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Abstract. We develop a novel time-selection strategy for iterative image restoration techniques: the stopping time
is chosen so that the correlation of signal and noise in the filtered image is minimized. The new method is applicable
to any images where the noise to be removed is uncorrelated with the signal, under the assumptions that the filter
used is suitable for the given type of data, and that neither the additive noise nor the filtering procedure alter the
average gray value; no other knowledge (e.g. the noise variance, training data etc.) is needed.

We analyse the theoretical properties of the method, then test the performance of our time estimation procedure
experimentally, and demonstrate that it yields near-optimal results for a wide range of noise levels and for various
filtering methods.
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1. Introduction

If we want to restore noisy images using some method
which starts from the input data and creates a set of
possible filtered solutions by gradually removing noise
and details from the data, the crucial question is when to
stop the filtering in order to obtain the optimal restora-
tion result. The restoration procedures needing such
a decision include linear scale space (Iijima, 1962;
Witkin, 1983), nonlinear diffusion filtering (Perona and
Malik, 1990; Catté et al., 1992), anisotropic diffusion
filtering (Weickert, 1998), and many others.

The stopping time T has a strong effect on the
diffusion result. Its choice has to balance two con-
tradictory motivations: small T gives more trust to
the input data (and leaves more details and noise in

the data unfiltered), while large T means that the re-
sult becomes dominated by the model of the filtering
procedure—piecewise constant for nonlinear diffusion,
smooth functions for linear scale space, etc.

In scale-space theory, people often set the stopping
time T to a large value (ideally infinity) and observe
how the diffused function evolves with time (and con-
verges to a constant value). As we are more concerned
with image restoration and we want to obtain nontriv-
ial results from the diffusion filter, we will have to pick
a single (finite) time instant T and stop the diffusion
evolution there.

We work with the following model (see Fig. 1):
let f̃ be an ideal, noise-free (discrete) image; this
image is observed by some imprecise measurement
device to obtain an image f. We assume that some
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Figure 1. Model of the time-selection problem for the diffusion
filtering. We want to select the filtered image u(T ) which is as close
as possible to the ideal signal f̃ .

noise n is added to the signal during the observation
so that

f = f̃ + n. (1)

Furthermore, we assume that the noise n is uncorrelated
with the signal f̃, and that the noise has zero mean value,
E(n) = 0 (see Appendix for a review of statistical
formulas and notation used in the paper).

The diffusion filtering starts with the noisy image
as its initial condition, u(0) = f, and the diffusion
evolves along some trajectory u(t), t ∈ [0, ∞). This
trajectory depends on the diffusion parameters and on
the input image; the optimistic assumption is that the
noise will be removed from the data before any im-
portant features of the signal commence to deteriorate
significantly, so that the diffusion leads us somewhere
‘close’ to the ideal data. This should be the case if the
signal adheres to the model inherent in the diffusion
equation.

The task of the stopping time selection can be for-
mulated as follows: select that point u(T ) of the dif-
fusion evolution which is nearest to the ideal signal
f̃. Obviously, the ideal signal is normally not avail-
able; the optimal stopping time T can only be esti-
mated by some criteria, and the distance between the
ideal and the filtered data serves only in the experi-
ments to evaluate the performance of the estimation
procedure.

In the following sections we first cite the approaches
to stopping time selection which have appeared in the
literature, and comment on them. Then we develop
a novel time-selection strategy based on signal-noise
decorrelation.

2. Previous Work

In the diffusion model of Catté et al. (1992), the image
gradient for the diffusivity computation is regularized
by convolution with a Gaussian smoothing kernel Gσ .
The authors argue that this regularization introduces a
sort of time: the result of convolution is the same as
the solution to the linear heat equation at time t = σ 2

2 ,
so it is coherent to correlate the stopping time T and
the ‘time’ of the linear diffusion. However, the equality
t = σ 2

2 is rather a lower estimate of the stopping time:
because of the diffusion process inhibited near edges,
the nonlinear diffusion is always slower than the linear
one, and needs a longer time to reach the desired re-
sults. Also, the authors do not address the question of
choosing a good value for the parameter σ .

Dolcetta and Ferretti (2001) recently formulated the
time selection problem as a minimization of the func-
tional

E(T ) =
∫ T

0
Ec dt + Es (2)

where Ec is the computing cost and Es the stopping
cost, the latter encouraging filtering for small T . The
authors provide a basic example

Ec = c (3)

Es = −
( ∫

�

|u(x, T ) − u(x, 0)|2 dx

)2

(4)

where the constant c balancing the influence of the two
types of costs has to be computed from a typical image
to be filtered. Typically, the distance between filtered
and original data increases faster at the early stage of the
diffusion process. With the Eqs. (2)–(4), the filtering
will continue until this increase in distance becomes
outweighted by the constant in the computing cost Ec.

Sporring and Weickert (1999) study the behaviour
of generalized entropies, and suggest that the intervals
of minimal entropy change indicate especially stable
scales with respect to evolution time. They estimate
that such scales could be good candidates for stopping
times in nonlinear diffusion scale spaces. However, as
the entropy can be stable on whole intervals, it may
be difficult to decide on a single stopping instant from
that interval; we are unaware of their idea being brought
into practice in the field of image restoration.

Weickert mentioned more ideas on the stopping time
selection, more closely linked to the noise-filtering
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problem, in Weickert (1999). They are based on the
notion of relative variance.

The variance var(u(t)) of an image u(t) is mono-
tonically decreasing with t and converges to zero as
t → ∞. The relative variance

r (u(t)) = var(u(t))

var(u(0))
(5)

decreases monotonically from 1 to 0 and can be used to
measure the distance of u(t) from the initial state u(0)
and the final state u(∞). Prescribing a certain value for
r (u(T )) can therefore serve as a criterion for selection
of the stopping time T .

Let again f̃ be the ideal data, the measured noisy
image f = f̃ + n, and let the noise n be of zero mean
and uncorrelated with f̃ . Now assume that we know the
variance of the noise, or (equivalently, on the condi-
tion that the noise and the signal are uncorrelated) the
signal-to-noise ratio, defined as the ratio between the
original image variance and the noise variance,

SNR ≡ var(f̃ )

var(n)
. (6)

As the signal f̃ and the noise n are uncorrelated, we
have

var(f ) = var(f̃ ) + var(n). (7)

Substituting from this equality for var(n) into (6), we
obtain by simple rearrangement that

var(f̃ )

var(f )
= 1

1 + 1
SNR

. (8)

We take the noisy image for the initial condition of
our diffusion filter, u(0) = f. An ideal diffusion filter
would first eliminate the noise before significantly af-
fecting the signal; if we stop at the right moment, we
might substitute the filtered data u(T ) for the ideal sig-
nal f̃ in (8). Relying on this analogy, we can choose the
stopping time T such that the relative variance satisfies

r (u(T )) = var(u(T ))

var(u(0))
= 1

1 + 1
SNR

(9)

So far the Weickert’s suggestions from Weickert
(1999): knowing the SNR (or, equivalently, knowing
the variance of noise in the input image), we decide
to filter the image until some distance from the noisy

data is reached, and the formula (9) tells us when to
stop the diffusion. This idea seems natural and resem-
bles also that used in the total variation minimizing
methods (Rudin et al., 1992).

Weickert remarks that the criterion (9) tends to un-
derestimate the optimal stopping time, as even a well-
tuned filter cannot avoid influencing the signal before
eliminating the noise.

Remark 1. We suggest a partial explanation of this
phenomenon. The points with all coordinates equal
form the ‘diagonal’ of the space. The variance of a
vector (considered as a vector of realizations of a real-
valued random variable) is the square of the Euclidean
distance from the diagonal. During the diffusion pro-
cess, the grey level is preserved, and the whole tra-
jectory u(t), t ∈ [0, ∞), as well as f, lie in a hy-
perplane, H , perpendicular to the diagonal. The point
u(∞) = limt→∞ u(t) is the only point of H lying on
the diagonal (because var(u(∞)) = 0). The formula
(9) determines the point on the trajectory u(t) which
has the same distance from u(∞) as f, i.e.,

|u(T ) − u(∞)| = |f − u(∞)| =
√

var(u(0))

1 + 1
SNR

. (10)

Such a point is unique because var(u(t)) is nonincreas-
ing.

For low noise levels, criterion (9) determines a point
which is more distant from u(∞) than the optimum.
This can be demonstrated on an extremely simplified
case when the trajectory u(t) is the straight line segment
from u(0) to u(∞). Its point closest to f is the point
u(T ∗) with distance

|u(T ∗) − u(∞)| =
√

var(u(0))

1 + 1
SNR

,

i.e., strictly smaller than that given by (10). (This very
special case appears when both n and f̃−u(∞) decrease
with the same relative speed during the diffusion. Such
a situation is not usual as normally the noise contains
more high frequency components that are filtered first.
Nevertheless, the conclusion that (9) gives a lower than
optimal diffusion time remains basically valid in much
more general situations.)

Our experiment confirms the above Weickert’s ob-
servation only partially (see Fig. 4): criterion (9) under-
estimated the stopping time for low levels of noise, but
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overestimated the time when high level of noise was
applied. Also Rem. 1 explains the imprecision of (9)
only for low noise levels. Further problems are caused
by correlations between signal and noise which are in-
troduced by the filtering process. The equality (7) and
hence the Eq. (8) are valid only if the signal and the
noise are uncorrelated. This assumption holds for f̃ and
n, but not necessarily for the filtered signal u(T ) and
the difference u(0) − u(T ); the latter is needed for the
Eq. (9) to be justified. In other words (if we substitute
mentally the filtered function u(T ) for f̃ , the difference
u(0) − u(T ) for the noise n, and u(0) for f in (7) and (8)),
the formula (9) is useful only if u(T ) and u(0) − u(T )
are uncorrelated.

3. Decorrelation Criterion

Let us consider once more the desired analogy between
ideal and filtered data: f̃ is the ideal signal, some noise
n is added to form the observed signal f = f̃ + n. The
diffusion filtering starts from u(0) = f to create a series
of possible solutions u(t); in practice, t attains discrete
values 0, t1, t2, . . .. We want to select the stopping time
T so that u(T ) is an optimal substitute for the ideal
signal f̃ .

We now arrive at the main idea of this paper: if the
unknown noise n is uncorrelated with the unknown
signal f̃ , it could be reasonable to minimize the covari-
ance of the ‘noise’ u(0) − u(t) with the ‘signal’ u(t),
or—better—employ its normalized form, the correla-
tion coefficient

corr(u(0) − u(t), u(t))

= cov(u(0) − u(t), u(t))√
var(u(0) − u(t)) · var(u(t))

(11)

and choose the stopping time T so that the expression
(11) is as small as possible. This way, we exploit the
analogy between the ideal signal f̃ and its filtering sub-
stitution u(T ), but instead of determining the stopping
time so that u(0) − u(T ) satisfies a quantitative prop-
erty and its variance is equal to the known variance of
the noise n (which we saw in Weickert (1999)), we try
to enforce a qualitative feature: if the ideal f̃ and n were
uncorrelated, we require that their computed estimates
u(T ) and u(0) − u(T ) reveal the same property, to the
extent possible, and select

T = argmin
t

|corr(u(0) − u(t), u(t))|. (12)

We call Eq. (12) the decorrelation criterion for the
selection of the diffusion stopping time. In the follow-
ing sections we first study its theoretical properties,
then test and validate this new stopping time criterion
experimentally.

3.1. Theoretical Properties

The decorrelation criterion allows us to choose the dif-
fusion stopping time without any additional knowledge
and using quite mild assumptions about noise and the
filtering method. As we shall show by experiments,
its results are often close to optimum. Nevertheless,
from the theoretical viewpoint, there are several nega-
tive results. We cannot prove that the optimum in the
sense of the decorrelation criterion (12) coincides with
results of some other criteria for filtering quality. More-
over, without additional assumptions on the properties
of the noise, the signal and the filter, neither the filter-
ing quality (measured by the distance |u(t) − f̃ |) nor
the correlation |corr(u(0) − u(t), u(t))| are guaranteed
to be unimodal and possess a single minimum. We will
try to provide some insight into this fact by analysing
the combination of the decorrelation criterion with the
simplest, linear diffusion process.

As a positive result, we show that the correlation
between (u(0) − u(t)) and u(t) remains nonnegative
for a linear diffusion filter.We experienced that the
decorrelation criterion provides more reliable estimates
when combined with filters which keep this correlation
nonnegative.

3.1.1. Combination with Linear Diffusion. Let us
first address the question whether we can hope to find
a unique u(T ) which minimizes the distance to the ideal
f̃ over all u(t) in the diffused sequence.

The filtering procedure starts from u(0) = f̃ + n.
Diffusion preserves the average grey level, E(u(0));
without loss of generality, we subtract this value from
all data and assume in the sequel that E(u(0)) = 0. In
the discrete setting, the linear diffusion result at time
t can be expressed in vector notation as multiplication
of the initial u(0) by some matrix A(t),

u(t) = A(t)u(0), (13)

where the matrix A(t) is symmetric, has unit row sum,
and its elements are nonnegative. Then, starting from
the norm of u(t) − f̃ and using triangle inequality in
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the last step,

|u(t) − f̃ | = |A(t)u(0) − f̃ | = |A(t)(f̃ + n) − f̃ |
= |A(t)f̃ − f̃ + A(t)n|
≤ |A(t)f̃ − f̃ | + |A(t)n|. (14)

It is known that in well-posed scale spaces the distance
|u(0) − u(t)| increases monotonically with increasing
time t , and the norm of any diffused signal decreases
monotonically, see Weickert (1998). Hence, Eq. (14)
states that the distance |u(t)− f̃ | is bounded by the sum
of an increasing function |A(t)f̃ − f̃ | and a decreasing
one, |A(t)n|.

Ideally, we would like this sum to be a unimodal
function of t , decreasing at the beginning and increas-
ing later. Unfortunately, although Bertero and Boccacci
(1998) claim that this is the case for linear regulariza-
tion methods (linear diffusion belongs to this class),
unimodality does not hold in general. Some insight into
this fact can be gained if we reconsider linear diffusion
in Fourier domain.

We may understand u(t) as a vector from R
N ⊂ C

N ,
where N = N1 · N2 is the number of pixels in the
N1 × N2 image. It is uniquely determined by its im-
age in the two-dimensional discrete Fourier transform,
U(t) ∈ C

N . The discrete Fourier image is obtained by
multiplication by an orthonormal N × N matrix, H.
This transformation preserves the inner product, there-
fore also the norm and angles. We may also understand
u(t) and U(t) as two representations of the same vector
in two different orthonormal bases.

The Fourier transform is linear, therefore U(0) =
F̃ + N, where F̃, N are the Fourier images of f̃ , n, re-
spectively. Each entry of U(0) represents the amount
of one frequency present in the input image, and it is
again the sum of the same frequency from the ideal
signal and the noise. Linear diffusion is equivalent to
low-pass filtering or convolution with a Gaussian ker-
nel. In the Fourier domain, it gradually sends the values
of all the entries of U(t) to zero, attenuating higher fre-
quencies earlier; it decreases the amplitudes and does
not change the phases of the components of the Fourier
series. Thus the entry U jk(t) of the Fourier image U(t)
with coordinates j, k is a multiple of its initial value,

U jk(t) = a jk(t) · U jk(0), (15)

where a jk(t) ∈ [0, 1] is a real attenuation coefficient.
If the bands of the input signal and noise do not over-
lap much (with the noise contained mostly in higher

frequencies than the signal), we may be sure that linear
diffusion of U(0) will lead us close to the ideal signal F̃;
in general, without any knowledge on the frequencies
of the ideal signal and the noise, we cannot say any-
thing about the expected filtering performance and the
distance |U(t) − F̃| does not have to be unimodal with
a single minimum. These observations hold identically
in the original space for |u(t) − f̃ |.

Example 1. Suppose that the input f̃ is composed
from two components with frequences ω1, ω3 and the
noise is composed from two components with fre-
quences ω2, ω4, where 0 < ω1 � ω2 � ω3 � ω4.
Then, as t > 0 increases, the distance |u(t) − f̃ | first
decreases as ω4-component of the noise is filtered out,
then increases as ω3-component of the input image at-
tenuates, then again decreases as ω2-component disap-
pears, etc. Thus the dependence of |u(t)− f̃ | on t is not
unimodal and has two local minima.

Having discussed the properties of the function
|u(t) − f̃ |, let us investigate the properties of the corre-
lation between the filtering noise and the filtered signal,
corr(u(0) − u(t), u(t)). Correlation between two vec-
tors (understood as two realizations of a random pro-
cess) has the geometrical meaning of the angle between
the two vectors, as defined through their inner product.
In our case (using the assumption E(u(0)) = 0), it is
easy to derive that

corr(u(0) − u(t), u(t))

= 〈u(0) − u(t), u(t)〉
|u(0) − u(t)| · |u(t)| = cos θ (16)

where θ is the angle between vectors u(0) − u(t) and
u(t). Then, minimizing the correlation has the geo-
metrical meaning of finding such T that the vectors
u(0) − u(T ) and u(T ) are as orthogonal as possible.

As discussed above, the inner product may be ap-
plied to Fourier images,

〈u(0) − u(t), u(t)〉 = 〈U(0) − U(t), U(t)〉
=

∑
j,k

(U jk(0) − U jk(t))U jk(t),

(17)

where the bar denotes the complex conjugate. For linear
diffusion, we apply (15) and derive that the entry with
coordinates j, k contributes to the inner product (17)
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by

(U jk(0) − U jk(t))U jk(t)

= (U jk(0) − a jk(t)U jk(0))a jk(t)U jk(0)

= (1 − a jk(t))a jk(t)|U jk(0)|2

which is a nonnegative real number. We conclude that

〈U(0) − U(t), U(t)〉 ≥ 0

for all t , and the correlation corr(u(0) − u(t), u(t)) is
always nonnegative when the image is filtered using
linear diffusion.

In the particular case when the trajectory u(t) passes
through the ideal solution f̃ for some value of t , the in-
ner product becomes zero and |corr(u(0) − u(t), u(t))|
attains its global minimum exactly at the time T for
which u(T ) = f̃ . For real filters which corrupt the sig-
nal slightly when removing the noise, none of the pos-
sible solutions u(t) will be identical to the ideal signal.
Also, the noise in real data will often exhibit some
amount of correlation with the signal to restore. For
such situations, we cannot guarantee any theoretical
optimality, and the worth of our stopping time estima-
tion can only be evaluated experimentally.

These statements hold analogously for nonlinear dif-
fusion: without a priori restrictions on the nature of the
signal, we cannot guarantee that either |u(t) − f̃ | or
|corr(u(0) − u(t), u(t))| will have a unique minimum.
However, the situation is not so severe in practice. If
we filter our data by a filter which respects the expected
signal properties, it will first remove most of the noise
before harming the signal significantly; in our diffu-
sion experiments, the function |u(t) − f̃ | always had a
unique minimum and it was always unimodal, i.e. de-
creasing at the beginning of the diffusion process and
increasing later, except for the degenerate cases when
there was either no noise or no signal in the input data.

3.2. Experiments

To assess the applicability of the decorrelation crite-
rion in real situation, we perform a set of experiments
in which we simulate the image formation process
sketched in Fig. 1 by taking some image, either nat-
ural of artificially created, and declaring it to be noise-
free and represent the ground truth f̃ . We then corrupt
the image artificially by adding some noise n, filter the
noisy image u(0) = f̃ + n using several methods, and

Figure 2. The distance MAD(u(t) − f̃ ) (solid line) and the cor-
relation coefficient corr(u(0) − u(t), u(t)) (dashed line) developing
with the diffusion time. The graphs were measured experimentally
on noisy cymbidium data of SNR = 6 filtered using anisotropic NL
diffusion.

observe the development of the distance between the
filtered signal and the noise-free image, MAD(u(t) −
f̃ ), and the development of the correlation between the
filtered signal u(t) and the ‘filtering noise’ u(0) − u(t).

Ideally, the two graphs will look like those in Fig. 2.
You can see that the distance MAD(u(t)− f̃ ) decreases
in the first iterations as the noise is smoothed, and then
starts to increase again as also the useful signal begins
to disappear under the filtering process. The graph of
the correlation coefficient corr(u(0) − u(t), u(t)) ex-
hibits a highly similar behaviour; this similarity lets us
hope that we can estimate the stopping time T which
optimises the filtering quality (measured by the MAD
distance) by locating the minimum of the correlation
corr(u(0) − u(t), u(t)).

In the experiments below, we will compare several
values: Topt will stand for the optimal stopping time
which minimizes the distance between the filtered and
the ideal data (known in the experimental setup only),
and Dopt will denote the value of this optimal distance,
Dopt = MAD(u(Topt) − f̃ ). The symbol Tcorr will stand
for the stopping time estimated using the decorrela-
tion criterion (12), and Dcorr will represent the filtering
residual at such a stopping time. In some cases we also
compare the results to the estimation using the method
of Weickert (1999) which requires knowledge of the
signal-to-noise ratio (SNR) in the input image and it-
erates the diffusion until the filtered signal is in some
distance from the noisy input; the values obtained using
this method will be denoted TSNR and DSNR.
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The filtering methods we use in our experiments
include linear diffusion, nonlinear diffusion filter-
ing, anisotropic NL diffusion filtering, monotonicity-
enhancing NL diffusion, and iterated median filtering.
In the following paragraphs we review the basics of
these methods; more information can be found in the
cited references or in the thesis (Mrázek, 2001).

Linear diffusion (Iijima, 1962; Witkin, 1983) is de-
scribed by the equations

∂t u = �u, (18)

u(x, 0) = f(x). (19)

The diffusion starts from the input image f; solution
of the heat Eq. (18) at time t > 0 is equivalent to a
convolution of the input image with a Gaussian kernel,

u(x, t) = (G√
2t ∗ f )(x), (20)

where

Gσ (x) = 1

(2πσ 2)N/2
exp

(−xT x

2σ 2

)
. (21)

The linear diffusion reveals the drawback of smooth-
ing not only the noise, but also blurring the image edges
as the time t increases. To make inter-region smooth-
ing preferred to smoothing across edges, Perona and
Malik (1990) suggested to slow the diffusion at loca-
tions of larger gradient magnitude. In the regularized
form due to Catté et al. (1992), the resulting nonlinear
(NL) diffusion equation can be written as

∂t u = div(g(|∇uσ |) · ∇u), (22)

where uσ = Gσ ∗ u. In our experiments, we employ
the diffusivity function

g(s) = 1 − exp

(
c

(s/λ)m

)
. (23)

with m = 4 and the constant c
.= −2.33667 determined

so that the flux s · g(s) is increasing for s < λ and
decreasing for s > λ. This way, the parameter λ serves
as a threshold of gradient size: a smaller gradient is
diffused, positions of a larger gradient are treated as
edges. The value of this parameter can be tuned using
some image statistics (Perona and Malik, 1990; Black
et al., 1998).

As the isotropic NL diffusion (22) stops the diffu-
sion at image edges, it may leave some noise there. To

mitigate this effect, Weickert (1996, 1998) generalized
the diffusion equations into the anisotropic case. Then,
the diffusion process is not controlled by a scalar dif-
fusivity g, but by a diffusion tensor, and the smoothing
in some directions may be preferred. In the so-called
‘edge-enhancing’ variant, diffusion in the gradient di-
rection is still controlled by a diffusivity function g,
but a maximum smoothing is always allowed in the
coherence direction (i.e. perpendicular to the direction
of maximum gradient, and along edges). In the exper-
iments below, we denote the amount of smoothing in
the coherence direction by a parameter ϕ; its maximum
value proposed by Weickert is ϕ = 1 (the maximum
value of diffusivity g is also 1). When approximating
the continuous anisotropic equation by discrete algo-
rithms, this large value of ϕ may also cause some unde-
sirable blurring in other directions. We will therefore
also investigate the possibility to set ϕ to a smaller
value, ϕ ∈ [0.05, 0.2]; this is still sufficient to remove
noise from edges while allowing a better preservation
of brightness discontinuities.

The diffusion filters mentioned so far tend to attract
the input data to a (piecewise) constant model. A gen-
eralization of NL diffusion filters for piecewise linear
functions was proposed in Mrázek (2002b). This so-
called monotonicity-enhancing NL diffusion consists
of filtering first directional derivatives of the input data
by NL diffusion, and integrating the results.

As the last of the filtering methods tested, iterated
median filter replaces in each iteration the value of each
pixel by the median of the values in its local neighbour-
hood. In the experiments below, the median is com-
puted in a 3 × 3 window.

The images taken for the ideal signal in the experi-
ments are shown in Fig. 3. Some of them were created
artificially as discrete versions of constant, piecewise
constant or piecewise linear functions in 2D (Fig. 3(a)–
(d)), Fig. 3(e) represents a slide from MRI medical
dataset, Fig. 3(f)–(g) show photographic images. One
complication with the more realistic images 3(e)–(g) is
that they are likely to contain some amount of noise;
when we declare them to be noise-free, corrupt them
with additive noise and measure the distance of the fil-
tered data from them, the results will be biased by the
noise originally present.

A first example of the experimental performance of
the decorrelation criterion is seen in Figs. 4 and 5,
measured on cymbidium data (Fig. 3(f)) with var-
ied amount of additive Gaussian noise combined with
an anisotropic NL diffusion filter. The former figure
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Figure 3. Images used in the experiments.

Figure 4. The stopping time TSNR determined by the SNR method (dotted with crosses), and Tcorr obtained through the covariance minimization
(dotted with diamonds) compared to the optimal stopping time Topt (solid line). The graphs are plotted against the standard deviation of noise
in the input image; the two figures represent the same measurements for different iteration time-step sizes: τ = 0.1 (left), τ = 1 (right). (Data
from Fig. 3(f ), anisotropic NL diffusion.)

compares three stopping times: the optimal Topt, TSNR,
and our decorrelation-estimated Tcorr. All alternative
stopping times are computed for a series of input im-
ages with varied amount of noise present; the stan-
dard deviation of noise in the input data is repre-
sented by the horizontal axis of the graph. While the
SNR method easily underestimates or overestimates
the optimal stopping time (depending on the amount
of noise in the input data), the correlation minimiza-
tion leads to near-optimal results for all noise levels.
The two graphs are plotted for iteration time steps
τ ∈ {0.1, 1}.

The actually obtained quality measure MAD(u(T )−
f̃ ) is shown in Fig. 5, this time with τ = 0.5. You can
see that for all noise levels the correlation-estimated
time leads to filtering results very close to the optimal
values obtainable by the nonlinear diffusion.

3.2.1. Numerical Results. We measured the optimal
stopping time Topt and the estimated Tcorr for all images
in Fig. 3, corrupted with varied amount of either addi-
tive Gaussian or salt&pepper noise, and filtered using
several filters. The values of the ratio Tcorr/Topt, aver-
aged for each test image and each filter type across all
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Figure 5. Left: the MAD distance of the filtered data from the ideal noise-free image, MAD(u(T ) − f̃ ), using the SNR and the correlation-
minimization time selection strategies. Right: the difference between the estimated result and the optimal one, MAD(u(T ) − u(Topt)). (Data
from Fig. 3(f ), anisotropic NL diffusion.)

noise levels, are given in Table 1. Table 2 presents the
corresponding average relative filtering quality

Dcorr

Dopt
= MAD(u(Tcorr) − f̃ )

MAD(u(Topt) − f̃ )
. (24)

Similar measurements of the ratio Tcorr/Topt, but pre-
sented for each noise level with averaged contribution
of individual images, are given in Table 3.

You can see in Tables 1–3 that the estimation of
the stopping time T using the decorrelation criterion
(12) gives usually good results for linear, isotropic and

Table 1. Ratios between optimal and correlation-estimated stopping times, Tcorr/Topt,
averaged for each combination of test image and filtering method across all noise levels.
The noise was additive Gaussian in the range of between ‘no noise’ and SNR = 1 except
for the case f2, for which 0–70 per cent of pixels were corrupted with salt&pepper noise.

Tcorr/Topt

Image Linear diff. Iso. NL diff. Aniso NL diff. Mono NL diff. Iter. median

a 1 1 1 1.15 0.07

b 0.71 0.43 0.44 0.8 0.04

c 1.28 0.3 0.65 10.79 0.03

d 0.76 0.72 0.87 1.68 0.12

e 76.32 7.74 2.13 43.01 0.44

f1 1.68 1.49 1.35 21.44 2.53

f2 5.47 4.26 4.09 14.74 0.81

g 1.66 1.38 1.36 5.45 0.16

anisotropic NL diffusion, where the values of Tcorr lie
in most cases in the range [0.5Topt, 2Topt] (more pre-
cisely, the estimated values lie in this range in 68, 56,
and 71 percent of all experiments for linear, isotropic
and anisotropic diffusion, respectively). The estimation
results are more reliable when there is a higher amount
of noise in the input image.

The errors in the estimation of T lead usually to
only small relative decay in the filtering performance
compared to the optimal results: the relative error is
smaller than 20 percent in 93 percent of experiments
with the anisotropic NL diffusion filter, in 86 percent of
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Table 2. Relative filtering quality Dcorr/Dopt computed as a ratio between the filtering
residuals MAD(u(T ) − f̃ ) at the correlation-estimated and optimal stopping times T , aver-
aged for each image and filtering method across all noise levels.

Dcorr/Dopt

Image Linear diff. Iso. NL diff. Aniso NL diff. Mono NL diff. Iter. median

a 1 1 1 1.01 1.39

b 1.02 1.59 1.19 1.04 1.76

c 1.03 1.52 1.08 2.6 1.74

d 1.02 1.06 1.01 1.08 1.36

e 2.97 1.36 1.18 3.15 1.14

f1 1.07 1.04 1.03 3.18 1.29

f2 1.46 1.25 1.33 3.11 1.38

g 1.07 1.01 1.03 2 1.31

Table 3. Ratios between optimal and correlation-estimated stopping times, Tcorr/Topt, av-
eraged for each combination of noise level and filtering method across all test images.

Tcorr/Topt

SNR Linear diff. Iso. NL diff. Aniso NL diff. Mono NL diff. Iter. median

100 1.58 5.55 1.36 18.92 5.35

40 1.61 3.43 1.2 18.67 0.44

20 15.31 2.68 1.17 17.62 0.22

13.33 15.32 2 1.16 15.23 0.19

10 15.29 1.46 1.1 14.97 0.12

6.67 15.35 1.29 1.04 14.76 0.11

5 15.17 1.13 1.08 13.6 0.08

3.33 15.28 1.15 1.05 8.28 0.07

2.5 7.99 1.21 1.08 7.5 0.07

2 7.81 1.14 1.06 7.25 0.08

1.67 7.75 1.13 1.08 6.58 0.07

1.25 7.58 1.08 1.06 5.13 0.09

1 7.5 0.99 1.07 4.68 0.08

experiments with the linear diffusion, and in 71 percent
of experiments with the isotropic NL diffusion filter-
ing. Note also that this higher error with isotropic NL
diffusion is only relative to the optimal values obtained
by that filter, the absolute results of isotropic NL filter
with estimated stopping time (as measured by the dis-
tance MAD(u(Tcorr)− f̃ )) outperform other methods in
most cases; see the research report (Mrázek, 2002a) for
details.

The estimation works well with linear diffusion ex-
cept the MRI data (Fig. 3(e)). On the other hand,
the minimum of the signal-noise correlation does not
lead to near-optimal stopping times with monotonicity-

enhancing NL diffusion and with iterated median fil-
ters, perhaps with the exception of the data suited
directly for these types of filters (i.e. the piecewise
linear function, 3d, and the salt&pepper noise in ex-
periment f2, respectively). This worse performance
may be caused by the fact that unlike classical dif-
fusion filters which create information-reducing scale-
spaces and observe the maximum-minimum principle,
monotonicity-enhancing diffusion and iterated me-
dian filter often form a solution for which the cor-
relation corr(u(0) − u(t), u(t)) changes its sign into
negative values. Also, the median filtering does not
preserve the average grey level of the image, which
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Figure 6. Noisy input image for the experiment in Fig. 7.

was one of the theoretical assumptions on the filtering
methods.

3.2.2. Some Filtered Images. In this section, we
show some images obtained using diffusion filtering
combined with autonomous stopping time selection us-
ing the decorrelation criterion (12).

Figure 7. Comparing the different diffusion algorithms on the noisy data of Fig. 6, all with the stopping time selected autonomously by
minimizing the criterion (11): (a) linear diffusion, T = 3.8; (b) isotropic nonlinear diffusion, T = 125; (c) anisotropic NL diffusion, ϕ = 1,
T = 15; (d) anisotropic NL diffusion, ϕ = 0.2, T = 32.

The first example compares the results of different
diffusion algorithms filtering an originally black and
white image with non-Gaussian additive noise. The in-
put data are shown in Fig. 6: the noisy image was ob-
tained by adding noise of uniform distribution in the
range [−255, 255] to the ideal input (Fig. 3(c)), and by
restricting the noisy values into the interval [0, 255].

In Fig. 7, the noise is smoothed by linear diffu-
sion, isotropic nonlinear diffusion, and two anisotropic
diffusion filters; the grey-values are stretched to the
whole interval [0, 255] so that a higher contrast be-
tween the dark and bright regions corresponds to a bet-
ter noise-filtering performance. In all cases, the stop-
ping time was determined autonomously by the signal-
noise decorrelation criterion (12). You can see that in
all cases, although quite different filtering algorithms
were employed, the stopping criterion leads to results
where most of the noise is removed and the ideal sig-
nal becomes apparent or suitable for further processing;
we support this statement by showing the thresholded
content of the filtered images in Fig. 8.
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Figure 8. Thresholded versions of the images in Fig. 7.

The stopping criterion was designed to minimize the
distance between the ideal and filtered function. If vi-
sual quality was the goal to be achieved, we would
probably stop the diffusion later, especially as linear
diffusion (Fig. 7(a)) and the Weickert’s edge-enhancing
anisotropic diffusion (Weickert, 1998) with maximum
amount of diffusion in the coherence direction (ϕ = 1,
Fig. 7(c)) are concerned. We find however that the
MAD distance and visual quality are in a good agree-
ment in Fig. 7(d) which represents the result of the
edge-enhancing diffusion with a smaller amount of dif-
fusion in the coherence direction, ϕ = 0.2.

Figure 9. The cymbidium experiment. Left column (top to bottom): input images of SNR = 14.87 and 6.17. Right column: corresponding
images filtered by anisotropic NL diffusion. The stopping time T was chosen autonomously using the decorrelation criterion.

In the second example, noise of normal distribu-
tion was added to the image of a cymbidium flower
(Fig. 3(f)), and the noisy image was filtered using
anisotropic NL diffusion combined with our decorre-
lation method to determine the optimal T . The results
for two levels of noise can be seen in Fig. 9.

Next, we present an experiment with piecewise lin-
ear data. The ideal signal (the image 3d visualized as a
surface in 3D, where the original grey level is converted
to elevation) and the noisy input are drawn at the top
of Fig. 10. Such an increasing surface with discontinu-
ities is not easily filtered using classical diffusion filters
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Figure 10. Experiment with two-dimensional data. (a) Ideal data. (b) Noisy input. (c) Classical anisotropic NL diffusion, T = 4. (d) Anisotropic
NL diffusion for monotonicity-enhancement, T = 10. In (c) and (d), the stopping time was determined autonomously using the decorrelation
criterion.

which are based on the assumption that the data to be
filtered are piecewise constant. The image gradient is
larger on the sloped surface, and it is rather difficult
to tune the parameters of the classical nonlinear dif-
fusion to smooth the noise there without removing the
signal discontinuities. Piecewise linear or piecewise in-
creasing data can be recovered better using specialized
monotonicity-enhancing diffusion filters, see (Mrázek,
2001, 2002b).

The results of two anisotropic NL diffusion filters
with autonomous selection of T using the decorrelation
criterion can be seen in the bottom row of Fig. 10
(the classical one on the left and the monotonicity-
enhancing on the right). While the classical filter
leads to a rather rough result, trying to approxi-
mate the surface with piecewise constant patches, the
monotonicity-enhancing procedure is better suited for

this kind of data, combines well with the time-selection
procedure, and provides a good estimate of the ideal
signal.

3.3. Further Applications

So far, we have been addressing the problem of se-
lecting a good stopping time T from a sequence of it-
erations. However, the correlation between the filtered
signal and the filtering noise corr(u(0)−u(t), u(t)) car-
ries more information on the filtering process and can
be exploited further: to estimate the filtering quality,
to select parameters of the filtering process, or choose
between several alternative filtering methods.

Let us return for a moment to Fig. 2. At the begin-
ning of the diffusion filtering, the correlation coefficient
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declines fast until it reaches its minimum. If for some
data the graph behaves differently, it may serve as a
hint on some problems. As an example, we observed
that if there is only a small amount of noise in the in-
put image, the correlation corr(u(0)−u(t), u(t)) might
grow from the first iterations. In such a case, the itera-
tion time step τ has to be decreased adaptively and the
diffusion restarted from time t = 0 until the correlation
plot exhibits a clear minimum.

At its minimum, the term |corr(u(0) − u(t), u(t))|
measures the residual correlation between the filtered
signal and the filtering noise. It can be also understood
as a measure of the filtering quality obtained by a par-
ticular filter with a given set of parameters; hopefully,
a smaller residual correlation corresponds to a better
filtering quality (the correlation is zero for the ideal fil-
ter). Then, the minimum of |corr(u(0)−u(t), u(t))| can
be used to compare the filtering results of different fil-
ters or of one filter with different parameters, and may
help us choose the best filter for the given input data.
Some initial experiments in this direction are presented
in the report (Mrázek, 2002a).

4. Conclusion

We have developed a novel method to estimate the op-
timal stopping time for iterative image restoration tech-
niques such as nonlinear diffusion. The stopping time
is chosen so that the correlation of signal u(T ) and
‘noise’ u(0) − u(T ) is minimized. This method, which
we call decorrelation criterion is very general, being
based only on the assumptions that the noise and the
signal in the input image are uncorrelated, that nei-
ther the additive noise nor the filtering procedure alter
the average gray value, and that the filtering method
is suitable for that given type of signal. The estimation
results are more reliable for filters for which the sign of
corr(u(0) − u(t), u(t)) does not change. No knowledge
on the variance of the noise, and no training images are
needed to tune any parameters of the method.

We have analysed the theoretical properties of the
decorrelation criterion, and demonstrated that the re-
sults of both the filtering procedure and of our stopping
time estimation depend on the signal and noise prop-
erties, and on the filtering method used; in general,
neither the filtering quality measured by the distance
from the ideal signal, nor the values of the correlation
|corr(u(0)−u(t), u(t))| are guaranteed to exhibit a sin-
gle minimum. However, the experiments suggest that
in practical situations with diffusion filters the first lo-

cal minimum of the correlation is also the global one
(i.e. we can easily locate it if we continue the diffusion
iterations until the correlation starts to increase), and
the decorrelation criterion provides a good estimate of
the optimal stopping time for a wide range of noise
levels and filtering parameters. In some cases, the new
criterion even outperforms other time selection strate-
gies which use more a priori information e.g. about the
noise variance; still, if more information is available,
we would suggest to use it, compute several stopping
time estimates using different methods, and compare
the results to improve reliability of the estimation.

The minimum of the correlation |corr(u(0) −
u(t), u(t))| can be also used to evaluate the filtering
performance of the filter which created the sequence
u(t). This measure can then be used to adapt other pa-
rameters of the diffusion, or choose one of several fil-
ters which is most suitable for the input data. We have
mentioned some initial ideas in Section 3.3, but many
questions in this direction still have to be answered by
further research.

Appendix: Statistical Definitions

Let us review the notation and statistical definitions
used in the paper (see e.g. Papoulis (1990)). For the
statistical computations on images, we treat the pixels
of an image as independent observations of a random
variable.

The mean or expectation of a vector x is

x̄ = E(x) = 1

N

N∑
i=1

xi .

We define the variance of a signal x as

var(x) = E[(x − x̄)2].

The covariance of two vectors x , y is given by

cov(x, y) = E[(x − x̄) · (y − ȳ)].

The normalized form of the covariance is called the
correlation coefficient,

corr(x, y) = cov(x, y)√
var(x) · var(y)

.

To evaluate the filtering quality, we need the notion
of distance between two images. The Euclidean dis-
tance induced by the 2-norm seems most suited for
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theoretical analysis. In our experiments, we measure
the distance of two images by the mean absolute devi-
ation, MAD(x − y) = E(|x − y|), which is equivalent
to the 1-norm of the difference vector normalized by
the number of pixels in the image. Compared to the
Euclidean distance, the MAD distance is less sensitive
to outliers.
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