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Abstract. Tensor-driven anisotropic diffusion and regularisation have been suc-
cessfully applied to a wide range of image processing and computer vision tasks
such as denoising, inpainting, and optical flow. Empirically it has been shown
that anisotropic models with a diffusion tensor perform better than their isotropic
counterparts with a scalar-valued diffusivity function. However, the reason for
this superior performance is not well understood so far. Moreover, the specific
modelling of the anisotropy has been carried out in a purely heuristic way. The
goal of our paper is to address these problems. To this end, we use the statistics of
natural images to derive a unifying framework for eight isotropic and anisotropic
diffusion filters that have a corresponding variational formulation. In contrast
to previous statistical models, we systematically investigate structure-adaptive
statistics by analysing the eigenvalues of the structure tensor. With our findings,
we justify existing successful models and assess the relationship between accu-
rate statistical modelling and performance in the context of image denoising.

Keywords: diffusion, regularisation, anisotropy, diffusion tensor, statistics of
natural images, image priors

1 Introduction

Anisotropic diffusion and regularisation models involve a positive definite 2×2 matrix
called diffusion tensor. Its eigenvalues steer the amount of data propagation in the direc-
tion of the corresponding eigenvector. Throughout more than two decades of research,
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such anisotropic methods have been successfully used for a large number of image pro-
cessing and computer vision problems. These tasks include denoising [3], inpainting
[24], image compression [6], optical flow computation [16], stereo reconstruction [31],
and shape from shading [1]. Application domains cover e.g. computer aided quality
control [25], medical image processing [14], and seismic image analysis [8].

To this date, modelling nonlinear diffusion filters is a heuristic, task-driven proce-
dure, where images are processed towards a certain goal. It is a well-known fact that
anisotropic models can be much more powerful in certain applications than isotropic
diffusion approaches with a scalar-valued diffusivity function. Clearly, one reason for
the success of anisotropic concepts are their additional degrees of freedom which can
be adapted to a task at hand. However, another potential explanation for this success is
still unexplored: Could it be that smoothness assumptions of anisotropic models reflect
statistical properties of natural images more accurately than isotropic ones?

For specific isotropic diffusion models, there exists a well-known connection to
probabilistic filter models based on the statistics of natural images [29]: There is a
negative logarithmic correspondence between natural image priors and regularisation
terms in variational models. However, in particular for anisotropic diffusion, previous
investigations have focused on isolated, specific models in practical contexts such as
parameter learning. In particular, there is a lack of a cohesive theory that systematically
analyses the correspondence between probabilistic filters and diffusion filters that can
be expressed by energy minimisation.

Our Contributions. The goal of our paper is to provide a justification of tensor-
driven diffusion models via the statistics of natural images. We aim at systematically
assessing the differences between isotropic and anisotropic approaches from a proba-
bilistic perspective. To this end, we use natural image priors to derive a unifying frame-
work that incorporates eight existing diffusion filters that have a corresponding varia-
tional formulation. In order to cover the full range of nonlinear models, these statistics
have to reflect the local image structure and allow to involve directional information.
The eigenvalue statistics of the structure tensor in databases of natural images provide
not only such information, but also offer a lot of flexibility to generate a wide range
of derivative-based priors. This allows us to construct probabilistic filters that represent
existing isotropic and anisotropic filter classes and analyse the differences in the under-
lying priors. We discuss the implications of these differences on filter performance in
the context of image denoising.

Related Work. At its core, our work relies on the non-Gaussian nature of the his-
tograms that result from applying filters to natural images. For wavelet coefficients,
these specific attributes were first reported by Huang and Mumford [5]. These obser-
vations were systematically investigated for both derivative filters and wavelet coeffi-
cients in [10]. Invariances of these statistics are vital for their practical relevance. Zhu
and Mumford proposed that these statistical priors are invariant to scale and verified
this empirically in [29]. Evaluations on databases containing different motives were
conducted by Huang and Mumford in [9]. For more details on the statistics of natural
images, we refer to the recent monograph of Pouli et al. [19].

General connections between diffusion processes and statistical image processing
models have been pioneered by Zhu and Mumford [29] within a Gibbs diffusion–
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reaction framework. Later on, Roth and Black [20] have found additional relations in the
context of fields of experts. Works considering anisotropic diffusion models are, how-
ever, very rare. In the context of parameter learning, Scharr et al. [22] introduced an
anisotropic model with Gaussian derivatives. A more recent parameter-free model goes
back to Krajsek and Scharr [12]. They consider a two step procedure. In the first step,
an isotropic diffusion process is derived. Afterwards, this is used to construct a linear
anisotropic regularisation model. More recently, Kunisch and Pock [13] have analysed
parameter learning for regularisation methods with a bilevel optimisation scheme.

Organisation of the Paper. We start with a brief overview of existing tensor-driven
diffusion in Section 2. In Section 3, we investigate the properties of the structure tensor
as an image feature and use it to derive a probabilistic denoising filter in Section 4.
We show that this model is related to a unifying framework for diffusion filtering in
Section 5. In Section 6 we investigate diffusion models that are learned from a database,
evaluate their performance for denoising and interpret the results. Finally, we present
our conclusions and outlook on future work in Section 7.

2 Tensor-Driven Diffusion Processes

Let us start by reviewing a number of isotropic and anisotropic diffusion filters which
can be derived from a general energy functional that we present in Section 5.

General Structure. Let f = ( f1, ..., fm)
> represent a vector-valued image with m

channels. Each of these channels is a function fk : Ω → R that maps the rectangular
image domain Ω ⊂ R2 to the colour value range R. A tensor-driven, vector-valued
diffusion process computes filtered versions {u(x,y, t) |(x,y) ∈ Ω , t ≥ 0} of f(x,y) as
solutions of the diffusion equation

∂tuk =∇>(D∇uk) on Ω × (0,∞), k = 1, . . . ,m (1)

with u(x,y,0) = f(x,y) as initial condition on Ω , and reflecting boundary conditions:

〈D∇uk,n〉= 0 on ∂Ω × (0,∞), k = 1, . . . ,m. (2)

The diffusion time t serves as a scale parameter: Larger times yield simpler image
representations. The nabla operator ∇ and the divergence operator ∇> involve spatial
derivatives only, and n denotes the outer normal vector to the image boundary ∂Ω .
The diffusion tensor D is a positive definite 2× 2 matrix that steers the diffusion. Its
eigenvalues specify the amount of diffusion in the direction of the eigenvectors.

Isotropic Models. The simplest diffusion process, homogeneous diffusion [11], is
obtained for D := I with a unit matrix I . In this case, the diffusion does not depend
on the image structure. For more sophisticated nonlinear isotropic diffusion models the
diffusion tensor is of the form D := g(|∇u|2)I . If one wants to permit strong smooth-
ing within homogeneous regions and inhibit smoothing across edges, one chooses the
diffusivity g(|∇u|2) as a decreasing positive function of its argument. Many diffusivity
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functions have been proposed, e.g. the Perona/Malik diffusivity gPM [18] or the Char-
bonnier diffusivity gC [2]:

gPM(s2) :=
(

1+
s2

λ 2

)−1

, gC(s2) :=
(

1+
s2

λ 2

)−1/2

. (3)

Note that locations where |∇u| � λ are regarded as edges where the diffusivity is
close to 0, while we have full diffusion in regions with |∇u| � λ . Therefore, λ > 0
acts as a contrast parameter. Isotropic models allow space-variant smoothing, but due
to their scalar-valued diffusivity, the diffusion process acts in the same way in all di-
rections. The first isotropic nonlinear model goes back to Perona and Malik [18] and
is designed for greyscale images. Gerig et al. [7] have extended it to colour image pro-
cessing by coupling the evolution of the individual channels through a diffusivity of the
form g(∑m

k=1 |∇uk|2). Scherzer and Weickert [23] have investigated an isotropic nonlin-
ear diffusion model where all spatial gradients ∇ are replaced by Gaussian-smoothed
gradients ∇σ := Kσ ∗∇. Here Kσ denotes a Gaussian with standard deviation σ .

Anisotropic Models. In order to model direction-dependent diffusion processes,
we need an anisotropic diffusion tensor D whose eigenvalues can differ significantly.
These eigenvalues and their corresponding eigenvectors are adapted to the local im-
age structure. A popular descriptor of the local image geometry is the structure tensor
of Di Zenso [4]. In its most sophisticated form, it is given by the symmetric positive
semidefinite matrix

Jm,ρ,σ := Kρ ∗
( m

∑
k=1

∇σ uk∇σ u>k
)

(4)

with eigenvalues µ1,ρ,σ ≥ µ2,ρ,σ ≥ 0. The corresponding diffusion tensorD := g(Jm,ρ,σ )
uses the same set of eigenvectors and obtains its eigenvalues as functions of µ1,ρ,σ and
µ2,ρ,σ . The anisotropic models of Weickert/Brox [27] and Tschumperlé/Deriche [24]
do not incorporate any smoothing in the structure tensor (i.e. σ = ρ = 0). However,
such models degenerate to isotropic diffusion on greyscale images (m = 1). The meth-
ods of Roussos/Maragos [21] and Scharr et al. [22] involve a smoothing scale ρ > 0
and remain also anisotropic for m = 1. While Roussos/Maragos use σ = 0, Scharr et
al. consider the case σ > 0 and replace all gradients ∇ by their Gaussian-smoothed
counterparts ∇σ .

3 Structure-Adaptive Analysis of the Berkeley Database

Interpretation of the Structure Tensor. The local image structure of a vector-valued
image u with m channels can be characterised by the joint structure tensor from Eq. (4).
Its eigenvalues µ1 ≥ µ2 represent the local contrast in the direction of the correspond-
ing eigenvectors v1 and v2. For µ1 � µ2, the eigenvector v2 describes the direction
of coherent structures while v1 points across these structures. Locally isotropic image
content is characterised by µ1 ≈ µ2. Thus, the eigenvalues of the structure tensor are
image features that describe local geometry.
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Fig. 1. Evolution of the negative logarithmic histogram of the eigenvalue pairs (µ1,ρ,σ ,µ2,ρ,σ ) of
the structure tensor Jm,ρ,σ over different scales ρ and σ . Dark values indicate high occurrences
and bright values low occurrences.

The Gaussian smoothing scales σ and ρ play distinct roles for the analysis of local
image structure: Smoothing with Kσ removes noise and small-scale details. Thus, it
should be chosen as small as possible. The smoothing scale ρ is usually chosen to be
larger since its task is to accumulate neighbourhood information in the structure tensor.

In our implementation of the structure tensor, we use the finite difference discretisa-
tion from [28] with a parameter α = 1/6. Its leading error term is rotationally invariant.

Anisotropic Statistics of Colour Images. Let us now use the aforementioned struc-
ture tensor for a statistical analysis of the Berkeley database [15]. The histogram of
the eigenvalue pairs (µ1,µ2) with σ = ρ = 0 is displayed in Fig. 1(a). The fact that
the eigenvalue µ1 clearly dominates and there are many structure tensors where µ2 is
significantly smaller confirms two things: Firstly, colour images contain many strongly
oriented structures which legitimates the use of anisotropic filters. Secondly, these struc-
tures have some correlations over the colour channels. Fig. 2(a) reveals that both eigen-
values have the heavy-tailed distributions that are characteristic for filter results on nat-
ural images. Such kurtotic distributions are captured well by the function

ψ(x2) =
λ 2

1− γ

(
1+

x2

λ 2

)1−γ

. (5)

The free parameters λ and γ can be adapted to fit ψ to the discrete histograms. A related
model with one more degree of freedom was also proposed in [12]. Similar statistics
have been shown to be nearly identical on many databases of natural images such as the
Berkeley [15] or McGill [17] test sets. In particular, they are also invariant for image
content on different scales. Therefore, they form a good prior for natural images. This
scale invariance implies that the statistics do hardly change under subsampling.
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Fig. 2. Evolution of the negative logarithmic histograms h(µ1), h(µ2) of the eigenvalues µ1,ρ,σ ,
µ2,ρ,σ of the structure tensor Jm,ρ,σ over different scales ρ and σ .

Behaviour under Smoothing. If one averages with overlapping neighbourhoods,
the statistics depend significantly on the neighbourhood size. This happens for the
Gaussian-smoothed structure tensor Jm,ρ,σ , where the tensor entries are embedded in a
Gaussian scale-space. Let us first fix σ and consider the scale-space behaviour with
respect to ρ . Fig. 1(a)–(d) shows the evolution of the histogram for the eigenvalue
pairs (µ1,ρ,σ , µ2,ρ,σ ). We observe that for increasing ρ , the joint histogram clusters
towards the diagonal. This shows that µ1,ρ,σ and µ2,ρ,σ approach each other, i.e. the
structure tensor becomes more isotropic. This is plausible, since one smoothes over
structures with different orientations. For ρ → ∞, all tensors Jm,ρ,σ converge to the av-
erage structure tensor of the whole image. If all directions were equally prominent over
the database, this average tensor would be purely isotropic . However, the steady state
of the statistics (ρ = 105 in Fig. 1(d) and Fig. 2(d)) reveals some anisotropy. Thus, the
average eigenvalue histograms show the inherent directional bias of the image database.

Now we fix ρ and investigate the evolution under σ . For σ → ∞, the local con-
trast given by µ1,ρ,σ and µ2,ρ,σ approaches 0 and the corresponding diffusion tensorD
converges to the unit matrix I . Interestingly, Figs. 1(e)–(f) and 2(e)–(f) show that for
small σ , the presmoothing increases the difference between the histograms of µ1,ρ,σ
and µ2,ρ,σ . This fosters anisotropy of the image prior. We conjecture that Gaussian con-
volution effectivly removes high-frequent isotropic perturbations, such that anisotropic
image structures become more dominant. For larger σ their dominance decreases again.

In conclusion, we observe that natural images contain pronounced anisotropies and
their statistics strongly depend on the smoothing scales ρ and σ . This suggest to design
filters that take into account such anisotropic phenomena as priors.
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4 Probabilistic Denoising with a Structure Tensor Prior

We can use the statistics from Section 3 as a prior for a Bayesian denoising approach.
Let a discrete, noisy image f of size M×N with m channels be given. The goal is to
compute an approximation u to the original image v under two assumptions: v belongs
to the class of natural images and is degraded by Gaussian noise. For any image u, let
p(u) be the natural image prior. It describes the probability that u is a natural image
and is derived from the statistics of image features on a suitable database. Furthermore,
an assumption on the distribution of the noise yields the noise prior p(f |u). According
to Bayes’ rule, the posterior probability for a candidate image u to be the ground truth
to an observed noisy image f obeys

p(u|f)∼ p(f |u) · p(u). (6)

Thus, the optimally denoised image û can be obtained by maximising the posterior
probability p(u|f) over all candidates u:

û= argmax
u

p(u|f). (7)

Since we assume independent identically distributed Gaussian noise for each channel k
with k ∈ {1, ...,m}, the noise prior is given by

p(f |u)∼
m

∏
k=1

M

∏
i=1

N

∏
j=1

exp
(
− 1

2σ2 (uk,i, j− fk,i, j)
2
)
. (8)

In order to formulate a natural image prior, we follow the minimax entropy model that
has been used to model texture [30] and whole images [29]. For a set of given linear or
nonlinear filters {F1, . . . ,FL} the distribution of natural images is modelled as

p(u) =
L

∏
`=1

N

∏
i=1

M

∏
j=1

φ`(F`(u)i, j). (9)

Here the potential functions φ` model the distribution of the corresponding filter F`.
Current state-of-the-art models like the fields of experts approach [20] use specifically
learned linear filters as a feature set. Interestingly many of these learned filters resemble
derivative filters as was shown in [20].

Let φ(µ1,µ2) define the distribution of an arbitrary image feature that is derived
from the eigenvalues µ1 and µ2 of Jm,ρ,σ . In particular, this formulation also includes
separate statistics for both eigenvalues, i.e. φ(µ1,µ2) := φ1(µ1) · φ2(µ2). Such image
features can be interpreted as second-level priors in the terminology of [29], since they
model the local geometry of image structures. In particular, these priors adapt to dom-
inant directions in the image in contrast to linear filters that approximate derivatives in
a fixed, global direction. By specifying the natural image prior (9) with a feature based
on µ1 and µ2 and including the noise prior (8) we obtain the following energy:

EP(u) =
M

∏
i=1

N

∏
j=1

( m

∏
k=1

(
exp
(
−

(uk,i, j− fk,i, j)
2

2σ2

))
·φ(µ1,i, j,µ2,i, j)

)
. (10)

Maximising EP gives the denoised image û.
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Model m σ ρ PDE Penaliser Prior

Homogeneous
Diffusion [11]

1 0 0 ∂tu =∇>∇u ψ(µ1 +µ2) = |∇u|2 φ(µ1 +µ2) = e−|∇u|2

Perona/
Malik [18]

1 0 0 ∂tu =∇>
(

ψ ′(|∇u|2
)
∇u) ψ(µ1 +µ2) =− lnφ(|∇u|2) φ(µ1 +µ2) = φ(|∇u|2)

Gerig et al. [7] ≥ 1 0 0 ∂tuk =∇>(ψ ′(∑m
`=1 |∇u`|2)∇uk) ψ(µ1 + µ2) =

− lnφ(∑m
`=1 |∇u`|2)

φ(µ1 + µ2) =
φ
(
∑

m
`=1 |∇u`|2

)
Scherzer/
Weickert [23]

1 ≥ 0 0 ∂tu =∇>σ
(

ψ ′(|∇σ u|2)∇σ u
)

ψ(µ1 +µ2) =− lnφ(|∇σ u|2) φ(µ1 +µ2) = φ(|∇σ u|2)

Weickert/
Brox [27]

> 1 0 0 ∂tuk =∇>
((

ψ ′(µ1)v1v
>
1 +ψ ′(µ2)v2v

>
2
)
∇uk

)
ψ(µ1,2) =− lnφ(µ1,2) φ(µ1) ·φ(µ2)

Tschumperlé/
Deriche [24]

> 1 0 0 ∂tuk =∇>
((

∂ψ(µ1,µ2)
∂ µ1

v1v
>
1 +

∂ψ(µ1,µ2)
∂ µ2

v2v
>
2
)
∇uk

)
ψ(µ1,µ2) =− lnφ(µ1,µ2) φ(µ1,µ2)

Roussos/
Maragos [21]

≥ 1 0 > 0 ∂tuk =∇>
(

Kρ ∗
(

∂ψ(µ1,µ2)
∂ µ1

v1v
>
1 +

∂ψ(µ1,µ2)
∂ µ2

v2v
>
2
)
∇uk

)
ψ(µ1,µ2) =− lnφ(µ1,µ2) φ(µ1,µ2)

Scharr et al. [22] 1 ≥ 0 > 0 ∂tu =∇>σ
(

Kρ ∗
(
ψ ′1(µ1)v1v

>
1 +ψ ′2(µ2)v2v

>
2
)
∇σ u

)
ψ1,2(µ1,2) =− lnφ1,2(µ1,2) φ1(µ1) ·φ2(µ2)

Table 1. Existing diffusion models and their relation to the unifying framework. The models primarily differ in the number of image channels m,
the smoothing scale ρ for the structure tensor and the presmoothing scale σ . Additionally, most models impose certain restrictions to the general prior
φ(µ1,µ2). The priors and penalisers are always given in the most general form, that the corresponding model allows. Note that the Roussos/Maragos
model has the same prior structure as Tschumperlé/Deriche, but yields a different PDEs due to the nonzero smoothing scale ρ .
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5 The Unifying Prior-Based Diffusion Framework

Let us now show that the probabilistic denoising model (10) is the discrete counterpart
to a unifying diffusion framework that incorporates a large family of existing diffusion
approaches. Instead of maximising the energy EP, we consider the minimisation of its
negative logarithm

Elog(u) :=
1
2

M

∑
i=1

N

∑
i=1

( m

∑
k=1

1
τ
(uk,i, j− fk,i, j)

2 +ψ(µ1,i, j, µ2,i, j)
)
. (11)

Here, we define the penaliser ψ as ψ(µ1,µ2) =− logφ(µ1,µ2), and we choose τ ∼ σ2.
A variational regularisation approach is obtained by the minimisation of the continuous
counterpart to Elog:

E(u) =
1
2

∫
Ω

(1
τ
|u−f |2 + ψ(µ1,µ2)

)
dxdy (12)

where | · | denotes the Euclidean norm. Interestingly, this energy provides a unifying
framework for the eight diffusion models from Section 2. The key result for under-
standing this connection is given by the following proposition.

Proposition 1 (Euler-Lagrange Equations of the General Energy Functional).
The energy functional E(u) from Eq. (12) gives rise to the Euler–Lagrange equations

uk− fk

τ
= ∇>σ

(
(Kρ∗D) ∇σ uk

)
, k = 1, ...,m, (13)

with natural boundary conditions n>(Kσ ∗Kρ ∗D∇σ uk) = 0 on ∂Ω . Here, n is the
outer image normal andD is given in terms of the eigenvectors v1, v2 and eigenvalues
µ1, µ2 of the structure tensor Jm,σ ,ρ :

D :=
∂ψ(µ1,µ2)

∂ µ1
v1v

>
1 +

∂ψ(µ1,µ2)

∂ µ2
v2v

>
2 . (14)

Proof. The Euler-Lagrange equations are obtained from the Gâteaux derivatives of
E(u). We focus on the derivative of the penaliser ψ . with dεk( f ) := ∂

∂εk
f |εk=0, k ∈

{1, ...,m}, a test function h : R2 7→ Rm,H := diag(h), and ε ∈ Rm we calculate:

dεk

(
ψ(µ1(u+Hε), µ2(u+Hε))

)
=

∂ψ

∂ µ1
dεk(µ1) +

∂ψ

∂ µ2
dεk(µ2). (15)

Therefore, the derivatives of the eigenvalues µ1 and µ2 of Jm,ρ,σ must be computed. In
terms of the matrix elements J1,1, J1,2, J2,2, the eigenvalue µ1 is given by

µ1 =
1
2

(
J1,1 + J2,2 +

√
(J1,1− J2,2)2 +4J2

1,2

)
. (16)
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By writing the derivatives dεk(J1,2), dεk(J1,1 + J2,2), and dεk(J1,1− J2,2) as dot products
with ∇σ hk, we can simplify dεk(µ1) to

dεk(µ1) = Kρ ∗
(
(M∇σ uk)

>∇σ hk

)
, (17)

M :=
2

µ1−µ2

(
µ1−µ2 + J1,1− J2,2 2J1,2

2J1,2 µ1−µ2− J1,1 + J2,2

)
. (18)

Algebraic computations similar to [21] lead toM = 2v1v
>
1 . With analogous results for

dεk(µ2), we obtain dεk(ψ(µ1,µ2)) = (Kρ ∗D∇σ uk)
>∇σ hk. Plugging these results into

the Gâteaux derivative dεk E of the energy and applying partial integration yields

dεk E =
2

∑
`=1

[(
Kσ ∗Kρ ∗D∇σ uk

)̀
hk

]b`

a`
−
∫

Ω

∇>σ
(
(Kρ ∗D)∇σ uk

)
hk dxdy (19)

with Ω = [a1,b1]× [a2,b2]. Variational calculus yields Eq. (13) and the natural bound-
ary conditions n>(Kσ ∗Kρ∗D∇σ uk) = 0 on ∂Ω . ut

According to [23], Eq. (13) can be interpreted as an implicit time discretisation with
one time step of size τ of the general diffusion equation

∂tuk = ∇>σ
(
(Kρ∗D)∇σ uk

)
, k = 1, ...,m (20)

with initial condition u(t = 0) = f . In Table 1 we demonstrate that a large number
of existing diffusion models can be considered as special cases of this unifying partial
differential equation. To see this, note that the isotropic models use ρ = 0 and the prior

φ(µ1 +µ2) = φ (trJm,0,σ ) = φ

( m

∑
`=1
|∇σ u`|2

)
. (21)

Moreover, for greyscale images (m = 1) and smoothing scale ρ = 0, the structure tensor
J1,0,σ = ∇σ u∇σ u> has the normalised eigenvectors v1 = ∇σ u

|∇σ u| and v2 = v⊥1 . As a
consequence, the diffusion process from Eq. (20) degenerates to isotropic diffusion with
a scalar diffusivity: Using (14) we get

D∇σ u =
(

∂ψ

∂ µ1

∇σ u∇σ u>

|∇σ u|2
+

∂ψ

∂ µ2

∇σ u⊥∇σ u⊥>

|∇σ u|2
)
∇σ u

=
∂ψ

∂ µ1
∇σ u = ψ

′ (|∇σ u|2
)
∇σ u. (22)

Homogeneous diffusion is also captured by the model (20), if one chooses φ(|∇u|2) :=
exp(−|∇u|2) as prior distribution. The four anisotropic models are covered as follows:
Weickert/Brox [27] and Scharr et al. [22] use the factorised prior φ1(µ1) ·φ2(µ2), in the
case of Weickert/Brox with identical functions φ1 and φ2 and σ = ρ = 0. The models of
Tschumperlé/Deriche [24] and Roussos/Maragos [21] allow general priors φ(µ1,µ2),
but specify σ := 0. Moreover, Tschumperlé/Deriche also set ρ := 0.
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The whole framework was derived from a common natural image prior, the direc-
tional statistics of the structure tensor. This shows that the ad hoc choices that were
made for diffusion models during decades of research in fact reflect inherent properties
of natural images. This observation can be even extended to the choice of diffusivities:
If we consider the special case φ(µ1,µ2) = φ1(µ1) ·φ2(µ2), we are able to decompose
ψ(µ1,µ2) :=ψ1(µ1)+ψ2(µ2) into two separate penalisers ψ` =− lnφ` with `∈ {1,2}.
The kurtotic distribution model (5) gives rise to the following family of diffusivities:

ψ
′(x2) =

(
1+

x2

λ 2

)−γ

. (23)

Comparing this to (3) shows that the Perona/Malik diffusivity [18] is covered for γ = 1
and the Charbonnier diffusivity [2] results for γ = 0.5. To the best of our knowledge, our
framework covers all relevant diffusion models that offer a variational interpretation.
Since it is a variational framework, it is natural that it cannot be applied to models
for which no variational formulation is known, e.g. edge- and coherence-enhancing
diffusion filters [26].

6 Denoising Experiments

In the following, we compare the performance of different diffusion models in the con-
text of image denoising. We focus on those models from Table 1 that are designed for
colour images and apply small modifications where necessary: In analogy to [7], we
extend the Scherzer/Weickert model to colour images by coupling the gradient within
a joint diffusivity. Furthermore, we use separate penalisers ψ1(µ1) and ψ2(µ2) for the
anisotropic models. This extends the Weickert/Brox model with individual diffusivities
for both eigenvalues, which is a special case of the Tschumperlé/Deriche model. In
the accompanying figures we use the abbreviations H for homogeneous diffusion [11],
GKKJ for Gerig et al. [7], SW for Scherzer/Weickert [23], WBTD for the hybrid model
of Weickert/Brox [27] and Tschumperlé/Deriche [24], RM for Roussos/Maragos [21],
and SBH for a vector-valued extension of Scharr et al. [22].

For our experiments, we first determine the parameters λ and γ of the prior distri-
bution (5) and the corresponding diffusivity (23). To this end, we compute the discrete
histograms of µ1 and µ2 on the 200 training images of the Berkeley database [15]. For
a nonlinear least squares fit to these histograms, we have chosen the Matlab implemen-
tation of the Levenberg–Marquardt algorithm (version 3.2.1 of the Matlab curve fitting
toolbox). In Fig. 3(a) we see that the resulting diffusivities decrease more rapidly for
µ1 than for µ2. Thus, they inhibit diffusion across coherent structures more than along
them. For increasing smoothing scales σ and ρ this anisotropic behaviour is reduced,
since the difference between the diffusivities ψ ′1 and ψ ′2 is less pronounced. In the fol-
lowing, we use ρ = 0.5 and σ = 0.2.

For our denoising experiments, we consider the partial differential formulation of
the statistically-derived diffusion filters and apply them to the 100 images of the Berke-
ley test set [15] with added Gaussian noise. The average peak signal to noise (PSNR)
values for different standard deviations of the noise are given in Fig. 3(b). We ob-
serve that for all noise levels, homogenous diffusion H yields the worst results, and
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si
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eigenvalue

ψ’1, ρ=0
ψ’2, ρ=0
ψ’1, ρ=2
ψ’2, ρ=2

Model γ1 λ1 γ2 λ2 n = 20 n = 40 n = 60
H - - - - 27.26 24.40 22.67
GKKJ 0.756 0.340 - - 29.08 25.59 23.45
SW 0.754 0.336 - - 29.09 25.64 23.52
WBTD 0.752 0.334 0.694 0.326 29.58 25.88 23.63
RM 0.733 0.304 0.644 0.231 29.56 25.99 23.76
SBH 0.739 0.315 0.646 0.234 29.66 26.05 23.80

Fig. 3. (a) Left: Diffusivities estimated for the eigenvalues µ1 and µ2 on the Berkeley database for
different smoothing scales. (b) Right: Diffusivity parameters and denoising results for different
diffusion models on the Berkeley test set. See Section 6 for the abbreviations. In the last three
columns, the average PSNR for Gaussian noise with standard deviation n is given.

the isotropic methods GKKJ and SW perform consistently below the anisotropic mod-
els WBTD, RM and SBH. With increasing noise levels, the Gaussian smoothing scales
σ and ρ within the models SW, RM and SBH offer a slight PSNR advantage over their
counterparts GKKJ and WBTD that have to cope without Gaussian smoothing. Visu-
ally, the most distinct difference is the severe blurring of edges in homogenous diffusion
that sets it apart from the other models.

Let us now interpret these findings from a probabilistic modelling perspective. The
performance ranking according to the PSNR mirrors the accuracy of the underlying
natural image priors. In particular, the large gap between homogenous diffusion and
the rest of the models is caused by the wrongly assumed Gaussian-like distribution of
the underlying image prior µ1 + µ2 = |∇u|2 in model H (see Tab. 1). Since all of the
remaining filters accurately reproduce the kurtotic shape of the prior distributions, they
perform much better. Finally, the inherent directional bias in natural image models is
only respected by the anisotropic models WBTD, RM and SBH, which gives them a
consistent advantage over the isotropic models GKKJ and SW.

7 Conclusion and Outlook

We have presented a unifying framework for eight diffusion filters that have a corre-
sponding variational formulation. It enabled us to derive these models from probabilis-
tic filters with a structure tensor prior. We have verified experimentally that those filters
which model the structure adaptive statistics of natural images more accurately also of-
fer a better performance in practice. This justifies their use in digital image processing
and computer vision, and it establishes a hitherto unknown reason for the success of
anisotropic filters. From a statistical viewpoint, we have emphasised the importance of
directional statistics that take into account the local image structure and its scale de-
pendency. Interestingly, our statistical foundation of tensor-driven diffusion gives also
additional insights that go beyond a pure statistical foundation of existing models: For
instance, it sheds light on how the decay function of each eigenvalue should be adapted
to the smoothing scales of the structure tensor.

Our results give rise to a number of ongoing and future activities. We are focussing
our current research on anisotropic models that are tailored optimally to the statistics of
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original noisy, PSNR=17.10 H, PSNR=24.78 GKKJ, PSNR=25.89

SW, PSNR=26.00 WBTD, PSNR=26.21 RM, PSNR=26.48 SBH, PSNR=26.50

Fig. 4. Denoising results for image 108082 of the Berkeley test set with Gaussian noise of stan-
dard deviation n = 40 for the models L, GKKJ, SW, WBTD, RM and SBH. The PSNR is given
for the whole image, but only a zoom of size 128×128 is shown.

natural images in a specific application context. Moreover, we expect that our frame-
work can also be extended to novel energy functionals once they will be discovered for
other important classes of anisotropic diffusion filters.
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