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Abstract. We study the connections between discrete one-dimensional
schemes for nonlinear diffusion and shift-invariant Haar wavelet shrink-
age. We show that one step of (stabilised) explicit discretisation of nonlin-
ear diffusion can be expressed in terms of wavelet shrinkage on a single
spatial level. This equivalence allows a fruitful exchange of ideas be-
tween the two fields. In this paper we derive new wavelet shrinkage func-
tions from existing diffusivity functions, and identify some previously
used shrinkage functions as corresponding to well known diffusivities. We
demonstrate experimentally that some of the diffusion-inspired shrinkage
functions are among the best for translation-invariant multiscale wavelet
shrinkage denoising.

1 Introduction

We consider a classical task of signal denoising: create an estimate u of an original
signal z from its noisy measurement f , where

f = z + n,

and n denotes an additive noise function. Various methods have been proposed to
remove the noise from z without sacrificing important structures such as edges,
including rank-order filtering, mathematical morphology, stochastic methods,
adaptive smoothing, wavelet techniques, partial differential equations (PDEs)
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and variational methods. Although these method classes serve the same purpose,
relatively few publications examine their similarities and differences, in order
to transfer results from one of these classes to the others, or to design hybrid
methods that combine the advantages of different classes. The present paper is
a contribution in this direction, where we concentrate on two of these methods,
namely nonlinear diffusion techniques and wavelet shrinkage.

Nonlinear diffusion creates a family of restored signals u(t) by starting from
the noisy signal f , and evolving it locally according to a process described by a
nonlinear partial differential equation. This process is controlled by a diffusivity
function g of the signal gradient. Typically, g(s) is a nonnegative, nonincreasing
function of the gradient magnitude, approaching zero as s → ∞. This setting
leads to the effect that smoothing of u proceeds faster in homogeneous regions
(where the gradient is small, caused possibly by noise), and discontinuities (large
gradient, hopefully corresponding to important features of the underlying signal)
tend to be preserved. Depending on the choice of the diffusivity function g, a
single nonlinear diffusion equation may cover a variety of nonlinear filters, includ-
ing the original nonlinear diffusion of Perona and Malik [27] and its regularised
variants [8,31], total variation (TV) diffusion [2], or balanced forward-backward
(BFB) diffusion [21]. When applied to discrete data f = (fi)N−1

i=0 , the nonlin-
ear diffusion filter creates a series of smoothed signals uk := u(kτ) iteratively,
starting from the noisy signal, u0 = f .

Wavelet transforms express the signal in terms of wavelet coefficients, de-
scribing the signal variation at different scales. If the wavelet basis is chosen
properly, a signal will be generally described by only a few significant wavelet
coefficients, while moderate white Gaussian noise pollutes all the wavelet coef-
ficients by a small amount. Signal denoising by wavelet shrinkage [13,14] starts
from this assumption, and creates a smoothed version of the processed signal by
the following three-step procedure:

1. Analysis: transform the noisy data f to the wavelet coefficients dj
i , repre-

senting the signal at various scales j and positions i.
2. Shrinkage: apply a shrinkage function Sθ to the wavelet coefficients dj

i , thus
reducing the relative importance of small coefficients.

3. Synthesis: reconstruct a denoised version u of f from the shrunken wavelet
coefficients.

The shrinkage parameter θ is chosen with respect to the amount of noise in
the input signal. In general, the denoised solution u is obtained from f using a
single step of this multiscale procedure, i.e. the method is applied noniteratively.
The specific choice of the wavelets and the shrinkage functions allows a large
variability of wavelet shrinkage methods.

In the present paper, we show equivalence between a single iteration of a
1-D explicit scheme for nonlinear diffusion on one side, and translation-invariant
wavelet shrinkage with a single level of Haar wavelet decomposition on the other.
This equivalence is obtained by constructing an appropriate shrinkage function
Sθ to an existing diffusivity g, and vice versa.



Having asserted the equivalence between wavelet shrinkage and nonlinear
diffusion for this special situation, it remains to be seen whether this connection
brings any advantages in more general settings. We demonstrate numerically
that the shrinkage functions derived from diffusivities are able to provide some
of the best results when used for classical (i.e. multi-level, one step) translation-
invariant wavelet shrinkage.

This paper is organised as follows. Section 2 presents nonlinear diffusion and
develops its explicit discretisation in 1-D. Section 3 provides a brief introduction
into translation-invariant Haar wavelet shrinkage. The connections between the
two procedures are exploited in Section 4 to establish the conditions on diffusivity
and shrinkage functions under which the two methods (restricted to one-step /
one-scale) are equivalent. Some newly created shrinkage function are then tested
experimentally, and compared to previously used ones. The paper is concluded
with a summary in Section 6.

Related work. Analysing the relations between regularisation methods and
continuous wavelet shrinkage of functions, Chambolle et al. [5] showed that one
may interpret wavelet shrinkage of functions as regularisation processes in suit-
able Besov spaces. In the case of Haar wavelets, Cohen et al. [9] showed that this
approximates total variation regularisation. Later on, Chambolle and Lucier [6]
considered iterated translation-invariant wavelet shrinkage and interpreted it as
a nonlinear scale-space that differs from other scale-spaces by the fact that it is
not given in terms of PDEs.

Regarding the relations between wavelet shrinkage denoising of discrete sig-
nals and nonlinear diffusion, not much research has been done so far. A recent
paper by Coifman and Sowa [12] proposes TV diminishing flows that act along
the direction of Haar wavelets. Recent work in which the authors are involved
[29,30] investigates conditions under which equivalence between wavelet shrink-
age of discrete signals, space-discrete TV diffusion or regularisation, and SIDEs
(stabilised inverse diffusion equations) holds true.

Some recently proposed hybrid methods are based on combining wavelet
shrinkage and TV regularisation methods [1,28]. Durand and Froment [15] pro-
posed to address the problem of pseudo-Gibbs artifacts in wavelet denoising by
replacing the thresholded wavelet coefficients by coefficients that minimise the
total variation. Their method is also close in spirit to approaches by Chan and
Zhou [7] who postprocessed images obtained from wavelet shrinkage by a TV-like
regularisation technique. Coifman and Sowa [11] used functional minimisation
with wavelet constraints for postprocessing signals that have been degraded by
wavelet thresholding or quantisation. Candes and Guo [4] also presented related
work, in which they combined ridgelets and curvelets with TV minimisation
strategies. Recently, Malgouyres [23,24] proposed a hybrid method that uses
both wavelet packets and TV approaches. His experiments showed that it may
restore textured regions without introducing visible ringing artifacts.

This discussion shows that the previous papers typically focus on TV-based
denoising techniques on the PDE side. Moreover, most of them present a contin-
uous analysis rather than a discrete one. Our paper differs from previous work



in this field by the fact that we do not restrict ourselves to a single diffusivity or
shrinkage function, but introduce and analyse a general connection between a
discrete diffusion scheme and Haar wavelet shrinkage. To this end, we investigate
a large number of diffusivities and shrinkage functions.

2 Nonlinear Diffusion

2.1 Basic Concept

The basic idea behind nonlinear diffusion filtering [27] is to obtain a family u(x, t)
of filtered versions of the signal f(x) as the solution of a suitable diffusion process

ut = (g(|ux|)ux)x (1)

with f as initial condition:
u(x, 0) = f(x).

Here subscripts denote partial derivatives, and the diffusion time t is a simplifi-
cation parameter: larger values correspond to stronger filtering.

The diffusivity g(|ux|) is a nonnegative function that controls the amount of
diffusion. Usually, it is decreasing in |ux|. This ensures that strong edges are less
blurred by the diffusion filter than noise and low-contrast details. Depending on
the choice of the diffusivity function, equation (1) covers a variety of filters. Here
are some of the previously employed diffusivity functions:

A. Linear diffusivity [19]: g(|x|) = 1,

B. Charbonnier diffusivity [8]: g(|x|) =
1√

1 + |x|2
λ2

,

C. Perona–Malik diffusivity [27]: g(|x|) =
1

1 + |x|2
λ2

,

D. Weickert diffusivity [31]: g(|x|) =

{
1 |x| = 0,

1− exp
(
−3.31488
(|x|/λ)8

)
|x| > 0,

E. TV diffusivity [2]: g(|x|) =
1
|x|
,

F. BFB diffusivity: [21] g(|x|) =
1
|x|2

.

Note that the diffusivities A–D are bounded from above by 1, while the dif-
fusivities E and F are unbounded. In order to avoid theoretical and numerical
difficulties, it is common to replace the latter ones by regularisations that make
them bounded: e.g. one may use g(|x|) = 1/

√
ε2 + |x|2 instead of the TV diffu-

sivity.
Well-posedness results are available for the diffusivities A, B and E, since

they lead to forward parabolic processes. For the diffusivities C, D and F, which



may lead to backward parabolic equations, well-posedness questions are open
in the continuous setting [22,20], while a space-discretisation seems to lead to
well-posed processes [32].

2.2 Explicit Discretisation Scheme

When applied to discrete signals, the partial differential equation (1) has to be
discretised. In this paper, we focus on explicit finite difference schemes. Sub-
stituting the spatial partial derivatives in (1) by finite differences (with the as-
sumption of unit distance between neighboring pixels), and employing explicit
discretisation in time, an explicit 1-D scheme for nonlinear diffusion can be writ-
ten in the form

uk+1
i − uk

i

τ
= g(|uk

i+1 − uk
i |) (uk

i+1 − uk
i )− g(|uk

i − uk
i−1|) (uk

i − uk
i−1),

where τ is the time step size and the upper index k denotes the approximate
solution at time kτ . Separating the unknown uk+1

i on one side, we obtain

uk+1
i = uk

i − τ g(|uk
i − uk

i+1|) (uk
i − uk

i+1) + τ g(|uk
i−1 − uk

i |) (uk
i−1 − uk

i ). (2)

The initial condition reads u0
i = fi for all i.

3 Wavelet Shrinkage

3.1 Basic Concept

The discrete wavelet transform represents a one-dimensional signal f in terms of
shifted versions of a dilated lowpass scaling function ϕ, and shifted and dilated
versions of a bandpass wavelet function ψ. In case of orthonormal wavelets, this
gives

f =
∑
i∈Z

〈f, ϕn
i 〉ϕn

i +
n∑

j=−∞

∑
i∈Z

〈f, ψj
i 〉ψ

j
i , (3)

where ψj
i (s) := 2−j/2ψ(2−js − i) and where 〈·, ·〉 denotes the inner product in

L2(R). If the measurement f is corrupted by moderate white Gaussian noise,
then this noise is contained to a small amount in all wavelet coefficients 〈f, ψj

i 〉,
while the original signal is in general determined by a few significant wavelet
coefficients [25]. Therefore, wavelet shrinkage attempts to eliminate noise from
the wavelet coefficients by the following three-step procedure:

1. Analysis: transform the noisy data f to the wavelet coefficients dj
i = 〈f, ψj

i 〉
and scaling function coefficients cni = 〈f, ϕn

i 〉 according to (3).
2. Shrinkage: apply a shrinkage function Sθ with a threshold parameter θ to

the wavelet coefficients, i.e., Sθ(d
j
i ) = Sθ(〈f, ψj

i 〉).



3. Synthesis: reconstruct the denoised version u of f from the shrunken wavelet
coefficients:

u :=
∑
i∈Z

〈f, ϕn
i 〉ϕn

i +
n∑

j=−∞

∑
i∈Z

Sθ(〈f, ψj
i 〉)ψ

j
i .

In this paper we restrict our attention to Haar wavelets, well suited for piecewise
constant signals with discontinuities. The Haar wavelet and scaling functions are
given respectively by

ψ(x) = 1[0, 1
2 ) − 1[ 12 ,1), (4)

φ(x) = 1[0,1) (5)

where 1[a,b) denotes the characteristic function, equal to 1 on [a, b) and zero
everywhere else. Using the so-called “two-scale relation” of the wavelet and its
scaling function, the coefficients cji and dj

i at higher level j can be computed
from the coefficients cj−1

i at lower level j − 1 and conversely:

cji =
cj−1
2i + cj−1

2i+1√
2

, dj
i =

cj−1
2i − cj−1

2i+1√
2

, (6)

and

cj−1
2i =

cji + dj
i√

2
, cj−1

2i+1 =
cji − dj

i√
2

. (7)

This results in a fast algorithm for the analysis step and synthesis step. Various
shrinkage functions leading to qualitatively different denoised functions u were
considered in literature, e.g.,

A. Linear shrinkage: S(x) = λx (λ ∈ [0, 1]),

B. Soft shrinkage [13]: Sθ(x) =

{
0 |x| ≤ θ,

x− θ sgn(x) |x| > θ,

C. Garrote shrinkage [16]: Sθ(x) =

{
0 |x| ≤ θ,

x− θ2

x |x| > θ,

D. Firm shrinkage [17]: Sθ1,θ2(x) =


0 |x| ≤ θ1,

sgn(x) θ2(|x|−θ1)
θ2−θ1

θ1 < |x| ≤ θ2,

x θ2 < |x|,

E. Hard shrinkage [25]: Sθ(x) =

{
0 |x| ≤ θ,

x |x| > θ.

3.2 Discrete Translation-Invariant Scheme

In practice one deals with discrete signals f = (fi)N−1
i=0 , where, for simplicity, N is

a power of 2. Then Haar wavelet shrinkage starts by setting c0i = fi and proceeds



by analysis (6), shrinkage, and synthesis (7). Let us just consider a single wavelet
decomposition level, i.e., we set n = 1. Then, using the convention that ci = c1i
and di = d1

i , we can drop the superscripts j = 0 and j = 1. By (6) and (7),
Haar wavelet shrinkage on one level produces the signal u+ = (u+

i )N−1
i=0 with

coefficients

u+
2i =

ci + Sθ(di)√
2

=
f2i + f2i+1

2
+

1√
2
Sθ

(
f2i − f2i+1√

2

)
, (8)

u+
2i+1 =

ci − Sθ(di)√
2

=
f2i + f2i+1

2
− 1√

2
Sθ

(
f2i − f2i+1√

2

)
. (9)

Note that the single Haar wavelet shrinkage step (8)–(9) decouples the input sig-
nal into successive pixel pairs: the pixel at position 2i−1 has no direct connection
to its neighbour at position 2i, and the procedure is not invariant to translation of
the input signal. To overcome this problem, Coifman and Donoho [10] introduced
the so-called cycle spinning: the input signal is shifted, denoised using wavelet
shrinkage, shifted back, and the results of all such shifts are averaged. This pro-
cedure is equivalent to thresholding of nondecimated wavelet coefficients which
can be implemented efficiently using the algorithme à trous [18]. For our single
decomposition level, we need only one additional shift to acquire translation in-
variance. The shifted Haar wavelet shrinkage yields the signal u− = (u−i )N−1

i=0

with coefficients

u−2i−1 =
f2i−1 + f2i

2
+

1√
2
Sθ

(
f2i−1 − f2i√

2

)
,

u−2i =
f2i−1 + f2i

2
− 1√

2
Sθ

(
f2i−1 − f2i√

2

)
.

Averaging the shifted results, one cycle of shift-invariant Haar wavelet shrinkage
can be summarised into

ui =
u−i + u+

i

2

=
fi−1 + 2fi + fi+1

4
+

1
2
√

2
Sθ

(
fi − fi+1√

2

)
− 1

2
√

2
Sθ

(
fi−1 − fi√

2

)
. (10)

4 Correspondence of Diffusivities and Shrinkage
Functions

4.1 Basic Considerations

In order to derive the relation between the explicit diffusion scheme and translation-
invariant Haar wavelet shrinkage, we rewrite the first iteration step in (2) using



the initial condition u0
i = fi and the simplified notation u1

i = ui as

ui =
fi−1 + 2fi + fi+1

4
+
fi − fi+1

4
− fi−1 − fi

4
− τ g(|fi − fi+1|) (fi − fi+1) + τ g(|fi−1 − fi|) (fi−1 − fi)

=
fi−1 + 2fi + fi+1

4

+ (fi − fi+1)
(

1
4
− τ g(|fi − fi+1|)

)
− (fi−1 − fi)

(
1
4
− τ g(|fi−1 − fi|)

)
. (11)

This coincides with (10) if and only if

1
2
√

2
Sθ

(
x√
2

)
= x

(
1
4
− τ g(|x|)

)
. (12)

Equation (12) relates the shrinkage function Sθ of wavelet denoising to the
diffusivity g of nonlinear diffusion. Provided that relation (12) holds true, a single
step of wavelet shrinkage is equivalent to a single step of explicitly discretised
nonlinear diffusion. The following two formulas are derived from (12) and can
be used to obtain a shrinkage function Sθ from a diffusivity g, or vice versa.

Sθ(x) = x
(
1− 4τg(|

√
2x|)

)
, (13)

g(|x|) =
1
4τ

−
√

2
4τx

Sθ

(
x√
2

)
. (14)

4.2 From Diffusivities to Shrinkage Functions

Let us now investigate equation (13) in detail. The examples from Section 3.1
show that typical shrinkage functions from the literature satisfy

S(x) ≥ 0 for x > 0, (15)
S(x) ≤ 0 for x < 0. (16)

One can show that these conditions are responsible for ensuring certain stability
properties (so-called sign stability) of the shrinkage process. We can now specify
the time step size τ in (13) such that these two conditions are always satisfied
for bounded diffusivities. In Section 2.1 we have seen that the diffusivities A–D
are bounded by 1. In order to ensure that the corresponding shrinkage functions
satisfy (15)–(16), the time step size has to fulfil τ ≤ 0.25.

We observe that the linear diffusivity corresponds to the linear shrinkage
function

S(x) = (1− 4τ)x.

Nonlinear shrinkage functions such as soft, garrote, firm and hard shrinkage
satisfy S′(0) = 0, since the goal was to set small wavelet coefficients to zero. In



order to derive shrinkage functions that correspond to the bounded nonlinear
diffusivities B–D and satisfy S′(0) = 0 as well, let us now fix τ := 0.25. Then we
obtain the following novel shrinkage functions:

– The Charbonnier diffusivity corresponds to the shrinkage function

Sλ(x) = x

(
1−

√
λ2

λ2 + 2x2

)
.

– The Perona–Malik diffusivity leads to

Sλ(x) =
2x3

2x2 + λ2
.

– The Weickert diffusivity gives

Sλ(x) =

{
0 x = 0,
x exp

(
− 0.20718 λ8

x8

)
x 6= 0.

Figure 1 illustrates these bounded diffusivities and their shrinkage functions.

4.3 From Shrinkage Functions to Diffusivities

Having derived shrinkage functions from nonlinear diffusivities, let us now derive
diffusivities from frequently used shrinkage functions. To this end, all we have
to do is to plug in the specific shrinkage function into (14).
In the case of soft shrinkage, this gives the diffusivity

g(|x|) =

{
1
4τ |x| ≤ θ

√
2,

√
2θ

4τ |x| |x| > θ
√

2.

If we select the time step size τ such that θ = 2
√

2τ , we obtain a stabilised TV
diffusivity:

g(|x|) =

{
1
4τ |x| ≤ 4τ,
1
|x| |x| > 4τ.

In the same way one can show that garrote shrinkage leads to a stabilised BFB
diffusivity for θ =

√
2τ :

g(|x|) =

{
1
4τ |x| ≤ 2

√
τ ,

1
|x|2 |x| > 2

√
τ .

Firm shrinkage yields a diffusivity that degenerates to 0 for sufficiently large
gradients:

g(|x|) =


1
4τ |x| ≤

√
2θ1,

θ1
4τ(θ2−θ1)

(√
2θ2
|x| − 1

) √
2θ1 < |x| ≤

√
2θ2,

0 |x| >
√

2θ2.



Such diffusivities have been considered in [3], where they have been motivated
using priors from robust statistics.
Another diffusivity that degenerates to 0 can be derived from hard shrinkage:

g(|x|) =

{
1
4τ |x| ≤

√
2θ,

0 |x| >
√

2θ.

All diffusivities in this subsection are depicted in Figure 2.

5 Denoising Experiment

To test the applicability of the newly derived shrinkage functions from Subsec-
tion 4.2, we perform experiments with signal-denoising using the shift-invariant
multiscale Haar wavelet transform from Section 3. The input signal blocks, one
of the standard signals in wavelet denoising, mimics a scan line through a 2-D
image depicting an object with several edges [14]. The signal is shown in Fig. 3.
The same figure then shows examples of the results of multiscale Haar wavelet
denoising when combined with several shrinkage functions introduced in previous
sections.

SNRin 1 2 4 8 16 32
Shrinkage method

Linear 3.6 4.2 5.5 8.7 16.1 32.0
Soft (TV) 10.0 10.8 12.6 16.2 24.0 39.9
Perona-Malik 9.9 10.8 12.7 16.8 25.8 44.6
Weickert 12.7 13.7 15.9 20.3 29.4 46.3
Garrote (BFB) 11.8 12.8 14.9 19.3 28.7 46.2
Firm 12.6 13.6 15.8 20.2 29.3 46.3
Hard 12.7 13.8 15.9 20.4 29.3 46.3

Table 1. Numerical results (measured by mean signal-to-noise ratio in the fil-
tered signal) of wavelet denoising for the blocks data of length 1024. Each column
represents a given level of noise in the input image; each row contains the results
for one shrinkage function.

Table 1 and Fig. 4 present additional experimental results obtained with
the blocks data. Here we performed a series of experiments with several levels
of additive zero-mean Gaussian noise in the input signal. The noise varies be-
tween SNR=1 and SNR=32, where the signal-to-noise ratio (SNR) is defined by
SNR = 20 log10

|z−z|2
|n|2 , with z standing for the ideal signal with mean z̄, and n

representing noise. The noise is generated five times for each SNR level. Then we
used multiscale wavelet denoising with various shrinkage functions, and searched
for the optimal solution that can be obtained with this method. By optimal we
mean the solution maximising the signal-to-noise ratio in the filtered signal.
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Fig. 1. Diffusivity functions (left), corresponding shrinkage functions (right).
A. Linear diffusion. B. Charbonnier diffusivity. C. Perona-Malik diffusivity.
D. Weickert diffusivity. The functions are plotted for τ = 0.1 (linear diffusion),
and τ = 0.25, λ = 1 (all others).



E.

0 4tau 2 3 4 5 6 7
0

0.5

1/4tau

x

g(
x)

TV diffusivity

0 theta 2 3 4
0

1

2

3

4

y

S
(y

)

Soft shrinkage

F.

0 2sqrt(tau) 2 3 4 5 6 7
0

0.5

1/4tau

x

g(
x)

BFB diffusivity

0 theta 2 3 4
0

1

2

3

4

y

S
(y

)

Garrote shrinkage

G.

0 sqrt(2)*theta1              sqrt(2)*theta2 5 6 7
0

0.5

1/4tau

x

g(
x)

0 theta1 theta2 3 4
0

1

2

3

4

y

S
(y

)

Firm (semi−soft) shrinkage

H.

0 sqrt(2)*theta 3 4 5 6 7
0

0.5

1/4tau

x

g(
x)

0 theta 2 3 4
0

1

2

3

4

y

S
(y

)

Hard shrinkage

Fig. 2. Diffusivity functions (left), corresponding shrinkage functions (right).
E. TV flow and soft shrinkage. F. Balanced forward-backward (BFB) diffusivity
and garrote shrinkage. G. Firm shrinkage. H. Hard shrinkage.
The functions are plotted for τ = 0.25 (which corresponds to θ = τ2

√
2 for soft

shrinkage, and to θ =
√

2τ for garrote; the other use θ = θ1 = 1, θ2 = 2).
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Fig. 3. Example of multiscale translation-invariant Haar wavelet denoising. Nor-
mal noise of SNR=8 was added to the ideal signal, and different shrinkage func-
tions have been applied. The noisy signal is represented by dots, reconstructed
signal by solid line.

Table 1 summarises the average optimal SNR after filtering obtained with
different shrinkage functions; Fig. 4 presents the same information graphically,
together with the standard deviation of the results. We observe that for all noise
levels, the best signal-to-noise ratio is obtained by those shrinkage functions
which put small wavelet coefficients to zero and keep larger coefficients almost
unaffected. The functions with these properties include hard shrinkage, firm
shrinkage and – to some extent – the garrote shrinkage on the wavelet side.
Of the diffusion origin, the experimentally best shrinkage functions correspond
to Weickert diffusivity, stabilised BFB diffusivity (which is equivalent to garrote
shrinkage), and Perona-Malik diffusivity. Interestingly, these are diffusivities with
nonmonotone flux functions that allow even contrast enhancement.

The second group of shrinkage functions decreases even large wavelet coeffi-
cients by a constant (or almost constant) value; the functions with this behaviour
include soft shrinkage, TV flow corresponding to it, and Charbonnier diffusivity.
It seems that this strategy is less successful numerically. These diffusivities lead
to monotonically increasing flux functions and well-posed diffusion filters.

As a group of its own, the denoising performance of linear diffusion (or its
shrinkage function) is far worse than that of the nonlinear methods.
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Fig. 4. Comparing the optimal denoising performance of shift-invariant multi-
scale wavelet shrinkage with various shrinkage functions. SNR of the filtered
signal is plotted against SNR of the input; the higher the graph, the better the
result. The input signal was blocks, length 1024.
Top left: garrote shrinkage (BFB diffusivity), soft shrinkage (TV flow) and lin-
ear diffusion. Top right: garrote (BFB), hard and firm shrinkages. Bottom left:
garrote (BFB), Perona-Malik and Weickert functions. Bottom right: best from
either world, hard shrinkage and Weickert diffusivity give comparable results.

6 Conclusions

We have analysed correspondences between explicit one-dimensional schemes for
nonlinear diffusion and discrete translation-invariant Haar wavelet shrinkage. We
have shown that if we restrict the methods to one discrete step and a single
spatial level, the two approaches can be made equivalent, if suitable diffusivities
or shrinkage functions are chosen.

This connection between nonlinear diffusion and wavelet shrinkage opens the
gate for a fruitful exchange of ideas between the two worlds. In this paper, we
derived new wavelet shrinkage functions from frequently used nonlinear diffu-
sivities; vice versa, we showed that soft and garrote shrinkage may be regarded



as stabilised TV or BFB diffusion, respectively. We experienced that the novel
shrinkage functions corresponding to rapidly decreasing diffusivities are compet-
itive with the best previously known shrinkage methods when applied to signal
denoising with multiscale wavelet procedures.

The results in this paper can be extended in several directions. One can
study iterated multi-scale wavelet shrinkage as a hybrid method combining the
efficiency of multi-scale wavelet shrinkage with the quality of iterated diffusion
filtering [26]. This hybrid method may be also explained as nonlinear diffusion
applied to the Laplacian pyramid of the signal [29,30]. In our ongoing work, we
are considering other wavelet bases and the two-dimensional case.
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