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Abstract. Given an image stack that captures a static scene with different fo-
cus settings, variational depth–from–defocus methods aim at jointly estimating
the underlying depth map and the sharp image. We show how one can improve
existing approaches by incorporating important physical properties. Most formu-
lations are based on an image formation model (forward operator) that explains
the varying amount of blur depending on the depth. We present a novel forward
operator: It approximates the thin–lens camera model from physics better than
previous ones used for this task, since it preserves the maximum–minimum prin-
ciple w.r.t. the unknown image intensities. This operator is embedded in a varia-
tional model that is minimised with a multiplicative variant of the Euler–Lagrange
formalism. This offers two advantages: Firstly, it guarantees that the solution re-
mains in the physically plausible positive range. Secondly, it allows a stable gra-
dient descent evolution without the need to adapt the relaxation parameter. Ex-
periments with synthetic and real–world images demonstrate that our model is
highly robust under different initialisations. Last but not least, the experiments
show that the physical constraints are essential for obtaining more accurate solu-
tions, especially in the presence of strong depth changes.

1 Introduction

The Depth–from–Defocus Problem. Only points with a certain distance to the lens are
imaged completely sharp. This distance depends on the focal settings and is described
by the focal plane. Points with a larger or smaller distance appear blurred, where the
amount of blur increases with the object’s offset to the focal plane. The range in which
points are imaged acceptably sharp is the depth–of–field of the camera. In particular
macro photography and microscope imaging suffer from a very limited depth–of–field.
In these applications, a common remedy is to capture several images by varying the fo-
cal settings. Then each of these images differs in the regions that are projected sharply.
Given such an image stack, the depth–from–defocus problem consists of inferring the
underlying topography (depth map) as well as the sharp image as it would have been
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recorded by a pinhole camera. Essentially this corresponds to inverting the imaging
process. This inverse problem is ill–posed and much harder to solve than the forward
problem that models the image formation. To deal with this ill–posedness, regularisa-
tion is required. Variational formulations offer an elegant approach for this task. In our
paper we present a novel variational framework that incorporates important physical
properties.

Existing Approaches and Related Work. Instead of inverting the physical imaging
process, there are approaches that estimate depth using in–focus information. They ap-
ply a local sharpness criterion, and the depth is assumed to correspond to the slice of
the focal stack where the local sharpness achieves its maximum. The variance method
(VM) [24] for example uses the local variance as a sharpness criterion.

To our knowledge, the first method that estimates depth using defocus information
goes back to Pentland [19]. He estimates the amount of blurriness of image features
or patches and uses this to infer the local depth. While this seminal work requires a
completely sharp image as reference, Subbarao [23] describes a possibility to avoid
this restriction. Namboodiri and Chaudhuri [16] assume a constant depth and then use
the fact that Gaussian blurring can be expressed by linear diffusion. The extension to
the more general case, i.e. allowing variations in the depth profile, is treated in many
subsequent work [11], [17], [18], [27]. Here the depth–of–field effect is described by
means of an isotropic diffusion process with spatially variant diffusivity as it would
occur in an inhomogeneous medium. Extensions to anisotropic diffusion processes also
exist [9], [13]. The depth–from–defocus problem can alternatively be addressed with
Markov random fields [7], [3]. In the latter work, Bhasin and Chaudhuri consider a
scenario restricted to only two different focal planes. They investigate how the point
spread function (PSF) has to be iteratively corrected in order to represent the energy
distribution at depth discontinuities. Also blind deconvolution approaches such as the
one by Chan and Wong [6] can be understood as related work in a broader sense.

Most related to our work are the approaches that jointly estimate the sharp image
and the depth by minimising a suitable energy. In [10], [14] this problem is stated as the
minimisation of Csiszár’s information divergence between the recorded focal stack and
an appropriate model assumption. While the first approach assumes a locally equifocal
surface such that the PSF is shift–invariant, the latter one embeds a shift–variant PSF
in the imaging model. When regarding a shift–variant PSF as a 4-D function and a
shift–invariant as a 2-D one, Aguet et al. [1] propose a compromise between both: They
use a shift–invariant 3-D function defined as a family of 2-D Gaussians with varying
standard deviation as a PSF. Compared to a 4-D function, this reduces the complexity
by incorporating knowledge about how the PSF adapts depending on depth. However,
the proposed formulation does not preserve an important physical property, namely
the maximum–minimum principle w.r.t. the image intensities. This causes problems,
especially at locations where depth changes occur.

Contributions. To address the aforementioned problems, we propose a novel physi-
cally motivated forward operator that preserves the maximum–minimum principle w.r.t.
the image intensities. This forward operator is derived as an approximation of the thin
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Fig. 1. Thin lens camera model

lens camera model. Given a sharp image and depth information, the thin lens camera
model is the established physically based camera model used in computer graphics for
generating photorealistic depth–of–field effects. We show how to invert this forward op-
erator within a variational formulation that allows to jointly obtain the unknown depth
and intensity values given a focal stack. As it is our goal to preserve important physical
properties, we also have to ensure that our solution contains only positive intensity and
depth values. To achieve this we employ the multiplicative Euler–Lagrange formalism.
Besides enabling us to restrict our solution to physically plausible values, this formal-
ism offers an additional benefit: It allows us to derive an efficient semi–implicit scheme
for finding the sought depth and intensity values. This semi–implicit scheme does not
require any adaptation of the relaxation parameter.

Organisation of the Paper. In Section 2, we discuss image formation models and
derive our novel forward operator. Section 3 then explains the variational formulation
that effectively allows to invert our forward operator. Experiments show the benefits of
our novel model in Section 4. We conclude our paper in Section 5.

2 Image Formation Models

Let us first obtain a better understanding of forward operators, i.e. image formation
models that allow to generate a focal stack given a sharp image and depth information.
To this end, we start by briefly discussing the thin lens camera model.

2.1 Image Formation with a Thin Lens

The thin lens imaging model is illustrated in Figure 1. It uses a thin circular lens with
focal length f . This lens is placed in the optical centre `0 at a distance v to the image
plane Ω2 ⊂ R2. Lens and image plane are parallel. The thin lens equation [4]

1

fp
=

1

f
− 1

v
(1)

characterises the imaging process. It involves a virtual focal plane that is parallel to the
lens at distance fp. A point x̄ within this plane is sharply focused to a single point x
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on the image plane. For each image point x the corresponding x̄ can be obtained by
intersecting the ray from x through the optical centre `0 with the focal plane.

Generally, the lens focusses a bundle of rays into a single point x. This bundle can
be described using x̄ and all points on the lens. Following [20], we define the thin lens
operator:

FL[t, d](x) :=
1

|A|

∫
A
t
(
Td
(
`, x̄
))

d` , (2)

where |A| is the area of the lens and d : Ω2 → R+ denotes the topography. The function
Td computes the first intersection point of a ray through ` and x̄ with the topography d
and t maps these intersection points to intensity values.

A direct simulation of geometric optics is possible with raytracing methods [8].
However, this is computationally very expensive because a large amount of blur re-
quires processing a huge number of rays per pixel. Therefore, instead of directly con-
sidering the thin lens camera model, researchers are interested in finding approxima-
tions as alternatives for the simulation of photorealistic depth–of–field effects [2], [5],
[21]. Similarly, we are also interested in finding a good approximation of the thin lens
operator, however, with the additional requirement that it well fits into a variational
framework. To this end, let us first rewrite the thin lens camera model with a spatially
variant convolution.

2.2 Spatially Variant Convolution

Given a topography d, the thin lens camera model can be expressed with a spatially
variant point spread function (PSF) Hd : Ω2 ×Ω2 → R+

0 :

FH[u, d](x) :=

∫
Ω2

Hd(x,y) u(y) dy , (3)

where u corresponds to the image as it would be captured with a pinhole camera, and
x describes the location within the 2-D image plane. From (2) it is straightforward
to see that the thin lens camera model fulfils a maximum–minimum principle w.r.t. t.
Accordingly, Hd has to preserve this w.r.t. the intensity values of the sharp image, i.e.∫

Ω2

Hd(x,y) dy = 1 ∀x ∈ Ω2 . (4)

This guarantees that each intensity value of the resulting image lies between the mini-
mum and maximum intensity value of the sharp image. Equation (3) can be understood
as a weighted average of the sharp image intensities. To obtain the weights of the PSF,
raytracing techniques may be used. However, this is similar to computing the thin lens
camera model directly. Thus, let us investigate a different more efficient way to approx-
imate the weights of the PSF.

2.3 Approximation of the PSF

In the thin lens model, a point on the surface spreads its intensity to a circle of confusion
on the image plane [23]. For the moment, let us assume that the surface is equifocal
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(d = constant), i.e. aligned parallel to the lens. Then Eq. (3) can be expressed in terms
of a convolution with a spatially invariant kernel hd : Ω2 ⊂ R2 → R+

0 instead of a
spatially variant one Hd. This comes down to reducing the PSF from a 4-D to a 2-D
function. More precisely, in case of a circular lens, the kernel corresponds to a pillbox
function and its radius is related to the constant topography. However, in practise it can
be a better choice to use a Gaussian PSF instead of a pillbox when taking into account
the wave character of light [19]. The standard deviation of the Gaussian replaces the
radius of the pillbox. In the general case of non–constant topographies, the standard
deviation changes with the depth of each surface point. Following this idea, Aguet et al.
[1] express the imaging process as

FU[u, d](x, z) :=

∫
Ω2

h(x− y, z − d(y)) u(y) dy , (5)

where z represents a given focal plane and h : Ω3 ⊂ R3 → R+
0 . Therewith, they lift

hd from a 2-D function to a 3-D one, composed of 2-D PSFs varying in their standard
deviation, along the third dimension.

2.4 Our Modification

The formulation above is problematic if partial occlusions occur, which is expected to
happen due to depth changes. The forward operator then effectively performs spatially
variant 2-D convolutions with unnormalised kernels. This results in a violation of the
maximum–minimum principle w.r.t to the images intensities. To avoid this, we propose
to replace (5) by the novel forward operator

FN[u, d](x, z) :=
FU[u, d](x, z)∫

Ω2
h(x− x′, z − d(x′)) dx′ . (6)

The normalisation function guarantees the maximum–minimum principle, and thus
handles regions where partial occlusions appear in a more appropriate way. While this
normalisation may look like a small modification at first glance, it can have a large im-
pact on the quality of the result: Figure 2 depicts the behaviour of the different forward
operators. We see that in regions where depth changes are present, partial occlusions ap-
pear. Applying an unnormalised forward operator results in bright overshoots followed
by dark shadows (Fig. 2(b)). These local violations of the maximum–minimum princi-
ple lead to wrong model assumptions, which produce results that are not photorealistic.
On the other hand, comparing Figure 2(c) and (d) shows that our normalised approach
comes very close to the physically well–founded thin lens camera model which allows
to create realistic depth–of–field effects.

3 Variational Formulation

So far we have discussed image formation models, i.e. operators that can create stacks
of blurred images if we know the sharp image and the depth. In this section we are
interested in inverting this process, i.e. given an image stack, we wish to jointly estimate
the depth map and the sharp image.
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Fig. 2. (a) Left box: Our 3-D synthetic test model. Right box: Results of different forward op-
erators (from left to right) with changing focal planes (from top to bottom). (b) Left column:
Unnormalised forward operator of [1]. (c) Centre column: Our normalised forward operator (6).
(d) Right column: Thin lens camera model (2).

3.1 Variational Model

Let uR : Ω3 → R+ be the stack of recorded 2-D images that vary in their focal plane.
The sought, sharp image u : Ω2 → R+ in combination with the depth map d : Ω2 →
R+ can then be estimated as a minimiser of the energy

E(u, d) = M(u, d) + α S(|∇d|). (7)

The data term M enforces the similarity between the recorded stack and the forward
operator applied to the unknown sharp image u and depth d. To penalise deviations
from the model assumptions we choose a quadratic cost function which is optimal for
Gaussian distributed noise:

M(u, d) =

∫
Ω3

(
uR −FN[u, d]︸ ︷︷ ︸

=:e[u,d]

)2
dx dz . (8)

Exactly like FU, our forward operator FN from (6) is linear in u but nonlinear in d, and
the data term is convex in u but nonconvex in d. Especially in homogeneous regions, a
minimiser of the data term alone is non–unique. To avoid such ambiguities, we add a
regularisation term S that penalises large gradient magnitudes in the depth field:

S(|∇d|) =

∫
Ω2

Ψ(|∇d|2) dx , (9)

where Ψ : R→ R+ is a positive increasing function imposing (piecewise) smoothness.
For the results in Section 4, we employ the Whittaker–Tikhonov penaliser Ψ(s2) = s2

which corresponds to homogeneous diffusion [25], [29]. Other regularisers such as total
variation (TV) [22] are also appropriate. The amount of smoothness can be steered by
the regularisation parameter α > 0.
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3.2 Minimisation

Euler-Lagrange Equations. A minimiser (u, d) of the energy (7) must necessarily
fulfill the Euler–Lagrange equations

δE

δu
= 0 and

δE

δd
= 0 (10)

and its corresponding natural boundary conditions. The established approach to find
the functional derivatives δEδu and δE

δd is given by applying the classical (additive) Euler–
Lagrange formalism [12]. To obtain the functional derivative δE

δu , one uses the definition
〈 δEδu , v〉 = δvE , where 〈·, ·〉 denotes the standard inner product, and

δvE :=
∂

∂ε
E(u+ εv, d)|ε=0 (11)

acts like a “directional derivative” in the direction of a function v. Then we obtain
δE

δu
(x) = −2

(
e ∗ h∗

)
(x, d(x)) (12)

with E from Equation (7). Here we have introduced the abbreviation e := N−1 · e,
where e is related to the data term (8) and N corresponds to the normalisation function,
i.e. the denominator in (6). The operator ∗ expresses a 3-D convolution, and h∗(x) :=
h(−x). Analogously applying the same formalism w.r.t. the depth d allows to compute
the functional derivative

δE

δd
(x) = 2

((
e ∗ h∗z

)
(x, d(x)) · u−

((
e · FN[u, d]

)
∗ h∗z

)
(x, d(x))

− α · div
(
Ψ ′(|∇d|2) ∇d

))
. (13)

Enforcing Positivity. Since negative intensities as well as negative depth values are
not physically plausible, we would like to modify our approach in such a way that both
quantities are strictly constrained to be positive. The multiplicative Euler–Lagrange for-
malism offers an interesting and efficient way to achieve this [28]. Here, a multiplicative
perturbation is used instead of an additive one. Thus, we consider

δ∗vE :=
∂

∂ε
E(u+ εu · v, d)|ε=0 (14)

for minimisation w.r.t. u, and an analog expression for d. This gives the following func-
tional derivatives:

δ∗E

δu
= u · δE

δu
and

δ∗E

δd
= d · δE

δd
. (15)

There are two different ways to understand why the multiplicative Euler–Lagrange for-
malism restricts the solution to positive values [28]: The first explanation interprets the
multiplicative Euler–Lagrange formalism via the reparametrisations u = exp(w) and
d = exp(z). Moving unwanted values to infinite distance is the second explanation. To
this end, one can show that the multiplicative functional gradients δ∗E

δu and δ∗E
δd occur

within the additive formalism when one replaces the Euclidean metric du by a hyper-
bolic one, i.e. du/u.
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Fig. 3. Visual comparison. Left box: In reading order (a) Variance Method (VM) with Gaussian
post–smoothing (patch-size = 6, σ = 4.0). (b) LU ignoring normalisation, initialised with con-
stant depth (α = 45). (c) Dito initialised with VM. (d) Ours LN initialised with constant depth
(α = 150). (e) Dito with VM initialisation. (f) Ground–truth of the topography. Right box: (g)
Top: Estimated sharp image. (h) Bottom: Ground–truth of the sharp image.

3.3 Discretisation and Implementation

The multiplicative approach presented above does not only guarantee the positivity of
our solution, it also enables us to introduce an efficient semi–implicit iteration scheme.
To this end, we consider a gradient descent scheme with the multiplicative gradient δ

∗E
δu

from Equation (15):

uk+1 − uk

τ
= 2 uk+1

(
ek ∗ h∗

)
(x, d) , (16)

where τ is the relaxation parameter, and the upper index denotes the iteration level.
For the multiplicative gradient descent w.r.t. the depth map d, we use the semi-implicit
approach

dk+1 − dk

τ
= −2

((
ek ∗ h∗z

)
(x, dk) u−

((
ek · FN[u, dk]

)
∗ h∗z

)
(x, dk)

)
· dk+1

+ 2α · div
(
Ψ ′(|∇dk|2) ∇dk+1

)
· dk . (17)

This semi–implicit scheme is less sensitive sensitive w.r.t. the relaxation parameter such
that it can remain fixed during the iterations. Therefore, we can refrain from backtrack-
ing line–search or complicated methods such as Brent’s algorithm that combines the
bisection method, the secant method and inverse quadratic interpolation. Such meth-
ods are required when using the standard additive Euler–Lagrange formalism for this
problem and are avoided by our approach.

Since we deal with digital images, we replace continuous functions by their discrete
counterparts and derivatives by finite differences. The 3-D convolution is implemented
in the Fourier domain, using the Fast Fourier Transform and the convolution theorem.
While Equation (16) can be solved directly, Equation (17) requires to solve a non-
symmetric linear system of equations. We solve the latter one iteratively with a Jacobi
algorithm. We use an alternating minimisation scheme [15] as it is commonly used e.g.
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Table 1. Quantitative comparison. Error measurement of the estimated topography and the sharp
image to its ground–truth. We consider the mean squared error (MSE) as well as the structural
similarity (SSIM) [26]. We compare the variance method (VM) with and without Gaussian post–
smoothing with variance σ, the operator FU, and our max–min–preserving imaging model FN.
The latter two are either initialised with a constant depth or an estimation of the VM.

Method VM FU Ours
σ = 0 σ = 4 constant VM constant VM

Depth MSE 2.83 1.10 21.66 2.26 0.77 0.58
SSIM 0.98 0.93 0.94 0.99 1.00 1.00

Image MSE 48.33 46.38 124.52 52.17 49.09 45.17
SSIM 0.87 0.87 0.67 0.87 0.90 0.92

in blind deconvolution problems [6]: Keeping the solution for one sub–problem fixed
(e.g. recovering the sharp image u), the other problem (e.g. the estimation of the depth)
is solved with a fixed number of gradient descent steps. After that, roles are exchanged.
To account for the nonconvexity, we apply a coarse–to–fine strategy where the solution
of the downsampled problem serves as initialisation on the next finer one.

4 Experiments

Synthetic Data. In our first experiment, we generated a stack of images with varying
focal planes. This is achieved by rendering the 3-D model from Fig. 2(a) with the thin
lens camera model (lens diameter D = 2.69 cm, distance to image plane v = 35 mm).
In total we have rendered 20 images where the distance of the focal plane to the lens
changed in equidistant steps from fp = 3 cm to fp = 7 cm. Figure 2(d) shows 3
different slices of this rendered focal stack.

In Figure 3, we compare the results of different approaches to estimate the topo-
graphy. For the variance method two undesired hills in front of and behind the hemi-
sphere arise (Fig. 3(a)). Using the forward operatorFU leads to a violation of the model
assumptions at large depth changes (Fig. 3(b),(c)). It implicitly introduces a regularisa-
tion that erroneously prefers only smooth changes of depth. While Fig. 3(b) has been
initialised with a constant depth map, Fig. 3(c) has been initialised with the result of
the variance method. Apparently the initialisation strongly affects the outcome. Due
to wrong assumptions at depth changes, it is not possible to converge to a reasonable
solution with a constant initialisation. In contrast to that, the reconstructions with our
normalised forward operator FN shown in the Figures 3(d) and (e) do not suffer from
this effect. Our approach is less sensitive to the initialisation, yielding similar error val-
ues and reconstructions in both cases. In fact, our model entails a physically plausible
behaviour also at depth changes. We obtain reconstructions that match the ground truth
in a better way, concerning both the depth and the sharp image; cf. Table 1. Figure
3(g) also shows the estimated sharp image with our approach. It closely resembles the
ground truth.
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Fig. 4. House fly eye (provided by the Biomedical Imaging Group EPFL, Lausanne, Switzerland).
(a) Left box: 3 out of 21 images of a focal stack of a house fly eye. (b) Right box: Estimated
sharp image and topography for α = 25.

Fig. 5. Coffee bean (provided by the Computer Graphics Group, MPI for Informatics,
Saarbrücken, Germany). (a) Left box: 3 out of 22 images of the focal stack of a coffee bean.
(b) Right box: Reconstructed sharp image along with the estimated depth (α = 160).

Real–World Data. In our second experiment, we test our approach on a real world
focal stack showing a house fly eye (see Figure 4(a)). We employ a coarse–to–fine
strategy with the variance method as initialisation on the coarsest grid. To demonstrate
the performance of our approach on this real word data set, we present the reconstructed
sharp image along with the estimated depth profile (Figure 4(b)). For the illustration of
the depth profile a grey value coding is used: The brighter the grey value the larger the
distance of the object to the lens. In our result, fine structures are clearly visible in the
sharp image and the depth profile. This can be seen in Figure 4(b) when considering the
small hair, for example.

In our third experiment, we use an image stack consisting of 22 frames that depict a
coffee bean. Figure 5(a) shows 3 different slices of this focal stack. In this experiment
we employ a coarse–to–fine strategy again but this time with a constant depth value as
initialisation on the coarsest grid. Even with such a crude initialisation, accurate results
are possible.

5 Conclusions

We have shown the benefits of introducing two physical constraints into variational
depth–from–defocus models: a maximum–minimum principle w.r.t. the unknown sharp
image, and the positivity of the sought image intensities and the depth values. Our
resulting model offers clear advantages especially in the presence of strong depth vari-
ations. Moreover, we advocate to replace the traditional Euler–Lagrange formalism by
a multiplicative variant, whenever positivity is to be preserved. It is our hope that both
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physically refined modelling and multiplicative calculi will receive more popularity in
future computer vision models.
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