.48 | 88.96 | 47.09
R-EED 35.48 | 16.56 | 11.27 | 5.48 49.87 | 56.96 | 44.38 | 24.05
Our Method | 31.38 | 17.00 | 14.85 | 6.94 55.96 | 62.01 | 60.92 | 34.95

surpass its biharmonic counterpart. The coding cost for the known data is similar
in both cases, but since harmonic inpainting is less sensitive to a coarse quanti-
sation of the grey values, it performs overall better than biharmonic inpainting.
The drawbacks of the restrictions in the tree-based approach are attenuated by
the reduced positional coding cost. After a break-even point around ratio 20:1,
the biharmonic tree-based method outperforms both exact approaches.

In relation to transform-based coders, the tree-based method performs con-
sistently better than JPEG and in many cases also outperforms JPEG2000 for
compression rates larger than 35:1. Nevertheless, R-EED copes better with the
restriction to the adaptive grid and remains the preferable choice at high com-
pression ratios. In comparison to other PDE-based methods, linear diffusion
performs best in the area of low to medium compression rates (up to 15:1).
Fig. 1 and Table 1 show that, it can beat R-EED, mostly outperforms JPEG,
and comes close to the quality of JPEG2000. Only on images that contain par-
tially smooth data with high-contrast edges, R-EED is significantly better (e.g.
on trui and walter). This demonstrates how powerful simple PDEs can be.
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7 Conclusion

We have shown that codecs with parameter-free linear inpainting PDEs can
beat both the quasi standard JPEG2000 of transform-based compression and the
state-of-the-art in PDE-based compression. Comparing the different inpainting
operators yields a valuable general insight: The performance of PDFEs for com-
pression can only be evaluated in the context of actual codecs. Comparisons that
do not consider all compression steps can lead to false rankings of inpainting op-
erators that do not reflect their real compression capabilities. In particular, the
sensitivity of the biharmonic operator to coarsely quantised known data makes
the simpler harmonic diffusion the preferable choice for compression.

Currently, the algorithms for mask selections are not competitive to JPEG2000
in regard to runtime. In our ongoing research, we focus on speeding up our al-
gorithms for mask selection, such that PDE-based codecs are not only fast for
decompression [11], but also for compression. Moreover, we will consider combi-
nations of linear PDEs with patch-based inpainting for highly textured images,
since this concept is already successful for nonlinear PDEs [20].
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