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ABSTRACT

Inpainting-based compression has been suggested as a qua-
litative competitor to the JPEG family of transform-based
codecs, specifically for high compression ratios. However,
it also requires sophisticated interpolation, data optimisation
and encoding tasks that are both slow and hard to implement.
We propose a fast and simple alternative that combines Shep-
ard interpolation with a novel joint inpainting and prediction
approach. It represents the image by a fraction of its pixel
values on a sparse regular subgrid that are selected by an
efficient optimisation strategy. Experiments show that our
codec is up to five orders of magnitude faster than traditional
inpainting-based approaches. Qualitatively, it can surpass
transform-based codecs, in particular for high compression
ratios and cartoon-like images.

Index Terms— Image compression, inpainting, predic-
tion

1. INTRODUCTION

Lossy inpainting-based image compression [1, 2] relies on
the principle of spatial sparseness: Codecs select and store a
small fraction of image points. During decompression, a suit-
able interpolation operator restores the missing data based on
this known pixel mask, thus performing inpainting. Quali-
tatively, these codecs can compete with JPEG [3] and JPEG
2000 [4], in particular for piecewise smooth images [5, 6] and
high compression ratios on natural images [2].

So far, quality was the focus of research on inpainting-
based compression, while runtime was mostly neglected.
Real-time decompression has been considered for video de-
coding [7, 8, 9], but fast encoding has not been a dedicated
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research goal. Even real-time decoding already constitutes
a significant challenge since current inpainting-based codecs
consist of sophisticated and time-intensive building blocks.
They supplement advanced inpainting methods [2] with cost-
intensive strategies for the optimisation of known data [2, 8].
Therefore, fast decoding without loss of quality has been only
achieved with state-of-the-art numerics, as well as GPU and
CPU parallelisation. Additionally, many inpainting-based
codecs use PAQ [10] for encoding, an efficient but slow
context-mixing approach that involves predictions by a large
number of neural networks. Overall, current codecs suffer
from two drawbacks of inherent complexity: Slow encoding
speed and non-trivial implementation.

Our contribution. We propose a proof-of-concept codec
for fast inpainting-based image compression with simple in-
gredients. Our framework aims at reducing complexity while
preserving the strengths of inpainting-based compression:
Good quality for high compression ratios and cartoon-like
images. To this end, we replace advanced inpainting and opti-
misation techniques by simple Shepard interpolation [11, 12]
on a regular grid of known pixels. This removes storage costs
for positional data and can be combined with a novel fast
optimisation strategy for the corresponding grey values. For
encoding, we combine finite state entropy (FSE) [13, 14],
a fast alternative to arithmetic coding, with a new concept:
joint inpainting and prediction (JIP) estimates values from
partial pixel masks during inpainting at negligible additional
cost. We compare our new strategy to compression with ho-
mogeneous diffusion inpainting and to the transform-based
codecs JPEG and JPEG 2000.

Related work. For image reconstruction, we rely on
Shepard interpolation [11] that restores missing pixels as a
normalised average of known data weighted by an inverse
distance function. More recent variants of this method in-
clude normalised convolution [15] of Knutsson and Westin,
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as well as the efficient filtering by adaptive normalisation
(EFAN) of Achanta et al. [12].

Codecs with homogeneous diffusion [5, 6, 16, 17, 18, 19]
resemble our approach since they use a simple inpainting op-
erator. However, they rely either on more sophisticated data
selection or encoding strategies. Real-time performance has
been only considered for video coding [7, 8, 9] and relies on
complex numerics, not on simplicity. The methods of Galić et
al. [1] and Schmaltz et al. [2] use more advanced inpainting,
but also inspire our new strategy for grey value optimisation.

Organisation of the paper. Section 2 describes relevant
inpainting techniques. We introduce our new codec in Section
3 and evaluate it in Section 4. The paper concludes with a
summary and discussion of future work in Section 5.

2. FAST AND SIMPLE INPAINTING

Our codec relies on Shepard interpolation [11, 12, 15]. It is
not only fast, but also allows us to design novel prediction
and optimisation components for our compression pipeline in
Section 3. For the sake of comparison we also consider homo-
geneous diffusion inpainting as the most widely-used operator
in inpainting-based compression [5, 6, 16, 17, 18, 19].

2.1. Shepard interpolation

Consider a discrete image f ∈ Rm×n which is only known
on the inpainting mask, a subset K of the image domain Ω =
{1, ...,m}×{1, ..., n}. For xi ∈ Ω, we can compute a recon-
struction ui := u(xi) by averaging known data weighted by
a function w:

ui =

∑
xj∈K w(xj − xi)fj∑
xj∈K w(xj − xi)

. (1)

The EFAN variant [12] of this general Shepard interpola-
tion approach defines w by a truncated Gaussian G(x) :=
exp((−x21 − x22)/(2σ2)) with standard deviation σ and size
(d4σe+1)×(d4σe+1). In Eq. (1), the Gaussian is centred at
the point xi. The computation of a full image reconstruction
operations and is linear in the number of pixels m · n.

The only parameter of the algorithm, the standard devia-
tion σ of the Gaussian, can be automatically adapted to the
mask density by σ =

√
(mn)/(π|K|). We have experimen-

tally confirmed this as a good choice for our purposes.

2.2. Inpainting with homogeneous diffusion

In our experiments, we also consider inpainting based on ho-
mogeneous diffusion [20]. We write the original image as a
vector f ∈ Rmn by traversing it row by row. Furthermore,
we express the set of known data K by a diagonal matrix
C ∈ Rmn×mn: Its entries ci,i are 1 for known pixels fi and

0 otherwise. Then a diffusion-based inpainting result is the
solution u of the inpainting equation

C(u− f)− (I −C)Lu = 0, (2)

where I ∈ Rmn×mn is the unit matrix, and Lu is a discretisa-
tion of the spatial Laplacian ∆u = ∂xxu+ ∂yyu with reflect-
ing boundary conditions. The first term of Eq. (2) ensures that
the known data is preserved at locations in K, while the sec-
ond term imposes a smoothness constraint on the missing pix-
els. For our experiments, we use a conjugate gradient scheme
to determine the solution u of the linear system Eq. (2).

3. CODING IMAGES WITH SIMPLE INGREDIENTS

In the following, we first describe two of our core novelties,
the joint inpainting and prediction (JIP) and a fast tonal opti-
misation with EFAN. In Section 3.3 we combine those com-
ponents to our novel codec.

3.1. Joint inpainting and prediction

So far, inpainting-based codecs separate image reconstruction
and efficient storage by prediction and/or entropy coding (e.g.
PAQ [10]) completely. Instead, we propose to use EFAN from
Section 2.1 for prediction and image reconstruction. We as-
sume that the pixel values of f have been uniformly quantised
to the grey level range {0, ..., q − 1}.

EFAN is implemented by visiting each known point xj ∈
K sequentially and adding its contribution to the numerator of
Eq. (1) to the value accumulation map v and its contribution
to the denominator to the weight accumulation map w. For
wi := w(xi), this corresponds to the updates wi ← wi +
G(xi − xj) and vi ← vi + G(xi − xj) for all locations
xi in the truncated Gaussian neighbourhood Nj of xj ∈ K.
Finally, the new image is given by ui = vi/wi.

Standard EFAN traverses all points of K before comput-
ing a reconstruction. However, as soon as the weight accu-
mulation map wi is non-zero at a location xi, a preliminary
reconstruction pi = vi/wi can be defined. Even though this
is only based on adjacent, already visited known data, it can
act as a surprisingly accurate prediction.

Therefore, our joint inpainting and prediction (JIP) ex-
tends EFAN by a simple prediction step: We visit all points
xi ∈ K in a fixed order (left to right, top to bottom) and es-
timate them by pi if wi 6= 0, and by 0 otherwise. By storing
the prediction error ei = fi − pi mod q instead of the original
pixel value fi we can reduce the entropy of mask values. JIP
requires only a single additional division for each prediction
compared to standard EFAN. The adaptation of the truncated
Gaussian’s size to the mask density (see Section 2.1) ensures
an overlap with at least one adjacent known data point that has
not been visited so far. Thereby, starting with a single known
data point, we can predict all remaining mask points.
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Fig. 1. (a)+(c) Runtime tests on sintel show that RJIP outperforms HOM and QAT significantly. (b)+(d) Qualitative tests on
trui. For cartoon-like images RJIP outperforms HOM and can also beat JPEG and JPEG2000.

For decoding, we perform the same JIP and load the in-
painting errors ei from the compressed image file. This allows
us to recover the original data fi = pi + ei mod q.

3.2. Fast tonal optimisation

Many inpainting-based codecs (e.g. [1, 2, 6, 16]) success-
fully use tonal optimisation to improve inpainting results. For
given mask locations K, they do not store the original grey
values f , but instead choose pixel values that minimise the
mean-squared error (MSE). Schmaltz et al. [2] visit all mask
pixels in random order and change them to the next higher or
lower quantisation if this decreases the MSE. Since each such
check requires a full inpainting, this is a slow process.

For our EFAN-based codec, we can exploit the locality of
the accumulation maps to speed up tonal optimisation signifi-
cantly. Let uold

i and unew
i denote the original and new quantisa-

tion levels, and Ni the set of points in the truncated Gaussian
neighbourhood of xi. The MSE change is then given by

∑
xj∈Ni

(
fj −

vj +G(xj − xi)(u
new
i − uold

i )

wj

)2

. (3)

This updates the value accumulation map of each point xj in
the neighbourhood Ni: We substract the weighted old mask
value from the map v and add the weighted new mask value.
This localisation yields a significant speed-up.

3.3. The RJIP codec

We combine our new approach from the previous sections into
a new regular grid codec with joint inpainting and prediction:
RJIP. Encoding consists of three steps.

Step 1: Mask selection and quantisation: Instead of in-
tricate strategies to determine the mask location K, we place
our known data on a regular grid with spacing h. This reduces
reconstruction quality, but also removes the cost of storing
positions. We also quantise the grey values uniformly to the
range {0, ..., q − 1}. The file header contains the image di-
mensions m, n (2–4 byte), h (1 byte), and q (1 byte).

Step 2: Fast tonal optimisation: We iterate our strategy
from Section 3.2 until the MSE decreases by less than 0.001.

Step 3: Prediction and entropy coding: JIP from Sec-
tion 3.1 yields a prediction error for the optimised grey values
from Step 2. We encode these errors with finite state entropy
(FSE) [13] and append the binary stream to the file header.

Since EFAN does not require to specify parameters, we
only have to select the the grid size h and the quantisation
levels q. We use a binary search that minimises the MSE and
ignores results that do not fulfil the desired compression ratio.
For decoding, we extract the prediction errors from the file
with FSE and apply JIP as described in Section 3.1.

4. EXPERIMENTS

In the following, we evaluate our RJIP codec w.r.t. speed and
quality. For comparison to classic inpainting-based compres-
sion, we replace EFAN by homogeneous diffusion, yielding
the codec HOM. JIP and fast tonal optimisation are not appli-
cable for HOM. We also compare to JPEG (GraphicsMagick
1.3.21) and JPEG2000 (Kakadu 7.10.2).
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Fig. 2. Compression of trui at Ratio ≈ 70 : 1. RJIP outperforms HOM and JPEG visually and quantitatively. Compared to
JPEG2000 the image is smoother, but does not suffer from artefacts while preserving more details in the hat.

4.1. Timing results

We investigate the scaling behaviour of RJIP and HOM on
five downsampled versions of frame 917 of the 4K Cinema-
Scope movie sintel (4096 × 1744, Fig. 1 (b)). All exper-
iments are conducted on a single core of an Intel Core i7-
6700A@3.40GHz with 32 GB RAM.

For a single compression with fixed parameters h and q,
Fig. 1 (c) shows that RJIP outperforms HOM by up to five or-
ders of magnitude. Its compression speeds range from 0.004s
for a 128×55 image to 3.05s for a 4K image. Both algorithms
have a similar memory requirement (≈ 380 MB for 4K). The
main bottleneck for HOM is the tonal optimisation, since ho-
mogeneous diffusion cannot be localised as in RJIP. A faster
approach for HOM, the quantisation-aware tonal optimisation
(QAT) [16] trades speed for extensive memory consumption.
Our test setup ran out of RAM for resolutions of 512 × 218
upwards. Even this complex algorithm is outperformed by
RJIP by 2 to 3 orders of magnitude.

For decompression, HOM requires 4.80s for the full 4K
resolution, while RJIP finishes in 0.39s. Overall, our new
codec outperforms a comparable approach with homogeneous
diffusion significantly in spite of the additional prediction.

4.2. Qualitative results

Due to space restrictions, our qualitative evaluation shows
mainly MSE results. The perceptual structural similarity in-
dex (SSIM) [21] produced similar rankings (see also Fig. 2).
Compression quality is not the main focus of our work, but
we still aim to preserve the main benefits of inpainting-based
compression: Good performance on cartoon-like images and
high compression ratios.

The test image trui is a typical representative for such im-
ages. As Fig. 1(d) demonstrates, RJIP outperforms the slower
HOM algorithm consistently over all compression ratios. The
simpler EFAN inpainting not only approximates the more so-
phisticated homogeneous diffusion inpainting adequately, it
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Fig. 3. MSE on Berkeley database. On the Berkeley
database with textured images, RJIP outperforms JPEG and
JPEG2000 for high compression ratios.

also benefits from the additional reduction of entropy by the
new joint inpainting and prediction. This is supported by the
fact that replacing JIP by the neural network predictions of
LPAQ [10] yields no significant benefits. RJIP also outper-
forms JPEG for ratios > 30:1 and JPEG 2000 for ratios >
60:1. Visually, RJIP clearly outperforms HOM and JPEG in
Fig. 2: It does not suffer from singularities as homogeneous
diffusion inpainting, and has no block artefacts like JPEG.
Compared to JPEG2000, RJIP results are slightly smoother
but also have no wavelet quantisation artefacts.

In addition, we have also investigated the quality of RJIP
on textured data, namely on the 500 natural images of the
Berkeley database [22] in Fig. 3. As expected, JPEG and
JPEG2000 perform more favourably compared to RJIP than
on cartoon-like images. However, the simplicity of RJIP also
leads to a significantly better scaling behaviour for ratios >
100:1. Extreme compression ratios in the up to 5000:1 are
possible.



5. CONCLUSION AND FUTURE WORK

Our RJIP codec combines simple ingredients to achieve faster
and more accessible inpainting-based image compression.
The combination of Shepard interpolation, joint inpainting
and prediction (JIP), and fast global tonal optimisation is both
easy to implement and outperforms conventional diffusion-
based approaches by several orders of magnitude w.r.t. speed.

In particular, the concepts of localised inpainting and
JIP have the potential for a high impact on the design of
inpainting-based codecs. In particular, they seem well-suited
for time-critical applications such as video coding [9]. Fur-
thermore, the ease with which RJIP can obtain extreme com-
pression ratios suggests that some of its concepts might be
useful for specialised tasks like thumbnail compression [23].

In the near future, we plan to complement our fast tonal
optimisation with a suitable time-efficient spatial optimisation
to further improve compression quality. Moreover, we will
address a dedicated support for colour images.
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