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Abstract

This paper studies the connections between discrete two-dimensional
schemes for shift-invariant Haar wavelet shrinkage on one hand, and non-
linear diffusion on the other. We show that using a single iteration on
a single scale, the two methods can be made equivalent by the choice
of the nonlinearity which controls each method: the shrinkage function,
or the diffusivity function, respectively. In the two-dimensional setting,
this diffusion–wavelet connection shows an important novelty compared
to the one-dimensional framework or compared to classical 2-D wavelet
shrinkage: The structure of two-dimensional diffusion filters suggests to
use a coupled, synchronised shrinkage of the individual wavelet coefficient
channels. This coupling enables to design Haar wavelet filters with good
rotation invariance at a low computational cost. Furthermore, by transfer-
ring the channel coupling of vector- and matrix-valued nonlinear diffusion
filters to the Haar wavelet setting, we obtain well-synchronised shrinkage
methods for colour and tensor images. Our experiments show that these
filters perform significantly better than conventional shrinkage methods
that process all wavelets independently.

1 Introduction

Wavelet shrinkage and nonlinear diffusion are two seemingly very different con-
cepts for discontinuity-preserving signal and image denoising. Since they are
serving the same purpose, however, it would be desirable to understand if there
are intrinsic connections between both worlds. On one hand this may allow to
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transfer results from one framework to the other, on the other hand it may allow
to design hybrid method that combine advantages from both concepts.

Although research in this direction is still a relatively young field, already a
number of interesting connections between wavelet shrinkage, partial differen-
tial equations (PDEs) and related regularisation methods has been established.
Most of them analyse the continuous framework [4, 5, 8, 7, 28, 35, 36] or fo-
cus on designing methods that use wavelet shrinkage and PDE-based denoising
methods in combination [3, 6, 10, 14, 25, 26].

Regarding the relations between wavelet shrinkage of discrete signals and
PDE-based denosing, not much research has been done so far. One notable
exception is a recent paper by Coifman and Sowa [11] where they propose total
variation (TV) diminishing flows that act along the direction of Haar wavelets.
Bao and Krim [2] addressed the problem of texture loss in diffusion scale-spaces
by incorporating ideas from wavelet analysis. An experimental evaluation of the
denoising capabilities of 3-D wavelet shrinkage and nonlinear diffusion filters is
presented in a paper by Frangakis et al. [17].

Also in our recent work we have analysed discrete relations between nonlin-
ear diffusion and wavelet shrinkage in the one-dimensional setting. By deriving
identical analytical solutions we proved equivalence between shift invariant soft
Haar wavelet shrinkage on a single scale, space-discrete (but time-continuous)
nonlinear diffusion with a TV diffusivity, and discrete TV regularisation [39].
Using these ideas on multiple scales and iterating the method comes down to
hybrid techniques that aim to combine the efficiency of wavelets with the qual-
ity of PDE-based methods. Their performance is evaluated in [32]. Considering
space-discrete nonlinear diffusion and replacing the time-continuous formula-
tion by an explicit (Euler forward) time discretisation allowed us to find general
relations between the diffusivity for nonlinear diffusion filtering and the shrink-
age function of shift invariant Haar wavelet shrinkage on a single scale [30].
In this way we identified also nonlinear diffusivities for hard, firm and Garrote
wavelet shrinkage, and we proposed novel shrinkage functions that were inspired
from nonlinear diffusivities and offered competitive performance. Moreover, this
connection enabled us to derive novel stability results for single-scale wavelet
shrinkage, including monotonicity preservation and sign stability [31].

Since the connection between fully discrete nonlinear diffusion filtering and
wavelet shrinkage turned out to be very fruitful in the one-dimensional setting, it
is natural to ask whether we can also gain novel insights in the two-dimensional
case by exploiting a similar strategy. This is the topic of the present paper where
we focus mainly on one important novelty compared to 1-D filtering, namely
channel coupling and its consequences. The link to nonlinear diffusion requires
that the shrinkage function of individual channels of wavelet coefficients is syn-
chronised via a joint estimation of the image gradient. The resulting coupled
wavelet shrinkage then inherits some desirable properties from the corresponding
nonlinear diffusion filter, namely a good approximation of rotation invariance
and a straightforward extension to filtering of vector- and tensor-valued images.

The property of rotation invariance is natural for diffusion, being inherent in
the continuous formulation of the diffusion process. Unfortunately, this quality
is usually missing in wavelet shrinkage methods. The relation between the
two techniques allows to construct rotation-invariant wavelet shrinkage methods
easily, with very little additional computational cost.
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Diffusion methods have an established approach to filtering of vector-, or
even tensor-valued data. Through a common estimation of diffusivity, the indi-
vidual data components evolve in a synchronised manner, and possible artifacts
or misalignment of features in the individual data channels are avoided. Hav-
ing established the link to coupled wavelet shrinkage, wavelet-based methods
suitable for filtering of vector- and tensor-valued images can be designed in a
straightforward way.

We have presented first results on diffusion-inspired rotationally invariant
wavelet shrinkage in a recent conference paper [29]. The present paper gives
substantial additional results: It exploits alternative numerical schemes and
analyses them in detail. These schemes offer additional degrees of freedom that
can be used to achieve better approximations to the rotationally invariant case.
Moreover, the results on diffusion-inspired coupled wavelet shrinkage for colour
and tensor images are described here for the first time.

Our paper is organised as follows. Section 2 provides a brief introduction to
Haar wavelet shrinkage in one and two dimensions. Section 3 introduces non-
linear diffusion and its explicit discretisation. Three different discrete diffusion
schemes are then related to wavelet shrinkage in Section 4. The rotation in-
variance of the resulting coupled wavelet shrinkage is studied in Section 5, and
extended to colour images in Section 6. Coupled wavelet shrinkage for tensor-
valued data is investigated in Section 7. We conclude the paper with a summary
in Section 8.

2 Wavelet Shrinkage

2.1 Basic Concept

The discrete wavelet transform represents a one-dimensional signal f in terms of
shifted versions of a dilated lowpass scaling function ϕ, and shifted and dilated
versions of a bandpass wavelet function ψ. In case of orthonormal wavelets, this
gives

f =
∑
i∈Z

〈f, ϕn
i 〉ϕn

i +
n∑

j=−∞

∑
i∈Z

〈f, ψj
i 〉ψ

j
i , (1)

where ψj
i (s) := 2−j/2ψ(2−js − i) and where 〈·, ·〉 denotes the inner product in

L2(R). If the measurement f is corrupted by moderate white Gaussian noise,
then this noise is contained to a small amount in all wavelet coefficients 〈f, ψj

i 〉,
while the original signal is in general determined by a few significant wavelet
coefficients [27]. Therefore, wavelet shrinkage attempts to eliminate noise from
the wavelet coefficients by the following three-step procedure:

1. Analysis: transform the noisy data f to the wavelet coefficients dj
i =

〈f, ψj
i 〉 and scaling function coefficients cni = 〈f, ϕn

i 〉 according to (1).

2. Shrinkage: apply a shrinkage function Sθ with a threshold parameter θ to
the wavelet coefficients, i.e., Sθ(d

j
i ) = Sθ(〈f, ψj

i 〉).
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3. Synthesis: reconstruct the denoised version u of f from the shrunken
wavelet coefficients:

u :=
∑
i∈Z

〈f, ϕn
i 〉ϕn

i +
n∑

j=−∞

∑
i∈Z

Sθ(〈f, ψj
i 〉)ψ

j
i . (2)

In this paper we restrict our attention to Haar wavelets, well suited for piecewise
constant signals with discontinuities. The Haar wavelet and scaling functions
are given respectively by

ψ(x) = 1[0, 1
2 ) − 1[ 12 ,1), (3)

φ(x) = 1[0,1) (4)

where 1[a,b) denotes the characteristic function, equal to 1 on [a, b) and zero
everywhere else. Using the so-called two-scale relation of the wavelet and its
scaling function, the coefficients cji and dj

i at higher level j can be computed
from the coefficients cj−1

i at lower level j − 1 and conversely:

cji =
cj−1
2i + cj−1

2i+1√
2

, dj
i =

cj−1
2i − cj−1

2i+1√
2

, (5)

and

cj−1
2i =

cji + dj
i√

2
, cj−1

2i+1 =
cji − dj

i√
2

. (6)

This results in a fast algorithm for the analysis step and synthesis step. Various
shrinkage functions leading to qualitatively different denoised functions u were
considered in the literature [12, 18, 19, 27]. In the present paper we employ hard
shrinkage for the experiments, since it performs particularly well w.r.t. image
denoising [30]:

Sθ(x) =

{
0 for |x| ≤ θ,

x for |x| > θ.
(7)

2.2 Discrete Translation-Invariant Scheme in 1-D

In practice one deals with discrete signals f = (fi)N−1
i=0 , where, for simplicity,

N is a power of 2. Then Haar wavelet shrinkage starts by setting c0i = fi and
proceeds by analysis (5), shrinkage, and synthesis (6). Let us just consider a
single wavelet decomposition level, i.e., we set n = 1. Then, using the convention
that ci = c1i and di = d1

i , we can drop the superscripts j = 0 and j = 1. By (5)
and (6), Haar wavelet shrinkage on one level produces the signal u+ = (u+

i )N−1
i=0

with coefficients

u+
2i =

ci + Sθ(di)√
2

=
f2i + f2i+1

2
+

1√
2
Sθ

(
f2i − f2i+1√

2

)
, (8)

u+
2i+1 =

ci − Sθ(di)√
2

=
f2i + f2i+1

2
− 1√

2
Sθ

(
f2i − f2i+1√

2

)
. (9)

Note that the single Haar wavelet shrinkage step (8)–(9) decouples the input
signal into successive pixel pairs: the pixel at position 2i − 1 has no direct
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connection to its neighbour at position 2i, and the procedure is not invariant
to translation of the input signal. To overcome this problem, Coifman and
Donoho [9] introduced the so-called cycle spinning: the input signal is shifted,
denoised using wavelet shrinkage, shifted back, and the results of all such shifts
are averaged. This procedure is equivalent to thresholding of nondecimated
wavelet coefficients which can be implemented efficiently using the algorithme
à trous [21]. For our single decomposition level, we need only one additional shift
to acquire translation invariance. The shifted Haar wavelet shrinkage yields the
signal u− = (u−i )N−1

i=0 with coefficients

u−2i−1 =
f2i−1 + f2i

2
+

1√
2
Sθ

(
f2i−1 − f2i√

2

)
, (10)

u−2i =
f2i−1 + f2i

2
− 1√

2
Sθ

(
f2i−1 − f2i√

2

)
. (11)

Averaging the shifted results, one cycle of shift-invariant Haar wavelet shrinkage
can be summarised into

ui =
u−i + u+

i

2

=
fi−1 + 2fi + fi+1

4
+

1
2
√

2
Sθ

(
fi − fi+1√

2

)
− 1

2
√

2
Sθ

(
fi−1 − fi√

2

)
.(12)

2.3 Shrinkage in Two Dimensions

The easiest way to design a two-dimensional wavelet transform is to use separa-
ble filters [40]. The 2-D wavelet transform then describes a 2-D signal f = (fi,j)
with i = 0,...,Nx−1 and j = 0,...,Ny−1 by its low-pass component at level n, vn,
and three channels of wavelet coefficients wl

x, wl
y and wl

xy at levels l = 1, . . . , n.
This wavelet representation is created by an alternating application of the one-
dimensional low-pass and high-pass filters L and H in the directions of the axes
x and y:

vl+1 = L(x) ∗ L(y) ∗ vl, (13)
wl+1

y = L(x) ∗H(y) ∗ vl, (14)

wl+1
x = H(x) ∗ L(y) ∗ vl, (15)

wl+1
xy = H(x) ∗H(y) ∗ vl, (16)

with the initial condition v0 = f . For image smoothing, the wavelet coefficients
wx,wy,wxy are subjected to a shrinkage function S, and the filtered image
u is reconstructed from the shrunken coefficients using an inverse procedure
to (13)–(16). The Haar wavelet transform is described by a low-pass filter L with
coefficients ( 1√

2
, 1√

2
), and a high-pass filter H with coefficients ( 1√

2
,− 1√

2
) [40].

Let us now consider a single decomposition level, and the wavelet shrinkage
steps which contribute to the output pixel ui,j . Using the translation-invariant
scheme [9], we have to consider the four 2×2 neighbourhoods in which the pixel
(i, j) is involved. We denote by upper index α the neighbourhood {i, i + 1} ×
{j, j + 1}; by β the positions {i, i + 1} × {j − 1, j}; by γ the neighbourhood
{i− 1, i} × {j, j + 1}; and, finally, by δ the positions {i− 1, i} × {j − 1, j}.
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Figure 1: The first-level Haar wavelet coefficients expressed using 3 × 3 masks
centered at the pixel i, j. The masks represent multiplication of the input signal
with the given coefficients, so e.g. wα

x = 1
2fi,j + 1

2fi,j+1 − 1
2fi+1,j − 1

2fi+1,j+1.

The input signal in neighbourhood α is first transformed into vα, wα
y , wα

x

and wα
xy; see Fig. 1 for the definition of the corresponding masks. The wavelet

coefficients wα
y , w

α
x , w

α
xy are then subjected to a shrinkage function S, and the

(i, j) pixel of the filtered signal belonging to the neighbourhood α is obtained
using

uα
i,j =

1
2

(
vα + S(wα

x ) + S(wα
y ) + S(wα

xy)
)
. (17)

Similar expressions can be derived for the results arising from the neighbour-
hoods β, γ and δ; the necessary masks are shown in Fig. 1. To obtain the final
result of a shift-invariant 2-D Haar wavelet shrinkage on a single level, the four
intermediate results uα

i,j , u
β
i,j , u

γ
i,j and uδ

i,j have to be averaged. The complete
formula for a single-level Haar wavelet shrinkage filter then reads

ui,j =
1
8

(
vα + S(wα

x ) + S(wα
y ) + S(wα

xy)
)

+
1
8

(
vβ + S(wβ

x)− S(wβ
y )− S(wβ

xy)
)

+
1
8

(
vγ − S(wγ

x) + S(wγ
y )− S(wγ

xy)
)

+
1
8

(
vδ − S(wδ

x)− S(wδ
y) + S(wδ

xy)
)
. (18)

This formula will be used for establishing correspondences to nonlinear diffusion
filtering.

3 Nonlinear Diffusion

3.1 Basic Concept

The basic idea behind nonlinear diffusion filtering [33] is to obtain a family
u(x, y, t) of filtered versions of the signal f(x, y) as the solution of a suitable
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diffusion process
ut = div

(
g(|∇u|2)∇u

)
(19)

with f as initial condition: u(x, y, 0) = f(x, y). Here subscripts denote partial
derivatives, and the diffusion time t is a simplification parameter: larger values
correspond to more pronounced filtering.

The diffusivity g(|∇u|2) is a nonnegative function that controls the amount
of diffusion. Usually, it is decreasing in |∇u|2. This ensures that strong edges
are less blurred by the diffusion filter than noise and low-contrast details. A
typical representative of a nonlinear diffusivity is given by [33]

g
(
s2

)
=

1
1 + s2

λ2

. (20)

3.2 Explicit Discretisation Scheme

When applied to discrete signals, the partial differential equation (19) has to be
discretised. A filtered solution is then found by an iterative procedure, starting
from the noisy signal at time 0, u0 = f , and proceeding by uk+1 = F (uk),
k = 0, 1, 2, . . .. In this paper, we focus on explicit finite difference schemes
which in each iteration apply simple operations to neighbouring pixels.

The divergence expression on the right hand side of (19) can be decomposed
in 2-D by means of two orthonormal basis vectors v1 and v2:

div
(
g(|∇u|2)∇u

)
=

2∑
p=1

∂vp

(
g(|∇u|2) ∂vpu

)
. (21)

Replacing the derivatives in (19), (21) by finite differences, we can write the
explicit finite difference discretisation of the nonlinear diffusion as

uk+1
i,j = uk

i,j + τ
∑

(m,n)∈N (i,j)

gk
m,n

uk
m,n − uk

i,j

|(m,n)− (i, j)|2
. (22)

Here the upper index k denotes solution at time kτ with τ standing for the
time step, the set N (i, j) contains the neighbours of pixel (i, j), and the ex-
pression |(i, j)− (m,n)| stands for the distance between pixels (i, j) and (m,n).
The term gk

m,n approximates g(|∇u(x, y, t)|2) at location ( i+m
2 , j+n

2 ) and time
kτ . It represents the diffusivity belonging to the connection between the (i, j)
and (m,n), where the gradient magnitude |∇u(x, y, t)|2 can be estimated from
discrete data using 2× 2 masks. This topic is addressed in detail in Section 4.4.

The neighbourhood connectivity between pixels depends on the choice of
basis vectors v1 and v2 for divergence estimation in (21); these vectors influ-
ence which pixels are included in the neighbourhood set N (i, j). In the fol-
lowing we consider three types of connectivity: diagonal, vertical/horizontal
(4-neighbourhood), and combined (8-neighbourhood). Each of them leads to a
slightly different discrete scheme for the nonlinear diffusion equation, and each
can be related to wavelet shrinkage. These relations are studied next.
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4 Diffusion-Wavelet Connections

4.1 Diagonal Diffusion Connectivity

Choosing the basis vectors for divergence discretisation (21) in diagonal direc-
tions as v1 := ( 1√

2
, 1√

2
) and v2 := ( 1√

2
,− 1√

2
), the explicit nonlinear diffusion

step (22) becomes

uk+1
i,j = uk

i,j + τ
∑

(m,n)∈D(i,j)

gk
m,n

uk
m,n − uk

i,j

2
. (23)

Here, the set D(i, j) contains the diagonal neighbours of pixel (i, j), and the
grid size is assumed to be 1.

The diagonal discretisation of nonlinear diffusion given by (23) contains no
vertical or horizontal connections between neighbouring pixels (see Fig. 2 left).
This scheme has the drawback of decoupling the image into two overlaying di-
agonal grids which are connected only at the image boundaries and may create
some checkerboard-like structures during the image evolution. However, this
diagonal discretisation represents a consistent finite difference approximation to
the continuous equation. It has been used successfully by Keeling and Stoll-
berger [22]. Since its spatial consistency can be shown to be of second order,
the rotation invariance of the continuous equation is approximated well.

Let us now investigate the connection between a single-level wavelet shrink-
age (18) and an explicit diffusion iteration (23). To this end, we consider the
first diffusion iteration, starting from the initial signal f = (fi,j) and creating a
solution u = (ui,j). We will express the diffusion iteration in the terms of the
wavelet coefficients from Section 2.

For the first iteration, (23) becomes

ui,j = fi,j + τ
∑

(m,n)∈D(i,j)

gm,n
fm,n − fi,j

2
. (24)

The first term on the right-hand side can be rewritten as

fi,j =
1
8

1
2

1
1
2

1
2
1

1
2

1
1
2

+
1
8

− 1
2

−1
− 1

2

−1
6
−1

− 1
2

−1
− 1

2

=
1
8

(
vα + vβ + vγ + vδ

)
+

1
8

(
wα

x + wα
y + wα

xy + wβ
x − wβ

y − wβ
xy

−wγ
x + wγ

y − wγ
xy − wδ

x − wδ
y + wδ

xy

)
(25)

where the 3 × 3 boxes stand for a mask multiplication with the input signal,
and the v and w represent the wavelet coefficients for position (i, j); see Fig. 1.
Then, the gradient magnitude for the diffusivity calculation has to be estimated
from the discrete samples. In Section 4.4 we will show that the diffusivity value
may be obtained as a function of the wavelet coefficients wx, wy and wxy such
that it can be written as

gm,n = gω := g
(
(wω

x )2 + (wω
y )2 + c · (wω

xy)2
)

(26)
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where

ω :=


α if (m,n) = (i+ 1, j + 1)
β if (m,n) = (i+ 1, j − 1)
γ if (m,n) = (i− 1, j + 1)
δ if (m,n) = (i− 1, j − 1)

(27)

and c is an arbitrary nonnegative constant.
Finally, the last term from (24) may be expressed using wavelet coefficients as

fm,n − fi,j =


−wα

x − wα
y if (m,n) = (i+ 1, j + 1)

−wβ
x + wβ

y if (m,n) = (i+ 1, j − 1)
wγ

x − wγ
y if (m,n) = (i− 1, j + 1)

wδ
x + wδ

y if (m,n) = (i− 1, j − 1).

(28)

To summarise (24)–(28), we can write a single iteration of nonlinear diffusion
using the wavelet decomposition components v and w in the form

ui,j =
1
8

(
vα + wα

x (1− 4τgα) + wα
y (1− 4τgα) + wα

xy

)
+

1
8

(
vβ + wβ

x(1− 4τgβ)− wβ
y (1− 4τgβ)− wβ

xy

)
+

1
8

(
vγ − wγ

x(1− 4τgγ) + wγ
y (1− 4τgγ)− wγ

xy

)
+

1
8

(
vδ − wδ

x(1− 4τgδ)− wδ
y(1− 4τgδ) + wδ

xy

)
. (29)

Comparing the diffusion iteration (29) and the single-level wavelet shrinkage (18),
we observe that the two equations are equivalent under the conditions

S(wω
x ) = wω

x (1− 4 τ gω) , (30)
S(wω

y ) = wω
y (1− 4 τ gω) , (31)

S(wω
xy) = wω

xy. (32)

Equations (30)–(32) connect the diffusivity function g controlling nonlinear dif-
fusion (discretised with diagonal neighbourhood connectivity) to the shrink-
age function S of wavelet shrinkage. If these conditions hold true, both two-
dimensional procedures (limited to a single scale / single iteration) are equiva-
lent.

The equations (30), (31) are similar to the one-dimensional situation which
was analysed in detail in [30]. The surprising fact in the 2-D equations (30)–
(32) is the use of different shrinkage rules for the different channels of wavelet
coefficients, while the classical wavelet shrinkage applies the same shrinkage
function S to each of them separately. In (30)–(31), the shrinkage of wx and
wy is interconnected via the joint diffusivity term gω; the third channel, wxy, is
left unshrunken by (32).

4.2 Vertical/Horizontal Diffusion Connectivity

In this section we again formulate the explicit diffusion iteration using wavelet
coefficients, but this time the vertical and horizontal connectivity between neigh-
bouring pixels is employed. In this case, the first diffusion iteration can be
written as

ui,j = fi,j + τ
∑

(m,n)∈V(i,j)

gm,n (fm,n − fi,j) (33)
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Figure 2: Geometry of the discrete diffusion process and the diffusivity esti-
mation for the three studied schemes. Left: diagonal connectivity. Middle:
horizontal/vertical connectivity. Right: combined scheme, full connectivity in
the 8-neighbourhood.

where the set V(i, j) contains the 4-neighbours of the pixel (i, j): V(i, j) =
{(i + 1, j), (i, j + 1), (i − 1, j), (i, j − 1)}. The four neighbours will be denoted
by A, C, E, G, respectively, as in Fig. 2 center. This numerical scheme with
horizontal and vertical connectivity is obtained by discretising the divergence
expression (21) using the standard basis vectors v1 := (1, 0) and v2 := (0, 1).

The first term fi,j in (33) can be rewritten using wavelet coefficients in the
same way as before, see (25).

As for the diffusivity g, we need to obtain its value at the connection between
the center pixel and its neighbours. We will estimate it from the average of the
nearby diffusivities gω (see Fig. 2 center):

gA =
1
2
(gα + gβ), gE =

1
2
(gγ + gδ), (34)

gC =
1
2
(gα + gγ), gG =

1
2
(gβ + gδ). (35)

The last term in (33), fm,n − fi,j , can be expressed using wavelet coefficients in
two ways for each of the pixels (m,n):

fm,n − fi,j =


dA := −wα

x − wα
xy = −wβ

x + wβ
xy for (m,n) = (i+ 1, j),

dC := −wα
y − wα

xy = −wγ
y + wγ

xy for (m,n) = (i, j + 1),
dE := wγ

x + wγ
xy = wδ

x − wδ
xy for (m,n) = (i− 1, j),

dG := wβ
y + wβ

xy = wδ
y − wδ

xy for (m,n) = (i, j − 1).

(36)

To summarise, we can write the diffusion iteration (33) in terms of wavelet
coefficients as

ui,j =
1
8

(
vα + vβ + vγ + vδ

)
+

1
8

(
wα

x + wα
y + wα

xy + wβ
x − wβ

y − wβ
xy

−wγ
x + wγ

y − wγ
xy − wδ

x − wδ
y + wδ

xy

)
− τ

gα + gβ

2
dA − τ

gα + gγ

2
dC − τ

gγ + gδ

2
dE − τ

gβ + gδ

2
dG. (37)

Let us multiply the terms including dX in the last line of (37) by the correspond-
ing gω, and substitute for dX from (36) so that the diffusivity gω multiplies only

10



the corresponding coefficients wω. As an example, we have

gαdA + gβdA = gα
(
−wα

x − wα
xy

)
+ gβ

(
−wβ

x + wβ
xy

)
.

Performing similar substitution for the other terms, and assembling all the in-
stances of each wavelet coefficient together, we get

ui,j =
1
8

(
vα + wα

x (1− 4τgα) + wα
y (1− 4τgα) + wα

xy(1− 8τgα)
)

+
1
8

(
vβ + wβ

x(1− 4τgβ)− wβ
y (1− 4τgβ)− wβ

xy(1− 8τgβ)
)

+
1
8

(
vγ − wγ

x(1− 4τgγ) + wγ
y (1− 4τgγ)− wγ

xy(1− 8τgγ)
)

+
1
8

(
vδ − wδ

x(1− 4τgδ)− wδ
y(1− 4τgδ) + wδ

xy(1− 8τgδ)
)
. (38)

Comparing (38) with (18) we see that a single-level wavelet shrinkage is iden-
tical to a single iteration of nonlinear diffusion discretised using the verti-
cal/horizontal connectivity, under the condition that the diffusivity function
g and the shrinkage function S satisfy

S(wω
x ) = wω

x (1− 4 τ gω) , (39)
S(wω

y ) = wω
y (1− 4 τ gω) , (40)

S(wω
xy) = wω

xy (1− 8 τ gω) . (41)

We observe that – unlike in the scheme with diagonal connectivity – also the
mixed wavelet coefficients wω

xy are shrunken now, and even at a faster rate than
the coefficients wω

x , wω
y .

4.3 Combined Scheme

Both the scheme with diagonal connectivity (Sec. 4.1) and the one with verti-
cal/horizontal connectivity (Sec. 4.2) represent numerically consistent discreti-
sations of the nonlinear diffusion equation (19). They are of first order in time
and second order in space. Therefore, any convex combination of these schemes
is also a consistent approximation with the same consistency order. Such a
combined scheme corresponds to a diffusion process that is discretised using the
full pixel connectivity in the 8-neighbourhood as is illustrated in Fig. 2 right. A
combined nonlinear diffusion scheme with weight (1 − q) for the diagonal and
weight q for the vertical/horizontal connectivity corresponds to the shrinkage
rules

S(wω
x ) = wω

x (1− 4 τ gω) , (42)
S(wω

y ) = wω
y (1− 4 τ gω) , (43)

S(wω
xy) = wω

xy (1− 8 q τ gω) . (44)

In the special case when both schemes contribute with the same weight, we have
q = 1

2 and all the three wavelet channels are shrunken with identical speed:

S(wω
x ) = wω

x (1− 4 τ gω) , (45)
S(wω

y ) = wω
y (1− 4 τ gω) , (46)

S(wω
xy) = wω

xy (1− 4 τ gω) . (47)

11



This identical shrinkage for all channels resembles most the classical wavelet
shrinkage approach, and seems to represent the best choice for noniterated fil-
tering: all three coefficient channels wω

x , wω
y , wω

xy at uninteresting locations can
be shrunken to zero in a single step.

It should be noted that the three channels are still coupled by the joint
term gω on the right hand side of (45)–(47). As can be seen from (26), this
joint diffusivity combines information from different wavelet channels, where the
channel coupling originates from the diffusion equation (19). The question how
to estimate the joint diffusivity gω from the discrete data samples is addressed
next.

4.4 Diffusivity Estimation

The behaviour of a nonlinear diffusion filter (19) is controlled by the diffusivity
function g(|∇u|2). Its value is obtained after estimating the gradient magnitude
from the discrete data samples. There are several possibilities how to construct
such an estimate, and how to express it using the available wavelet coefficients.
This topic is addressed in the present section.

In all the diffusion discretisations presented above, the diffusivity value, and
hence the (squared) gradient magnitude was needed in the center of four adja-
cent pixels (point O in Fig. 3). To estimate it, we will use a 2 by 2 neighbourhood
only. In the following, the symbol ∂x stands for the partial derivative with re-
spect to x, ∂y with respect to y. Let us now discuss different possibilities to
approximate the squared gradient at point O.

Discretisation 1: Averaging before squaring. One way to estimate
|∇u|2(O) is to first evaluate the partial derivatives at point O as an average of
local derivative estimation at points P , R for the x-derivative, and at points S,
Q for the y-derivative. Using this scheme, the gradient magnitude is calculated
as

|∇u|2(O) =
(
∂xu(O)

)2 +
(
∂yu(O)

)2

≈
(
∂xu(P ) + ∂xu(R)

2

)2

+
(
∂yu(S) + ∂yu(Q)

2

)2

≈
0
0
0

− 1
2

− 1
2

0

1
2
1
2

0

2

+
0
0
0

1
2

− 1
2

0

1
2

− 1
2

0

2

=
(
−wα

x

)2 +
(
−wα

y

)2

=
(
wα

x

)2 +
(
wα

y

)2
, (48)

where the 3× 3 masks represent operations on the input signal as in Fig. 1. We
see that the gradient magnitude can be estimated using the x and y channels
of the wavelet coefficients. By means of Taylor expansions around O, one can
verify that this estimate represents

|∇u|2 +
1
12
h2(uxuxxx + 3uxuxyy + 3uyuxxy + uyuyyy) +O(h4) (49)

where h is again the grid size. Thus, we have a second order approximation to
the squared gradient.
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Figure 3: Illustration to diffusivity estimation from discrete samples. The u
represent available data samples, the point O is the location where we need to
evaluate the gradient magnitude.

Discretisation 2: Averaging after squaring. As an alternative to the
preceding discretisation, one may also average the partial derivative approxima-
tions after squaring them:

(
∂xu(O)

)2 ≈
(
∂xu(P )

)2 +
(
∂xu(R)

)2

2
, (50)

(
∂yu(O)

)2 ≈
(
∂yu(S)

)2 +
(
∂yu(Q)

)2

2
. (51)

Each term in (50), (51) can be written using wavelet coefficients (see again
Fig. 1):(

∂xu(P )
)2 =

(
−wα

x − wα
xy

)2
,

(
∂yu(Q)

)2 =
(
−wα

y + wα
xy

)2
, (52)(

∂xu(R)
)2 =

(
−wα

x + wα
xy

)2
,

(
∂yu(S)

)2 =
(
−wα

y − wα
xy

)2
. (53)

Putting (50)–(53) together, we obtain an alternative gradient estimation in the
form

|∇u|2(O) =
(
∂xu(O)

)2 +
(
∂yu(O)

)2 ≈
(
wα

x

)2 +
(
wα

y

)2 + 2
(
wα

xy

)2 (54)

where all the three wavelet coefficient channels are included. Taylor expansions
show that this discretisation comes down to

|∇u|2 +
1
12
h2(24u2

xy + uxuxxx + 3uxuxyy + 3uyuxxy + uyuyyy) +O(h4) (55)

in point O. Although this expression has an additional error term in u2
xy com-

pared to (49), it is an equally valid second order approximation to the squared
gradient. If the sign of the other error terms is negative, the total discretisation
error is even smaller than in the first discretisation.

Discretisation 3: Combining discretisations 1 and 2. We have seen
that both equations (48) and (54) represent numerically consistent second order
approximations to the squared gradient. Hence the same order of consistency
holds true for any linear combination with weights summing up to 1. Thus, we
may employ

|∇u|2(O) =
(
∂xu(O)

)2 +
(
∂yu(O)

)2 ≈
(
wα

x

)2 +
(
wα

y

)2 + c ·
(
wα

xy

)2 (56)

with any c. By choosing c ≥ 0 one ensures that the approximation to |∇u|2 can
never become negative.
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Practically, it seems that some care should be taken when combining the
constant c in (56) and the weighting term q for the horizontal/vertical diffusion
connectivity and the corresponding mixed-term shrinkage (44): If a coefficient
channel wxy is to be shrunken, it should get a chance to influence its fate by
contributing to (56). However, the actually best weighting is signal-dependent,
since the O(h2) term in the discretisation error

1
12
h2(12cu2

xy + uxuxxx + 3uxuxyy + 3uyuxxy + uyuyyy) +O(h4) (57)

cannot be made rotationally invariant by choosing an appropriate value for c.

In the experiments below we use the value c = 2 in combination with the
shrinkage rules (45)–(47). This comes down to Discretisation 2.

5 Rotation–Invariant Wavelet Shrinkage

In image analysis it is desirable that the features detected in the data do not
depend on their orientation. A filter is called rotation invariant if its result is
not influenced by a rotation of the input compensated by inverse rotation of
the output. Unfortunately, classical wavelet shrinkage [13] is not invariant to
rotation of the input data.

Several attempts to create wavelet transforms with improved rotation invari-
ance have appeared in the literature, including the directional cycle spinning of
Yu et al. [45], complex wavelets of Kingsbury [23], or the elaborated edgelet
and curvelet transforms [37]. Some of these ideas are relatively difficult to im-
plement or computationally significantly more complex than the traditional 2-D
shift-invariant wavelet shrinkage from Section 2.3.

We have derived above the connection between 2-D discrete schemes for
nonlinear diffusion on one hand, and shift-invariant 2-D Haar wavelet shrinkage
on the other. The resulting coupled wavelet shrinkage rules (42)–(44) inherit a
fundamental property from their diffusion origin: the rotation invariance of the
nonlinear diffusion filter. It holds exactly for the grid size tending to zero, but
we shall see that this property is also well approximated in realistic discrete sit-
uations with non-vanishing grid size. Our diffusion-inspired idea to improve the
invariance to rotation by coupling the shrinkage of wavelet channels represents
a very simple solution which hardly increases the computational complexity of
a wavelet filter.

The diffusion–wavelet connection has been shown for a single iteration of
a single-scale filter. In general, nonlinear diffusion is a single-scale iterative
process, while wavelet shrinkage finds the solution using a single step on multiple
scales. A hybrid multi-scale iterated filter seems to be a powerful and efficient
alternative [15, 32]. It can be understood either as a nonlinear diffusion on
the Laplacian pyramid of the signal [39], or as iterated shift-invariant wavelet
shrinkage [5]. We apply the idea of coupled shrinkage to this general, iterated
multiscale filter.

In the following experiments we compare the rotation invariance of two
wavelet-based filters: the classical iterated shift-invariant 2-D wavelet shrink-
age (18) with separate shrinkage of the coefficient channels, and the novel filter
with shrinkage rules coupled according to (45)–(47). In all cases, we employ the
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Figure 4: Experiments on rotation invariance. Left: input image. Middle:
filtered with classical iterated shift invariant wavelet shrinkage. Right: method
with channels coupled using (30)–(32). Top: ring image, five iterations on 8
levels of the wavelet decomposition. Bottom: head image, 100 iterations on 4
levels.

Haar wavelet basis combined with hard shrinkage. The wavelet decomposition
is calculated on multiple scales.

In the first experiment, we start from the rotationally symmetric ring im-
age (Fig. 4 top left). Examples of images obtained after 5 iterations of each
method are seen in Fig. 4 top. One can observe that using the coupled shrink-
age (45)–(47), the filtered result reveals a much better rotational symmetry. The
difference between the two methods is further visualised on a medical image at
the bottom of Fig. 4. At a comparable level of image simplification, the new
method is able to avoid the blocky artifacts of the classical transform.

The graphs in Fig. 5 present a numerical evaluation of the errors in rotational
symmetry of the filtered ring image. The measure of asymmetry was calculated
as a sum of signal variances along circles of varied diameter, centered at the
center of rotation of the input image. In agreement with the design principles,
the rotation symmetry of both the single-step and the iterated filter with coupled
channels is very good and by far outperforms the classical transform. Using
channel coupling, the method can to a great extent overcome the limitations of
the Haar basis.

6 Filtering of Colour Images

Greyscale images can be understood as functions f : Ω → R. In some other
cases, several physical quantities are measured at the same location in space:
colour (RGB) images fall into this category, together with e.g. multi-echo mag-
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Figure 5: Evaluation of the errors in rotation symmetry of the filtered ring
image. Single-step (left), and iterated (right) shift-invariant wavelet shrinkage.
On the left, ‘theta’ denotes the shrinkage parameter.

netic resonance medical data, multispectral LANDSAT measurements, and many
others. In this case the function f maps Ω to Rm, and the vector-valued data
f = (f1, f2, . . . , fm)> are represented by a collection of m scalar images.

For vector-valued images, the diffusion equation (19) translates into a set of
equations

∂tu1 = div
(
g
( m∑

j=1

|∇uj |2
)
∇u1

)
(58)

...

∂tum = div
(
g
( m∑

j=1

|∇uj |2
)
∇um

)
(59)

where the solution u is also composed of m images, u = (u1, u2, . . . , um)>, with
the initial condition ui = fi. Note that the diffusivity g depends on the en-
tire vector u and is identical for all equations in the set (58)–(59). This has
been adopted as a common practice for vector-valued diffusion (see e.g. [44, 42,
24]): In order to avoid inconsistencies between separate channels ui, the equa-
tions (58)–(59) are coupled and the diffusion of individual images is synchronised
through a common set of diffusivities g.

As described in [37], the typical approach to wavelet shrinkage of colour im-
ages is to convert the image first from RGB to YUV colour space, create the
wavelet representation for each of the YUV components independently, shrink
them independently and then compose the results. As we shall see in the ex-
periments, this approach is better than independent filtering of RGB channels
in that it reduces most of unpleasant colour misalignment. However, this sepa-
rate YUV-based procedure tends to flatten the colour depth and variety of the
filtered image, leading to a rather greyish look.

Having connected the diffusivity and shrinkage functions by (45)–(47), it is
straightforward to extend the diffusion idea of coupling of colour channels to
the wavelet domain. We first construct the wavelet representation for the R,
G and B colour channels separately, which results in nine channels of wavelet
coefficients, wZ

z , z ∈ {x, y, xy}, Z ∈ {R,G,B}. Then the joint gradient of a
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A. B. C. D.

Figure 6: Wavelet shrinkage of colour images. Top: A. Input image.
B. Separate shrinkage of wavelet coefficients and separate RGB colour layers.
C. Separate shrinkage of wavelet coefficients and separate YUV colour layers.
D. Shrinkage with coupled coefficient channels and coupled RGB colour layers.
Bottom: details extracted from each image at the position marked in image A.

RGB colour image can be estimated using

|∇u|2 = |∇uR|2 + |∇uG|2 + |∇uB |2

=
(
wR

x

)2 +
(
wR

y

)2 + c ·
(
wR

xy

)2

+
(
wG

x

)2 +
(
wG

y

)2 + c ·
(
wG

xy

)2

+
(
wB

x

)2 +
(
wB

y

)2 + c ·
(
wB

xy

)2
. (60)

Using this squared gradient magnitude to calculate the common diffusivity g̃ for
all channels, g̃ = g(|∇u|2), we are able to construct coupled wavelet shrinkage
rules for colour images with both good rotation invariance and synchronised
evolution of all colour channels:

Sθ(wZ
z ) = wZ

z (1− 4 τ g̃), z ∈ {x, y, xy}, Z ∈ {R,G,B}. (61)

This procedure is applied at all positions and all scales of the wavelet represen-
tation.

Figures 6 and 7 show examples of iterated nondecimated Haar wavelet
shrinkage of colour images. In both cases, some input image (A) is filtered using
separate hard shrinkage of RGB colour channels (B), separate hard shrinkage
of YUV colour channels (C), and the coupled hard shrinkage of RGB channels
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C. D.

Figure 7: Wavelet shrinkage of colour images. A. Input image.
B. Separate shrinkage of wavelet coefficients and separate RGB colour layers.
C. Separate shrinkage of wavelet coefficients and separate YUV colour layers.
D. Shrinkage with coupled coefficient channels and coupled RGB colour layers.
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according to (61) (D). The independent shrinkage of colour channels easily cre-
ates colour artifacts (B) or makes the image look greyish (C); both of them also
contain some blocky artifacts resulting from the Haar basis employed. On the
other hand, the coupled shrinkage (D) provides a more natural colour simpli-
fication, and at the same time exhibits good rotation invariance thanks to the
synchronised shrinkage of the Haar wavelet coefficients. Our diffusion-inspired
joint shrinkage also confirms recent results in [38] where a coupling of colour
channels in the Luv space is studied for image enhancement.

7 Filtering of Tensor-Valued Data

Recently, matrix-valued data sets (so-called tensor fields) have gained impor-
tance in the field of image processing. This has been triggered by the following
developments:

• Novel medical imaging techniques such as diffusion tensor magnetic reso-
nance imaging (DT-MRI) have been introduced. DT-MRI is a 3-D imag-
ing method that yields a diffusion tensor in each voxel. The resulting
matrix field provides valuable information for brain connectivity studies
as well as for multiple sclerosis or stroke diagnosis [34].

• Tensors have shown their use as a common description tool in image anal-
ysis, segmentation and grouping [20]. This also includes widespread appli-
cations of the so-called structure tensor (Förstner interest operator, second
moment matrix, scatter matrix) [16] in fields ranging from motion analysis
to texture segmentation.

• A number of scientific applications require to process tensor fields: The
tensor concept is a common physical description of anisotropic behaviour
in solid mechanics and civil engineering, where stress-strain relationships,
inertia tensors, diffusion tensors, and permitivity tensors are used.

Since matrix-valued data are often polluted by noise, it would be desirable to
develop wavelet shrinkage methods that remove noise without sacrifying dis-
continuities of the tensor fields. Moreover, it is clear that the image denoising
method should be rotation invariant as well.

While several methods have been developed for denoising matrix-valued
data, we are not aware of any wavelet-related concepts for matrix fields apart
from Aldroubi’s work on sampling in shift-invariant amalgam spaces [1]. Let us
now describe how the connection between diffusion filtering and wavelet shrink-
age can also be exploited in this situation.

For simplicity we consider some 2-D matrix field F (x, y) = (fij(x, y)) with
1 ≤ i, j ≤ 2, but our reasoning also carries over to higher dimensions. In [41],
a nonlinear diffusion filter for matrix-valued data is proposed that is based on
the evolution

∂tui,j = div
(
g
( ∑

k,l

∇u>k,l∇uk,l

)
∇ui,j

)
∀i, j. (62)

It is evident that methods of this type are rotationally invariant in their con-
tinuous formulation.
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Figure 8: Filtering of tensor-valued images. Left: input data, symmetric 2× 2
tensor at each position, visualised by tiling the components into a single image.
Middle: after filtering with classical shift-invariant Haar wavelet shrinkage.
Right: Haar shrinkage, shift- and rotation-invariant with coupled evolution
of the tensor components. Both results used 4 spatial levels of the wavelet
decomposition, 1 step, and a hard threshold of 50.

All we have to do now is to transfer these diffusion results to the correspond-
ing wavelet setting. In the same way as for filtering of vector-valued images, we
can use shrinkage functions of type

Sθ(wi,j
z ) = wi,j

z (1− 4 τ g̃), z ∈ {x, y, xy} (63)

where the joint diffusivity g̃ satisfies

g̃ := g
( ∑

i,j

((
wi,j

x

)2 +
(
wi,j

y

)2 + c ·
(
wi,j

xy

)2
) )

. (64)

In Figure 8 this joint shrinkage is compared with a shift-invariant shrinkage
where all wavelet coefficients are shrunken independently and no channel cou-
pling takes place. This figure depicts a 2-D section from a three-dimensional
DT-MRI data set. We observe that the coupled shrinkage offers a significantly
better preservation of discontinuities in the low-contrast off-diagonal channels.

8 Conclusions

In this paper we have investigated connections between fully discrete nonlinear
diffusion filters and shift-invariant Haar wavelet shrinkage in which the idea of
coupling plays a central role. While the coupling concept is very common in
diffusion filtering, hardly any attention has been paid to it in the context of
wavelet shrinkage. By transferring coupling ideas to this area, we have been
able

• to introduce wavelet shrinkage methods with significantly improved rota-
tion invariance. They benefit from the rotation invariance of continuous
nonlinear diffusion filtering.

• to investigate techniques for colour wavelet shrinkage in which the shinkage
of the channels is synchronized. This avoids the creation of colour artifacts
and feature misalignments that are common for separate colour channel
filtering in RGB or YUV space.
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• to propose a wavelet shrinkage technique for matrix-valued images in
which the channel evolution is synchronised. Also in this case the method
performs better than separate channel shrinkage.

It should be noted that all this coupled wavelet shrinkage strategies are hardly
more complicated than separate shrinkage, while offering significantly better
performance. We have shown that even for the simple Haar basis, very satisfac-
tory results are possible.

In order to keep things as simple as possible, we have restricted ourselves to
the 2-D case in the present paper. However, it is evident that the proposed con-
cept is generic and can be generalised in a straightforward way to any arbitrary
dimension.

In our ongoing work we are investigating connections between PDE-based
filters and wavelet shrinkage also in the case of more advanced wavelets with
a higher number of vanishing moments. First results in this direction will be
reported in [43].
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