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Abstract. Wilms’ tumor or nephroblastoma is a kidney tumor and the
most common renal malignancy in childhood. Clinicians assume that
these tumors develop from embryonic renal precursor cells - sometimes
via nephrogenic rests or nephroblastomatosis. In Europe, chemotherapy
is carried out prior to surgery, which downstages the tumor. This results
in various pathological subtypes with differences in their prognosis and
treatment.
First, we demonstrate that the classical distinction between nephroblas-
toma and its precursor lesion is error prone with an accuracy of 0.824.
We tackle this issue with appropriate texture features and improve the
classification accuracy to 0.932.
Second, we are the first to predict the development of nephroblastoma
under chemotherapy. We use a bag of visual model and show that visual
clues are present that help to approximate the developing subtype.
Last but not least, we provide our data set of 54 kidneys with nephrob-
lastomatosis in conjunction with 148 Wilms’ tumors.

1 Introduction

Wilms’ tumor, or nephroblastoma, accounts for 5 % of all cancers in childhood
and constitutes the most frequent malignant kidney tumor in children and ju-
veniles [16]. About 75% of all patients are younger than five years - with a peak
between two and three years [5,11]. Nephroblastoma is a solid tumor, consist-
ing mainly of three types of tissue: blastema, epithelium and stroma [21]. In
Europe, diagnosis and therapy follow the guidelines of the International Society
of Pediatric Oncology (SIOP) [6,10]. One of the most important characteristics
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of this therapy protocol is a preoperative chemotherapy. During this therapy,
the tumor tissue changes, and a total of nine different subtypes can develop [6].
Depending on this and the local stage, the patient is categorized into one of the
three risk groups (low-, intermediate-, or high-risk patients) and further therapy
is adapted accordingly. Of course, it would be of decisive importance for ther-
apy and treatment planning to determine the corresponding subtype as early as
possible. It is currently not known how this can be achieved.
However, there are very few research results in this direction so far: To the best
our knowledge, there is only the recent work of Hötker et al. [9], where they
show that diffusion-weighted MRI might be helpful in making this distinction.
Unfortunately, diffusion-weighted MR images are not yet recorded as standard.
Due to a relatively low incidence of this disease, it is also difficult to sensitise
the clinical staff in this direction. On the other hand, a T2 sequence is part of
the therapy protocol and always recorded - even if there are no parameter spec-
ifications. We can show that even this standard sequence might be sufficient to
predict subtype tendencies.
In about 40% of all children with nephroblastoma, so-called nephrogenic rests
can be detected. Since these only occur in 0.6% of all childhood autopsies, they
are considered a premalignant lesion of Wilms’ tumors [2]. The diffuse or mul-
tifocal appearance of nephrogenic rests is called nephroblastomatosis [13,15].
Despite the histological similarity, nephroblastomatosis does not seem to have
any invasive or metastatic tendencies. In order to adapt the therapy accord-
ingly and not to expose children to an unnecessary medical burden on the one
hand and to maximize their chances of survival on the other, it is necessary to
distinguish nephroblastoma and its precursor nephroblastomatosis at the begin-
ning of treatment. Its visual appearance has been described as homogenous and
small abdominal mass [4,18]. However, all existing publications describe the vi-
sual appearance on usually very small data sets [7,18]. So far, it has never been
validated statistically to what extent the described features are sufficient for
classification. Thus, we review this current clinical practise. For this purpose, we
have created a data set and evaluate whether the assumed properties can solve
the classification problem between these two entities. In addition, we propose
further properties that dramatically simplify the problem.

In summary our main contributions are:

– We demonstrate that the assumptions about nephroblastomatosis are mostly
correct, but not sufficient to ensure a reliable classification. We solve this
problem by including more texture features in the classification procedure.

– We are the first to show that T2 imaging can be used to predict tumor devel-
opment under chemotherapy in advance. We extract a variety of features and
create a collection of visual properties from each image. We use this visual
vocabulary to create a histogram of the relative frequency of each pattern
in an image of a given subtype. We then use this information for subtype
determination.
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Fig. 1. Exemplary images from our data set. From left to right: epithelial dominant,
stromal dominant, blastemal dominant, regressive, nephroblastomatosis.

– We provide a data set with images of nephroblastomatosis and nephroblas-
toma from a total of 202 different patients.1

2 Materials and Methods

Nephroblastoma is the most common kidney tumor in childhood, although it is
always difficult to collect a sufficient amount of data from children and adoles-
cents. This problem is partially solved within large-scale multi-center studies on
Wilms’ tumor [17,22].

2.1 Data Sets

In recent years, the SIOP studies have collected clinical and imaging data from
more than 1000 patients, possible through networking of many hospitals. Unfor-
tunately, this has also caused a major problem: The MR images were taken on
devices from different manufacturers with different magnetic field strengths over
several years. In addition, there are no uniform parameter sets and the individual
sequences (of the same type) can vary dramatically.

We made sure that the main parameter settings of the T2 sequences included
in our data set are as similar as possible - this has drastically reduced the amount
of imaging data available. Nevertheless, we have compiled a data set of 202
patients, see Tab. 1. All data sets are T2-weighted images (axial 2D acquisition)
with 3.4 mm to 9.6 mm slice thickness and inslice-sampling ranging from 0.3 mm
to 1.8 mm.

In a first step, we cubically resampled all images to a grid size of one in x and
y direction, but refrained from resampling in z direction as the interpolation error
would be too high. Then, we linearly rescaled image intensities for simplicity to
the interval [0, 1]. In the end, a human expert with years of experience in the
field of nephroblastoma annotated the tumor regions using the method of Müller
et al. [14]. We mask everything except the tumor areas and embed them in a
square shaped image; see Fig. 1.

1 The data set can be accessed at www.mia.uni-saarland.de/nephroblastomatosis
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Table 1. Detailed information about our data set.

Patient characteristics

Age
range (month) 1− 153

average 34.3

Gender
female 50.9%
male 49.1%

Metastasis (Wilms’ Tumor) 22 (14.86%)

Tumor characteristics

Nephroblastoma Subtypes

diffuse anaplastic 3
blastemal 18
regressive 50

mixed 29
stromal 28

epithelial 17
necrotic 3

total 148

Nephroblastomatosis 54

Total 202

Research Ethics of the Study All images were received as part of the
SIOP 2001 prospective clinical trial. This trial received Ethical Approval from
’Ärztekammer des Saarlandes’, Germany, No.: 248/13. Informed consent was
given by parents or legal guardians of all enrolled children with nephroblastoma.
In addition, all DICOM files were anonymized before analysis.

2.2 Features

First, we like to investigate and improve the currently clinically applied distinc-
tion between nephroblastoma and nephroblastomatosis. In order to imitate the
clinically used properties as accurately as possible, we apply texture features
and evaluate their significance.
Next, we evaluate if it is possible to predict the development of a nephroblastoma
under chemotherapy based on standard T2 sequences. Also in this case we like
to know if the overall structure of a tumor layer already contains information
about the subtype. For this purpose we use a Bag of Visual Words model.

Texture Features Haralick et al. [8] established the basic assumption that
gray-level co-occurence matrices contain all available textural information of an
image. These second order Haralick texture features are extensively used in re-
cent years in the area of medical image analysis to diagnose and differentiate
cancer [20,23,24].
The basis of co-occurrence characteristics is the second-order conditional proba-
bility density function of an given image. Here, the elements of the co-occurrence
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matrix for the structure of interest represent the number of times intensity levels
occur in neighboring pixels. Several features can be extracted from this matrix,
e.g. contrast, homogeneity, entropy, autocorrelation [8,19]. We use these features
to distinguish nephroblastomatosis and Wilms’ tumors.

Bag of Visual Words Model The basic idea of a bag of visual words model
is to represent an image as a set of local visual features. For this purpose we
calculate the SURF features [1] of each 8th tumor pixel for a patch of size 7× 7.
The patches of the training images are then clustered with k-means [12] where
cluster centroids are visual dictionary vocabularies. This allows us to determine
a frequency histogram of the features in each training and test image. We use
this information to train a bagged random forest classifier with 300 decision trees
[3].

3 Experiments

We use our data set consisting of nephroblastomatoses and Wilms’ tumors to
perform several experiments. First, we want to know how accurate the clinical
assumption is that nephroblastomatosis and Wilms’ tumor can be distinguished
by size and homogeneity. Then, we analyze the effectiveness of texture features
and incorporate them to improve our classification results. In the second part of
our experiments, we address the problem of subtype classification of nephrob-
lastoma. We want to evaluate whether there is a possibility of estimating the
development of the tumor under chemotherapy. All parameters in our experi-
ments are empirically determined.

3.1 Nephroblastoma vs. Nephroblastomatosis

We first validate the general assumption that nephroblastoma can be distin-
guished from their predecessors by homogeneity and size. Subsequently, we show
how this distinction can be significantly improved.
For this purpose we randomly select 54 out of our 148 Wilms’ tumors. We then
subdivide these into 27 test and training data sets again by chance. We proceed
analogously with nephroblastomatosis data sets. Since the diffuse anaplastic and
necrotic subtypes are under-represented, we made sure that they occur exclu-
sively in the test-sets. From each of our data sets we draw the middle slice of
the annotated tumor region and train a random forest classifier to distinguish
these two classes (nephroblastomatosis and Wilms’ tumor) with 3-fold cross val-
idation. We repeat this procedure 5 times and calculate the average accuracy at
the end.

Verifying Clinical Assumptions In clinical practice, homogeneity and size of
an abdominal tumor are generally used to make a distinction between nephrob-
lastoma and nephroblastomatosis [15]. In order to validate this approach, we
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Table 2. Evaluation of clinical assumptions for classification: Nephroblastoma versus
Nephroblastomatosis.

Predicted

Nephroblastoma Nephroblastomatosis

Nephroblastoma 0.833± 0.079 0.167± 0.079

Nephroblastomatosis 0.185± 0.067 0.815± 0.067

calculated these two feature for all data sets and used it for classification, see
Tab. 2. The average accuracy of 0.824 indicates that homogeneity and size are
valuable properties to distinguish a nephroblastoma from its precursor lesion.
Nevertheless, it seems not sufficient to build clinical decisions on. Thus, we add
more visual texture properties to the classification procedure [8,19].

Feature Selection with Random Forests Haralick et al. [8] and Soh and
Tsatsoulis [19] suggested a number of additional texture features. In a first step
we calculate all of these 23 features and train a bagged random forest classi-
fier with 300 ensemble learners. This also gives us the opportunity to evaluate
the influence of each feature on the final classification. It turned out that the
following nine features are decisive: size, information measure correlation 1 and
2, cluster prominence, sum entropy, dissimilarity, maximum probability, energy
and autocorrelation. Surprisingly, the feature of homogeneity is not important
when the above information is given. We evaluated these features as previously

Table 3. Classification result with appropriate feature selection: Nephroblastoma ver-
sus Nephroblastomatosis.

Predicted

Nephroblastoma Nephroblastomatosis

Nephroblastoma 0.926± 0.064 0.074± 0.064

Nephroblastomatosis 0.063± 0.027 0.937± 0.027

on five randomly selected data sets and 3-fold cross validation. It turns out that
this additional information dramatically improves the classification performance
to an accuracy of 0.932, see Tab. 3.

3.2 Subtype Determination

A Wilms’ tumor consists of the tissue types stroma, epithelium, and blastema
[21]. Depending on the chosen therapy strategy, the subtypes are distributed
differently, see Fig. 2. In Europe, the key concept in therapy planning is a pre-
operative chemotherapy. This aims to shrink the tumor but also to make it
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Fig. 2. Subtype distribution without (red) and with (blue) pre-operative chemother-
apy.

more resistant to ruptures [6]. During this phase of therapy, various subtypes
emerge, some of which differ dramatically in their prognosis. In the following
we consider the standard group of intermediate risk patients. This consists of
mainly regressive, epithelial dominant, stromal dominant, and mixed (none of
the tissue types predominates) tumors. Since the blastemal dominant type has
the worst prognosis, we also include it. Unfortunately, it is not yet possible to
predict which of the subtypes develops during chemotherapy. Clinicians assume
- based on subtype distributions before and after chemotherapy - that mainly
blastemal tissue is destroyed during this phase of therapy, see Fig. 2. However,
there is currently no possibility to determine the histological components with-
out a biopsy, exclusively based on imaging data.
We evaluate how far we can get in subtype determination with simple but stan-
dard T2 sequences. Since this problem is much more complex than the distinction
between nephroblastoma and nephroblastomatosis, we need more data. There-
fore, we select one slice from each annotated tumor from the lower third of the
annotation, one from the upper third and the middle slice. In this way we gen-
erate a total of 54 images of a blastemal dominant tumor, 150 of a regressive
tumor, 87 of a mixed tumor, 84 of a stromal dominant tumor and 51 of an ep-
ithelial dominant tumor.
Depending on the classification problem, we always take as many images as there
are in the smaller class and divide them randomly into training and test sets. In
this way we ensure that the results are not aimed at the frequency of the images
but only at the discrimination. Then we calculate the visual vocabulary for each
data set to generate a bag of visual words. With this information we then train a
random forest with 300 ensemble learners and 3-fold cross validation. We repeat
this process 5 times, analogous to the differentiation of nephroblastomatosis, in-
cluding the newly generated training and test set. Here, we optimize the size of
the vocabulary on the training set and select a value from the interval [10, 100].
We compare all selected subtypes with all others in Fig. 3. Our results are strictly
above the chance level (dashed line) while average accuracy of regressive is 0.70,
epithelial dominant 0.72, stromal dominant 0.66, mixed 0.67, and blastemal dom-
inant 0.64. This indicates that we are on the right way and that it should be
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Fig. 3. Evaluation results showing mean and standard deviation of between-class
classification accuracy for regressive, epithelial, stromal, mixed and blastemal subtypes.
Mean performance is indicated with black lines. The dashed line marks the chance level.
red: regressive, blue: epithelial, yellow: stromal, green: mixed, white: blastemal.

possible to distinguish these subtypes based on imaging data.
There are also several cases where our classification is surprisingly accurate. The
accuracy of the distinction between regressive and epithelial dominant subtypes
is 0.80. This leads to the following conclusions: 1. Tumors that are epithelial
dominant prior to chemotherapy are less likely to regress than those that are
rich in stroma or blastemal tissue. This coincides with subtype distributions be-
fore and after chemotherapy. 2. Epithelial areas can be distinguished from other
types of tissue by visual features.
Furthermore, the differentiation between regressive and mixed subtypes is rela-
tively accurate with 0.73. This allows conclusions similar to those of the epithe-
lial type. In addition, the epithelial dominant subtype is also well distinguishable
from the stromal dominant one, i.e. classification accuracy of 0.7. We also tried to
use neural networks to solve our classification problem. Unfortunately it turned
out that we do not have a sufficient amount of data to re-train enough layers of
a pretrained network. Therefore, all our attempts with neural networks showed
low performance.

We ensured that the main parameter settings of images included in our data
set are as similar as possible. However, several parameters differ dramatically in
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many cases. Since these cannot be compensated, the data is unfortunately not
completely comparable and a considerable parameter noise is present. We firmly
believe that the classification would improve significantly if this kind of noise in
the data were lower. We therefore hope that in the near future a standardization
of MRI sequences will be established in the medical area.

4 Conclusions

We demonstrated that the classical distinction between nephroblastomatosis and
nephroblastoma is not as trivial as previously assumed. However, we were able
to solve this problem by proposing further intuitive features that make the dis-
tinction much more reliable. This significantly reduces the risk of misdiagnosis
and thus minimizes the medical burden on affected children.
In addition, we are the first to address the considered unsolvable problem of
subtype determination prior to chemotherapy. We can show that it is basically
possible to estimate this development. Even though the imaging is not standard-
ized and therefore shows a high parameter noise, there are still visual features
that allow a distinction.
Finally, we also provide the data set we use. We hope that we will be able to
arouse the interest of other researchers. We hope that the estimation of the sub-
type in particular will be of increased interest.
In our current research, we are working on the exact visual representation of
the individual classes, especially the epithelial dominant subtype. We hope that
we will be able to gain more information from this in order to identify at least
individual types with certainty. Most importantly, we are convinced that this
research will enhance the chances of survival of the affected children. If it is
possible to detect especially blastemal dominant tumors (after chemotherapy)
early, the therapy can be adapted much earlier such that the recovery process
of the child can be improved.
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22. Vujanić, G.M., Sandstedt, B., Harms, D., Kelsey, A., Leuschner, I., de Kraker, J.,
Committee, S.N.S.: Revised International Society of Paediatric Oncology (SIOP)
working classification of renal tumors of childhood. Medical and Pediatric Oncology
38(2), 79–82 (2002)

23. Wibmer, A., Hricak, H., Gondo, T., Matsumoto, K., Veeraraghavan, H., Fehr, D.,
Zheng, J., Goldman, D., Moskowitz, C., Fine, S.W., et al.: Haralick texture analysis
of prostate MRI: utility for differentiating non-cancerous prostate from prostate
cancer and differentiating prostate cancers with different gleason scores. European
Radiology 25(10), 2840–2850 (2015)

24. Zayed, N., Elnemr, H.A.: Statistical analysis of Haralick texture features to dis-
criminate lung abnormalities. Journal of Biomedical Imaging 2015, 12 (2015)


	Wilms' Tumor in Childhood:  Can Pattern Recognition Help for Classification?

