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Abstract

We introduce a numerical scheme for the minimisation of
an energy functional for computing optical flow. This func-
tional combines a brightness constancy assumption, and a
discontinuity-preserving spatio-temporal smoothness con-
straint. In order to allow for large displacements, lineari-
sations in the data term is strictly avoided. The presented
numerical scheme is based on two nested fixed point iter-
ations. By proving that this scheme implements a coarse-
to-fine warping strategy, we give a theoretical foundation
for warping which has been used on a mainly experimental
basis so far.

1 Introduction

In the last two decades the quality of optical flow estimation
methods has increased dramatically. Starting from the orig-
inal approaches of Horn and Schunck [11] as well as Lucas
and Kanade [15], many new concepts have been developed
for dealing with shortcomings of previous models. In or-
der to handle discontinuities in the flow field, the quadratic
regulariser in the Horn and Schunck model was replaced
by smoothness constraints that permit piecewise smooth re-
sults [1, 9, 20, 22, 23]. Some of these ideas are close in spirit
to methods for joint motion estimation and motion segmen-
tation [10, 18], and to optical flow methods motivated from
robust statistics where outliers are penalised less severely
[6, 7]. Spatio-temporal approaches have ameliorated the re-
sults by using the information of an additional dimension
[19, 6, 24, 10].
Since image sequences are often undersampled in time di-
rection, large displacements are common. In this case non-
linearised models [20, 2] as well as coarse-to-fine strate-
gies [3, 7, 17] have been experimentally demonstrated to be
highly useful. Unfortunally – apart from a very nice paper
by Lefébure and Cohen [14] – not many results are available
that provide a theoretical foundation for this experimentally
successful coarse-to-fine warping strategy. The goal of this

paper is to close this gap.
To this end we consider a variational method with a non-
linearised data term. The minimizer of this energy func-
tional is approximated by a specific numerical method. This
scheme provides a novel foundation for the coarse-to-fine
warping that is commonly used in image sequence anal-
ysis. This has two important effects: Firstly, it becomes
possible to integrate the warping technique, which was so
far only algorithmically motivated, into a variational frame-
work. Secondly, it shows a theoretically sound way of how
image correspondence problems can be solved with an effi-
cient multi-resolution technique.
The experimental evaluation shows that our method yields
excellent results. Compared to those in the literature, their
accuracy is always higher.

Paper organisation. In the next section, our variational
model is described, first by discussing all model assump-
tions, and then in form of an energy based formulation. Sec-
tion 3 derives a minimisation scheme for this energy. The
theoretical foundation of warping methods as a numerical
approximation step is given in Section 4. An experimen-
tal evaluation is presented in Section 5, followed by a brief
summary in Section 6.

2 The Variational Model

Before deriving a variational formulation for our optical
flow method, we give an intuitive idea of which constraints
in our view should be included in such a model.

• Grey value constancy assumption.
Since the beginning of optical flow estimation, it has
been assumed that the grey value of a pixel is not
changed by the displacement.

I(x, y, t) = I(x + u, y + v, t + 1). (1)

Here I : Ω ⊂ R
3 → R denotes a rectangular image se-

quence, and w := (u, v, 1)> is the searched displace-
ment vector between an image at time t and another
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image at time t + 1. The linearised version of the grey
value constancy assumption yields the famous optical
flow constraint [11]

Ixu + Iyv + It = 0 (2)

where subscripts denote partial derivatives. However,
this linearisation is only valid under the assumption
that the image changes linearly along the displace-
ment, which is in general not the case, especially for
large displacements. Therefore, our model will use the
original, non-linearised grey value constancy assump-
tion (1).

• Smoothness assumption.
So far, the model estimates the displacement of a pixel
only locally without taking any interaction between
neighbouring pixels into account. Therefore, it runs
into problems as soon as the gradient vanishes some-
where, or if only the flow in normal direction to the
gradient can be estimated (aperture problem). Further-
more, one would expect some outliers in the estimates.
Hence, it is useful to introduce as a further assump-
tion the smoothness of the flow field. This smoothness
constraint can either be applied solely to the spatial
domain, if there are only two frames available, or to
the spatio-temporal domain, if the displacements in a
sequence of images are wanted. As the optimal dis-
placement field will have discontinuities at the bound-
aries of objects in the scene, it is sensible to generalise
the smoothness assumption by demanding a piecewise
smooth flow field.

• Multiscale approach.
In the case of displacements that are larger than one
pixel per frame, the cost functional in a variational for-
mulation must be expected to be multi-modal, i.e. a
minimisation algorithm could easily be trapped in a
local minimum. In order to find the global minimum,
it can be useful to apply multiscale ideas: One starts
with solving a coarse, smoothed version of the prob-
lem, which may have a unique minimum, hopefully
close to the global minimum of the original problem,
and uses the result as an initialisation for solving a re-
fined version of the problem. Instead of smoothing the
problem, i.e. the image sequence, it is more efficient to
downsample the images respecting the sampling theo-
rem, so the model ends up in a multiresolution strategy.

With this description, it is straightforward to derive an en-
ergy functional that penalises deviations from these model
assumptions. Let x := (x, y, t)> and w := (u, v, 1)>.
Then the global deviations from the grey value constancy
assumption and the gradient constancy assumption are mea-

sured by the energy

EData(u, v) =

∫

Ω

(

|I(x + w) − I(x)|2
)

dx. (3)

Since with quadratic penalisers, outliers get too much in-
fluence on the estimation, an increasing concave function
Ψ(s2) is applied, leading to a robust energy [7, 16]:

EData(u, v) =

∫

Ω

Ψ
(

|I(x + w) − I(x)|2
)

dx. (4)

We use the function Ψ(s2) =
√

s2 + ε2 which results in
(modified) L1 minimisation. Due to the small positive con-
stant ε, Ψ(s) is still convex which offers advantages in the
minimisation process. Moreover, this choice of Ψ does not
introduce any additional parameters, since the small numer-
ical parameter ε can be set to a fixed value, say 0.001.
Finally, a smoothness term has to describe the model as-
sumption of a piecewise smooth flow field. This is achieved
by penalising the total variation of the flow field [21, 8],
which can be expressed as

ESmooth(u, v) =

∫

Ω

Ψ
(

|∇3u|2 + |∇3v|2
)

dx. (5)

with the same function for Ψ as above. The spatio-
temporal gradient ∇3 := (∂x, ∂y, ∂t)

> indicates that a
spatio-temporal smoothness assumption is involved. For
applications with only two images available it is replaced
by the spatial gradient.
The total energy is the weighted sum between the data term
and the smoothness term

E(u, v) = EData + αESmooth (6)

with some regularisation parameter α > 0. Now the goal is
to find the functions u and v that minimise this energy.

3 Minimisation

3.1 Euler–Lagrange Equations

Since E(u, v) is highly nonlinear, the minimisation is not
trivial. For better readability we define the following abbre-
viations:

Ix := ∂xI(x + w),
Iy := ∂yI(x + w),
Iz := I(x + w) − I(x).

(7)

According to the calculus of variations, a minimiser of (6)
must fulfill the Euler-Lagrange equations

0 = Ψ′(I2
z ) · (IxIz)

−α div
(

Ψ′(|∇3u|2 + |∇3v|2)∇3u
)

,

0 = Ψ′(I2
z ) · (IyIz)

−α div
(

Ψ′(|∇3u|2 + |∇3v|2)∇3v
)

with reflecting boundary conditions.
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3.2 Numerical Approximation

The preceding Euler-Lagrange equations are nonlinear in
their argument w = (u, v, 1)>. A first step towards a linear
system of equations, which can be solved with common nu-
merical methods, is the use of fixed point iterations on w.
In order to implement a multiscale approach, necessary to
better approximate the global optimum of the energy, these
fixed point iterations are combined with a downsampling
strategy. Instead of the standard downsampling factor of
0.5 on each level, it is proposed here to use an arbitrary
factor η ∈ (0, 1), what allows smoother transitions from
one scale to the next1. Moreover, the full pyramid of im-
ages is used, starting with the smallest possible image at the
coarsest grid. Let w

k = (uk, vk, 1)>, k = 0, 1, . . ., with
the initialisation w

0 = (0, 0, 1)> at the coarsest grid. Fur-
ther, let Ik

∗
be the abbreviations defined in (7) but with the

iteration variable w
k instead of w. Then w

k+1 will be the
solution of

0 = Ψ′((Ik+1
z )2) · (Ik

xIk+1
z )

−α div
(

Ψ′(|∇3u
k+1|2 + |∇3v

k+1|2)∇3u
k+1
)

0 = Ψ′((Ik+1
z )2) · (Ik

y Ik+1
z )

−α div
(

Ψ′(|∇3u
k+1|2 + |∇3v

k+1|2)∇3v
k+1
)

. (8)

As soon as a fixed point in w
k is reached, we change to the

next finer scale and use this solution as initialisation for the
fixed point iteration on this scale.
Notice that we have a fully implicit scheme for the smooth-
ness term and a semi-implicit scheme for the data term. Im-
plicit schemes are used to yield higher stability and faster
convergence. However, this new system is still nonlinear
because of the nonlinear function Ψ′ and the symbols Ik+1

∗ .
In order to remove the nonlinearity in Ik+1

z , a first order
Taylor expansion is used:

Ik+1
z ≈ Ik

z + Ik
xduk + Ik

y dvk,

where uk+1 = uk + duk and vk+1 = vk + dvk. So we split
the unknowns uk+1, vk+1 in the solutions of the previous
iteration step uk, vk and unknown increments duk, dvk. For
better readability let

(Ψ′)k
Data := Ψ′

(

(Ik
z + Ik

xduk + Ik
y dvk)2

)

(Ψ′)k
Smooth := Ψ′(|∇3(u

k + duk)|2 + |∇3(v
k + dvk)|2),

(9)
where (Ψ′)k

Data can be interpreted as a robustness factor in
the data term, and (Ψ′)k

Smooth as a diffusivity in the smooth-
ness term. With this the first equation in system (8) can be
written as

0 = (Ψ′)k
Data ·

(

Ik
x

(

Ik
z + Ik

xduk + Ik
y dvk

)

)

− α div
(

(Ψ′)k
Smooth∇3(u

k + duk)
)

, (10)

1Since the grid size in both x- and y-direction is reduced by η, the
image size in fact shrinks with a factor η

2 at each scale.

and the second equation can be expressed in a similar way.
This is still a nonlinear system of equations for a fixed k, but
now in the unknown increments duk, dvk . As the only re-
maining nonlinearity is due to Ψ′, and Ψ has been chosen to
be a convex function, the remaining optimisation problem is
a convex problem, i.e. there exists a unique minimum solu-
tion.
In order to remove the remaining nonlinearity in Ψ′, a
second, inner, fixed point iteration loop is applied. Let
duk,0 := 0, dvk,0 := 0 be our initialisation and let
duk,l, dvk,l denote the iteration variables at some step l.
Furthermore, let (Ψ′)k,l

Data and (Ψ′)k,l
Smooth denote the ro-

bustness factor and the diffusivity defined in (9) at itera-
tion k, l. Then finally the linear system of equations in
duk,l+1, dvk,l+1 reads

0 = (Ψ′)k,l
Data ·

(

Ik
x

(

Ik
z + Ik

xduk,l+1 + Ik
y dvk,l+1

)

− α div
(

(Ψ′)k,l
Smooth∇3(u

k + duk,l+1)
)

(11)

for the first equation. Using standard discretisations for the
derivatives, the resulting sparse linear system of equations
can now be solved with common numerical methods, such
as Gauss-Seidel or SOR iterations. Expressions of type
I(x + w

k) are computed by means of bilinear interpola-
tion.

4 Relation to Warping Methods

Coarse-to-fine warping techniques are a frequently used
tool for improving the performance of optic flow methods
[3, 7, 18]. While they are often introduced on a purely ex-
perimental basis, we show in this section that they can be
theoretically justified as a numerical approximation. Let us
simplify the model by assuming solely spatial smoothness,
as in [18]. Under these condition, (10) can be written as

−(Ψ′)k
DataIk

z∇Ik = (Ψ′)k
Data∇Ik(∇Ik)>

(

duk

dvk

)

−α

(

div
(

(Ψ′)k
Smooth∇(uk + duk)

)

div
(

(Ψ′)k
Smooth∇(vk + dvk)

)

)

For a fixed k, this system is equivalent to the Euler–
Lagrange equations described in [18]. Also there, only
the increments du and dv between the first image and the
warped second image are estimated. The same increments
appear in the outer fixed point iterations of our approach
in order to resolve the nonlinearity of the grey value con-
stancy assumption. This shows that the warping technique
implements the minimisation of a non-linearised constancy
assumption by means of fixed point iterations on w.
In earlier approaches, the main motivation for warping has
been the coarse-to-fine strategy. Due to solutions u and
v computed on coarser grids, only an increment du and
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dv had to be computed on the fine grid. Thus, the esti-
mates used to have a magnitude of less than one pixel per
frame, independent of the magnitude of the total displace-
ment. This ability to deal with larger displacements proved
to be a very important aspect in differential optical flow es-
timation.
A second strategy to deal with large displacements has been
the usage of the non-linearised grey value constancy as-
sumption [20, 2]. Here, large displacements are allowed
from the beginning. However, the nonlinearity results in a
multi-modal functional. In such a setting, the coarse-to-fine
strategy is not only wanted, but even necessary to better ap-
proximate the global minimum. At the end, both strategies
not only lead to similar results. In fact, as we have seen
above, they are completely equivalent. As a consequence,
the coarse-to-fine warping technique can be formulated as
a single minimisation problem, and image registration tech-
niques relying on non-linearised constancy assumptions get
access to an efficient multiresolution method for minimis-
ing their energy functionals.

5 Evaluation

For evaluation purposes, experiments with both synthetic
and real-world image data were performed. The presented
angular errors were computed via

arccos

(

ucue + vcve + 1
√

(u2
c + v2

c + 1)(u2
e + v2

e + 1)

)

(12)

where the subscripts c and e denote the correct resp. the
estimated flow (cf. [5]).
Let us start our evaluation with the two variants of
a famous sequence: the Yosemite sequence with and
without cloudy sky. The original version of the se-
quence with cloudy sky was created by Lynn Quam
and is available at ftp://csd.uwo.ca under the di-
rectory pub/vision. It depicts a flight through the
Yosemite national park and combines divergent and trans-
lational motion. The version without clouds is available
at http://www.cs.brown.edu/people/black/
images.html.
Tab.1 shows a comparison of our results for both sequences
to the best results from the literature. As one can see, our
variational approach outperforms all other methods. The
corresponding flow fields presented in Fig.1 give a quali-
tative impression of these raw numbers: They match the
ground truth well.
In a second experiment we compare the results of our new
linearisation-method to those which are based on the lin-
earised modell using the optical flow constraint (2). Both
modells include the same smoothness assumption so differ-
ences in the result are only ascribed to the later linerisation

Table 1: Comparison between the best results from the lit-
erature with 100 % density and our results for the Yosemite
sequence with and without cloudy sky. AAE = average
angular error. STD = standard deviation. 2D = spatial
smoothness assumption. 3D = spatio-temporal smoothness
assumption.

Yosemite with clouds
Technique AAE STD
Nagel [5] 10.22◦ 16.51◦

Horn–Schunck, mod. [5] 9.78◦ 16.19◦

Uras et al. [5] 8.94◦ 15.61◦

Alvarez et al. [2] 5.53◦ 7.40◦

Mémin–Pérez [17] 4.69◦ 6.89◦

Our method (2D) 4.63◦ 6.89◦

Our method (3D) 3.94◦ 6.28◦

Yosemite without clouds
Technique AAE STD
Ju et al. [12] 2.16◦ 2.00◦

Bab-Hadiashar–Suter [4] 2.05◦ 2.92◦

Lai–Vemuri [13] 1.99◦ 1.41◦

Our method (2D) 1.72◦ 1.37◦

Mémin–Pérez [17] 1.58◦ 1.21◦

Farnebäck [10] 1.14◦ 2.14◦

Our method (3D) 1.09◦ 1.13◦

of the data term. The outcome listed in Table 2 shows that
our methods leads to results which are about 35% better
than those from the linearised case. So shifting the lineari-
sation to the numerical approximation improves the accu-
rancy of the algorithm even if there are no large displace-
ments as in the Yosemite sequence.
For evaluating the performance of our method for real-
world image data, the Ettlinger Tor traffic sequence by
Nagel was used. This sequence consists of 50 frames of
size 512× 512. It is available at http://i21www.ira.
uka.de/image sequences/. In Fig. 2 the computed
flow field and its magnitude are shown. Our estimation
gives very realistic results, and the algorithm hardly suf-
fers from interlacing artifacts that are present in all frames.
Moreover, the flow boundaries are rather sharp and can be
used directly for segmentation purposes by applying a sim-
ple thresholding step.

6 Conclusion

In this paper we have present a new numerical scheme for
the minimisation of a continuous, rotationally invariant en-
ergy functional for optical flow computation based on two
terms: a robust data term with a brightness constancy, com-
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Figure 1: (a) Top left: Frame 8 of the Yosemite sequence
without clouds. (b) Top right: Corresponding frame of the
sequence with clouds. (c) Middle left: Ground truth without
clouds. (d) Middle right: Ground truth with clouds. (e)
Bottom left: Computed flow field by our 3D method for the
sequence without clouds. (f) Bottom right: Ditto for the
sequence with clouds.

bined with a discontinuity-preserving spatio-temporal TV
regulariser. It should be stressed that we have avoided any
linearisations in the data term in order to allow also for large
displacements. We have shown that their combination out-
performs all methods from the literature so far. One of the
main reasons for this performance is the use of an energy
functional with non-linearised data term and our strategy
to consequently postpone all linearisations to the numeri-
cal scheme: While linearisations in the model immediately
compromise the overall performance of the system, lineari-
sations in the numerical scheme can help to improve con-
vergence to the global minimum. The important result in
our paper is the proof that the widely-used warping can be
theoretically justified as a numerical approximation strat-
egy that does not influence the continuous model.
As further work we want to transfer this numerical strategy
to non-linearised data terms which are based on derivatives
of the image sequence function. Our goal is to enhance the
estimation of the flow field in areas where the grey value
constancy assumption is disturbed like the area of the clouds
in the Yosemite sequence.

Table 2: Comparison between our numerical linearisation-
method and algorithms using the optical flow constraint as
a linearisation of the model. AAE = average anngular er-
ror. STD = standard deviation. 2D = spatial smoothness
assumption. 3D = spatio-temporal smoothness assumption.

Yosemite with clouds
our method ofc-method

Technique AAE STD AAE STD
2D 4.63◦ 6.89◦ 6.12◦ 8.49◦

3D 3.94◦ 6.28◦ 5.43◦ 8.24◦

Yosemite without clouds
our method ofc-method

Technique AAE STD AAE STD
2D 1.72◦ 1.37◦ 2.40◦ 1.94◦

3D 1.09◦ 1.13◦ 1.57◦ 1.48◦

Figure 2: (a) Left: Computed flow field between frame 5
and 6 of the Ettlinger Tor traffic sequence. (b) Right: Com-
puted magnitude of the optical flow field.
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[17] E. M émin and P. P érez. A multigrid approach for hierarchical
motion estimation. In Proc. Sixth International Conference
on Computer Vision, pages 933–938, Bombay, India, Jan.
1998. Narosa Publishing House.
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