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Abstract. Most two-dimensional methods for wavelet shrinkage are ef-
ficient for edge-preserving image denoising, but they suffer from poor ro-
tation invariance. We address this problem by designing novel shrinkage
rules that are derived from rotationally invariant nonlinear diffusion fil-
ters. The resulting Haar wavelet shrinkage methods are computationally
inexpensive and they offer substantially improved rotation invariance.

1 Introduction

Wavelet shrinkage is a fast nonlinear method for discontinuity-preserving im-
age denoising [I]. It is based on the idea to decompose an image in terms of a
wavelet basis, to shrink all coefficients with small magnitude, and to reconstruct
the filtered image from the shrunken coefficients. The success of this procedure
is based on the assumption that the original image can be represented by a rela-
tively small number of wavelet coefficients with large magnitude, while moderate
Gaussian noise affects all coefficients, although to a less severe amount.

Several ways have been proposed to improve wavelet shrinkage. One of them
is to make the shrinkage translation invariant [2]. Very recently it also became
clear that shift-invariant wavelet denoising can be improved substantially by it-
erating [3/4J5]. While these ideas work well for processing 1D signals, filtering
of 2D images creates an additional, but very fundamental problem: the shrink-
age should be rotationally invariant. Unfortunately, this is not the case for the
frequently used separable approaches. Several attempts to create wavelet trans-
forms with improved rotation invariance have appeared in the literature, includ-
ing the directional cycle spinning [6], complex wavelets [7], or the elaborated
edgelet and curvelet transforms [8]. These ideas are not only relatively difficult
to implement, most of them are also computationally significantly more complex
than traditional shift-invariant wavelet shrinkage in 2D.
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In the present paper we address this problem by proposing a novel class of
shift-invariant 2D wavelet shrinkage methods for iterated image denoising with
a high degree of rotation invariance. This class is computationally as simple as
classical shift-invariant wavelet shrinkage. It is inspired by considering a connec-
tion between wavelet shrinkage and nonlinear diffusion filtering that has already
proved fruitful in the 1D case [9]. Two-dimensional nonlinear diffusion filtering
is based on a continuous differential equation that is rotationally invariant. From
numerical analysis it is well-known how to discretise such equations in a con-
sistent way such that rotation invariance is approximated well. By identifying a
discrete diffusion filter with a wavelet shrinkage formulation, we can find novel
shrinkage rules that lead to substantially improved rotation invariance.

The paper is organised as follows. Sections 2] and [3] provide a brief introduc-
tion to translation-invariant Haar wavelet shrinkage, and nonlinear diffusion in
2D. The connections between the two procedures are exploited in Section [4] to
establish the conditions on diffusivity and shrinkage functions under which the
two methods (restricted to one-step / one-scale) are equivalent. In Section 5| we
evaluate the rotation invariance of the new multiscale iterated wavelet filter. The
paper is concluded with a summary in Section [6}

2 Wavelet Shrinkage

The discrete wavelet transform represents a one-dimensional signal f in terms
of shifted versions of a dilated lowpass scaling function, and shifted and dilated
versions of a bandpass wavelet function. In this paper we restrict our attention
to the discrete transform with Haar wavelets, well suited for piecewise constant
signals with discontinuities. The Haar wavelet transform is described by a low-
pass filter L with coefficients (%, %), and a high-pass filter H with coefficients
(2. ~2) [0,

The easiest way to design a two-dimensional wavelet transform is to use
separable filters [10]. The 2D wavelet transform then describes a 2D signal f =
(fi;) with ¢ = 0,....N; — 1 and j = 0,...,N, — 1 by its low-pass component at
level n, v™, and three channels of wavelet coefficients w' Wé and wéy at levels
[l =1,...,n. This wavelet representation is created by an alternating application
of the one-dimensional low-pass and high-pass filters L and H in the directions
of axes = and y:

v = L(x) « L(y) + V', wy 't = L(x) * H(y) * v, (1)
wlitl = H(z) * L(y) * V!, ng = H(x)* H(y) * V', (2)

with the initial condition v® = f. For image smoothing, the wavelet coefficients
W, Wy, Wy, are subjected to a shrinkage function S, and the filtered image u is
reconstructed from the shrunken coefficients using an inverse procedure to (|1)—
-

Let us now consider a single decomposition level, and the wavelet shrinkage
steps which contribute to the output pixel u; ;. Using the translation-invariant
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Fig. 1. The first-level Haar wavelet coeflicients expressed using 3 x 3 masks
centered at the pixel ¢, j. The masks represent multiplication of the input signal
with the given coefficients, so e.g. w® = 1f; i + 3 fi i1 — S fiv1j — Sfiv1j41-

scheme [2], we have to consider four 2 x 2 neighbourhoods in which the pixel (3, )
is involved. We denote by upper index « the neighbourhood {7,i+1} x {j, 7 +1};
by (3 the positions {i,i+1} x{j—1, j}; by 7 the neighbourhood {i—1,i} x{j, j+1};
and, finally, by ¢ the positions {i — 1,4} x {j — 1, j}.

The input signal in neighbourhood « is first transformed into v, wy, wg
and wg,; see Fig. |I] for the definition of the corresponding masks. The wavelet
coefficients wy, wg, wy, are then subjected to a shrinkage function S, and the
(i,7) pixel of the filtered signal belonging to the neighbourhood « is obtained
using

1
ug; = 3 (0™ 4+ S(wy) + S(wg) + S(wg,)) - (3)

Similar expressions can be derived for the results arising from the neighbour-
hoods 3, v and §; the necessary masks are shown in Fig. [I] To obtain the final
result of a shift-invariant 2D Haar wavelet shrinkage on a single level, the four
intermediate results u®, u? ., u) . and uf’j have to be averaged. The complete

(2% R % R 5
formula for a single-level Haar wavelet shrinkage filter then reads

Ui, j :é(va + 0P 0 + 00 + S(wg‘) + S(wg) + S(wg‘y) — S(wg) + S(wf)
— S(wf,) + S(w)) — S(w)) — S(w],) — S(w)) — S(w)) + S(wl,)). (4)
3 Nonlinear Diffusion

The basic idea behind nonlinear diffusion filtering [II] is to obtain a family
u(zx,y,t) of filtered versions of the signal f(xz,y) as the solution of a suitable



diffusion process
u = div (g(|Vul?) Vu) (5)

with f as initial condition: u(z,y,0) = f(z,y). Here subscripts denote partial
derivatives, and the diffusion time ¢ is a simplification parameter: larger values
correspond to more pronounced filtering.

The divergence expression on the right hand side of can be decomposed
in 2D by means of two orthonormal basis vectors x; and xs:

2
div (9(|Vul?) Vu) = 3 0, (9([Vul?) 0, u) - (6)

Choosing the diagonal directions x; := (%, %) and o = (%,f\%), and

replacing the derivatives in , @ by finite differences, we can write the explicit
finite difference discretisation of the nonlinear diffusion as

k k
uy o —ul
k+1 _ k 1,J %]
wt =T Yy 910 — 5 (7)
(1,J)€D(i.5)

Here the upper index k denotes solution at time k7 with 7 standing for the time

step, the set D(i, j) contains the diagonal neighbours of pixel (i, j), and the grid

size is assumed to be 1. The term g; ; ~ g(|Vu(x,y)|?)| e=+n,/2 represents the
y=(+7)/2

diffusivity belonging to the connection between pixels u; ; and uy j, where the
gradient magnitude can be estimated from discrete data using 2 x 2 masks:

[Vul* = (0:u)* + (9yu)?

2 2
(Wi Uy — UL — UL n Uij — Ui, g T UL; — UL,J 8)
2 2 '

This diagonal discretisation represents a consistent finite difference approxima-
tion to the continuous equation. It has been used successfully by Keeling and
Stollberger [12]. Since its spatial consistency can be shown to be of second order,
the rotation invariance of the continuous equation is approximated well.

4 Diffusion-Inspired 2D Wavelet Shrinkage

Let us now investigate the connection between a single-level wavelet shrinkage
and an explicit diffusion iteration . To this end, we consider the first diffu-
sion iteration, starting from the initial signal f = (f; ;) and creating a solution
u = (u;,;). We will express the diffusion iteration in the terms of the wavelet
coefficients from Section 21

For the first iteration, becomes

g = fij+T Z 91,7 % 9)

(I1,J)€D(i,5)



The first term on the right-hand side can be rewritten as
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+wf—wg—wfy—w;+w;’—w;y—ww—wy+w$y) (10)

where the 3 x 3 boxes stand for a mask multiplication with the input signal, and
the v and w represent the wavelet coefficients for position (i, j); see Fig. |1l Then,
the gradient magnitude for the diffusivity calculation can be estimated from the
wavelet coeflicients w, and wy:

gr.0 = g((w)? + (wy)?) (11)

where w = a'if (I,J) =(i+1,j+ 1), w= g for (I,J) = (i+1,5 —1), v for
(t—1,7+1), and 6 for (i — 1,5 — 1). Finally, the last term from @[) may be
expressed using wavelet coefficients as

fr.g— fij € {~wy —wy, —wf) +w)

& 8
Yy w; —wy) Wy, +wy} (12)

Yy

where (I, J) is assigned to the expression involving «, 3,7 or § as above.
To summarise @7 , we can write a single iteration of nonlinear diffusion
using the wavelet decomposition components v and w in the form

1
ui ;= g(vo‘+v5+v“’+v‘s—|—(wg‘—i—w;‘)(l—éhgo‘)—f—wg‘y—i—(wf —wg)(1—47'gﬁ)
— wfy + (—w) +w))(1 —47g”) —w], + (—wS — wg)(l —47¢%) + wiy) (13)

where the symbol g stands for g((w%)? + (w;”)g), w € {a,B,7,d}.
Comparing the diffusion iteration and the single-level wavelet shrink-
age , we observe that the two equations are equivalent under the conditions

S(uy) = wy (1= 47 g((ws)* + (wy)?)), (14)
S(wy) = wy (1 =47 g((ws)* + (wy)?)) (15)
S(wy,) = Wy, (16)

Equations (14)-(16) connect the diffusivity function g controlling nonlinear dif-
fusion to the shrinkage function S of wavelet shrinkage. If these conditions hold
true, the two two-dimensional procedures (limited to a single scale / single iter-
ation) are equivalent.

The equations , are similar to the one-dimensional situation which
was analysed in detail in [9]. The surprising fact in the 2D equations (14])—(16])
is the use of different shrinkage rules for the different channels of wavelet coeffi-
cients, while the classical wavelet shrinkage applies the same shrinkage function
S to each of them separately. In 77 the shrinkage of w, and w, is inter-
connected via the common estimation of the image gradient; the third channel,
Wgy, is left by unshrunken.



Fig. 2. Experiments on rotation invariance. Left: input image; center: filtered
with classical iterated shift invariant wavelet shrinkage; right: method with chan-
nels coupled using 7. Top: ring image, 20 iterations on 8 levels of the
wavelet decomposition. Bottom: head image, 100 iterations on 4 levels.

These three shrinkage rules inherit a fundamental property from their dif-
fusion origin: the rotation invariance of the nonlinear diffusion filter. It holds
exactly for the grid size tending to zero, but we shall see that this property is
also approximated well in realistic discrete situations with non-vanishing grid
size. Our diffusion-inspired idea to improve the invariance to rotation by cou-
pling the shrinkage of wavelet channels as in f represents a very simple
solution which hardly increases the computational complexity of a wavelet filter.

The diffusion—wavelet connection has been shown for a single iteration of a
single-scale filter. In general, nonlinear diffusion is a single-scale iterative process,
while wavelet shrinkage finds the solution using a single step on multiple scales. A
hybrid multi-scale iterated filter seems a powerful and efficient alternative [5J4].
It can be understood either as a nonlinear diffusion on the Laplacian pyramid of
the signal [I3], or as iterated shift-invariant wavelet shrinkage [3]. The rotation
invariance of such iterated multiscale filter is tested in the next section.

5 Experiments on Rotation Invariance

In this section we compare the rotation invariance of two wavelet-based filters:
the classical iterated translation-invariant 2D wavelet shrinkage with sep-
arate shrinkage of the coefficient channels, and the novel filter with shrinkage
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Fig. 3. Evaluation of the errors in rotation symmetry of the filtered ring image.
Single-step (left), and iterated (right) shift-invariant wavelet shrinkage.

rules coupled according to (14)—(16). In all cases, we employ the Haar wavelet
basis combined with hard thresholding: all coefficients with magnitude below a
specified threshold 0 are set to zero. The wavelet decomposition is calculated on
multiple scales.

In the first experiment, we start from the rotationally symmetric ring image
(Fig. [2| top left). Examples of images obtained after 5 iterations of each method
are seen in Fig. [2| top. One can observe that using the coupled shrinkage (14)—
, the filtered result reveals a much better rotational symmetry. The difference
between the two methods is further visualised on a medical image at the bottom
of Fig.[2l At a comparable level of image simplification, the new method is able
to avoid the blocky artefacts of the classical transform.

The graphs in Fig. [3] present a numerical evaluation of the errors in rotational
symmetry of the filtered ring image. The measure of asymmetry was calculated
as a sum of signal variances along circles of varied diameter, centered at the
center of rotation of the input image. In agreement with the design principles,
the rotation symmetry of the iterated filter with coupled channels is very good
(Fig. [3] right), but the coupled shrinkage outperforms the classical transform
even using a single step of the multi-scale procedure, if the shrinkage parameter
6 is not bigger than 50% of the value which flattens the image completely (Fig.
left).

6 Conclusions

In this paper we have addressed one of the main problems that are encountered
when 2D wavelet shrinkage methods are to be used: the design of techniques
with good rotation invariance. To this end we have established a connection
between shift invariant Haar wavelet shrinkage on a single scale and an explicit
discretisation of a nonlinear diffusion filter. Since diffusion filtering approximates
a rotationally invariant continuous process, we have obtained a technique for



constructing shrinkage schemes with a high degree of rotational invariance. It
turned out that all one has to do is to modify the shrinkage rules such that
two of the wavelet channels are shrunken in a coupled way while the third one
is left unaffected. The resulting diffusion-inspired wavelet shrinkage represents
a straightforward and computationally efficient solution to the problem of de-
signing rotationally invariant iterated multiscale wavelet shrinkage filters. Our
experiments have shown that in this respect it clearly outperforms classical 2D
shrinkage methods. In our future work we plan to investigate extensions of this
design principle to other wavelets and other discretisations of nonlinear diffusion
filters.
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