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ABSTRACT

Schmaltz et al. (2009) have shown that for reasonably high
compression rates, diffusion-based codecs can exceed the
quality of transformation-based methods such as JPEG 2000.
They store only data at a few optimised pixel locations and in-
paint missing data with edge-enhancing anisotropic diffusion
(EED). However, research on compression with diffusion
methods has mainly focussed on grey-value images, and
colour images have been compressed in a straightforward
way using anisotropic diffusion in RGB space. So far, there
is no sophisticated diffusion-based counterpart to the colour
mode of JPEG 2000. To address this shortcoming we in-
troduce an advanced colour compression codec that exploits
properties of the human visual system in YCbCr space. Since
details in the luma channel Y are perceptually relevant, we
invest a large fraction of our bit budget in its encoding with
high fidelity. For the chroma channels Cb and Cr, the stored
information can be very sparse, if we guide the EED-based
inpainting with the high quality diffusion tensor from the
luma reconstruction. Experiments demonstrate that our novel
codec outperforms JPEG 2000 and compression with RGB-
diffusion, both visually and quantitatively.

Index Terms— colour, edge-enhancing anisotropic diffu-
sion, compression, YCbCr space, luma preference

1. INTRODUCTION

Transformation coders such as JPEG [1]] and JPEG 2000 [2]
exploit the properties of the human visual system in order to
improve the perceived fidelity of compressed colour images.
In particular, they use YCbCr or YUV colour spaces and com-
press the chroma channels in a coarser manner either by sub-
sampling or by omitting fine-scale wavelet coefficients.

A fundamentally different approach to image compres-
sion is pursued by diffusion-based compression methods.
They started out in 2005 as a proof of concept [3] for an

alternative to transformation coders. Meanwhile, they have
evolved to a refined stage that enables them to surpass state-
of-the-art competitors. In particular, the R-EED codec [4]
uses the inpainting qualities of edge-enhancing anisotropic
diffusion (EED) [5] to beat JPEG 2000 for low-texured im-
ages. However, R-EED has mainly been optimised for the
compression of grey-value data. It only supports colour
compression in RGB space so far [6], where a weighting of
channels according to perceptual importance is not possible.
Therefore, on colour data, R-EED and the transformation-
based coders do not compete on equal footing. In this paper,
we address this disadvantage by introducing a new colour
compression mode to R-EED.

Our Contribution. We extend R-EED by a so-called
luma preference (LP) mode that is based on YCbCr space.
This novel compression mode relies on two core ideas: 1. The
luma channel is more important for the human visual system
than the colour components. Therefore, it should be stored
with higher quality. 2. The diffusion tensor of the luma recon-
struction steers the inpainting of the chroma channels. This
improves the quality of the chroma reconstruction.

Related Work. Our reconstruction of the chroma chan-
nels has been inspired by Kaufhold’s image colourisation
method [[7]. She uses linear anisotropic diffusion guided by
the luma channel of a YCbCr representation to propagate
manually added colour strokes to the remainder of the image.
Also some transformation-based coders exploit colourisation
ideas for compression. Most of them rely on the method of
Levin et al. [8]]. In [9]], an extended version of Levin’s method
is used in combination with JPEG to restore colour informa-
tion from samples in CIELAB space. A machine learning
approach to the problem is investigated in [10]. It interprets
Levin’s method as a learning algorithm and incorporates a
modified version into JPEG. Furthermore, variations of a
colourisation method based on Markov random fields have
been applied in a postprocessing step to JPEG [11] and JPEG
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2000 [12].

2. THE R-EED CODEC FOR RGB IMAGES

The foundation of our diffusion-based colour image compres-
sion method is the R-EED codec of Schmaltz et al. [4, |6].
It stores only a small amount of image data at well-chosen
positions and reconstructs the remainder of the image via
diffusion-based inpainting. The evaluation in [6] has shown
that edge-enhancing anisotropic diffusion (EED) [5] has
better reconstruction qualities than other partial differential
equations. Let us consider some rectangular image domain
Q C R? and let f = (f1, f2, f3) | be the original image
with RGB channels f; : @ — R, ¢ € {1,2,3}. Furthermore,
we assume that we have stored f only on a subset K C €2,
the so-called inpainting mask. Then the reconstruction in
the inpainting domain Q0 \ K is computed as the steady state
(t — 00) of the anisotropic diffusion equation

dyu; = div(D(J) V), i€ {1,2,3} (1)

with reflecting boundary conditions. The known data on K is
unaffected during the evolution. The initialisation in the in-
painting domain Q\ K at time ¢ = 0 can be chosen arbitrarily,
as it has no influence on the steady-state.

The diffusion equation (1)) is guided by the joint diffusion
tensor D, a positive definite 2 x 2 matrix that adapts itself
to the local image structure (see also [13]]). This adaptation
relies on Di Zenzo’s structure tensor for colour images [[14]:

3
J = Z Vuk,gVu,:';U, (2)
k=1

where 1y, , denotes a convolution of the channel u; with a
Gaussian of standard deviation o. The nonnegative eigenval-
ues (1 > po of J measure the contrast in the directions of
the eigenvectors v; and v,. To reflect the image structure, the
diffusion tensor D uses the same eigenvectors. In order to re-
duce diffusion across edges, its eigenvalue A; is given by the
Charbonnier diffusivity [15]]

1
A = =
1 =9a) 1+ pa /A2

with some contrast parameter A > 0. Full diffusion along
edges is achieved with a constant second eigenvalue Ay := 1.

The Gaussian convolution within the structure tensor J
guarantees that structural information is propagated to the
neighbourhood of each pixel. This way, EED can inpaint
edges also in situations where only very few pixels of an edge
contour are specified; see [6] for experiments. Optimising the
inpainting mask K and the contrast parameter A can increase
the quality of the inpainting result.

In practice, R-EED limits the admissible pixel set K to a
regular adaptive grid that can be represented by a binary de-
cision tree. This allows to store the pixel locations efficiently

3

and reduce the search space for an optimal choice of K. In
order to find a good set K, we use a subdivision strategy:
If the reconstruction error in a rectangular subarea exceeds a
threshold, the area is split across its largest dimension. This
subdivision inserts pixels to K and is represented by a node
in a binary tree. For more details, we refer to [6]].

The known colour data is quantised and stored with a suit-
able entropy encoder. In addition to an optimisation of the
mask K, the contrast parameter A and the number of quan-
tised grey-values g, the colour data can also be optimised in a
so-called brightness optimisation step: Allowing errors at the
small set K of specified pixels may reduce errors in the large
inpainting domain 2 \ K. More details can be found in [6]].

3. LUMA PREFERENCE MODE

The choice of RGB space for the original colour compression
mode of R-EED enforces equal treatment of all three colour
channels in vector-valued diffusion inpainting. In our novel
extension to R-EED, we propose to use YCbCr colour space
instead. YCbCr separates the image data into intensity infor-
mation in the luma channel Y and colour information in the
chroma channels Cb and Cr; see e.g. [L6].

For the human visual system, errors in the chroma chan-
nels have a smaller impact on the perceived quality than er-
rors in the luma component (see e.g. [[17]). This effect can be
exploited by compressing the luma channel in a higher qual-
ity than the chroma data. Even though the mean square er-
ror (MSE) in RGB space might increase due to an unequal
treatment of the channels, the perceived overall quality can
be improved.

On the basis of these observations, we introduce a luma
preference (LP) mode for colour compression with R-EED. In
LP mode, the luma and chroma components are compressed
in separate steps and with different compression ratios. For a
given compression ratio, more of the total bit budget is ded-
icated to Y than to Cb or Cr. A new parameter, the LP ratio
r, determines the weighting between the available storage sy,
scp and s¢, for the respective channels in the form

Sy =T:Scp =T "SCr- “4)

LP mode chooses sy such that an overall compression ratio
R : 1 with respect to the original file size s¢ is achieved:
S0

T Ut 2nR ©)
This channel weighting in YCbCr mode constitutes the first
significant difference to the RGB mode of R-EED. However,
we aim to go one step beyond a pure increase in perceived
visual fidelity: Instead of just redistributing the error from in-
tensity to chroma components, we want to decrease the over-
all reconstruction error. LP mode achieves this goal by ex-
ploiting the correspondences of important image structures



between luma and chroma channels. In the following, we de-
scribe an inpainting approach that uses the high quality luma
reconstruction to improve the inpainting results in the chroma
components. Let an image in YCbCr space be given by the
vector (fy, fcw, for) T . Each channel ¢ € {Y,Cb, Cr} has
an individual set of known data K. C (Q in this formulation.
The reconstruction on the inpainting domain 2 \ K is ob-
tained as the steady state of

dyue = div(D(Vuy,o Vuy ,) V). (6)

In contrast to Equation (T)), the tensor D in Equation (6)) de-
pends solely on the luma channel: Its eigenvectors v; =
Vuy,, and vy = Vu%,ﬁ represent the local edge directions
in the luma channel. In the direction vy along luma edges,
the eigenvalue Ay := 1 allows full diffusion. Across luma
edges, the diffusion is inhibited according to the local con-
trast in the luma channel. To this end, we set the eigenvalue
A1 t0 g(JVuy,,|?) with the Charbonnier diffusivity g from
Equation (3).

Thus, for the luma component, the diffusion-based recon-
struction is identical to EED inpainting for grey-value images.
However, the chroma channels are reconstructed with linear
anisotropic diffusion that is guided by the diffusion tensor
of the luma reconstruction. Since all edge information from
the luma reconstruction is contained in its diffusion tensor,
the luma-guided inpainting can also reconstruct these in the
chroma channels. Therefore, LP mode needs to store less
known data for the chroma components. The gained addi-
tional bit budget can be invested into the luma channel in-
stead, which increases the overall reconstruction quality (see
experiments in Section[d). With channel weighting and luma-
guided diffusion, the core ideas of LP mode have been estab-
lished. In the following, we present a detailed description of
the compression and decompression steps of LP mode and the
corresponding file formats.

Compression in LP mode proceeds in two steps.

Step 1: Luma Compression. We compress the luma
channel like a grey-value image in R-EED. The contrast pa-
rameter A\, the number of quantised grey-values ¢, and the
mask positions are optimised w.r.t. the MSE of the luma
channel. Then we store these positions in a binary decision
tree, the so-called luma tree. At these positions, we optimise
the quantised intensity values. Afterwards a specific entropy
coder such as PAQ [18]] helps to remove redundancies.

Step 2: Chroma Compression. This step benefits
strongly from the luma diffusion tensor from Step 1, since
luma-guided chroma diffusion requires less interpolation
points to achieve good results. Moreover, the positions of
these points are less critical, such that we can use the same
positions for both chroma channels. Thus, it suffices to built a
single, small joint splitting tree for both chroma channels. In
particular for small values of r, this avoids a lot of overhead
in the coding of the positions. We invest this free bit bud-
get in a better coding of colour values. Also for the chroma
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Fig. 1. Error comparison at different compression rates for
the 256 x 256 image peppers shown in Fig. [2| (a) Left: Joint
MSE in RGB space. Lower is better. (b) Top right: MSE in
the luma channel. (c) Bottom right: SSIM. Higher is better.

compression, we perform optimisation of the chroma val-
ues. The number qopcr Of quantised chroma levels and the
type of entropy codec can be chosen independently from the
corresponding decisions for the luma channel.

Container Generation and File Format. The data from
both compression steps has to be stored in a container file.
First we generate a common header that contains the image
dimensions, all parameters of the method, and the file size s¢
of the joint positional and colour data for the chroma chan-
nels. They are saved as binary numbers of custom length for
each stored value. Afterwards the luma and chroma trees as
well as the entropy coded pixel data is appended. We store
the trees in form of a minimal and maximal tree depth and a
sequence of bits that explicitly encodes the splitting decision
in between the depth limits.

Decompression. For decompression, the header of the
container file is read to obtain all parameters, including the
chroma length sc. With this length, we split the file into luma
and chroma data and recover both trees. After reconstruct-
ing the mask from the decision tree and decoding the known
image data, we reconstruct the luma channel with EED in-
painting. Using the diffusion tensor from this inpainting step
and the decoded colour data, the chroma channels are recon-
structed as well. A backtransformation to RGB recovers the
final decompressed image.

4. EXPERIMENTS

Using two well-known test images, we compare our new LP
mode to the RGB mode of R-EED and to JPEG 2000. The
test image peppers represents images with homogeneous ar-
eas, whereas lena serves as an example for images with fine-
scale detail. We have implemented the anisotropic diffusion
algorithms as in [6] and have chosen PAQ [18] as entropy
coder. Since the overall mean square error (MSE) does not al-
ways adequately reflect the perceived quality, we also employ



Original Image JPEG 2000

MSE 151.31, SSIM 0.793

MSE 34.05, SSIM 0.932

R-EED (RGB)

R-EED (LP)

MSE 88.58, SSIM 0.819 MSE 77.53, SSIM 0.833

MSE 30.46, SSIM 0.943

MSE 33.70, SSIM 0.914

Fig. 2. Compression results (overall MSE and SSIM) for lena and peppers. (a) Top: Results for peppers (256 x 256 pixels)
with compression ratio 110:1. (b) Bottom: Results for lena (256 x 256 pixels) with compression ratio 20:1.

the luma channel MSE and a dedicated perceptual measure,
the structural similarity index (SSIM) for greyscale-converted
colour images [19]].

Fig.[T(a) shows that for peppers, both R-EED modes con-
sistently outperform JPEG 2000. For compression rates be-
low 80:1, the overall MSE of the LP mode and the RGB mode
of R-EED is almost identical. However, for higher ratios, the
LP mode performs up to 10% better than the RGB mode.
Fig. [[[b) displays the MSE in the luma channel. Here one
immediately sees that the channel weighting of our LP mode
is rewarded by a very low luma MSE. Also the perceptually
relevant SSIM curves in Fig. [T[c) confirm the favourable per-
formance of R-EED in LP mode. Fig.[2|a) allows visual com-
parisons for high compression rates. We see that R-EED in LP
mode gives good results in scenarios where the other codecs
reach their limits: The overall MSE of the JPEG 2000 stan-

dard, for example, is almost twice as high.

On images that contain more texture, LP mode can im-
prove the overall MSE of R-EED also for lower compression
rates, as we can see in Fig. 2Jb). For the lena image with ratio
20:1, R-EED in RGB mode is inferior to JPEG 2000: It lacks
a sufficient bit budget to reproduce texture details. The LP
mode, however, reconstructs more fine-scale detail due to the
channel weighting. It surpasses JPEG 2000 w.r.t. the overall
MSE and SSIM.

5. CONCLUSION AND OUTLOOK

We have presented the first diffusion-based codec in YCbCr
colour space. It benefits from the perceptual properties of the
human visual system. Experiments show that our luma pref-
erence mode gives a higher quality than the traditional RGB



mode of diffusion coding and also surpasses JPEG 2000. Ex-
tensions to video compression and more efficient storage of
positional data are promising areas for further research.

Our contribution is one more step towards supplementing
diffusion codecs with a similar level of sophisticated engi-
neering as established transformation-based methods. Other
recent steps along these lines include progressive mode cod-
ing [20], dedicated diffusion codecs for depth maps [21} 22|
23], and 3-D data compression [24]. We are convinced that a
lot of potential in this area still awaits being explored.
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