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On Improving the Efficiency of Tensor Voting
Rodrigo Moreno, Miguel Angel Garcia, Domenec Puig, Luis Pizarro, Bernhard Burgeth, and Joachim Weickert

Abstract—This paper proposes two alternative formulations
to reduce the high computational complexity of tensor voting,
a robust perceptual grouping technique used to extract salient
information from noisy data. The first scheme consists of nu-
merical approximations of the votes, which have been derived
from an in-depth analysis of the plate and ball voting processes.
The second scheme simplifies the formulation while keeping
the same perceptual meaning of the original tensor voting: the
stick tensor voting and the stick component of the plate tensor
voting must reinforce surfaceness, the plate components of both
the plate and ball tensor voting must boost curveness, whereas
junctionness must be strengthened by the ball component of the
ball tensor voting. Two new parameters have been proposed
for the second formulation in order to control the potentially
conflictive influence of the stick component of the plate vote
and the ball component of the ball vote. Results show that
the proposed formulations can be used in applications where
efficiency is an issue, since they have a complexity of order O

(
1
)
.

Moreover, the second proposed formulation has been shown to be
more appropriate than the original tensor voting for estimating
saliencies by appropriately setting the two new parameters.

Index Terms—Perceptual methods, tensor voting, perceptual
grouping, non-linear approximation, curveness and junctionness
propagation.

I. INTRODUCTION

MEDIONI and colleagues [1], [2], [3] proposed tensor
voting as a robust technique for extracting perceptual

structures from a cloud of points. This technique has been
proven versatile, since it has successfully been adapted to
problems well beyond the ones to which it was originally
applied with excellent results (e.g., [3], [4] and references
therein).

Despite its effectiveness, tensor voting cannot be used in
applications where efficiency is an issue. This is mainly due
to the high computational cost of its classical implementation,
especially regarding the plate and ball tensor voting.
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This paper proposes two different ways of implementing
tensor voting efficiently. The first one is based on a numerical
approximation of the plate and ball tensor voting, which are
mainly responsible for the complexity of the original method.
The second one is based on a simplified formulation that
fulfills the same perceptual rules followed by tensor voting,
although reducing its numerical complexity.

This paper is organized as follows. Section II summarizes
the original formulation of tensor voting. Section III presents
the proposed numerical approach for implementing tensor
voting efficiently. Section IV proposes a simplified version
of tensor voting based on the perceptual meaning of the stick,
plate, and ball tensor voting processes. Section V shows an
experimental comparison between the original tensor voting
and the two proposed schemes. Finally, Section VI discusses
the obtained results and makes some final remarks.

II. TENSOR VOTING

The formulation of tensor voting presented in this section is
different from, although equivalent to, the original formulation
in [3]. It has been chosen since it simplifies the descriptions
in the following sections.

In 3D, tensor voting estimates saliency measurements of
how likely a point lies on a surface, a curve, a junction, or it
is noisy. It is based on the propagation and aggregation of the
most likely normal(s) encoded by means of tensors through
the so-called stick, plate and ball tensor voting.

Tensor voting comprises three stages. In a first stage, a
tensor is initialized at every point of the given cloud of points
either with a first estimation of its normal, or with a ball-
shaped tensor if such a priori information is not available.
Afterwards, every tensor is decomposed into its three compo-
nents, namely: a stick, a plate and a ball component. Every
component casts votes to the neighboring points by taking
into account the information encoded by the voter in that
component. Every vote is a tensor that encodes the most likely
direction(s) of the normal at a neighboring point. Finally,
the votes are summed up and analyzed in order to estimate
degrees of surfaceness, curveness and junctionness at every
point. Points with low surfaceness, curveness and junctionness
are assumed to be noisy observations.

More formally, the tensor voting at p, TV(p), is given by:

TV(p) =
∑

q∈neigh(p)

( SV(v,Sq)+PV(v,Pq)+BV(v,Bq) ),

(1)
where q represents each of the points in the neighborhood of
p, SV, PV and BV are the stick, plate and ball tensor votes
cast to p by every component of q , v = p− q, and Sq, Pq

and Bq are the stick, plate and ball components of the tensor
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Fig. 1. Stick tensor voting. A stick Sq casts a stick vote SV(v, Sq) to p,
which corresponds to the most likely tensorized normal at p.

at q respectively:

Sq = (λ1 − λ2)
(
e1e

T
1

)
, (2)

Pq = (λ2 − λ3)
(
e1e

T
1 + e2e

T
2

)
, (3)

Bq = λ3

(
e1e

T
1 + e2e

T
2 + e3e

T
3

)
, (4)

where λi and ei are the i-th largest eigenvalue and its
corresponding eigenvector of the tensor at q respectively.

Saliency measurements can be estimated from an analysis
of the eigenvalues of the resulting tensors in (1). Thus,
s1 = (λ1 − λ2), s2 = (λ2 − λ3), and s3 = λ3 can be used
as measurements of surfaceness, curveness and junctionness
respectively. Points whose three eigenvalues are small are
regarded as noise. In addition, eigenvector ±e1 represents the
most likely normal for points lying on a surface, whereas
±e3 represents the most likely tangent direction of a curve
for points belonging to that curve.

The next subsections describe the processes required to
calculate stick, plate and ball tensor votes.

A. Stick Tensor Voting

Stick tensors are used by tensor voting to encode the orienta-
tion of the surface normal at a specific 3D point. Tensor voting
handles stick tensors through the so-called stick tensor voting,
which aims at propagating surfaceness in a neighborhood by
using the perceptual principles of proximity, similarity and
good continuation borrowed from the Gestalt psychology [5].
The stick tensor voting is based on the hypothesis that surfaces
are usually smooth. Thus, tensor voting assumes that normals
of neighboring points lying on a surface change smoothly. This
process is illustrated in Figure 1. Given a known orientation
of the normal at a point q, which is encoded by Sq, the
orientation of the normal at a neighboring point p can be
inferred by tracking the change of the normal on a joining
smooth curve. Although any smooth curve can be used to
calculate stick votes, a circumference is usually chosen. A
decaying function, s1s, is also used to weight the vote as
defined below.

For a circumference, it is not difficult to show from Figure
1 that:

SV(v,Sq) = s1s

[
R2θ Sq R

T
2θ

]
, (5)

where θ is the angle shown in Figure 1 and R2θ is a rotation
with respect to the axis v × (Sq v), which is perpendicular

to the plane that contains both v and Sq. Let λSq be the
eigenvalue of Sq greater than zero. The angle θ can be
calculated as:

θ = arcsin

(√
vT Sq v

λSqv
Tv

)
. (6)

A point q can only cast stick votes for θ ≤ π/4, since the
hypothesis that both points p and q belong to the same surface
becomes more unlikely for higher values of θ. On the other
hand, a weighting function, s1s, is used to reduce the strength
of the vote with the arc length, l, given by:

l =
||v|| θ
sin(θ)

, (7)

and with its curvature, κ, given by:

κ =
2 sin(θ)

||v||
. (8)

Thus, s1s was defined in [3] as:

s1s(v,Sq) =

{
e−

l2+bκ2

σ2 if θ ≤ π/4
0 otherwise,

(9)

where b and σ are parameters. In practice, l ranges from ||v||,
when θ = 0, to π

2
√

2
||v|| ≈ 1.11 ||v||, when θ = π/4.

B. Plate Tensor Voting

Tensor voting utilizes plate tensors to encode curves in 3D.
Ideally, if a point belongs to a curve, the third eigenvector
of its tensor must be aligned with the tangent to the curve at
that point, and λ3 must be zero. Tensor voting handles plate
tensors through the so-called plate tensor voting. Unlike the
stick tensor voting, whose formulation derives from perceptual
rules to propagate surfaceness, plate votes are computed in a
constructive way. Thus, the plate tensor voting uses the fact
that any plate tensor, P, can be decomposed into all possible
stick tensors inside the plate. Let λiP and ei respectively be the
i-th largest eigenvalue of P and its corresponding eigenvector,
Rβ be a rotation with respect to an axis parallel to e3, which
is perpendicular to P, and SP(β) = Rβe1e1

TRTβ be a stick
inside the plate P derived from e1. Thus, any plate tensor P
can be written as:

P =
λ1P + λ2P

2π

∫ 2π

0

SP(β) dβ. (10)

Taking into account that λ1P
= λ2P

, and that SP(β) is a stick
tensor, the plate vote is defined as the aggregation of stick
votes cast by all the stick tensors SPq(β) that constitute Pq.
Thus, the plate vote is defined as:

PV(v,Pq) =
λ1Pq

π

∫ 2π

0

SV(v,SPq(β)) dβ. (11)
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C. Ball Tensor Voting

Ball tensors are utilized by tensor voting to encode junctions
or noise. The ball tensor voting is defined similarly to the
plate tensor voting, that is, in a constructive way. Let SB(φ, ψ)
be a unitary stick tensor oriented in the direction (1, φ, ψ) in
spherical coordinates. Then, any ball tensor B can be written
as:

B =
λ1B

+ λ2B
+ λ3B

4π

∫
Γ

SB(φ, ψ) dΓ, (12)

where Γ represents the surface of the unitary sphere, and λiB
are the eigenvalues of B. Taking into account that the three
eigenvalues λiB are equal, and using the same argument as in
the case of the plate tensor voting, the ball vote is defined as:

BV(v,Bq) =
3λ1Bq

4π

∫
Γ

SV(v,SBq(φ, ψ)) dΓ. (13)

III. EFFICIENT FORMULATION FOR Plate AND Ball VOTES

The evaluation of the stick tensor voting is inexpensive,
since the rotations involved in that process can be easily
avoided by following the geometric constructions of Figure
1. Actually, the complexity of the stick tensor voting mainly
stems from the computation of an arcsine required to calculate
l, and the exponential required by (9). In addition, these
computations are not necessary for θ > π/4.

Additional efforts have also been made to make the stick
tensor voting even more efficient. For example, by applying
steerable filters in 2D [6], and tensorial harmonics in 3D in
order to compute stick votes in the frequency domain [7].
Unfortunately, extensions of these methods to calculate plate
and ball votes have not been proposed so far, mainly due to
the difficulty to adapt the integrals in (11) and (13) to the
frequency domain.

On the other hand, computing plate and ball votes is highly
time consuming, since (11) and (13) cannot be analytically
simplified. Thus, researchers usually interpolate precomputed
tensor fields in order to reduce the complexity of the plate and
ball tensor voting. Unfortunately, the amount of precomputed
information can grow rapidly if several values of parameter
b are used, since the voting fields strongly vary with it. In
addition, the shape of the voting fields also varies with σ, since
(9) is not scale-invariant (cf. Subsection III-A). In practice, this
fact involves the use of complex systems for data access and
memory management, which are not always available in many
applications.

Following a different strategy, [4], [8] and [9] discard part of
the votes for the sake of efficiency. Moreover, [10] proposed an
efficient implementation of tensor voting that avoids discarding
such information through a parallel implementation on a
graphics processing unit (GPU). However, the improvement
is determined by the number of available processing units.
More recently, [11] and [12] proposed a different weighting
factor to be used instead of (9) which aims at avoiding
its discontinuity. The introduction of this weighting factor
simplifies the computations, but at a cost of yielding very

different values from those obtained through the original tensor
voting.

The following subsections present a numerical approach to
implement plate and ball votes efficiently. Instead of approx-
imating the integrals of equations (11) and (13), the proposed
approach is based on the scale-invariant version of stick tensor
voting described in the following subsection.

A. Scale-Invariant Stick Tensor Voting

Although the formulation of stick tensor voting given in
Section II is inexpensive, it is not scale-invariant. Scale in-
variance, which can be thought of as invariance under change
of metric units, is a desirable property, since the same results
at a particular scale can be obtained for one another by an
appropriate scaling of parameters [13]. This property usually
followed by physics laws, has been applied to different fields,
such as fractal analysis [13], economy [14], and mathematics
[15], among many others. Using scale-invariant formulations
of tensor voting is advantageous. On the one hand, a scale-
invariant tensor voting reduces the complexity of the prepro-
cessing step by only precomputing voting fields at a single
scale, since votes at a different scale can be interpolated
from the precomputed fields by appropriately scaling spatial
distances. On the other hand, a scale-invariant version of the
stick tensor voting is essential for analyzing the properties
of the plate and ball tensor voting, as shown in the next
subsections.

Scale invariance can be defined as follows. Let g be a
function of a set of variables, x, which directly depend on
the spatial length. Function g is scale-invariant if [13]:

g(x) = g(hx), for any h ∈ <. (14)

This definition can be used to check the scale invariance
property of (9). Let us consider s1s in (9) as a function of
four variables, namely l, κ, σ and b. Before checking the scale
invariance of s1s, it is required to determine the dependency of
each variable on the spatial length. First, l and κ directly and
inversely depend on the spatial length respectively. Second,
σ directly depends on the spatial length, since it is a scale
parameter. Finally, b has been chosen in the literature either
as a dimensionless constant (e.g., [3], [16]) or as a variable
that (mainly) depends on the spatial length (e.g., [17], [4], [8]).
It is easy to check that (9) is not scale-invariant under these
conditions.

One option to make (9) scale-invariant is by making b
dependent on the fourth power of the spatial length, for
instance, with b being proportional to σ4, as proposed in [6].
The main problem with this strategy is the difficulty to set
the parameters, since both b and σ determine the influence of
curvature in the votes. This paper describes an alternative to
assure the scale invariance of (9), keeping intuitive parameter
tuning.

In particular, the lack of scale invariance of the stick
tensor voting is due to the exponent in (9). From dimensional
analysis [18], that exponent must be dimensionless in order
to assure scale invariance. Thus, (9) can be converted into a
scale-invariant equation by using the normalized curvature, κ,
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Fig. 2. Evolution of s′1s with respect to θ for some values of b.

instead of the curvature κ. The normalized curvature is given
by [19]:

κ = κ
||v||

2
=

2 sin(θ)

||v||
||v||

2
= sin(θ), (15)

where θ and v are shown in Figure 1. Since the normalized
curvature is dimensionless, it does not require to be weighted
by 1/σ2. Thus, the stick tensor voting becomes scale-invariant
if (9) is replaced by:

s1s(v,Sq) =

{
e−

l2

σ2
−bκ2

if θ ≤ π/4
0 otherwise.

(16)

This equation preserves the spirit of (9) in the sense of pe-
nalizing stick votes by both distance and curvature. Moreover,
plate and ball votes calculated by means of (16) also become
scale-invariant thanks to spatial symmetry. Therefore, (16) will
be used instead of (9) in the remaining of this work due to its
scale invariance.

Figure 2 shows the effect of parameter b on s1s. In this plot,
s′1s models the factor of s1s that does not depend on the 3D
space, which is given by:

s′1s = e−bκ
2

. (17)

The figure shows that b can be used to increase the preference
for flat surfaces over curved ones. As an example, stick votes
are negligible when θ > 5◦ for b = 1000. This means
that, in this case, higher values of θ will not be considered
to propagate surfaceness. This behavior could be useful to
discriminate between flat surfaces and curved ones.

There are many other alternatives of dimensionless measure-
ments of curvature that can be used instead of the normalized
curvature. For example, the degree of curvature, which is is
given by 2θ, is common in engineering (e.g., [20], [21]) and
medical sciences (e.g., [22]). Also, the relative eccentricity,
which is given by (1 − cos(θ))/(2 sin(θ)), has been used
in biomechanics [23]. However, the advantage of using the
normalized curvature in tensor voting is that its definition is
more closely related to the curvature and it is computationally
less expensive than the aforementioned measurements.

Pq

q

p1

p2

e1

e2

e3

ψ2

γ1
γ2

Fig. 3. Examples of the plate tensor voting. A tensor Pq casts votes to its
neighbors with a shape that depends on the cone shown in the figure. Votes
are close to sticks for points outside the cone (p1), or close to plates for
points inside the cone (p2). Note that neither the stick component vanishes
inside the cone (except for γ = 0) nor the plate component vanishes outside
the cone.

B. Efficient Plate Tensor Voting

Scale invariance and spatial symmetry can be used to
analyze the plate votes. Besides parameters σ and b, the
plate vote PV(v,Pq) depends on two variables: the distance
between p and q, ||v||, and the angle γ between e3 and v.
This angle can be calculated similarly to the angle θ of the
stick tensor voting:

γ = arcsin

(√
vT Pq v

λ1Pq
vTv

)
. (18)

with λ1Pq
being the largest eigenvalue of Pq.

The shape of plate votes is shown in Figure 3. The first point
to remark is that symmetry makes vanish the ball component
of plate votes. This fact has been tested experimentally by
checking the coplanarity of the votes cast by every different
stick inside Pq. Thus, in general, a plate vote can be seen as
the summation of a stick and a plate tensor, each of them with
a relative strength that depends on the location of the receiver
with respect to the cone of Figure 3.

As shown in that figure, plate votes are close to sticks for
points outside the depicted cone and close to plates for points
inside the cone (γ ≤ π/4). This observation stems from the
following reasoning. Recall that a plate vote is defined as the
summation of the stick votes cast by all sticks inside the voting
plate. Let SPq(β) be the stick inside the plate Pq that forms
an angle β with respect to Pqvv

TPq, which also lies inside
Pq. The angle θβ , which is the angle θ required in (5) to rotate
SPq(β), can be derived from (6) as:

θβ = arcsin(| cos(β)| sin(γ)). (19)

Thus, θβ ranges from 0, when β = π/2, to γ when β = 0.
Thus, all sticks in the plate cast non-null votes for γ ≤ π/4,
while only those whose θβ ≤ π/4 cast non-null votes for
γ > π/4. An extreme case is given for γ = π/2 where only
half of the sticks in the plate cast non-null votes.

Now, let us consider the case of b = 0. In this case, the
strength of every stick vote is mainly determined by the arc
length extended between p and q with respect to every voting
stick SPq(β). For points inside the cone depicted in Figure
3, all SPq(β) cast non-null votes with arc lengths, l, varying
from ||v|| and ||v||γ/ sin(γ). Thus, the maximum range of
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l is attained for γ = π/4 when it ranges between ||v|| and
1.11||v||. Thus, for γ ≤ π/4, the stick component of the plate
vote is small since the arc length varies in a relatively small
range of values. Consequently, the plate vote is close to a plate
inside the cone. For points outside the cone, only a fraction
of SPq(β) cast non-null votes, since θβ can be higher than
π/4. This makes some orientations more favored than others,
leading to an increase in the stick component of the plate
vote. Thus, the plate vote becomes closer to a stick outside
the cone, although the plate component does not completely
vanish, even for the extreme case of γ = π/2. This general
behavior of the plate tensor voting can be modified by using
higher values of b. In that case, the transition between the zone
where mainly-plate and the zone where mainly-stick votes are
cast is accelerated.

Thanks to scale invariance, the plate vote can be divided
into two independent functions: a scalar decaying function
f , which mainly depends on the spatial distance between the
voter and the votee, and a tensorial function H, which does
not depend on spatial distance. In practice, f not only depends
on ||v|| and σ, but also has a slight influence from γ. Thus,
(11) can be rewritten as:

PV(v,Pq) = λ1Pq
f(v, γ, σ) H(γ, b). (20)

The scalar function f is given by:

f(v, γ, σ) = e−
t2vT v
σ2 , (21)

where t is a factor that takes into account the use of the arc
length l instead of the Euclidean distance in (16). Although
t cannot be derived analytically, good approximations can be
obtained as follows. As mentioned above, l ranges between
||v|| and ||v||γ/ sin(γ) for γ ≤ π/4. Thus, t is bound to
the range [1, γ/ sin(γ)]. Thanks to the fact that t varies in a
small range of values, the mean arc length, which is given
by ||v||(1 + γ/ sin(γ))/2, can be used to approximate t as
(1+γ/ sin(γ))/2. Note that t varies in a relatively small range,
since t ∈ [1, 1.055] in this case. On the other hand, if γ > π/4,
only a fraction of SPq(β) cast non-null votes, which makes it
more difficult to find a close approximation for t. The factor
t can be experimentally estimated by comparing the trace of
plate votes computed with arc lengths, as in (9) and (16),
to the one computed with Euclidean distances instead. Such
experiments yielded that t can be approximated by 1.033 for
γ > π/4.

On the other hand, H determines the shape of the plate vote.
H can be decomposed into its stick and plate components,
whose shapes are shown in Figure 4:

H(γ, b) = SH + PH. (22)

These components can be calculated as:

SH = s′1p
(
u1u1

T
)
, (23)

PH = s′2p
(
u1u1

T + u2u2
T
)
, (24)

with s′1p and s′2p being functions of γ and b, and ui being
the eigenvectors of H. Functions s′1p and s′2p capture most of
the non-linearities involved in (11) and cannot be analytically

Pq

q

p
e2 SH

e1

u1

±Pqv

θ
Pq

q

p
e2

PH ψ

e3

u3

v

γ

Fig. 4. Components of function H. Left: the stick component, SH, which is
always perpendicular to the projection of v on Pq, given by ±Pqv. Right:
the plate component, PH, seen from profile. The circumference that joins q
and p (depicted as a dashed arc) is tangent both to e3 at q and to u3 at p.

simplified. In turn, ui can be calculated as follows. Spatial
symmetry makes u1 perpendicular to e3 and v. Thus,

u1 =

{ e3×v
||e3×v|| if e3 and v are not parallel
e1 otherwise

(25)

Spatial symmetry also makes u3 lie on the plane that
contains e3 and v. The angle ψ between u3 and e3 is 2γ
for γ < π/4, and π−2γ otherwise. Thus, u3 = Rψe3, where
R is a rotation with respect to axis u1. As in the case of
the stick tensor voting, this rotation can be easily avoided
by following the geometry of Figure 4. Having calculated
u1 and u3, the remaining eigenvector u2 can be obtained
as u2 = u3 × u1. As stated before, symmetry makes plate
votes not to have ball component. Consequently, H does not
to have a ball component either, since it models the shape of
plate votes.

Functions s′1p and s′2p can be estimated from (20) by ex-
tracting the eigenvalues of PV(v,Pq)/(λ1Pq

f(v, γ, σ)), with
PV(v,Pq) computed through (11) with a small integration
step (e.g., one degree). Figure 5 shows the curves of s′1p
and s′2p vs. γ for different values of b. These curves have
a discontinuity at γ = π/4. This was expected since the stick
tensor voting also has a discontinuity at the same angle. The
curves corresponding to s′1p and s′2p show that there are mainly
two zones in the 3D space depending on which s′1p or s′2p is
dominant, which is congruent with the observations made on
Figure 3. The curves of s′1p and s′2p also show that b can be
used to control the spread of the voting cone of Figure 3, since
it becomes narrower as b is increased. These curves can be
approximated through any fitting method. As an example, such
a fitting can be done by applying two consecutive univariate
non-linear fittings as follows:

1) Selection of univariate non-linear functions that mimic
the shape of s′1p and s′2p for different fixed values
of b. Some preliminary experiments were conducted
with different non-linear functions in order to determine
suitable non-linear functions to be applied to γ. These
functions contain factors c1i and c2j , with i = 1, . . . , 6
and j = 1, . . . , 4, which can be optimized by non-linear
least squares fitting.

2) Computation of a non-linear least squares fitting on γ
for every different value of b. This process yields a
different value of c1i and c2j for every different value
of b. At this point, these factors can be stored in order
to be queried as look-up tables. These queries are only
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required once, since c1i and c2j are only functions of b.
However, univariate non-linear fitting of c1i and c2j is an
advantageous alternative that avoids the use of look-up
tables.

3) Selection of univariate non-linear functions that mimic
the evolution of every factor c1i and c2j with b. Some
preliminary experiments were conducted in order to
determine appropriate non-linear functions to be applied
on b.

4) Computation of a non-linear least squares fitting on b
for every factor c1i and c2j .

The Appendix shows the fitting yielded by following this
methodology. It is important to mention that although more
elaborate methodologies can be applied to approximate these
curves, the experimental results have shown that their accuracy
is good enough to mimic the behavior of the original tensor
voting.

The complexity of the proposed implementation of the
plate tensor voting is mainly due to the computation of an
arcsine (which is required to calculate γ), a logarithm required
by the approximation of s′1p, and two exponential functions:
one for calculating f(v, γ, σ) s′1p and another for calculating
f(v, γ, σ) s′2p.

C. Efficient Ball Tensor Voting

As in the case of plate tensor voting, scale invariance and
spatial symmetry can also be used to analyze the ball votes.
Figure 6 shows some examples of ball votes. Ball votes are
characterized by three properties. The first property is that
ball votes have an oblate spheroid shape, that is, they are only
flattened in one dimension. Thus, λ′1 = λ′2 > λ′3 > 0, with
λ′i being the eigenvalues of BV(v,Bq) in (13). The second
property is that the flattened direction of ball votes is always
parallel to v. This means that the third eigenvector of a ball
vote, u3, is parallel to v. The third property is that for some
given parameters σ and b, both the size and flatness of ball
votes only depend on ||v||. This condition is given by the
isotropic behavior of the ball tensor voting. Thus, the ball
vote can be rewritten as:

BV(v,Bq) = λ1Bq

[
Rv S(s2b, s2b, s3b) Bq R

T
v

]
, (26)

where Rv is a rotation that makes u3 and v parallel, s2b and
s3b are functions defined below, and S is a scale transformation
that converts the ball tensor Bq into an oblate spheroid shaped
tensor given by:

S(s2, s2, s3) =

 s2b 0 0
0 s2b 0
0 0 s3b

 . (27)

The main advantage of (26) is that the expensive integral
of (13) is replaced by a rotation. However, this rotation term
can also be avoided by constructing the tensor with v. Thus,
(26) can be further simplified as:

BV(v,Bq) = λ1Bq

[
s2b

(
I− vvT

vTv

)
+ s3b I

]
, (28)

where I is the identity matrix.

Bq

q z

y
x

Fig. 6. Examples of the ball tensor voting. Point q casts oblate spheroid
shaped votes to its neighbors. BV(v,Bq) is shown for different positions of
p.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

b

s′2b

s′3b

Fig. 7. Evolution of s′2b and s′3b with respect to parameter b.

The purpose of s2b is to control the size of the vote, whereas
s3b controls how similar the vote is to a plate (s3b = 0) or
to a ball (s3b = s2b). Unlike the plate tensor voting, isotropy
makes functions s2b and s3b only depend on ||v|| for specific
parameters σ and b. Thus, thanks to the scale invariance, s2b

and s3b can be divided into a Gaussian decaying function on
||v|| with a standard deviation σ and functions s′2b, s

′
3b that

only depend on b and cannot be analytically simplified, since
they capture most of the non-linearities of (13). Thus, sib is
defined as:

sib(v, σ, b) = s′ib e
− vT v

σ2 , (29)

for i = 2 and i = 3. Factors s′2b and s′3b can be estimated
from equations (13), (28) and (29) by following a similar
methodology to the one used for factors s′1p and s′2p in
the case of the plate tensor voting, that is, by extracting
the eigenvalues of BV(v,Bq)/(λ1Bq

e−
vT v
σ2 ), with BV(v,Bq)

computed through (13) with a small integration step (e.g., one
degree). Figure 7 shows the evolution of s′2b and s′3b with
respect to b. It can be seen that s′2b > s′3b for all values of b.
This means that ball votes are more similar to a plate than to
a ball in general. It can also be seen that parameter b can be
used to reduce the size of the ball vote. A similar methodology
to the one used to approximate s′1p and s′2p can be applied for
approximating s′2b and s′3b. In this case, only a single univariate
non-linear fitting is required since these functions only depend
on b. The Appendix shows the results of least squares fitting
for these functions.
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Fig. 5. s′1p and s′2p as functions of γ for different values of parameter b.

The complexity of the proposed implementation of the ball
tensor voting is mainly due to the computation of a single
exponential (required in (29)), since the values of s′2b and s′3b
are computed only once.

IV. SIMPLIFIED TENSOR VOTING

This section explores an alternative to the numerical ap-
proach described in the previous section for calculating tensor
voting efficiently. This alternative is based on a simplified
formulation that reduces the numerical complexity while keep-
ing the same perceptual rules of tensor voting. The next
subsections describe the proposed method to calculate stick,
plate and ball tensor votes more efficiently.

A. Stick Tensor Voting
The original stick tensor voting can be further simplified

while keeping its perceptual meaning by redesigning the
weighting function s1s defined in (16). This function has two
parameters: b that penalizes the curvature, and σ that penalizes
both the distance and curvature (the latter through the θ/ sin(θ)
factor included in the computation of l in (7)). Thus, for
example, it is not possible to avoid the influence of curvature
on the calculations, even selecting b = 0, since σ not only
affects the distance but also the θ/ sin(θ) factor, which is
related to curvature. For this reason, every parameter has a
single task: σ becomes a scale parameter, and b a curvature
parameter:

s1s(v,Sq) =

{
e−

vT v
σ2
−b sin2(θ) if θ ≤ π/4

0 otherwise.
(30)

This equation has the additional advantage that the arcsine
required for calculating stick votes is no longer necessary. Note
that the only difference between (30) and (16) is the use of
the squared Euclidean distance (vTv) instead of the squared
arc length (l2), since sin(θ) = κ. This simplification is also
based on the fact that the difference between using Euclidean
distances and arc lenghts is relatively small. The use of arc
lengths can be seen as spatial stretchings of at most 11%
(attained at θ = π/4) and 5.5% (attained at γ = π/4) for
stick and plate votes respectively. Thus, in general, the effect
of the curvature on the votes can be better controlled through
b.

B. Plate Tensor Voting

Proposing simplified equations for the plate tensor voting
requires to understand the perceptual meaning of plate votes.
From the analysis carried out in Subsection III-B, it can be
stated that, from a perceptual point of view, a plate vote
encodes two different hypotheses, one for every component
of the vote.

On the one hand, the hypothesis made by the stick compo-
nent of the plate vote is that a neighboring point p of the voter
q should belong to a surface that abuts the curve that crosses
q. However, spatial symmetry makes such a surface be a plane,
since the stick component is always tangent to the plate Pq

(see Figure 8). Thus, the stick component of the plate tensor
voting can be thought of as a stick tensor voting that makes
a stronger hypothesis than the stick tensor voting itself, since
curved surfaces are only encouraged in the latter. As seen in
Figure 8, the stick component of the plate vote can lead to
errors in curved surfaces that must be corrected through stick
votes cast by other neighbors. This stick component mainly
appears outside the cone of Figure 3, since points inside the
cone can either belong to the curve that crosses q or to another
surface.

In other words, the plate tensor voting has less perceptual
information to accurately infer a normal at a neighboring point
than the stick tensor voting. Thus, it is more likely to estimate
normals more accurately with the stick tensor voting than with
the stick component of the plate tensor voting. However, if
no more information is available, for example, if the receiver
only gets votes cast by plates, the estimation computed by the
plate tensor voting can be used as the most likely normal at
the receiver.

On the other hand, the hypothesis made by the plate
component of the plate vote is that both points, p and q,
should belong to the same curve. In that sense, p completes
the path of the curve that crosses q. This component mainly
appears inside the cone of Figure 3, since points outside that
cone are more unlikely to belong to the same curve. Thus,
the plate component of the plate vote can be thought of as the
natural extension of the stick tensor voting in which curveness
instead of surfaceness is smoothly propagated by following
similar rules. Hence, the plate component can be considered
to be based on the same Gestalt principles as the stick tensor
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qPq

p1

p2

Fig. 8. Stick component of the plate vote. Left: a curve votes for a plane
tangent to the curve. Right: a plate tensor in the intersection between a flat
and a curved surface (depicted in red). The stick component of the plate vote
can reinforce surfaceness in flat surfaces (see vote at p1) but also can lead
to errors in curved surfaces (see vote at p2 in green).

voting, namely proximity, similarity and good continuation,
but adapted to curveness propagation.

Taking into account these arguments, the following equation
is proposed to calculate plate votes:

PV(v,Pq) = s2p

[
R2γ Pq R

T
2γ

]
+ αP λ1Pq

s1p

(
u1u1

T
)
,

(31)
where αP ∈ [0, 1] is a new parameter to control the influence
of the stick component on the plate vote, λ1Pq

is the largest
eigenvalue of Pq, u1 is calculated through (25), R2γ is a
rotation with respect to u1, and sip are weighting functions
given by:

s2p(v,Pq) =

{
e−

vT v
σ2
−b sin2(γ) if γ ≤ π/4

0 otherwise,
(32)

s1p(v,Pq) =

{
e−

vT v
σ2
−b cos2(γ) if γ > π/4

0 otherwise.
(33)

Factor s2p in (32) has a similar formulation as s1s in (30),
since the plate component of plate votes is the natural exten-
sion to plates of the perceptual rules of stick tensor voting.
In this case, γ is used instead of θ, since curvature is related
to the former in plate votes. In turn, the stick component of
plate votes has a mirroring evolution with γ when compared
to the plate component. This inverse relation is modeled in s1p

by making it dependent on π/2 − γ instead of on γ. This is
achieved by using cos(γ) instead of sin(γ) in (33). As stated
in the previous section, the rotation term can be avoided by
following the geometry of Figure 4. Thus, the complexity of
this alternative mainly stems from an exponential function for
s1p or s2p depending on the angle γ.

The selection of αP implies a trade-off that depends on
the type, density of the data, as well as the level of noise.
Thus, by setting αP = 0, the responsibility for estimating
normals at surfaces is mainly endorsed to the stick tensor
voting. This setting should not be used when the data is
too sparse to get enough stick votes at points in surfaces.
In turn, by setting αP = 1, the responsibility for estimating
normals at surfaces is shared between the stick and the plate
tensor voting. At flat surfaces, this setting is beneficial since it
can help to improve the estimation of normals as more votes
are collected, especially in very noisy scenarios. However, at
points in curved surfaces, the stick component of a plate vote
can introduce errors whose relevance inversely depends on the

number and strength of the stick votes cast by other neighbors.
For datasets with both flat and curved surfaces, αP should be
set to zero in order to avoid the introduction of errors in the
curved surfaces, unless the density of points allowed to cast
stick votes is large enough to make such an error negligible.

C. Ball Tensor Voting

A perceptual interpretation of ball votes, necessary for
proposing a simplified ball tensor voting, can be obtained from
the analysis performed in Subsection III-C. As stated before,
a ball vote only consists of a plate and a ball component.
On the one hand, the meaning of the plate component is that
both points, p and q, should belong to a straight edge in the
direction that joins both points. Although a ball tensor at q
represents a complete uncertainty about the normal direction
at that point, this uncertainty is reduced in the direction v,
because both points could belong to a straight edge that is
likely joining both points.

On the other hand, the meaning of the ball component is
that points near a junction should have a junctionness saliency
different from zero. From a different point of view, normal
uncertainty at a point infers some normal uncertainty at its
neighborhood. Unlike the plate component, it is difficult to
justify from the perceptual point of view the existence of the
ball component of the ball vote since junctions are not usually
close to each other. However, it could be useful in iterative
schemes e.g., [24], [16], in order to induce uncertainty for
those cases in which the tensors are initialized with not too
accurate values.

Hence, the same equation (28) is proposed to calculate ball
votes, but with the following weighting functions:

s2b(v,Bq) = e−
vT v
σ2 (34)

s3b(v,Bq) = αB s2b(v,Bq), (35)

where parameter αB ≥ 0 can be used to control the influence
of the ball component on the ball vote. Thus, the high com-
plexity of the ball tensor voting is reduced to the computation
of a single exponential function. It is important to remark
that isotropy makes these functions to be independent from
curvature.

A similar reasoning as the one described for the stick
component of the plate tensor voting can be made for the plate
component of the ball tensor voting. The ball tensor voting
has less information to accurately infer a curve continuation
at a neighboring point than the plate tensor voting, hence the
latter is preferred if available. This would give place to a new
parameter to control the influence of the plate component
of the ball vote on the estimation of surface intersections.
However, in practice, tensor voting is usually run as proposed
in [3], that is, tensors are initialized with unitary balls and
two rounds of tensor voting are applied: the first one only
considers the ball tensor voting, whereas the second round
only considers both the stick and plate tensor voting. Since
plate and ball tensor voting are not usually run at the same
time, it is safe to avoid this new parameter.
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TABLE I
SPEED MEASUREMENTS OF THE ORIGINAL TENSOR VOTING

Integration Plate votes Ball votes
step Time (ms) Votes per Time (s) Votes per

(degrees) second second
0.5 87.1 11.48 124.48 8.03× 10−3

1 79.3 12.61 41.10 2.43× 10−2

2 32.5 30.77 10.90 9.17× 10−2

5 19.0 52.63 1.75 0.57
10 12.0 83.33 0.45 2.22
20 6.6 152.88 0.12 8.01
30 5.6 178.25 0.05 19.19
45 5.3 189.04 0.03 28.49

V. EXPERIMENTAL RESULTS

The formulations of the original (OTV), efficient (ETV) and
simplified tensor voting (STV) presented above were coded in
MATLAB on an Intel Core 2 Quad Q6600 with a 4GB RAM in
order to compare the new proposed schemes with the original
tensor voting. In addition, the approximation scheme described
in [4], [8], referred to as MM, has also been coded to compare
its performance with the proposed methods. Equation (16) has
been applied instead of (9) in order to make the results of all
tested methods comparable.

A. Efficiency

Table I shows the mean execution times of the tested
methods. This table shows that OTV is impractical for many
applications. As an example, assume that a small cloud of
points consists of 1,000 points, and that the propagation
of votes is restricted to the 25 nearest points. Thus, the
computation of 25,000 stick, plate and ball votes are required.
With OTV, they can be calculated in between 16.85 minutes
and 36.04 days depending on the desired precision (controlled
by the integration step). For this reason, precomputing and
storing the votes in voting fields by means of look-up tables
is the only practical solution to apply OTV. Unfortunately,
minimal or negligible loss of accuracy can only be attained
through an expensive preprocessing stage to compute the
voting fields using a small integration step. On the other hand,
ETV does not requires preprocessing and only takes 0.05,
0.18, and 0.05 milliseconds for every stick, plate and ball vote
respectively with an affordable loss of accuracy. Thus, in the
aforementioned example, the proposed formulation only takes
7.05 seconds. In addition, this time can be further improved by
implementing the method in a non-interpreted programming
language, such as C/C++. The efficiency of STV is slightly
better than ETV. In this case, the stick, plate and ball votes can
be processed in 0.05, 0.15, and 0.04 milliseconds respectively
on average. MM has also an efficient performance, since plate
and ball votes can be processed in 0.20, and 0.04 milliseconds
respectively on average. In these experiments, it is clear that
the efficiency of OTV is affected by the use of loops in
MATLAB. Although the relative improvement in speed from
ETV, STV and MM is expected to decrease with a C/C++
implementation, such a reduction is rather limited since OTV
is more computationally complex than ETV, STV and MM.

B. Comparisons with OTV

In order to assess the differences between OTV and the
other methods, tensors computed with ETV, STV and MM
have been compared to those obtained through OTV with a
small integration step at a number of random points in the
space. Two datasets of 1000 and 100 normally distributed
random points with σ = 1 have been generated to assess
plate and ball votes respectively. Fewer points have been
tested for comparing ball votes in order to obtain results in
a reasonable amount of time. For this experiment, OTV has
been run with an integration step of 1 degree for σ = 1 and
5. Eight independent experiments have been run for b = 0,
1, 5 and 10 with σ = 1 and 5 respectively. Table II shows
the differences between OTV and MM, ETV and STV. These
differences have been computed through the mean angular
error of e1 and e3 for plate votes cast by a plate at the origin
(λ1P

= λ2P
= 1), and e3 for ball votes cast by a ball at the

origin (λ1B = λ2B = λ3B = 1), in addition to the root mean
square error of the eigenvalues λ1 and λ2 for plate votes and
λ2 and λ3 for ball votes. As shown in the table, ETV makes a
better approximation of OTV than MM and STV. In particular,
MM and STV introduce relevant diferences in eigenvalues for
both plate and ball votes. This result was expected for STV
since it does not aim at mimicking the behavior of OTV (cf.
Section IV). It can also be seen that ball votes are equivalent
for MM and STV with αB = 0, which was also expected.
In summary, ETV is approximately equivalent to OTV, while
MM and STV are different than OTV.

C. Accuracy

Accuracy has been measured by comparing the ground-
truth with the results of applying the tested methods to some
synthetic datasets. Figure 9 shows the point-sampled surfaces
used in these experiments and their noisy counterparts. As
suggested in [3], tensors were initialized with unitary balls and
two rounds of tensor voting were applied: the first one only
considered the ball tensor voting, whereas the second round
only considered both the stick and plate tensor voting. Param-
eter αB was set to zero, and σ was set to five. Independent
experiments were run for b = 0 and b = 10. STV has been
run with αP = 0 and αP = 1 in order to assess the effect of
this parameter. For this and the following experiments, OTV
has been computed by the interpolation of precomputed voting
fields, since the application of OTV with a small integration
step is impractical in this case.

The mean angular error between e1 and ideal normals
on surfaces, and of e3 and ideal edge orientations at edges
have been used to measure the accuracy of the algorithms
for estimating normals and curve orientations respectively. In
addition, the following measurement of discriminability [25]
of saliencies has been used to assess the saliency estimation:
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TABLE II
MEAN ANGULAR ERRORS OF EIGENVECTORS (IN DEGREES), AND ROOT MEAN SQUARE ERRORS OF THE EIGENVALUES

Plate votes (σ = 1) Plate votes (σ = 5) Ball votes (σ = 1) Ball votes (σ = 5)
b e1 e3 λ1 λ2 e1 e3 λ1 λ2 e3 λ2 λ3 e3 λ2 λ3

MM
0 0.00 0.00 0.068 0.315 0.00 0.00 0.107 0.577 0.00 0.074 0.184 0.00 0.113 0.336
1 0.00 0.00 0.116 0.311 0.00 0.00 0.195 0.513 0.00 0.120 0.125 0.00 0.216 0.251
5 0.00 0.00 0.234 0.288 0.00 0.00 0.412 0.402 0.00 0.236 0.047 0.00 0.450 0.094

10 0.00 0.00 0.300 0.246 0.00 0.00 0.534 0.322 0.00 0.299 0.020 0.00 0.575 0.039

ETV
0 0.00 0.00 0.040 0.015 0.00 0.00 0.072 0.030 0.00 0.009 0.008 0.00 0.013 0.013
1 0.00 0.00 0.035 0.012 0.00 0.00 0.050 0.025 0.00 0.007 0.006 0.00 0.021 0.017
5 0.00 0.00 0.019 0.012 0.00 0.00 0.028 0.022 0.00 0.013 0.013 0.00 0.031 0.029

10 0.00 0.00 0.015 0.018 0.00 0.00 0.021 0.033 0.00 0.012 0.013 0.00 0.025 0.026
0 0.00 0.00 0.382 0.140 0.00 0.00 0.702 0.264 0.00 0.074 0.184 0.00 0.113 0.336

STV 1 0.00 0.00 0.339 0.102 0.00 0.00 0.620 0.194 0.00 0.120 0.125 0.00 0.216 0.251
αP = 0 5 0.00 0.00 0.265 0.046 0.00 0.00 0.479 0.087 0.00 0.236 0.047 0.00 0.450 0.094
αB = 0 10 0.00 0.00 0.223 0.030 0.00 0.00 0.403 0.057 0.00 0.299 0.020 0.00 0.575 0.039

0 0.00 0.00 0.068 0.140 0.00 0.00 0.107 0.264 0.00 0.564 0.330 0.00 1.069 0.620
STV 1 0.00 0.00 0.107 0.102 0.00 0.00 0.187 0.194 0.00 0.615 0.372 0.00 1.173 0.705
αP = 1 5 0.00 0.00 0.213 0.046 0.00 0.00 0.378 0.087 0.00 0.732 0.449 0.00 1.406 0.862
αB = 1 10 0.00 0.00 0.227 0.030 0.00 0.00 0.405 0.057 0.00 0.795 0.476 0.00 1.531 0.917

TABLE III
MEAN ANGULAR ERROR OF e1 AND e3 IN DEGREES AND DISCRIMINABILITY OF SALIENCIES FOR THE NOISELESS DATASETS OF FIG. 9

Method Semisphere Cone Pyramid
Surf. Curv. Surf. Curv. Surf. Curv. Junctions

b e1 d1 e3 d2 e1 d1 e3 d2 e1 d1 e3 d2 d3 d3b d3t
OTV 0 0.33 0.08 0.45 0.05 0.90 0.09 0.48 0.09 1.06 0.16 0.64 0.15 0.19 0.11 0.51
MM 0 0.33 0.08 0.56 0.04 0.90 0.08 0.58 0.08 1.12 0.15 0.74 0.14 0.19 0.12 0.46
ETV 0 0.33 0.08 0.45 0.05 0.90 0.09 0.48 0.09 1.08 0.16 0.65 0.15 0.19 0.11 0.50

STV (αP = 0) 0 0.33 0.08 0.42 0.05 0.90 0.09 0.45 0.09 1.09 0.16 0.68 0.15 0.18 0.12 0.41
STV (αP = 1) 0 0.33 0.08 0.44 0.05 0.91 0.09 0.51 0.09 1.05 0.16 0.59 0.15 0.20 0.11 0.55

OTV 10 0.32 0.07 0.32 0.05 0.91 0.08 0.35 0.08 1.17 0.15 0.89 0.13 0.19 0.07 0.68
MM 10 0.32 0.07 0.54 0.04 0.93 0.08 0.58 0.08 1.16 0.14 0.94 0.14 0.18 0.06 0.67
ETV 10 0.32 0.07 0.32 0.05 0.91 0.08 0.33 0.08 1.17 0.15 0.88 0.13 0.19 0.07 0.68

STV (αP = 0) 10 0.32 0.07 0.31 0.05 0.92 0.08 0.30 0.08 1.17 0.15 0.92 0.13 0.19 0.06 0.69
STV (αP = 1) 10 0.32 0.07 0.31 0.05 0.92 0.08 0.31 0.08 1.15 0.15 0.83 0.13 0.21 0.06 0.80

Fig. 9. Clouds of points used in the experiments. Left: point-sampled
surfaces, each constituted by 3,721 points. Right: a noisy version of the same
surfaces (Gaussian noise with standard deviation of 0.2).

d1 =
1

||S||
∑
p∈S

s1(p)

λ1(p)
− 1

n− ||S||
∑
p/∈S

s1(p)

λ1(p)
(36)

d2 =
1

||C||
∑
p∈C

s2(p)

λ1(p)
− 1

n− ||C||
∑
p/∈C

s2(p)

λ1(p)
(37)

d3 =
1

||J ||
∑
p∈J

s3(p)

λ1(p)
− 1

n− ||J ||
∑
p/∈J

s3(p)

λ1(p)
(38)

where n is the total number of points in the dataset, S, C,
and J are the set of points that belong to surfaces, curves and
junctions respectively, and || · || is the cardinality of a set. In
addition, d3 has independently been computed for the junction
at the top of the pyramid, d3t, and for the junctions at the base,
d3b, since they represent two different types of junctions. As
pointed out in [3], the classification of points into surfaces,
curves and junctions cannot be performed by selecting the
points where one saliency is larger than the others. Instead,
the classification is performed by extracting local maxima of
s3 for junctions and through marching schemes for surfaces
and curves, which also search for local maxima of s1 and
s2 respectively. Thus, the proposed discriminability measure-
ments estimate the degree of difficulty of deciding whether
or not a point belongs to a surface, a curve or a junction re-
spectively from the saliency measurements estimated through
every method.

Tables III and IV summarize the results for the noiseless and
noisy datasets respectively. Table III, shows that all methods
yield similar angular errors in all datasets. The reason for this
behavior is that the number of points that belong to surfaces,
where stick votes are more important, is much higher than
those that belong to curves or junctions. Thus, the total vote
is much more influenced by the stick votes cast by neighboring
points at the same surface than by plate votes cast by points
located at neighboring curves. However, STV with αP = 0
has the better performance in curved datasets since it yields
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smaller angular errors for e3. In turn, STV with αP = 1 has
the best performance for the pyramid according to the mean
angular errors. That means that points in curves are actually
affected by plate votes cast from points located at neighboring
surfaces. Errors related to plate votes are mitigated at points
belonging to surfaces by the fact that they receive more stick
votes from other points in the same surface. It is also important
to note that parameter b barely influences angular errors and it
tends to reduce the discriminability measurements in noiseless
scenarios. Another observation with respect to this table is
that discriminability measurements are relatively small. This
does not suppose a problem for detecting curves and junctions,
since they are located at points where saliencies s2 and s3

attain local maxima values respectively. Alternatively, iterative
schemes can also be used to increase these discriminability
measurements.

In turn, Table IV shows that, although the angular errors
are higher, the observations made for noiseless scenarios
are also valid in noisy ones. That is, STV yields the best
results for curved scenarios by setting αP = 0 and for the
pyramid by setting αP = 1. An interesting observation is that
discriminability measurements d1 and d2 are similar to those
reported in Table III. That means that the detection of curves is
almost not influenced by noise. On the other hand, although the
discriminability measurement d3t is more affected by noise,
the values are still high. In addition, the discriminability d3b

is less affected by noise. This means that junctions at the base
of the pyramid can also be extracted from a noisy scenario.

Regarding MM, this experiment confirms the observation
made in Table II in the sense that it is different from OTV,
since both yield different results. In addition, the approxima-
tion made by MM usually yields worse results than OTV. How-
ever, it remains a good alternative to the methods proposed in
this paper. As for ETV, this experiments show that it succeeds
in mimicking the behavior of OTV, since it yields almost the
result in all measurements.

D. Effect of Parameter αP of STV

The effect of the stick component of plate votes has been as-
sessed by measuring the distortion introduced by the methods
when the tensors are initialized with the ground-truth for the
cloud of points shown in Figure 10. The same measurements
used in the previous experiment have been applied to this
experiment and σ has been set to five. Table V shows that
STV with αP = 0 is the method that less angular distortion
introduces both for b = 0 and b = 10. However, the differences
between STV and the other methods are reduced for b = 10.
The reason of this behavior is that fewer points at curves are
allowed to cast stick components, so their influence in the total
vote is reduced in such a case. Although STV with αP = 1
is the method that induces less reductions in discriminability
of saliencies, it has a bad performance in this dataset, since it
introduces higher angular errors. That means that that setting
αP = 1 is not appropriate for curved datasets. An expected
result was a reduction in the discriminability of saliencies,
which are one in the ground-truth, for all tested methods. Since
these reductions are relatively small, especially for b = 10,

Fig. 10. Cloud of points used to assess the effect of the stick component of
plate votes.

they can be thought of as the small price that tensor voting
has to pay for yielding robust results.

In addition, Table V shows the results on this dataset
for tensors initialized with unitary balls and two applied
rounds of tensor voting: one for ball votes and the other
for stick and plate votes. For this dataset, angular errors and
discriminabilities are larger than the values reported in Tables
III and IV for other datasets. This is mainly due to two factors.
First, the surfaces are intersected in an angle of 90 degrees,
which maximizes the saliency s2 in curves, leading to an
increase in d1 and d2. Second, the dataset is rather sparse,
so fewer votes are received at every point. Thus, the effect
of an erroneous vote cannot be effectively compensated with
enough correct ones, leading to an increase in the angular
errors.

E. Effect of Parameter αB of STV

Values of αB greater than zero are only useful in iterative
schemes where tensors have been initialized with bad esti-
mations of the normals. In order to test the effect of this
parameter, fifteen iterations of the stick, plate and ball tensor
voting have been run for a sampled flat surface. Tensors have
been initialized with one of the worst possible scenarios, that
is, with tensors that are perpendicular to the normals in the
surface. In particular, tensors have been initialized with plate
tensors that are tangent to the surface. Thus, the angular error
of e1 is 90 degrees at the beginning of the process. In addition,
a small ball component has also been added to the tensors
in order to force the application of the ball tensor voting in
the first iteration. Parameter αB has been set to ten for the
first iteration and to zero for the subsequent iterations, since
better estimations of the tensors are then available. Parameter
σ has been set to two, while αP has been set to zero. The arc
cosine of the normalized tensor scalar product has been used
to measure the tensor deviation, tdev, of the yielded tensor
T(p) with respect to the ground-truth Tg(p) at every point of
the dataset. This measure is given by [26], [27]:

tdev(p) = arccos

(
〈T(p),Tg(p)〉

trace(T(p)) trace(Tg(p))

)
, (39)

where 〈A,B〉 = trace(ABT ) is the scalar product between
tensors A and B. This measurement has the advantage that it
is able to assess differences in orientation and anisotropy of
the tensors at the same time.

Figure 11 shows the evolution with the iterations of the
mean of tdev and the mean of the saliency s1 normalized
by the largest eigenvalue λ1. This figure shows that STV has
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TABLE IV
MEAN ANGULAR ERROR OF e1 AND e3 IN DEGREES AND DISCRIMINABILITY OF SALIENCIES FOR THE NOISY DATASETS OF FIG. 9

Method Semisphere Cone Pyramid
Surf. Curv. Surf. Curv. Surf. Curv. Junctions

b e1 d1 e3 d2 e1 d1 e3 d2 e1 d1 e3 d2 d3 d3b d3t
OTV 0 5.62 0.07 3.90 0.04 5.62 0.09 5.06 0.08 5.21 0.15 4.30 0.14 0.18 0.11 0.44
MM 0 5.63 0.07 4.09 0.03 5.64 0.08 5.57 0.07 5.23 0.14 4.44 0.13 0.17 0.11 0.39
ETV 0 5.62 0.07 3.96 0.04 5.63 0.09 5.05 0.08 5.23 0.15 4.31 0.14 0.18 0.11 0.45

STV (αP = 0) 0 5.61 0.08 3.68 0.04 5.59 0.09 4.85 0.08 5.32 0.15 4.41 0.14 0.18 0.12 0.40
STV (αP = 1) 0 5.66 0.07 4.02 0.04 5.69 0.09 4.90 0.08 5.18 0.16 4.28 0.14 0.18 0.12 0.43

OTV 10 5.02 0.06 2.54 0.06 5.09 0.08 3.48 0.08 4.78 0.15 3.38 0.13 0.15 0.08 0.43
MM 10 5.09 0.06 3.20 0.04 5.12 0.08 4.24 0.08 4.78 0.14 3.70 0.13 0.15 0.08 0.43
ETV 10 5.01 0.06 2.53 0.06 5.09 0.08 3.46 0.08 4.79 0.15 3.37 0.13 0.15 0.08 0.44

STV (αP = 0) 10 4.96 0.07 2.51 0.06 5.05 0.09 3.45 0.08 4.81 0.14 3.50 0.13 0.15 0.07 0.46
STV (αP = 1) 10 4.98 0.06 2.60 0.06 5.09 0.09 3.68 0.08 4.75 0.16 3.35 0.13 0.15 0.07 0.47

TABLE V
MEAN ANGULAR ERROR OF e1 AND e3 IN DEGREES AND

DISCRIMINABILITY OF SALIENCIES FOR THE CLOUD OF POINTS OF FIG. 10
FOR TWO TYPES OF INITIALIZATION

Method Ground-truth Unitary balls
b e1 d1 e3 d2 e1 d1 e3 d2

OTV 0 2.32 0.88 0.00 0.92 4.98 0.72 0.00 0.59
MM 0 2.07 0.82 0.00 0.92 5.02 0.66 0.00 0.57
ETV 0 2.30 0.88 0.00 0.92 4.96 0.71 0.00 0.59

STV (αP = 0) 0 1.69 0.87 0.00 0.90 4.83 0.70 0.00 0.57
STV (αP = 1) 0 2.84 0.91 0.00 0.93 4.98 0.72 0.00 0.58

OTV 10 1.87 0.96 0.00 0.97 4.70 0.49 0.00 0.39
MM 10 2.24 0.84 0.00 0.93 4.75 0.49 0.00 0.40
ETV 10 1.86 0.97 0.00 0.97 4.71 0.49 0.00 0.38

STV (αP = 0) 10 1.56 0.96 0.00 0.96 4.59 0.47 0.00 0.40
STV (αP = 1) 10 2.22 0.97 0.00 0.97 4.63 0.47 0.00 0.40

the best performance among the tested methods. In addition,
αB can be used to accelerate the convergence of STV. If
fairly good initialization tensors are available, as it is the
case from the second iteration onwards, αB should be set
to zero in order to avoid the introduction of unnecessary
uncertainty. This experiment also shows the power of tensor
voting in iterative schemes. Despite the poor initialization,
all the implementations converge to the solution in a few
iterations. In addition, it can also be seen in this experiment
that the estimation of saliency s1 tends to be improved with
the number of iterations. Moreover, values of b greater than
zero appear advantageous since all methods perform better in
such a condition, especially for OTV and ETV. Furthermore,
the experiment also shows that the performances of OTV and
ETV are very close, while MM and STV perform differently.

VI. CONCLUDING REMARKS

This paper has proposed two alternative formulations in
order to significantly reduce the high computational complex-
ity of the plate and ball tensor voting. The first formulation
makes numerical approximations of the votes, which have been
derived from an in-depth analysis of the plate and ball voting
processes. The second one proposes simplified equations to
calculate votes that are based on the perceptual meaning of the
original tensor voting. Both formulations have a complexity of
order O

(
1
)
. This can help broaden the use of tensor voting in

more applications.
The numerical approach mimics the original formulation of

tensor voting efficiently with a small error. On the other hand,

the analytical approach has been found more appropriate for
estimating saliencies at a cost of setting two new parameters.
In both noisy scenarios and clouds of points with curved
surfaces, the simplified tensor voting yields better results by
setting the new parameter αP to zero. In addition, higher
values of αP improve its performance for datasets with flat
surfaces. Furthermore, parameter αB can be used in iterative
schemes where tensors are initialized with not too accurate
values in order to artificially introduce uncertainty.

Moreover, perceptual interpretations for the stick, plate and
ball tensor voting have been established. The stick tensor
voting and the stick component of the plate tensor voting are
used to reinforce surfaceness, whereas the plate components
of both the plate and ball tensor voting are used to boost
curveness. Junctionness is only intentionally strengthened by
the ball component of the ball tensor voting.

Future work includes efficient implementations of the plate
and ball votes in the frequency domain and extensions to
higher dimensions.

APPENDIX

The functions s′1p and s′2p, required for computing plate
votes in Section III have been divided into two parts, 0 ≤ γ <
π/4 and π/4 ≤ γ < π/2, in order to avoid the discontinuity
at γ = π/4. These functions can be approximated through
non-linear least squares fitting on γ as:

s′1p ≈


c11
γ e

−
(

ln(γ)−c12
c13

)2

if 0 < γ ≤ π/4
0 if γ = 0

c14 + c15 e
−
(
γ−π/4
c16

)
otherwise,

(40)

s′2p ≈

 e
−
(
γ
c21

)2

if γ ≤ π/4

c22 + c23 e
−
(
γ−π/4
c24

)
otherwise,

(41)

where c1i and c2j for i = 1, . . . , 6 and j = 1, . . . , 4 are factors
that must be computed only once, since they only depend on
b. In turn, these factors can also be approximated through non-
linear least squares on b by:
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Fig. 11. Experiments on αB for a flat surface with wrong initialization tensors. Top: evolution of the mean of tdev with the iterations for b = 0 (left) and
b = 10 (right). Bottom: evolution of s1/λ1 with the iterations for b = 0 (left) and b = 10 (right).

c11 ≈ 6.5360 b− 3.7920

b2 + 4.8680 b− 5.4220
− 0.3301 e−0.1501 b

+
0.0600

1 + e−0.0401 (b−25.0)
(42)

c12 ≈ 1.9501 e−0.3010 b + 1.8001 e−0.0101 b

−1.5750 (43)
c13 ≈ 1.2010− 0.2511 e−0.3001 b (44)
c14 ≈ 0.4901 e−0.0801 b + 0.1301 e−0.0010 b (45)
c15 ≈ 0.0785 e−0.0221 b − 0.5701 e−0.3501 b

+0.0466 (46)

c16 ≈ 0.1720 e−0.2501 (b−1.005)2 + 0.0550 (47)

c21 ≈ 1.1197 e−0.3114 b + 0.3552 e−0.0125 b

+1.7894 e−10.0 b +
0.0450

1 + e−(b−100.0)
(48)

c22 ≈ 0.1977 e−0.3101 b (49)
c23 ≈ 0.4278 e−0.4051 b + 0.0836 e−0.0881 b (50)
c24 ≈ 0.1294 e−0.0878 b + 0.0243 e0.0346 b (51)

Following the same methodology, the functions s′2b and s′3b,
required for computing ball votes, can be approximated by:

s′2b ≈ 0.2838 e−0.0795b + 0.2461 e−0.0065b (52)
s′3b ≈ 0.3380 e−0.3197b. (53)

In addition, s′3b can be approximated by s′2b/b for high values
of b (e.g., b > 30).
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of Quèbec (Chicoutimi, Canada) in 2006; and a
Diploma in Advanced Studies and his Ph.D. de-
gree from the Polytechnic University of Catalonia
(Barcelona, Spain) in 2007 and 2010 respectively.

In 1999, he joined St. Martin University (Bogotá, Colombia), where he was
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