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Abstract. We study the connections between discrete one-dimensional schemes for nonlinear diffusion and shift-
invariant Haar wavelet shrinkage. We show that one step of a (stabilised) explicit discretisation of nonlinear diffusion
can be expressed in terms of wavelet shrinkage on a single spatial level. This equivalence allows a fruitful exchange
of ideas between the two fields. In this paper we derive new wavelet shrinkage functions from existing diffusivity
functions, and identify some previously used shrinkage functions as corresponding to well known diffusivities.
We demonstrate experimentally that some of the diffusion-inspired shrinkage functions are among the best for
translation-invariant multiscale wavelet denoising. Moreover, by transferring stability notions from diffusion filtering
to wavelet shrinkage, we derive conditions on the shrinkage function that ensure that shift invariant single-level

Haar wavelet shrinkage is maximum—-minimum stable, monotonicity preserving, and variation diminishing.
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1. Introduction

We consider a classical task of signal denoising: create
an estimate u# of an original signal z from its noisy
measurement f, where

f=z+n,

and n denotes an additive noise function. Various meth-
ods have been proposed to remove the noise from z
without sacrificing important structures such as edges,
including rank-order filtering, mathematical morphol-
ogy, stochastic methods, adaptive smoothing, wavelet
techniques, partial differential equations (PDEs) and

variational methods. Although these classes of meth-
ods serve the same purpose, relatively few publications
examine their similarities and differences, in order to
transfer results from one of these classes to the others,
or to design hybrid methods that combine the advan-
tages of different classes. The present paper is a contri-
bution in this direction, where we concentrate on two of
these methods, namely nonlinear diffusion techniques
and wavelet shrinkage.

Nonlinear diffusion creates a family of restored sig-
nals u(t) by starting from the noisy signal f, and evolv-
ing it locally according to a process described by a
nonlinear partial differential equation. This process is
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controlled by a diffusivity function g of the signal gra-
dient. Typically, g(s) is a nonnegative, nonincreasing
function of the gradient magnitude, approaching zero
as s — oo. This setting leads to the effect that smooth-
ing of u proceeds faster in homogeneous regions (where
the gradient is small, possibly caused by noise), and dis-
continuities (large gradient, hopefully corresponding to
important features of the underlying signal) tend to be
preserved. Depending on the choice of the diffusivity
function g, a single nonlinear diffusion equation may
cover a variety of nonlinear filters, including the orig-
inal nonlinear diffusion of Perona and Malik (1990)
and its regularised variants (Charbonnier et al., 1994);
(Weickert, 1998), total variation (TV) diffusion (An-
dreu et al., 2001), balanced forward-backward (BFB)
diffusion (Keeling and Stollberger, 2002) and a num-
ber of others. When applied to discrete data f =
(f)X,', the nonlinear diffusion filter creates a series
of smoothed signals ut = ukr) iteratively, starting
from the noisy signal, u’ = f.

Wavelet transforms express the signal in terms of
wavelet coefficients, describing the signal variation at
different scales. If the wavelet basis is chosen prop-
erly, a signal will be generally described by only a few
significant wavelet coefficients, while moderate white
Gaussian noise pollutes all the wavelet coefficients by
a small amount. Signal denoising by wavelet shrink-
age (Donoho, 1995; Donoho and Johnstone, 1994)
starts from this assumption, and creates a smoothed
version of the processed signal by the following three-
step procedure:

1. Analysis: transform the noisy data f to the wavelet
coefficients d/, representing the signal at various
scales j and positions i.

2. Shrinkage: apply a shrinkage function Sy to the
wavelet coefficients di’ , thus reducing the relative
importance of small coefficients.

3. Synthesis: reconstruct a denoised version u of f
from the shrunken wavelet coefficients.

The shrinkage parameter 6 is chosen with respect to
the amount of noise in the input signal. In general, the
denoised solution u is obtained from f using a single
step of this multiscale procedure, i.e. the method is ap-
plied noniteratively. The specific choice of the wavelets
and the shrinkage functions allows a large variability
of wavelet shrinkage methods.

In the present paper, we show equivalence between
a single iteration of a 1-D explicit scheme for nonlinear
diffusion on one side, and translation-invariant wavelet

shrinkage with a single level of Haar wavelet decompo-
sition on the other. This equivalence is obtained by con-
structing an appropriate shrinkage function Sy to an ex-
isting diffusivity g, and vice versa. Such a relation does
not only allow us to prove some diffusion-inspired sta-
bility properties for wavelet shrinkage, it also enables
us to generalise a variation-diminishing result known
from explicit linear diffusion schemes (Glashoff and
Kreth, 1980) to the nonlinear setting.

Having asserted the equivalence between wavelet
shrinkage and nonlinear diffusion for this special sit-
uation, it remains to be seen whether this connection
brings any advantages in more general settings. We
demonstrate numerically that the shrinkage functions
derived from diffusivities are able to provide some of
the best results when used for classical (i.e. multi-level,
one step) translation-invariant wavelet shrinkage.

This paper is organised as follows. Section 2 sketches
nonlinear diffusion filtering and develops its explicit
discretisation in 1-D, while Section 3 provides a
brief introduction to translation-invariant Haar wavelet
shrinkage. The connections between these two types of
methods are exploited in Section 4: We establish con-
ditions on diffusivities and shrinkage functions under
which the two methods (restricted to one step/one scale)
are equivalent. Section 5 describes how this relation
can be used for transferring stability results between
both paradigms. In Section 6 some novel, diffusion-
inspired shrinkage functions are tested experimentally,
and compared to previously used ones. The paper is
concluded with a summary in Section 7.

Related work. Analysing the relations between reg-
ularisation methods and continuous wavelet shrinkage
of functions, Chambolle et al. (1998) showed that one
may interpret wavelet shrinkage of functions as reg-
ularisation processes in suitable Besov spaces. In the
case of Haar wavelets, Cohen et al. (1999) showed that
this approximates total variation regularisation. Later
on, Chambolle and Lucier (2001) considered iterated
translation-invariant wavelet shrinkage and interpreted
it as a nonlinear scale-space that differs from other
scale-spaces by the fact that it is not given in terms
of PDEs.

Regarding the relations between wavelet shrinkage
denoising of discrete signals and nonlinear diffusion,
not much research has been done so far. A recent paper
by Coifman and Sowa (2001) proposes TV diminishing
flows that act along the direction of Haar wavelets. Bao
and Krim (2001) addressed the problem of texture loss
in diffusion scale-spaces by incorporating ideas from
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wavelet analysis. Recent work in which the authors are
involved (Brox et al., 2003; Mrazek et al., 2003b; Steidl
and Weickert, 2002; Steidl et al., 2004) investigates
conditions under which equivalence between wavelet
shrinkage of discrete signals, space-discrete TV dif-
fusion or regularisation, and SIDEs (stabilised inverse
diffusion equations) holds true.

Some recently proposed hybrid methods are based
on combining wavelet shrinkage and TV regularisation
methods (Acar and Vogel, 1994; Rudin et al., 1992).
Durand and Froment (2003) proposed to address
the problem of pseudo-Gibbs artifacts in wavelet
denoising by replacing the thresholded wavelet
coefficients by coefficients that minimise the total
variation. Their method is also close in spirit to
approaches by Chan and Zhou (2000) who postpro-
cessed images obtained from wavelet shrinkage by a
TV-like regularisation technique. Coifman and Sowa
(2000) used functional minimisation with wavelet
constraints for postprocessing signals that have been
degraded by wavelet thresholding or quantisation.
Candés and Guo (2002) also presented related work,
in which they combined ridgelets and curvelets with
TV minimisation strategies. Recently, Malgouyres
(2001, 2002) proposed a hybrid method that uses both
wavelet packets and TV approaches. His experiments
showed that it may restore textured regions without
introducing visible ringing artifacts.

This discussion shows that the previous papers typ-
ically focus on TV-based denoising techniques on the
PDE side. Moreover, most of them present a continu-
ous analysis rather than a discrete one. Our paper differs
from previous work in this field by the fact that we do
not restrict ourselves to a single diffusivity or shrink-
age function, but introduce and analyse a general con-
nection between a discrete diffusion scheme and Haar
wavelet shrinkage. To this end, we investigate a large
number of diffusivities and shrinkage functions.

A shorter, preliminary version of the present paper
has been published in the proceedings of the Scale-
Space 2003 Conference (Mrazek et al., 2003a). The
current version is extended by a new section on stability
issues and it analyses two new diffusivity functions.

2. Nonlinear Diffusion
2.1. Basic Concept

The basic idea behind nonlinear diffusion filtering
(Perona and Malik, 1990) is to obtain a family u(x, t)

of filtered versions of the signal f(x) as the solution of
a suitable diffusion process

Uy :(g(|ux|)ux)r (1)

with f as initial condition:

u(x,0) = f(x).

Here subscripts denote partial derivatives, and the dif-
fusion time ¢ is a simplification parameter: larger values
correspond to stronger filtering.

The diffusivity g(u,|) is a nonnegative function that
controls the amount of diffusion. In most cases, it is
a decreasing function in |u,|. This ensures that strong
edges are less blurred by the diffusion filter than noise
and low-contrast details. Depending on the choice of
the diffusivity function, Eq. (1) covers a variety of fil-
ters. Here are some of the previously employed diffu-
sivity functions:

A. Linear diffusivity (Iijima, 1962):

g(x) =1,
B. Charbonnier diffusivity (Charbonnier et al., 1994):

1

g(x)) = —,
J1+5F
A2

C. Perona-Malik diffusivity (Perona and Malik,
1990):

g(lx) =

1+ B

D. Weickert diffusivity (Weickert, 1998):
1 |x] =0,

D=1 (22188)
P\ (/e

E. Tukey diffusivity (Black et al., 1998):

(e = [0 = G Il < 2
S =10 x| > A,
F. TV diffusivity (Andreu et al., 2001):
1
glx) = —.
x|
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G. BFB diffusivity (Keeling and Stollberger, 2002):

(IxD) !

x|) = —,

¢ P

H. FAB diffusivity (Gilboa et al., 2002; Smolka,
2002):

g(lx]) = 2exp (—|x[*/A7)

— exp (—|x|2/A%), A< Ao
Note that the diffusivities A—E are bounded from above
by 1, while the diffusivities F and G are unbounded.
In order to avoid theoretical and numerical difficul-
ties, it is common to replace the latter ones by reg-
ularisations that make them bounded: e.g. one may
use g(|x|) = 1/y/€2+ |x|? instead of the TV dif-
fusivity. The forward-and-backward (FAB) diffusivity
H differs from the other diffusivities by the fact that
it may even attain negative values. First diffusivities
of such a type have been proposed by Gilboa et al.
(2002). Well-posedness results are available for the
diffusivities A, B and F, since they result from con-
vex potentials. For the diffusivities C, D and G, which
can be related to nonconvex potentials, some well-
posedness questions are open in the continuous setting
(Kichenassamy, 1997; Kawohl and Kutev, 1998), while
already a space-discretisation creates well-posed pro-
cesses (Weickert and Benhamouda, 1997). In case of
the Tukey diffusivity E, well-posedness results are
more difficult to establish, since it may degenerate to 0.
The FAB diffusivity H goes one step further by allow-
ing even negative values. However, at extrema the FAB
diffusivity is in the forward diffusion region which is
responsible for a certain degree of stability.

2.2.  Explicit Discretisation Scheme

When applied to discrete signals, the partial differential
Eq. (1) has to be discretised. In this paper, we focus on
explicit finite difference schemes. Substituting the spa-
tial partial derivatives in (1) by finite differences (with
the assumption of unit distance between neighboring
pixels), and employing explicit discretisation in time,
an explicit 1-D scheme for nonlinear diffusion can be
written in the form

u;chl _ ok

u;

= g(uisy — ) (uiyy —ui)

—g(|uf-‘ - ”f71|) (”f - “5‘11)7

T

where 7 is the time step size and the upper index k
denotes the approximate solution at time k7. Separating
the unknown "' on one side, we obtain

”{‘(H = ”k_tg(|” _”+1|)( z+1)
k
l

+Tg(’“i—1 _”ﬂ) (i) —u i)' 2

The initial condition reads u? = f; for all i.

3. Wavelet Shrinkage
3.1. Basic Concept

The discrete wavelet transform represents a one-
dimensional signal f in terms of shifted versions of
a dilated lowpass scaling function ¢, and shifted and
dilated versions of a bandpass wavelet function ¥. In
case of orthonormal wavelets, this gives

f=Y (reer+ D D o(rvwlvl, 3

i€Z Jj=—00 i€Z

where ¥/ (s) := 27//2¢/(27/s — i) and where (-, -) de-
notes the inner product in L,(R). If the measurement
f 1is corrupted by moderate white Gaussian noise, then
this noise is contained to a small amount in all wavelet
coefficients ( f, ¥ ), while the original signal is in gen-
eral determined by a few significant wavelet coeffi-
cients (Mallat, 1999). Therefore, wavelet shrinkage at-
tempts to eliminate noise from the wavelet coefficients
by the following three-step procedure:

1. Analysis: transform the noisy data f to the wavelet
coefficients d/ = (f, ¥/) and scaling function co-
efficients ¢} = (f, ¢!') according to (3).

2. Shrinkage: apply a shrinkage function Sy with a
threshold parameter 6 to the wavelet coefficients,
e, So(d)) = So((fwi)

3. Synthesis: reconstruct the denoised version u of f
from the shrunken wavelet coefficients:

w= Y+ Y Sills ) v

i€Z j=—00 i€Z

In this paper we restrict our attention to Haar wavelets,
well suited for piecewise constant signals with discon-
tinuities. The Haar wavelet and scaling functions are
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given respectively by

Y(x) = 1[(),%) - 1[%,1)7 “4)
¢(x) = 10,1 ()

where 1, ;) denotes the characteristic function, equal
to 1 on [a, b) and zero everywhere else. Using the so-
called rwo-scale relation of the wavelet and its scaling
function, the coefficients ci] and diJ at higher level j can
be computed from the coefficients cij
Jj — 1 and conversely:

~! at lower level

j—1 -1 —1

j C‘z +Cz j cl Cl
Cij= 2 ﬁ2+1’ dij_ 2 ﬁZ-H’ (6)
and
1 +d _ I _ g/
c]Al=76’+’ B L. @)

2i \/z ’ 2i+1 \/E

This results in a fast algorithm for the analysis step and
synthesis step. Various shrinkage functions leading to
qualitatively different denoised functions u have been
considered in literature, e.g.,

A. Linear shrinkage:

Sx)=xrx (A €][0,1]),

B. Soft shrinkage (Donoho, 1995):

x| <6,

0
Sox) = {x —9sgn(x) |x| > 6,

C. Garrote shrinkage (Gao, 1998):

x| <6,

S B 0
o(x) = {X— 02

< Ixl>9,

D. Firm shrinkage (Gao and Bruce, 1997):

0 lx| <6y,
0x(Jx| — 0
Soy.0,(x) = sgn(x)Lel) 0, < |x| < 6,
— V1
x 02 < |x|,

E. Hard shrinkage (Mallat, 1999):

x| <0,

0
So(x) = {
X

|x] > 6.

3.2.  Discrete Translation-Invariant Scheme

In practice one deals with discrete signals f = ( ﬁ) —o ,
where, for simplicity, N is a power of 2. Then Haar
wavelet shrinkage starts by setting ¢? = f; and pro-
ceeds by analysis (6), shrinkage, and synthesis (7). Let
us just consider a single wavelet decomposition level,
i.e., we set n = 1. Then, using the convention that
¢ = ci1 and d; = dil, we can drop the superscripts
j =0and j = 1. By (6) and (7), Haar wavelet shrink-
age on one level produces the signal ut = (uf)fv= Bl
with coefficients

+_ G+ SWd)  fu+ frn
T A T 2
1 f21 f21+1>
sy (L) s
V2 9( V2 ®
I So(di) _ fai + faiv1
e 2

1 f21 f2l+l
NESE

Note that the single Haar wavelet shrinkage step (8)—(9)
decouples the input signal into successive pixel pairs:
the pixel at position 2i — 1 has no direct connection to
its neighbour at position 2i, and the procedure is not
invariant to translation of the input signal. To overcome
this problem, Coifman and Donoho (1995) introduced
the so-called cycle spinning: The input signal is shifted,
denoised using wavelet shrinkage, shifted back, and the
results of all such shifts are averaged. This procedure is
equivalent to thresholding of nondecimated wavelet co-
efficients which can be implemented efficiently using
the algorithme a trous (Holschneider et al., 1989). For
our single decomposition level, we need only one addi-
tional shift to acquire translation invariance. The shifted
Haar wavelet shrinkage yields the signalu™ = (u; )iN= Bl
with coefficients

- Jric1 + fai +LS (le 1= le)
2i—1 = ) V2 0 V2 ’
ye o it ] (le i fz;)

= -5
2i 2 \/59 \/E

Averaging the shifted results, one cycle of shift-
invariant Haar wavelet shrinkage can be summarised
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into

u; =

=fi—1+2fi+fi+1_|_ 1 S<fi—fi+1>
4 227\ 2

1 fici—fi
_2f239< V2 ) 10

4. Correspondence of Diffusivities
and Shrinkage Functions

4.1. Basic Considerations

In order to derive the relation between the explicit dif-
fusion scheme and translation-invariant Haar wavelet
shrinkage, we rewrite the first iteration step in (2) using
the initial condition u? = f; and the simplified notation
ull = u; as

_ fi—1+2ﬁ+ﬁ'+1+fi—fi+1_fi—1—fi

= 4 4 4
=t g(fi — firmiD(fi — fixr) + T8 fic1 — fiD)
x (fi-1—= 1)
42t
4

1
+(fi — fir1) (4_1 —tg(lfi — fi+1|)>
1
—(fic1 = f) (4_1 —tg(fic1 — fi|))- (1D

This coincides with (10) if and only if

1 S X\ 1 12
W e(ﬁ)—X<Z—fg(IXI)> (12)

Equation (12) is of central importance in our paper:
It relates the shrinkage function Sy of wavelet denois-
ing to the diffusivity g of nonlinear diffusion. Provided
that relation (12) holds true, a single step of wavelet
shrinkage is equivalent to a single step of explicitly
discretised nonlinear diffusion. The following two for-
mulas are derived from (12) and can be used to obtain
a shrinkage function Sy from a diffusivity g, or vice
versa.

Sp(x) = x (1 — drg(|v/2x]), (13)

1 \/5 X
g(lx) = E - m Sy (ﬁ) (14)

These equations will be essential for the next two sub-
sections.

4.2.  From Diffusivities to Shrinkage Functions

Let us first investigate Eq. (13) in detail. The examples
from Section 3.1 show that typical shrinkage functions
from the literature are odd functions (i.e. Sy(—x) =
—Sp(x)) that satisfy

0<Sy(x)<x forx >0. (15)

In Section 5 we will see that these conditions are re-
sponsible for ensuring certain stability properties of the
shrinkage process. We can now specify the time step
size T in (13) such that these two conditions are al-
ways satisfied for bounded nonnegative diffusivities. In
Section 2.1 we have seen that the diffusivities A-E are
nonnegative and bounded from above by 1. In order to
ensure that the corresponding shrinkage functions sat-
isfy (15), the time step size has to fulfil T < 0.25. Let
us now investigate the shrinkage functions that corre-
spond to the diffusivities A—E.

We observe that the linear diffusivity corresponds to
the linear shrinkage function

Sx)=(01—4v)x.

For the limiting case T := 0.25 this becomes S(x) = 0,
and Eq. (10) then shows that we obtain a convolution
with the binomial kernel (i, % %). Iterating this proce-
dure approximates a Gaussian which is well-known as
the fundamental solution of the linear diffusion equa-
tion (Crank, 1975).

Nonlinear shrinkage functions such as soft, garrote,
firm and hard shrinkage satisfy $'(0) = 0, since their
goal is to set small wavelet coefficients to zero. In or-
der to derive shrinkage functions that correspond to
the bounded nonlinear diffusivities B-E and satisfy
S’(0) = 0 as well, we fix T := 0.25. Then we obtain
the following novel shrinkage functions:

— The Charbonnier diffusivity corresponds to the
shrinkage function

A2
S)\(x) =x<1 — m)
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— The Perona—Malik diffusivity leads to

2x3

S.(x) = pISEYE

— The Weickert diffusivity gives
0 x =0,

0.20718 A%

S,\(X)I{
x exp ( T) x #0.

— The Tukey diffusivity leads to the shrinkage function

433 4x°

- < /N2
S=157 g =2

x Ix| > A/~/2.

Since the FAB diffusivity may attain negative values, it
is not surprising that its corresponding shrinkage func-
tion

S50 = 3(1 — 2exp(—2 /3
+ exp ( — 2|X|2/k%))

with A; < X, may violate the condition (15). (In
this respect it resembles the shrinkage function that is
used in Starck et al. (2003) for contrast enhancement.)
Figures 1 and 2 illustrate these bounded diffusivities
and their shrinkage functions.

4.3.  From Shrinkage Functions to Diffusivities

Having derived shrinkage functions from nonlinear
diffusivities, let us now derive diffusivities from
frequently used shrinkage functions. To this end, all
we have to do is to plug in the specific shrinkage
function into (14).

In the case of soft shrinkage, this gives the diffusivity

1
—  xl<ov2,
4T

g(lxl) =
V20 x| > 67/2.

4tx|

If we select the time step size 7 such that @ = 2+/27, we
obtain a stabilised TV diffusivity (see also (Steidl and
Weickert, 2002; Steidl et al., 2004) for an alternative

derivation):
1
— x| <4z,
4t
gl = 1"
— x| > 4r.
x|

In the same way one can show that garrote shrinkage
leads to a stabilised BFB diffusivity for 6 = +/2t:

1
— x| =27,

g =14
lx] > 24/7.

|x|?

Firm shrinkage yields a diffusivity that degenerates to
0 for sufficiently large gradients:

g(x]
1
— x| < /26,
4t ﬁ@
= 0, b
—1) 20 <265,
4r(92—91)( x| ) L=V
0 x| > +/265.

This degeneracy resembles the behaviour of the Tukey
diffusivity from Section 2.1. Another diffusivity that
degenerates to O can be derived from hard shrinkage:

1
gxh = {37 PI=V2
0 |x| > ~/26.

All diffusivities in this subsection are depicted in Fig. 3.

5. Stability Analysis of Wavelet Shrinkage

In this section we exploit the connections between
wavelet shrinkage and diffusion filtering in order to es-
tablish three stability properties for wavelet shrinkage:
maximum—minimum stability, monotonicity preserva-
tion, and sign stability.

5.1.  Maximum—Minimum Stability

Maximum—minimum stability of a discrete diffusion
process states that the filtered signal at time step k + 1
stays within the range of the data at step k. For a sin-
gle step output u computed from the input signal f this
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9(x)

Figure 1. Diffusivity functions (left), corresponding shrinkage functions (right). A. Linear diffusion. B. Charbonnier diffusivity. C. Perona-
Malik diffusivity. D. Weickert diffusivity. The functions are plotted for = 0.1 (linear diffusion), and v = 0.25, A = 1 (all others).

maximum—minimum principle gives Proposition 1 (Maximum—minimum stability). The
shift invariant single level Haar wavelet shrinkage (10)
min f; <u; <max f; (@=0,...,N—1). (16) with an odd shrinkage function Sy satisfies the discrete

J J

maximum—minimum principle (16) if

Maximum-minimum principles are essential in scale-

space theory since they guarantee causality of the con- —x < Sp(x) =x forallx = 0. (I7)
tinuous evolution (Hummel, 1986): Level lines can

be traced back in scale. The following proposition Ifthis condition does not hold, it is possible to construct
states conditions under which wavelet shrinkage is counterexamples that violate the discrete maximum-—

maximum—minimum stable. minimum principle.
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E. 1 Tukey diffusivity 4
3
Zo0s 2,
1
G0 A 3 4 5 6 7 % 0 2 3 4
X y
F. 1 FAB diffusivity 4
3
= = .
> Z2 .
1 .
05 A A2 3 4 5 6 7 % A1 Ao 3 4

X

Figure 2. Diffusivity functions (left), corresponding shrinkage functions (right). E. Tukey diffusivity F. Forward-and-backward (FAB) diffu-
sivity. The functions are plotted for A/ 2=0=1 (Tukey) and 11 = 1, A, = 2 (FAB).

The proof for this result can be found in the appendix.
We observe that odd shrinkage functions satisfying (15)
are maximum—minimum stable. By exploiting the rela-
tion (13), let us now re-interpret the stability condition
(17) in terms of stability for nonlinear diffusion filter-
ing. From

x(1 —41g(v2x) = Sp(x) <x Vx>0

one immediately obtains

g(x) >0 Vx>0. (18)
In the same way, the condition
—x < Sp(x) = x(1 —41g(/2x)) Vx>0
can be simplified to
Tg(x) < % Vx> 0. (19)

Since the explicit scheme may be rewritten as

u; = 18(| fix1—fiD fix1 + tg(fi—fiz1D) fim
+ A —=zg(firi—fiD —rg(fi—fiaaD) fi
(20)

it becomes clear that (18) and (19) guarantee that the
weights in front of f;,, f; and f;_; are nonnegative.
Since these weights sum up to 1, we have a convex
combination that ensures stability in terms of a discrete
maximum-minimum principle:

min(ﬁ*lv fi7 fiJrl) <u; < max(fiflv fl'7 fi+1)~

This can be regarded as an alternative to the proof in
the appendix which is performed within the wavelet
setting.

5.2.  Preservation of Monotonicity

Maximum-minimum stability guarantees that the fil-
tered signal does not leave the range of the original sig-
nal, but it does not give any statements on the behaviour
within these bounds. One stability notion that takes into
account such a behaviour is monotonicity preservation.
Assume that the input signal f = (fy, f1,..., fN_l)T
is monotonically increasing (or decreasing), then a fil-
ter is called monotonicity preserving, if the processed
signal u = (ug, u1, ... ,un—1)" is monotonically in-
creasing (or decreasing) as well.

From this definition it follows that monotonicity
preserving filters cannot create oscillations for mono-
tonic signals. The subsequent proposition shows that
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Figure 3. Diffusivity functions (left), corresponding shrinkage functions (right). G. TV flow and soft shrinkage. H. Balanced forward-backward
(BFB) diffusivity and garrote shrinkage. I. Firm shrinkage. J. Hard shrinkage. The functions are plotted for t = 0.25 (which corresponds to
6 = 12+/2 for soft shrinkage, and to & = /2t for garrote; the other use 6 = 6 = 1, 6, = 2).

monotonicity preservation of wavelet shrinkage can be
established under the same conditions as maximum-—
minimum stability.

Proposition 2 (Preservation of Monotonicity). The
shift invariant single level Haar wavelet shrinkage (10)
with an odd shrinkage function Sy is monotonicity pre-

serving if
—x < Sy(x) <x forallx > 0. 21)

The proof of this proposition is a direct consequence
of the connection between Haar wavelet shrinkage and
explicit diffusion filtering: In the previous subsection
we have seen that single level Haar wavelet shrinkage
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satisfying condition (21) can be expressed as the ex-
plicit diffusion filter (20) with

0<71g(x)< Vx >0.

N =

For such a diffusion scheme, monotonicity preser-
vation has already been established in Weickert and
Benhamouda (1997).

5.3.  Sign Stability

The preceding discussion shows that the condition (17),
which ensures maximum—minimum stability as well as
positivity preservation, is less restrictive than the typi-
cal design property (15) for shrinkage functions. This
gives rise to the conjecture that (15) may imply addi-
tional stability properties. Therefore, let us consider the
notion of sign stability next. A filter transforming an
initial signal f = (fo, fi, ..., fyv—1)' into a processed
signal u = (ug, uy, ... ,uyn—1)' is called sign stable
or variation diminishing in the sense of Schoenberg
(1930), if the number of sign changes in the compo-
nents of u does not exceed the number of sign changes
in f. In this definition, zeros are not taken into account.

It should be noted that sign stability is a stronger
stability requirement than it may seem at first glance:
Since wavelet shrinkage is invariant under shifts of
the average grey value, sign stability also implies that
the number of level crossings does not increase for
any level. In particular, by choosing the smallest and
largest value of the initial signal as reference levels,
sign stability always ensures maximum—minimum sta-
bility. Moreover, it also guarantees that a monotone
input signal does not create an oscillatory filter output.

Sign stability results for wavelet shrinkage are es-
tablished in the following proposition, which is proved
in the appendix.

Proposition 3 (Sign stability). The shift invariant
Haar wavelet shrinkage (10) with an odd shrinkage
function Sy is sign stable if

0<8(x) <x forallx > 0. 22)

By means of our equivalence results, sign stability
directly carries over to the explicit discretisation on
nonlinear diffusion filters. This extends Glashoff’s and
Kreth’s results (Glashoff and Kreth, 1980) for finite
difference schemes for linear diffusion to the nonlinear
setting. It also gives rise to the conjecture that such a

variation diminishing property does not only hold in the
discrete framework, but carries over to the continuous
PDE formulation as well. To the best of our knowledge,
continuous sign stability results are only available in the
linear case so far (Sturm, 1836).

Itis instructive to analyse the sign stability condition
(22) in detail. Using

Sp(x) = x(1 — 4rg(v/2x)),

the condition 0 < Sy(x) for all x > 0 can be simplified
to

1
Tg(x) < 1 Vx> 0.

This result explains why soft, garrote, firm and hard
shrinkage correspond to diffusivities that have been cut
off at %: It is a direct consequence from the fact that
wavelet shrinkage is sign stable.

6. Denoising Experiment

To test the applicability of the newly derived shrink-
age functions from Section 4.2, we perform experi-
ments with signal-denoising using the shift-invariant
multiscale Haar wavelet transform from Section 3.
The input signal blocks, one of the standard signals
in wavelet denoising, mimics a scan line through a
2-D image depicting an object with several edges
(Donoho and Johnstone, 1994). The signal is shown
in Fig. 4. The same figure then shows examples of
the results of multiscale Haar wavelet denoising when
combined with several shrinkage functions introduced
in previous sections.

Table 1 and Fig. 5 present additional experimental
results obtained with the blocks data. Here we per-
formed a series of experiments with several levels of
additive zero-mean Gaussian noise in the input sig-
nal. The noise varies between SNR = 1 and SNR =32,
where the signal-to-noise ratio (SNR) is defined by

|z —zl2

Inly

SNR = 20log,,

with z standing for the ideal signal with mean Z, the
symbol n representing noise, and |.|, being the Eu-
clidean norm. The noise is generated five times for
each input SNR level and the resulting output SNR was
averaged. Then we used multiscale wavelet denoising
with various shrinkage functions, and searched for the
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optimal parameters that maximise the signal-to-noise
ratio in the filtered signal.

Table 1 summarises the average optimal SNR after
filtering obtained with different shrinkage functions;
Fig. 5 presents the same information graphically, to-
gether with the standard deviation of the results. We
observe that for all noise levels, the best signal-
to-noise ratio is obtained by those shrinkage func-
tions which put small wavelet coefficients to zero
and keep larger coefficients almost unaffected. The
functions with these properties include hard shrink-
age, firm shrinkage and—to some extent—the garrote
shrinkage on the wavelet side. Of the diffusion ori-
gin, the experimentally best shrinkage functions corre-
spond to the Weickert diffusivity, followed by the sta-
bilised BFB diffusivity (which is equivalent to garrote
shrinkage), the Tukey, the FAB and the Perona-Malik
diffusivity. Interestingly, these are diffusivities with

Table 1. Numerical results (measured by mean signal-to-noise ra-
tio in the filtered signal) of wavelet denoising for the blocks data
of length 1024. Each column represents a given level of noise in the
input image; each row contains the results for one shrinkage function.

SNRi,

Shrinkage method 1 2 4 8 16 32

Linear 3.6 42 5.5 87 16.1 32.0
Charbonnier 8.7 9.6 112 148 224 38.4
Soft (TV) 10.1 109 126 162 240 39.9
Perona-Malik 99 108 128 168 258 44.5
FAB 105 113 128 157 236 45.1
Tukey 11.6 126 147 189 28.0 45.8
Garrote (BFB) 11.9 129 150 193 285 46.0
Firm 128 138 159 202 29.0 46.1
Weickert 129 139 160 202 29.1 46.1
Hard 129 139 159 202 29.1 46.1

Original signal Linear shrinkage Soft shrinkage (stab. TV)
¥ H SMR{in}=8, SNR{out)=8.514 5 SNR{in)=8, SNR(out}=15.22
6 i
4 4
2 2
0 il
-2 -2
-4 4 -4

Perona-Malik
SNR(in}=8, SNR{out)=15.92
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Forward-and-backward Tukey
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SNR(in)=8. SNR{out)=18.34

Garrote shrinkage (stab. BFB)
SNR(in)=8, SNR{out)=18:23
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Hard shrinkage
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Figure 4. Example of multiscale translation-invariant Haar wavelet denoising. Normal noise of SNR =8 was added to the ideal signal, and
different shrinkage functions have been applied. The noisy signal is represented by dots, reconstructed signal by solid line.
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Figure 5. Comparing the optimal denoising performance of shift-invariant multiscale wavelet shrinkage with various shrinkage functions. SNR
of the filtered signal is plotted against SNR of the input; the higher the graph, the better the result. The input signal was blocks, length 1024.
Top left: garrote shrinkage (BFB diffusivity), soft shrinkage (TV flow) and linear diffusion. Top right: garrote (BFB), hard and firm shrinkages.
Bottom left: garrote (BFB), Perona-Malik and Weickert functions. Bottom right: best from either world, hard shrinkage and Weickert diffusivity

give comparable results.

nonmonotone flux functions that allow even contrast
enhancement.

The second group of shrinkage functions decreases
even large wavelet coefficients by a constant (or al-
most constant) value; the functions with this behaviour
include soft shrinkage, TV flow corresponding to it,
and Charbonnier diffusivity. It seems that this strategy
is less successful numerically. These diffusivities lead
to monotonically increasing flux functions and well-
posed diffusion filters.

As a group of its own, the denoising performance of
linear diffusion (or its shrinkage function) is far worse
than that of the nonlinear methods. Together with TV
and BFB diffusion, however, it has the advantage that
it does not require to tune a contrast parameter.

7. Conclusions

We have analysed correspondences between explicit
one-dimensional schemes for nonlinear diffusion and

discrete translation-invariant Haar wavelet shrinkage.
We have shown that if we restrict the methods to one
discrete step and a single spatial level, the two ap-
proaches can be made equivalent, if suitable diffusivi-
ties or shrinkage functions are chosen.

This connection between nonlinear diffusion and
wavelet shrinkage opens the gate for a fruitful exchange
of ideas between the two worlds. In this paper, we de-
rived new wavelet shrinkage functions from frequently
used nonlinear diffusivities. Vice versa, we showed that
soft and garrote shrinkage may be regarded as stabilised
TV or BFB diffusion, respectively. We experienced that
some novel shrinkage functions inspired from rapidly
decreasing diffusivities are competitive with the best
previously known shrinkage methods when applied to
signal denoising with multiscale wavelet procedures.

The connection between Haar wavelet shrinkage and
explicit schemes for nonlinear diffusion filtering has
also enabled us to establish three stability results for
single scale wavelet shrinkage: maximum-minimum
stability, monotonicity preservation, and sign stability.
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The proofs of these stability properties illustrate that we
have a nice transfer of ideas in both directions: While
maximum—minimum stability can be proved without
difficulties in both the wavelet and the diffusion frame-
work, monotonicity preservation of wavelet shrinkage
has been derived from findings for diffusion filtering,
while sign stability of nonlinear diffusion filtering fol-
lowed from sign stability of wavelet shrinkage.

The results in this paper can be extended in several
directions. One can study iterated multi-scale wavelet
shrinkage as a hybrid method combining the efficiency
of multi-scale wavelet shrinkage with the quality of it-
erated diffusion filtering (Mrazek et al., 2003b). This
hybrid method may be also explained as nonlinear dif-
fusion applied to the Laplacian pyramid of the sig-
nal (Steidl and Weickert, 2002; Steidl et al., 2004).
While the present paper focuses on the 1-D case, first
2-Dresults are reported in Mrazek and Weickert (2003),
where explicit schemes for nonlinear diffusion filter-
ing are used to construct coupled shrinkage rules with
improved rotation invariance. In our ongoing work we
consider other wavelet bases and analyse the multiscale
setting in more detail.

Appendix

A.l. Proof of Proposition 1 (Maximum—Minimum
Stability)

1. Let the shrinkage function Sy satisfy (17). To prove
the maximum-minimum principle, we show for all
i=0,...,N —1that (17) implies

min{ fi_1, fi, fix1} < u; <max{fi_, fi, fix1}.
(23)

If fi.1 < fi < fi+1, then we obtain by (17) and
since Sy is odd that

fi—fi+1<S<fi—fi+1><fi+1—fi
V2o v )T e

fi—l_fi<S<fi—l_fi><fi_fi—l
N V. T B

and consequently by (10) that

min{fi_1, /i) < % <u < %

< max{f;, fit1}.

Similarly it follows in case fi_; > f; > f;4 that

min{f;. i) < f%f“ << %

= max{fi—1, fi},
incase f;_1 < f; and f; > f;y that

. fi-1+ fina
min{ f;_1, fix1} < % <u; < fi,
andincase f;_; > f; and f; < f;; that

Jio1+ fin

<y <
fiSu; < 5

< max{ fi-1, fi+1}.
This completes the proof of (23).

2. Conversely, let the shift invariant Haar wavelet
shrinkage (10) satisfy a discrete maximum—
minimum principle. Assume that there exists ¥ > 0
where (17) is violated in such a way that Sp(¥) > X.
In order to construct a counterexample, we con-

sider an input signal f which is zero except for
= /2% such that max;—o.. N—1fi = fi and

min;—y_.. y—1 fi = 0. Then we have by (10) that

f’+ ! Sp(X) ! ——=8p(—%) > f;

— 4 —8(X) — —X) > f
2020 2

which contradicts the maximum principle.

Now assume that there exists ¥ > 0 such that
(17) is violated by Sy(X¥) < —X%. Then we show for
the same input sequence that u; < O which con-
tradicts the minimum principle. This completes the
proof. O

A.2. Proof of Proposition 3 (Sign Stability)

By (10) the values u; are the averages of u and u; .
We start by considering u .By (8), (9) and (22), we
obtain for f5; > friv1 that

S + finr
2

IA

uz, =< f217

f21 + f21+1

+
f2i+1 < u2,+] = )

Similarly we can handle the case f»; < f»;+1. Hence
we obtain u;i, “Z‘ +1 by moving the pixels f, faiq1
the same distance into the direction of the mean value
(f2i + f2i+1)/2 without passing this value. In other
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words, for arbitrary fixed f there exist ay;, by, with
1/2 < ay < 1and by; =1 — ay; such that

< Uy; ) (aZi tz,‘)( f2i )
Uyt b2i ap; J2i+1

Similarly we can handle u;", where we group f;_; and
foi together:

() =G an)U2)

uy; b1 azi—y Jai
i=1,...,N/2-1),

with 1/2 < api—; < land by =1 —ay_;.

Since N = 2" is even, we have two unaffected
boundary values in this case:

uy = fo,
Uy_ 1= Sv-1
Now u; = (uj + u;)/2 implies that

u=Qf

where O = Q(f) is the symmetric tridiagonal matrix

Co b()
bo ¢ b
1
2 9
by_3 cn—2 by
by_2 cn-i
with
ci ‘= a;—1 +a; (i=0,...,N—1),
a1 =1,
ay-1:=1

Obviously we have ¢; > 1 and 0 < b; < 1/2 for
i =0,...,N — 1. Thus, from Gershgorin’s theorem
(Varga, 1962) it immediately follows that Q is posi-
tive semidefinite. Interestingly, this also implies that Q
is totally positive, i.e. all its minors are nonnegative:
Theorem 3.2 in Karlin (1968) states that a symmet-
ric tridiagonal matrix is totally positive, if it is positive

semidefinite and if all subdiagonal elements b; are non-
negative. It is shown in a classical paper by Schoenberg
(1930) that if Q is totally positive, then the correspond-
ing linear transform is sign stable. Thus, u = Qf can-
not have more sign changes than f and we are done.
O
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