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Abstract Methods modeled by partial differential equa
tions (PDEs), and wavelet-based shrinkage procedures b
long to the most successful approaches to nonlinear sign
processing. The two groups of methods are quite differe
on the first glance: PDE based methods find the solution
eratively, while wavelet shrinkage performs a single step o
multiple scales of the signal.

On the examples of total-variation (TV) diffusion on on
hand, and translation-invariant soft Haar wavelet shrink
age on the other, we study the role of iterations and mul
ple scales for nonlinear filtering. Iterations and multi-scale
processing go in the same direction in the sense that th
allow simple, local operations to lead to global effects. W
demonstrate that it may be advantageous to combine bo
and create a powerful and efficient iterative multi-scale non
linear procedure.

1 Introduction

For the task of signal simplification or restoration, we typ
ically want to remove insignificant, small-scale variation
while preserving important features such as discontinuiti
or edges. A good discontinuity-preserving solution cann
be obtained by any linear method. From the previously pr
posed nonlinear methods, we concentrate in this paper
total variation (TV) diffusion, and translation-invariant sof
Haar wavelet shrinkage.

TV diffusion filter (also called total variation flow) [1, 2]
belongs to the class of nonlinear diffusion methods whic
start from the noisy input, and the possible solution deve
ops with a process described by a nonlinear partial differe
tial equation. In the discrete setting, the nonlinear equati
is approximated by local operations on the data samples, a
these operations have to be iterated many times in order
approach the desired continuous behaviour: signal smoo
ing with preservation of important structures, such as di
continuities.

Wavelet transform expresses the signal in terms of wave
coefficients, describing the signal variation at different scal
this transform comes down to a simple change of basis.
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the basis is chosen properly, a signal will be described
only a few significant wavelet coefficients, while moderat
white Gaussian noise pollutes all the wavelet coefficients
a small extent. Signal denoising by wavelet shrinkage [6, 5]
starts from this assumption, and creates a smoothed vers
of the processed signal by removing smaller wavelet coef
cients on all scales.

Both the TV flow (and other nonlinear diffusion meth
ods) and wavelet shrinkage represent very successful n
linear filters serving the same purpose. However, not mu
research has been devoted to their comparison. Steidet
al. proved in a recent paper [11] the equivalence of a dis-
crete algorithm for TV flow and translation-invariant sof
Haar wavelet thresholding in 1D, on the conditions that th
wavelet transform was limited to a single decompositio
scale, and that the result was obtained using a single it
ation. However, both classical wavelet filters and TV flow
algorithms differ from this setting: the wavelet transform i
computed on multiple scales, and the TV flow scheme is
erated.

In this paper we concentrate on this significant differenc
(single scale and many iterations of TV flow, versus mu
tiple scales and single step of wavelet shrinkage), and
to clarify the practical meaning of iterations and multi-sca
processing for the above mentioned nonlinear filters. W
will see that the result of these two approaches is not ide
tical; however, iterations and multiple scales go in the sam
direction in the sense of allowing local filtering operation
to lead to global effects. Combining both approaches see
advantageous: we introduce a hybrid, multi-scale iterat
nonlinear filter, and demonstrate experimentally that it ma
retain the high degree of nonlinearity and adaptability of th
iterated method while using much fewer iterations than ne
essary at a single scale. This leads to a higher computatio
efficiency.

A related topic has been studied by Chambolle an
Lucier [3] who showed that continuous wavelet shrinkag
creates a scale-space. Our work differs from their in conce
trating on the connection between iterated wavelet shrinka
and TV flow in the discrete setting, and comparing the pra
tical properties of the two filters.

http://www.mia.uni-saarland.de
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The paper is organized as follows. Sections2–3 give a
slightly more detailed introduction to TV flow and wavele
shrinkage. The role of iterations and scales for the nonline
filters are discussed in Section4. The practical impact of
multiple scales and iterations on the filtering result is signa
dependent; however, the experiment in Section5 suggests
that a multi-scale iterated wavelet filter might be used as
highly efficient approximation to the TV flow filter. The de-
noising performance of single-scale iterated, multi-scale
erated and multi-scale noniterated filters is compared in S
tion 6. Section7 concludes the paper.

2 TV flow

The TV flow belongs to the class of nonlinear diffusion
methods which can be described by the following partial di
ferential equations:

∂u

∂t
= div (g(|∇u|)∇u) onΩ× (0,∞) (1)

u(0) = f onΩ (2)

∂u

∂n
= 0 on∂Ω× (0,∞) (3)

wheref is the original (noisy) signal,u the smoothed signal
which evolves with timet, Ω is the signal (or image) do-
main, andn stands for the normal to the domain boundar
∂Ω. In words, the solutionu starts from the noisy signalf
at timet = 0 (2), and evolves locally in time with the flux
to the neighbouring positions (1); employing homogeneous
Neumann boundary conditions (3), no flow passes through
the domain boundary. The diffusivity functiong in (1) con-
trols the amount of smoothing: typically, it is a positive
decreasing function of the signal gradient magnitude, a
the resulting procedure tends to preserve important disco
tinuities while removing small-scale fluctuations caused b
noise. For TV flow [1, 2], g = 1

|∇u| is chosen.
When modeled numerically, the TV diffusion equations1)–

(3) have to be discretized both in space and time. The so
tion u is then computed iteratively, leading to a series of s
lutionsuk ≈ u(kτ) whereτ is the iteration time step. The
resultuk+1 is created fromuk by operations with mostly
local effect: for the simplest, explicit scheme, a pixel influ
ences only its neighbours.

3 Wavelet shrinkage

The discrete wavelet transform represents a one-dime
sional signalf(x) in terms of shifted versions of a dilated
low-pass scaling functionφ(x), and shifted and dilated ver-
sions of a bandpass wavelet functionψ(x). For orthogonal
wavelets, this gives

f(x) =
∑
i∈Z

〈
f, φM

i

〉
φM

i +
M∑

j=−∞

∑
i∈Z

〈
f, ψj

i

〉
ψj

i (4)

where the lower indexi stands for spatial position, up-
per indexj represents the level of scale (up to a chose
maximumM ), a scaled wavelet is obtained byψj

i (x) =
2−j/2ψ(2−jx − i), and〈·, ·〉 denotes the inner product in
r

-

-

-

-

L2(R). If the measurementsf are corrupted by white Gaus-
sian noise, the noise will effect all the wavelet coefficien
by a small amount, while the original signal is generally de
termined by a few significant wavelet coefficients. Wavele
shrinkage therefore attempts to eliminate noise from the s
nal using the following procedure:

1. Analysis: transform the noisy dataf to the wavelet co-

efficientsdj
i =

〈
f, ψj

i

〉
and scaling function coefficients

cMi =
〈
f, φM

i

〉
.

2. Shrinkage:apply a shrinkage functionSθ to the wavelet
coefficientsdj

i .

3. Synthesis:reconstruct a denoised versionu of f from the
shrunken wavelet coefficients:

u(x) =
∑
i∈Z

〈
f, φM

i

〉
φM

i +
M∑

j=−∞

∑
i∈Z

Sθ

(〈
f, ψj

i

〉)
ψj

i .

(5)

Wavelet shrinkage was developed mainly by Donohoet al.
[6, 5]. In this paper, we limit our attention to Haar wavelets
well suited for piecewise constant signals with discontinu
ities. The Haar wavelet and scaling functions are given r
spectively by

ψ(x) = 1[0, 1
2 ) − 1[ 12 ,1), (6)

φ(x) = 1[0,1) (7)

where1[a,b) denotes the characteristic function, equal to
on [a, b) and zero everywhere else. From the existing shrin
age functionsSθ, we concentrate on soft shrinkage [5]:

Sθ(x) =

{
x− θ sgn(x) if |x| > θ

0 if |x| ≤ θ.
(8)

The shrinkage parameterθ is chosen with respect to the
amount of noise in the input signal. The classical ap
proach [9] is to use the same thresholdθ for the shrink-
age function at each spatial level of the coefficients. How
ever, using a uniform threshold in this way leads to oscilla
tions (Gibbs phenomenon) near discontinuities of the reco
structed signal. It was shown in [11] that for soft wavelet
shrinkage, these oscillations are significantly reduced if w
use a different thresholdθm at each levelm according to the
rule

θm =
θ

√
2

m−1 . (9)

We employ this scaled thresholding in all multiscale shrink
age experiments below.

Let us stress once more two notions that will appear
the text. We will callscaleor level the spatial scale of a
wavelet coefficient; scale was denoted by upper indexj in
(4), (5). The wavelet representation of a discrete signal m
consist of coefficients fromj = 1 up to a chosen maximum
level M . The maximum level may lie in the rangeM ∈
{1, . . . , log2(N)} whereN is the input data size. (On the
assumption thatN is a dyadic length, all wavelet coefficients
at scales higher thanlog2(N) are equal to zero.)
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Figure 1: A simple input to demonstrate the role of iterations an
spatial levels.

Then, we will use the termiteration for the cycle consist-
ing of forward wavelet transform, shrinkage of the wavele
coefficients using a thresholdθ, and inverse wavelet trans-
form. One such iteration starts from a signalu(t) and creates
a signalu(t+ θ). Successively repeating these iteration cy
cles, we obtain aniterated wavelet shrinkage filtering pro-
cedure. Note that iterating the wavelet shrinkage is mean
ingful only if we are using a shift-invariant formulation of
the transform, where some form of averaging of shifted ve
sions of the filtering result takes place (see cycle spinning
Coifman and Donoho [4], or an efficient implementation us-
ing the ‘algorithmèa trous’ [8, 7]). If a classical (decimated)
discrete transform is employed,n iterations of soft shrink-
age with parameterθ described above collapse to a single it
eration with a shrinkage parameternθ. With shift-invariant
transform, the results of the iterated and non-iterated filte
ing procedures will not be identical.

We have mentioned that a single-scale iterated soft Ha
wavelet shrinkage is equivalent to a discrete algorithm f
TV flow. From now on, we use only the wavelet terminolog
with scales and iterations to describe the methods discuss

4 Role of iterations and scales

The role of iterations and of the number of spatial scales e
ployed can be best explained by an example. Figure1 shows
simple input data, Fig.2 presents the influence of iterations
and number of spatial levels on the shrinkage result.

With the single-level decomposition (left column o
Fig. 2), one iteration of the shrinkage has a local effect onl
We have to repeat the iteration many times (or, in oth
words, to divide the total thresholdθ into many small steps)
to (i) spread the information globally over the function do
main (assemble local effects into global action), and (ii) e
sure that the resulting process corresponds to the continu
model of a TV flow.

Using multiple levels of wavelet decomposition, alread
a single iteration results in global effects (Fig.2 top centre
and right). Iterating the multi-scale procedure further fla
tens homogeneous regions, as desired. Note on the o
hand that the multiscale wavelet filter does not correspond
the explicit discretization of TV diffusion precisely; it was
shown in [10] that the multiscale approach corresponds
the TV flow on a Laplacian pyramid of the signal. Values a
more distant positions influence each other in the multisca
wavelet setting, whereas in the explicit scheme for TV flo
only the neighbours communicate. As an example, the
r
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-

s

er

-

gions to the left and to the right from the peak have differe
sizes, and with TV flow would not end at the same heig
(Fig. 2 right).

In both single- and multi-level cases, too small a numb
of iterations has the effect that a diffusion-like smoothin
process dominates over the TV flow, and discontinuities a
blurred. How many iterations are sufficient depends on t
particular signal, its dimension, and on the number of d
composition levels.

Unfortunately, the exact behaviour of single- and mult
scale iterated transforms is signal-dependent. In the next t
sections we study the practical filter properties on gene
examples of noisy data with discontinuities.

5 Experiment on iterations vs. levels

We have seen in so far that iterated wavelet-shrinkage tra
forms on a single and multiple levels may provide sim
ilar results, although at different values of the (accumu
lated) threshold parameter.1 We have also experienced tha
fewer iterations of the multi-level transform were sufficien
to yield an effect for which more iterations of a single-leve
transform were needed. In this section we analyse this po
in more detail, and study the influence of the number of i
erations and the number of levels on filtering results.

We start the filtering process from the noisy data in Fig.4,
run the iterated filters (with the chosen parametersM andθ),
and stop when the filtered signal is closest to a precompu
’ground truth’ obtained using single-level iterated filter with
a small time step (M = 1, θ = 0.001, 53800 iterations;
this filter represents the TV flow). Numerical evaluation o
the results obtained with varied number of levels and vari
iteration time step can be seen in Tables1 and2.

Table 2 gives the values of the accumulated thresho
T (sum of single-iteration thresholdsθ over all iterations)
at which the filtered signal was closest to the ground trut
Note how the scaling of the accumulated threshold depen
on the maximum levelM . Using the scaled thresholds from
formula (9), we should ideally (i.e. according to theoreti
cal spatial scaling between levels) approach the single-sc
result of accumulated thresholdT using a multi-scale itera-
tive shrinkage with a thresholdT/M , on two assumptions:
that we use enough iterations to approximate the continuo
process, and that the filtered signal contains equal amo
of energy at all levels up toM . This scaling rule is approxi-
mately valid in the first two rows of Table2 up toM = 4.

We can see in Table1 that with enough iterations, fil-
ters with any number of levels lead to only small relative e
ror (measured withl1 norm from the single-level result with
θ = 0.001). Interesting effect can be observed if the numbe
of iteration decreases: then, the filters with small number
spatial levels deteriorate faster. As one iteration of the filt
has the complexity of orderO(M · N), we would propose
to balance the number of iterations needed to obtain a d
sired precision and the number of levels. A good solutio

1There is not a simple correspondence between the threshold, or ‘tim
of the iterated transforms using different number of levels. Generally, usi
a thresholdθ with a multi-level filter changes the signal more than for the
same threshold and a single-level transform, but the exact scaling is sig
dependent.
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Figure 2: Demonstration of the role of iterations and scales; the chosen shrinkage threshold was divided into (top to bottom) 1, 20, 1000
iterations. Left column: single scale,T = 1. Second column: two scales,T = 0.66. Third column: three scales,T = 0.60. Right column:
four scales (maximum),T = 0.58. The bottom left figure corresponds to TV flow, top right to classical wavelet shrinkage.
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Figure 3: Piecewise constant signal, length 4096, noise of SNR=8 filtered by several procedures. Top left: original without noise. Top right:
result of iterated single-level filter (equivalent to TV flow), 19564 iterations withθ = 0.001, SNR=25.2. Bottom left: filtered in single step
on 12 levels (classical wavelet shrinkage),θ = 3.0, SNR = 20.9. Bottom right: iterated multi-scale procedure, 12 levels, 3011 iterations with
θ = 0.001, SNR = 24.8.
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Number of levels
θ 1 2 4 8 13
0.01 0.13 0.15 0.17 0.28 0.30
0.1 0.53 0.43 0.31 0.35 0.36
1 1.08 0.84 0.53 0.47 0.49
2 1.35 1.02 0.59 0.50 0.52
5 1.75 1.37 0.73 0.72 0.75
10 2.06 1.66 0.94 1.06 1.10

Table 1: Relative error in terms ofl1 norm (per cent), measured
from the ‘ground truth’ TV flow result obtained on a single leve
using 53800 iterations withθ = 0.001.

Number of levels
θ 1 2 4 8 13
0.01 53.7 27.2 14.4 11.3 11.1
0.1 58.2 28.0 14.5 11.2 11.2
1 129.0 49.0 18.0 13.0 13.0
2 148.0 62.0 20.0 14.0 14.0
5 160.0 80.0 25.0 20.0 20.0
10 240.0 90.0 40.0 30.0 30.0

Table 2: Accumulated threshold (or ‘time’) needed to get neare
to the ‘ground truth’ using filters with varied number of spatia
levels and with varied iterated thresholdθ.

to reduce computational complexity may be represented
a filter of medium number of spatial levels (e.g.≈ log2(N)

2 );
the dependence between relative precision and computa
cost is plotted in Fig.5.

6 Signal-denoising experiments

In the next experiment, we run several types of wavele
based filters on a noisy version of theblocksdata in Fig.3
top left. The following types of soft-shrinkage wavelet
based filters were employed:

Single-level iterated. The wavelet decomposition is per-
formed at the finest spatial scale only; the cycle (decom
position + coefficient shrinkage + inverse transform) i
iterated, taking the filtered result from the previous ste
as input for the next iteration. This iterative procedur
corresponds to a numerical scheme for TV flow.

Multiple levels, single iteration. This is the classical pro-
cedure for shift-invariant soft wavelet shrinkage: coe
ficients are obtained on multiple scales (herelog2(N)
whereN is the number of data samples), soft threshold
ing is applied to all of them (with scaled thresholdsθm at
each spatial levelm, as given by Eq. (9)), and the result
is transformed back to the original space.

Multiple levels iterated.
An iterated version of the multi-level procedure.

In all cases of iterated transforms, the shrinkage parame
of a single iteration was set to a small value (θ = 0.001) so
that the discretization effects can be neglected.

The filtered signals are presented in Fig.3. The best
restoration result in terms of signal-to-noise ratio (define
n

r
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Figure 4: Piecewise polynomial signal with additive Gaussia
white noise (SNR = 21.9).
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Figure 5: Computation time vs. relative error of the procedure fo
different number of spatial levels (see legend in the graph) and
varied time-stepθ (increasing from right to left). At the price of a
factor 4 in the relative error, the computations can be speeded
by a factor 100: instead of 5000 iterations of a single-level filte
(with θ = 0.01), 18 iterations of a 4-level filter (usingθ = 1).
(Computation time in seconds, matlab code, AMD Athlon 1800+

by SNR = 20 log10
|a−a|2
|n|2 , with a standing for the ideal

signal with mean̄a, andn representing noise) is obtained
using the single-level iterated transform (Fig.3 top right,
SNR=25.2), and a similar result is reached using iterat
transform on multiple levels with scaled threshold (Fig.3
bottom right, SNR=24.8). Although the two methods ar
not exactly equivalent, they also reveal a high level of visu
similarity, and provide a good piecewise-constant approx
mation to the desired signal. The multi-level transform wit
scaled threshold and a single iteration (Fig.3 bottom left,
SNR=20.9) performs worse.

Another noise-filtering example, this time on a 2D med
cal image, is presented in Fig.6. Also there, the single-scale
and multi-scale iterated procedures reveal a high level of
sual similarity, although at different values of the accumu
lated shrinkage parameter.



Figure 6: Left: noisy input image. Middle: filtered with single-level iterated soft shrinkage, 200 iterations withθ = 1. Right: iterated
wavelet shrinkage using 4 scales and 15 iterations withθ = 10.
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7 Conclusion

In this paper we studied practical properties of a wavele
based multi-scale iterated nonlinear filter: iterated shif
invariant soft Haar wavelet shrinkage with scaled threshol
between levels. Depending on the chosen parameters,
filter represents a discrete scheme for total variation flo
(single scale, many iterations) or classical wavelet shrinka
(single iteration on multiple scales). In this framework, w
examined the role of multi-scale processing and iteratio
for nonlinear filters. Iterations and multi-scale processin
have a similar effect in the sense that they allow simple, l
cal operations to lead to global effects. We have shown th
combining both is advantageous: a multi-scale iterated filt
retains the high degree of nonlinearity and adaptability
the iterated method while using much fewer iterations tha
necessary at a single scale. Although the two methods
not identical in theory and the actual performance is signa
dependent, we have seen that an iterated soft Haar wav
shrinkage with a moderate number of scales can be used
a computationally efficient approximation to TV flow.

TV flow is only one example of nonlinear diffusion meth
ods modeled by partial differential equation, and the meth
presented here is not necessarily the best of wavelet-ba
filters. In the future we plan to explore more connection
between the two worlds and contribute to a fruitful exchang
of ideas between them.
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trous” to compute the wavelet transform. In
J. Combes, A. Grossman, and P. Tchamitchian,
editors,Wavelets: Time-Frequency Methods and Phase
Space, pages 298–304. Springer-Verlag, 1987.

[8] M. Holschneider, R. Kronland-Martinet, J. Morlet,
and P. Tchamitchian. A real-time algorithm for signa
analysis with the help of the wavelet transform. In
J. Combes, A. Grossman, and P. Tchamitchian,
editors,Wavelets: Time-Frequency Methods and Phase
Space, pages 286–297. Springer-Verlag, 1987.

[9] S. Mallat. A Wavelet Tour of Signal Processing.
Academic Press, 1998.

[10] G. Steidl and J. Weickert. Relations between soft
wavelet shrinkage and total variation denoising. In
L. van Gool, editor,Pattern Recognition, volume 2449
of Lecture Notes in Computer Science, pages 198–205.
Springer, Berlin, 2002.

[11] G. Steidl, J. Weickert, T. Brox, P. Mrázek, and
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