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Pod vodárenskou věž́ı 4, 18208 Praha 8, Czech Republic

http://www.utia.cas.cz/RO

Preprint No. 51, DFG Priority Program 1114, University of Bremen, Germany, June 2004.

Abstract

This paper deals with establishing relations between a number of
widely-used nonlinear filters for digital image processing. We cover ro-
bust statistical estimation with (local) M-estimators, local mode filtering
in image or histogram space, bilateral filtering, nonlinear diffusion, and
regularisation approaches. Although these methods originate in different
mathematical theories, we show that their implementation reveals a highly
similar structure. We demonstrate that all these methods can be cast into
a unified framework of functional minimisation combining nonlocal data
and nonlocal smoothness terms. This unification contributes to a better
understanding of the individual methods, and it opens the way to new
techniques combining the advantages of known filters.
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Figure 1: Examples of the tasks addressed by methods studied in this paper.
Top: image simplification (input image on the left, processed with local mode
filter on the right). Bottom: image denoising (noisy image on the left, filtered
using TV flow on the right).

1 Introduction

Image smoothing for the task of denoising or simplification of the visual infor-
mation is a well established and thoroughly studied topic. A large number of
methods have been proposed and new ones continue to appear. However, it is
still not easy to see the advantages of the various approaches, and the relations
between different methods are only partly understood.

This paper is intended as a contribution in this direction: by studying sev-
eral methods and their relations, we end up with a better understanding of
each of them. We focus on M-estimators from robust statistics, median filters,
mode filtering, bilateral filter, nonlinear diffusion filtering, and regularisation
techniques. Although these methods seem very different at the first glance and
originate in different mathematical theories, we will show that they can lead to
highly similar discrete algorithms. From there, it is not far to the observation
that all these methods can be cast in a single unified framework of discrete reg-
ularisation theory: they can all be derived from minimisation of a single energy
functional with (possibly nonlocal) data and (possibly nonlocal) smoothness
terms.

This unifying framework has several advantages. Firstly, it explicitly shows
all the freedom in selecting the penaliser type, the parameters, and the balance
between smoothness and data terms; seing that freedom, it is natural to require
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that any reasonable smoothing methods motivates the choice of these parame-
ters using some assumptions about the data to be reconstructed, and the noise
present in the signal. Secondly, it makes explicit what assumptions are used
to derive a given, previously known method from the general settings. Thirdly,
after showing known methods as just special members of a whole family of dis-
crete filters, the unifying framework allows to design novel methods tailored to
the particular properties of the data and noise, and combine the advantages of
known filters.

Related work Several recent papers have offered interesting connections be-
tween different filtering strategies. In [31] the relations between statistical meth-
ods (M-estimators) and iterative solvers are studied. The link between iterative
mean shift algorithm, mode filters and clustering was analysed in [5]. The re-
lations between mean, median and mode filters in the continuous settings were
addressed by [11]. Mode filters and their connections to other approaches rep-
resented the main topic of [27, 28]. Finally, [9] studied the relations between
bilateral filters, robust estimation and diffusion filters. Compared to these pa-
pers, our work covers a larger number of methods and it includes them all into
a single, unified framework.

Organisation of the paper Our paper is organised as follows. Sections 2 to
7 represent a brief tour of several nonlinear filters for image processing, from
robust statistical estimation and histogram operations to local M-smoothers,
regularisation theory, diffusion filtering and bilateral filters. The methods differ
in the use of information from local, global or windowed neighbourhood, and in
computing the estimates relying either on the original data directly, or using a
gradually smoothed image. Section 8 then proposes a unified framework which
covers all of the presented methods by combining a nonlocal smoothness term
and a nonlocal data term with tonal and spatial weight functions into a single
functional. Section 9 shows some image filtering examples, and the paper is
concluded with a summary in Section 10.

2 Statistical estimation

Let us assume there is an unknown (constant) signal u, and it is observed N -
times. We obtain the noisy samples fi, i = 1, . . . , N according to fi = u + n
where n stands for the noise. If n is a zero-mean Gaussian random variable, one
can estimate u by calculating the sample mean ū = 1

N

∑N
j=1 fj . The mean ū

is the maximum a posteriori (MAP) estimate of u, and minimises the l2 error
E(u) =

∑N
j=1(u− fj)2.

Complications arise if the noise n is not normally distributed, e.g. if it has
heavier tails (i.e. there are more outliers, or more distant outliers in the data).
This can be caused either directly by the noise properties, or when not a single
constant u, but e.g. two constants get mixed in the data (we have to estimate
a constant value near a discontinuity in the signal). The classical statistical
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solution is to use more robust error norms, and this leads to the theory of M-
estimation [13, 12]. An M-estimate of a constant value u from noisy data fj is
found by minimising

E(u) =
N∑

j=1

Ψ
(
|u− fj |2

)
(1)

where the error norm Ψ can attain for example one of the forms presented in
Table 1.

Table 1: Examples of error norms for M-estimators.

error norm → estimation result

(a) Ψ(s2) = s2

−5 −4 −3 −2 −1 0 1 2 3 4 5

→ mean

(b) Ψ(s2) = |s|
−5 −4 −3 −2 −1 0 1 2 3 4 5

→ median

(c) Ψ(s2) = 1− e−s2/λ2

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

1

→ mode approximation

(d) Ψ(s2) = min(s2, λ2)
−5 −4 −3 −2 −1 0 1 2 3 4 5
0

l

→ mode approximation

The right column of Table 1 gives an overview of what element minimises
the functional (1) with the given error penaliser Ψ. For the l2 norm (a), the
solution is the mean of the noisy samples. The l1 norm (b), the formula is
minimised by the median. For the robust error norms (c) and (d), the influence
of outliers is very much reduced, and the solution u minimising (1) approximates
a mode (maximum) of the probability density underlying the noisy samples.
Mode ideally corresponds to the most frequent value present in the data. For the
discrete noisy samples, the maximum of the density can be only estimated e.g.
using suitable smoothing kernels; see [5] for some examples and a connection to
iterative solvers. Note that while the l2 and l1 norms lead to a convex functional
minimisation, the robust error norms (c) and (d) in Table 1 are nonconvex, and
their corresponding functionals E(u) may exhibit multiple local minima.

3 Histogram operations

In image analysis, the data (grey values) fi are measured at positions (pixels) xi,
and we want to find a solution vector u = (ui)i=1,...,N where each output value
ui belongs to the position xi. We construct the M-estimates ui by minimising

E(u) =
N∑

i=1

N∑
j=1

Ψ
(
|ui − fj |2

)
. (2)
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E(u) can be minimised by gradient descent (converging towards a local mini-
mum if Ψ is nonconvex), where each element ui may be processed independently.
Initialising by u0

i = fi, the gradient descent becomes

uk+1
i = uk

i − τ
∂E

∂ui

= uk
i − τ

N∑
j=1

Ψ′(|uk
i − fj |2

)
2 (uk

i − fj)

=
(
1− 2τ

N∑
j=1

Ψ′(|uk
i − fj |2

))
uk

i

+ 2τ
N∑

j=1

Ψ′(|uk
i − fj |2

)
fj (3)

Here τ is the step size. To speed up convergence, τ can be chosen adaptively to
the data such that it is larger in plateaus and smaller in areas of large slope;
see [5]. Setting

τ :=
1

2
∑N

j=1 Ψ′
(
|uk

i − fj |2
) , g(s2) := Ψ′(s2), (4)

we can rewrite (3) into the iterative formula

uk+1
i =

∑N
j=1 g

(
|uk

i − fj |2
)

fj∑N
j=1 g

(
|uk

i − fj |2
) . (5)

Note that in this formulation, the spatial distance between solution ui and
the input samples fj is not taken into consideration since the index j runs
through all pixels. This procedure is equivalent to operations with the histogram
of the input image. As an example, Fig. 2 (b) shows the steady state when
iterating (5) with a weighting function g that was chosen in order to correspond
to the penaliser Ψ from Table 1(c). This results in replacing each pixel by a
local mode of the image histogram. We may thus regard it as an image adaptive
quantisation strategy.

4 Local M-smoothers

While the previous method was a global, histogram-based technique, it is often
desirable to estimate a grey value of a pixel from a local neighbourhood only. In
the framework of M-estimation, this can be achieved by introducing a second
weighting term, which depends on the spatial distance between the position
of restored pixel ui and the input sample fj . For the local M-smoothers, the
functional to minimise has the following structure [6, 31]:

E(u) =
N∑

i=1

∑
j∈B(i)

Ψ
(
|ui − fj |2

)
w
(
|xi − xj |2

)
(6)
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Figure 2: Local mode filtering. (a) Left: input image. (b) Center: iteratively
smoothed using eq. (5) and the penaliser from Table 1(c) in a global spatial
window. This approximates mode filtering of the histogram. (c) Right: processed
with the local iterative filter from eq. (9). The tonal weight g(s2) = exp(−s2/λ2)
was combined with the soft spatial window (8) with θ = 5. This approximates
a local mode filter.

where the spatial weights w represent e.g. a hard disk-shaped window around
the current position xi,

w(s2) =

{
1 s2 < θ

0 otherwise,
(7)

or a soft window [6],
w(s2) = e−s2/θ2

. (8)

The local window B(i) is introduced in (6) for computational convenience only,
to make the index j run through the neighbourhood of xi where w(|xi − xj |2)
exceeds some threshold of contribution importance.

In the same way as in the previous section, a minimisation of (6) with
adaptive time steps leads to the iterative formula

uk+1
i =

∑
j∈B(i) g

(
|uk

i − fj |2
)

w
(
|xi − xj |2

)
fj∑

j∈B(i) g
(
|uk

i − fj |2
)

w
(
|xi − xj |2

) (9)

where the function w is called spatial weight, in order to distinguish it from the
tonal weight g. The iterative process is initialised with u0

i := fi. Note that, both
in (5) and in (9), we are only interested in the steady state for k → ∞, not in
the evolution towards this minimiser.

As stated in [31], the procedure (9) is called W-estimator, and represents one
possibility to obtain a solution to the local M-estimation problem. It converges
to a local minimum of (6) close to the input data. Depending on the penaliser
Ψ, the iterations may lead e.g. to a local mode approximation as in Fig. 2 (c)
[11, 27, 28, 7], or to an approximation of a windowed median filter or Gaussian
smoothing.
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5 Bayesian and regularisation frameworks

By taking the windowed M-estimator (6) and decreasing the spatial window size
θ, we arrive at the weighting

w
(
|xi − xj |2

)
=

{
1 if xi = xj ,
0 otherwise.

(10)

This leads to the functional

ED(u) =
N∑

i=1

Ψ
(
|ui − fi|2

)
. (11)

For any reasonable penaliser Ψ, (11) is minimised by ui = fi.
It is clear that such a solution is not desired: a good estimate cannot be

obtained by looking at a single noisy sample. However, estimation formulated
using a local neighbourhood is a highly successful practice, but it has to be com-
bined with some assumptions about the signal to be recovered. In the Bayesian
terminology such an assumptions is called prior information, in the framework
of regularisation theory it is named smoothness term or regulariser; see e.g.
[2, 10, 15].

We construct a smoothness term to express our assumptions about the signal.
For the sake of convenience, let us now focus on a continuous modeling where
(11) is replaced by

ED(u) =
∫

Ω

Ψ
(
|u− f |2

)
dx (12)

where Ω ⊂ IRm is the image domain, and f, u : Ω → IR denote the original
and filtered image, respectively. In the classical example of the Mumford–Shah
functional [16] where the signal is assumed to be piecewise constant with step-
like discontinuities, we have

ES(u) =
∫

Ω\Γ
|∇u|2dx + β |Γ|

where Γ is the set of discontinuities and |Γ| denotes its length (one-dimensional
Hausdorff measure). The smoothness of the image is measured by the squared
gradient magnitude |∇u|2. We see that deviations from the smoothness are not
penalised at the discontinuities. The parameter β balances the image smoothness
against the measure of the discontinuity set Γ.

It was shown e.g. in [31] that the explicit boundaries Γ can be expressed
implicitly using a robustified prior: Let γ denote the discontinuity indicator
function

γ(x) =

{
1 on Γ (edge),
0 on Ω\Γ (no edge),

and
Ψβ(|∇u|2) := min{|∇u|2, β} (13)

7



the cup function from Table 1(d). Then it follows that

min
u

ES(u) = min
u,Γ

(∫
Ω\Γ

|∇u|2dx + β |Γ|

)

= min
u,γ

∫
Ω

(
(1− γ) |∇u|2 + β γ

)
dx

= min
u

∫
Ω

(
min

γ∈{0,1}
(1− γ) |∇u|2 + β γ

)
dx

= min
u

∫
Ω

Ψβ

(
|∇u|2

)
dx. (14)

For smoother penalisers Ψ, the discontinuity indicator γ may also attain inter-
mediate values from the interval [0, 1] [19].

In the Bayesian / regularisation framework, the data and smoothness terms
are combined into a single functional, thus balancing the measured data against
the smoothness assumptions. The resulting functional has e.g. the form

E(u) = ED(u) + α ES(u)

=
∫

Ω

(
ΨD

(
|u− f |2

)
+ α ΨS(|∇u|2)

)
dx (15)

with some regularisation parameter α > 0. As an example, the continuous
Mumford–Shah functional fits into this framework if we choose ΨD(s2) := s2

and ΨS(s2) := min(s2, λ2). Discrete versions of such functionals are considered
e.g. in [3, 17, 18].

6 Diffusion filtering

For the sake of completeness, it should be mentioned that equation (15) also
covers nonlinear diffusion filters with and without a fidelity term: Choosing
ΨD(s2) := s2, every mininiser of (15) has to satisfy necessarily the Euler–
Lagrange equation [8]

0 = div
(
g(|∇u|2)∇u

)
− u− f

α
(16)

where g(s2) := Ψ′
S(s2). Its solution can be regarded as the steady state of the

diffusion–reaction process

∂u

∂t
= div

(
g(|∇u|2)∇u

)
− u− f

α
. (17)

where the “time” t is a purely numerical parameter. Such “biased” diffusion
processes with a fidelity term have been considered by [19] in the nonconvex
and by [22, 25, 4] in the convex case. They yield the filtered image at infinite
time (t →∞).
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Alternatively, in [21] it has been argued that by rewriting (16) as

u− f

α
= div

(
g(|∇u|2)∇u

)
(18)

it becomes evident that this process can be regarded as an implicit time dis-
cretisation of the diffusion process

∂u

∂t
= div

(
g(|∇u|2)∇u

)
, (19)

u(t = 0) = f (20)

with a single time step of size α. This is a classical, “unbiased” nonlinear diffu-
sion filter as is considered e.g. in [20, 29]. Note that, in contrast to (16), such a
filter gives the desired result at finite diffusion time t = α.

7 Bilateral filtering

Since digital images are sampled on a quadratic pixel grid, it becomes necessary
to consider discrete variants of the continuous functional (15). For the data term,
this has already been discussed. Therefore let us now focus on the smoothness
term ES(u) = ΨS(|∇u|2).

One possibility is to estimate the image gradient magnitude as a sum of
squared differences from a pixel to its neighbours. The discrete smoothness
penaliser is then expressed in the following way:

ES(u) =
N∑

i=1

ΨS

( ∑
j∈N (i)

|ui − uj |2
)

(21)

where N (i) stands for the set of 4-neighbours of a pixel i. Just by exchanging
the order of summation and penalisation in the last term, we can express the
assumption of image smoothness in a slightly different way:

ES(u) =
N∑

i=1

∑
j∈N (i)

ΨS

(
|ui − uj |2

)
. (22)

This change of operation ordering leads to an anisotropic smoothness measure;
see also [30].

Let us now increase the size of the neighbourhood from which the expression
(22) is estimated. Then the smoothness term becomes

ES(u) =
N∑

i=1

∑
j∈B(i)

Ψ
(
|ui − uj |2

)
w
(
|xi − xj |2

)
(23)

where B(i) is the larger neighbourhood set, and the summation is additionally
weighted by a function w of the spatial distance between pixels.
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The functional (23) can be minimised by an iterative procedure

uk+1
i = uk

i − τ
∂E

∂ui
, τ :=

1
2
∑

j∈B(i) Ψ′
(
|uk

i − uk
j |2
) .

Setting g(s2) := Ψ′(s2) leads to the weighted averaging scheme

uk+1
i =

∑
j∈B(i) g

(
|uk

i − uk
j |2
)

w
(
|xi − xj |2

)
uk

j∑
j∈B(i) g

(
|uk

i − uk
j |2
)

w
(
|xi − xj |2

) (24)

Equation (24) is exactly the bilateral filter [26]; see also [23] for related ideas.
While bilateral filtering was originally proposed as a heuristic algorithm, we
derived it here as an iterative solver to minimise the anisotropic smoothness
term (23) which is evaluated in a nonlocal window.

One should observe the large amount of structural similarities between the
local M-smoother (9) and the bilateral filter (24). However, there is one sig-
nificant difference: Local M-smoothing uses the initial image in the averaging
procedure and searches for the steady state, while bilateral filtering uses the
evolving image and has to stop after a certain number of iterations in order to
avoid obtaining a flat image.

Moreover, it should be noted that an alternative functional to justify the
bilateral filter was proposed in [9]. Differently to the one presented here, the
functional of Elad contains a windowed smoothness term combined with a lo-
cal data term. Also, bilateral filter can be viewed as an approximation to the
Beltrami flow [1, 24].

8 Unifying framework

Figure 3 presents an overview of the energy functionals minimised by all the
methods discussed so far. Starting from statistical M-estimation at the top,
we went counterclockwise down the left branch via histogram operations, in-
troduced spatial window weighting w into the functional, and derived local
M-estimators. Reducing the window size and combining data with a smooth-
ness assumption, we arrived at regularisation methods fitting into the Bayesian
framework at the bottom of Fig. 3. Concentrating on the smoothness term only,
we estimated the gradient magnitude |∇u| using discrete samples, extended the
size of the estimation window, formed an anisotropic smoothness measure, and
derived the bilateral filter on the right. The circle can be closed to histogram-
based global methods by extending the spatial window size.

We observe that the methods classify into two main branches: the data-based
on the left, and the smoothness-based on the right of Fig. 3. The data-based
methods correspond to statistical estimation from noisy data, while the right
branch leads to the known methods of image smoothing. Unfortunately, these
labels are sometimes confused and a method optimising the smoothness term
is claimed to represent a robust statistical estimator. We have seen that the
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Figure 3: Overview of the methods studied in this paper and their corresponding
energy functionals.

methods have a highly similar structure, but believe that the terms estimation
and smoothing should not be used as equivalent.

The spatial extent of each filter is controlled by the weight function w, from
global methods at the top (w = 1) to local approaches at the bottom. Let
us focus on the methods in the middle, where the weight w specifies a finite
window. We said that the regularisation methods contain a (local) data term
and a (local) smoothness term. If we understand the local M-estimators as a
data term (expressed using a nonlocal window for each pixel) and the bilateral
filter as a smoothness term (again using a finite window), it is natural to combine
them into a single, unified functional:

E(u) =
N∑

i=1

N∑
j=1

σ ΨD

(
|ui − fj |2

)
wD

(
|xi − xj |2

)
+ (1− σ) ΨS

(
|ui − uj |2

)
wS

(
|xi − xj |2

)
(25)

Depending on the choice of the penalising functions ΨD, ΨS and on the extent
of the spatial weighting functions wD and wS , the single formulation (25) covers
all the filters discussed so far. They are summarised in Table 2.

The unification of methods into a single framework has several advantages.
It contributes to the understanding of each method as it makes explicit what
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Table 2: Filtering methods structured according to the used penaliser (from
Table 1 (a), (b), (c)), extent of the spatial weight w, and correspondence to the
data or smoothness terms.

penaliser windowed data local smoothness windowed smoothness
(a) mean linear diffusion
(b) median TV diffusion
(c) mode approximation nonlinear diffusion bilateral filter

parameters ΨD, wD,ΨS , wS , σ are needed to derive a given filter. We can see
all the freedom that this class of methods offers: four weighting functions (and
their parameters) plus the parameter σ ∈ [0, 1] balancing the data against the
smoothness term. Obviously, to obtain a reasonable and well performing filter,
the choice of parameters should be motivated by some arguments about the data
and noise properties. Last but not least, we have seen that known filters repre-
sent just several special cases in the framework of functional (25). New methods
can be designed to combine the advantages of known filters. This remains the
topic for further research.

Some more questions are left open, though. For example, what is the meaning
of the smoothness term calculated from a larger window as in (23)? A single
pixel may then be directly connected to quite distant pixels, which leads to
large-scale smoothing effects of a single filter iteration, but the local topology
(e.g. the classical notion of connected regions) is lost, similarly to the locally
orderless images [14].

9 Experiments

In this section we present several examples in order to demonstrate the effect
of individual filter components on the final results. We stress that the pictures
are intended to visualise the main effects. They are not intended to claim that
one method performs better than the other: optimised results in terms of im-
age simplification or denoising can be obtained by each of them by tuning the
parameters.

The first image simplification example is shown in Fig. 5. The penaliser
Ψ(s2) = 1 − exp(−s2/λ2) was employed, and the soft spatial window (8) had
varied size (θ = 1, θ = 3, θ = 10, cropped circularly into windows of sizes 3× 3,
7×7, and 21×21, respectively). We observe that the image filtered via the data
term minimisation (i.e. local M-estimator, top row of Fig. 5) becomes smoother
as the window size increases. In this case the steady state is depicted. In the
bottom row (smoothness term, bilateral filter) the effect of different window
sizes is fairly small if the same number of iterations is used. We observe that
already a small window applied iteratively leads to global effects.

Figures 6 and 7 demonstrate the influence of the penaliser type on the re-
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Figure 4: Input images for the filtering examples. Noise-free on the left (used in
Figures 5 and 6), noisy on the right (Gaussian noise, SNR=4; used in Fig. 7).
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WINDOW SIZE: 3 x 3 7 x 7 21 x 21
Figure 5: Filtering using the penaliser Ψ(s2) = 1 − e−s2/λ2

(Table 1d) with
varied size of the spatial neighbourhood. Top: local M-smoothers (data term,
steady state of iterating (9)). Bottom: bilateral filtering (smoothness term, 200
iterations based on (24)).

sult. All images were created using a 7× 7 soft spatial window. The l2 penaliser
blurs the image most and removes noise very well, while the local mode ap-
proximations on the right of Figures 6 and 7 perform better at preserving the
discontinuities, but the result is also more sensitive to noise. The l1 penalisation
in the center column can represent a good compromise between contrast preser-
vation and noise removal, depending on the particular task and data properties.
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Figure 6: Effect of the penaliser type on the filtering result (with soft spatial
weighting (8), θ = 3).
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Figure 7: Effect of the penaliser type on the filtering result, starting from the
noisy image in Fig 4 right (filtering in a soft window (8), θ = 3).
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10 Conclusion

In this paper we focused on the relations between nonlinear filters for digital
image processing. We covered statistical M-estimation, mean and median fil-
tering, mode approximation, regularisation and nonlinear diffusion approaches,
and bilateral filtering. We have shown that all these methods can be cast into
the unified framework of functional minimisation where the functional consists
of a (possibly nonlocal) data and (possibly nonlocal) smoothness term. The mu-
tual influence of image pixels is controlled by weighting functions depending on
the spatial and tonal distances.

The unified formulation brings new insight and clarifies the relations between
different methods. It makes explicit what assumptions are needed to derive
known methods (often proposed ad hoc) from the general framework. Then,
novel methods can be designed to combine the advantages of known filters and
suit the particular data properties.
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