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Adaptation of Tensor Voting to Image Structure
Estimation

Rodrigo Moreno, Luis Pizarro, Bernhard Burgeth, Joachim Weickert, Miguel
Angel Garcia, and Domenec Puig

Abstract Tensor voting is a well-known robust technique for extracting perceptual
information from clouds of points. This chapter proposes a general methodology
to adapt tensor voting to different types of images in the specific context of im-
age structure estimation. This methodology is based on the structural relationships
between tensor voting and the so-called structure tensor, which is the most popu-
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lar technique for image structure estimation. The problematic Gaussian convolution
used by the structure tensor is replaced by tensor voting. Afterwards, the results are
appropriately rescaled. This methodology is adapted to gray-valued, color, vector-
and tensor-valued images. Results show that tensor voting can estimate image struc-
ture more appropriately than the structure tensor and also more robustly.

1 Introduction

Medioni and colleagues [26] proposed tensor voting as a robust technique for ex-
tracting perceptual information from a cloud of points. In 3D, tensor voting esti-
mates saliency measurements of how likely a point lies on a surface, a curve, a junc-
tion, or it is an outlier. It is based on the propagation and aggregation of the most
likely normal(s) encoded by means of second-order tensors through a convolution-
like voting process, assuming that neighboring points belong to the same smooth
surface. This technique has been proven versatile, since it has successfully been
adapted to problems well beyond the ones to which it was originally applied with
excellent results. For example, this method has already been applied to a vari-
ety of problems in image and video processing, such as perceptual organization
[26, 43], image restoration [15], image segmentation [22, 29], video segmentation
[36, 27], mesh analysis [17], 3D reconstruction [49] and dimensionality estimation
[28]. Since the input data for most of these applications are not clouds of points, a
common approach is to apply tensor voting as described in [26] to clouds of points
derived from the original data. Although, in principle, it is more natural to apply ten-
sor voting to the original data, that application requires extensions of tensor voting
to different types of data, which, in most cases, have not been proposed so far.

Furthermore, extensions of tensor voting specifically tailored to applications
have also been proved effective. They are based on the incorporation of additional
application-dependent perceptual rules to the voting process. For example, the use
of specifically designed inhibitory voting fields has been reported beneficial for per-
ceptual organization in gray-scale images [25]. In addition, an extension of tensor
voting specifically tailored to color image denoising [31], robust color edge detec-
tion [32] and color image segmentation [30] has yielded significantly good results.
Related to tensor voting, a voting process specifically designed for detecting X- and
T-shaped junctions has been proposed in [1].

In a different context, local image structure estimation methods aim at typifying
the region around every pixel. These methods estimate similarity measurements of
every local region with respect to certain patterns of interest, such as flat and textured
regions, and regions that contain edges, lines or corners. These measurements can
be used, for example, to steer image processing methods or to extract local features,
such as edges, lines and corners, in a further step.

During the last decades, the use of tensors has allowed local image structure
estimation methods to represent several types of local patterns with a same mathe-
matical entity. The most popular of these methods is the structure tensor [10], which
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is able to typify flat regions, regions with edges and regions with corners, through
second-order tensors. It has been used in a multitude of applications, such as edge
detection [11], corner detection [16, 39], texture analysis [38, 40], image filtering
[44], image compression [14], optic flow estimation [24, 3], and detection of X- and
T-shaped junctions [1]. It has gained popularity thanks to its robustness, efficiency
and easiness of implementation. In addition, it depends on a single parameter, which
is usually easy to tune.

The main hypothesis made by the structure tensor is that the orientation of the
gradient changes slowly in regions with edges, and quickly in regions with cor-
ners. In addition, it assumes the size of the gradient to be small in flat regions, and
large in both regions with edges and regions with corners. Thus, the structure ten-
sor estimates local image structure by means of a weighted sum of gradients within
a neighborhood. For a gray-scale image, the structure tensor, J, is defined as the
convolution of a Gaussian with the tensorized gradient of the image [10]:

J= Gρ ∗∇u∇uT , (1)

where Gρ is the Gaussian with zero mean and standard deviation ρ , ∇u is the gradi-
ent of the image u, and ∇u∇uT represents the tensorized gradient at every pixel. A
related approach based on quadrature filters has been proposed in [19, 12]. Further-
more, extensions using higher-order derivatives [9, 21], and extensions for curved
structures [2] have also been proposed.

Despite its popularity, the structure tensor also has important shortcomings, such
as detection of features in flat regions, loss of small features, detection of false cor-
ners, and misplacement of corners. These shortcomings are mainly related to the
use of a Gaussian kernel, since it can propagate the gradient to pixels in flat regions.
Thus, the structure tensor can yield similar tensors for flat regions, and regions with
edges or corners, leading to errors in the extraction of features. This fact has encour-
aged researchers to propose alternatives to the structure tensor.

Most of the strategies intend to avoid the integration of different orientations
of the gradient by adapting the neighborhood to the data in such a way that only
neighbors with similar orientations of the gradient are taken into account in the
summation. For example, Nagel and Gehrke [34] and Nath and Palaniappan [35] use
adaptive Gaussians instead of a Gaussian convolution; Köthe [20] uses a hourglass-
shaped kernel instead of the Gaussian; van de Weijer and van den Boomgaard [47]
use robust statistics to choose one of the ambiguous orientations at every pixel; Brox
et al. [4] and Hahn and Lee [13] propose non-linear diffusion processes in order to
aggregate contributions of the neighbors.

Although tensor voting and the structure tensor have been proposed in different
contexts, they have important similarities, as will be shown in Section 3. Thus, the
aim of this chapter is twofold: First, to propose a general methodology to extend ten-
sor voting to different types of images. This methodology is based on the similarities
between the formulations of both tensor voting and the structure tensor. Second, to
compare the performance of both methods in the specific context of image structure
estimation for different types of images. It is important to remark that application-
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dependent extensions of tensor voting are not considered in this chapter, since their
formulation could not be related to the structure tensor.

Related to this work, two extensions of classical tensor voting in order to directly
apply it to gray-scale images have been proposed. First, Tai et al. [42] encode cur-
veness and regionness in the tensors before applying tensor voting. Unfortunately,
discriminating edges from corners is not possible by applying this strategy, since
both types of structure will yield high curveness using this approach. Second, Loss
et al. [23] initialize the tensors with ball tensors (cf. Section 2) whose size depends
on the gray-scale value of the pixel. However, this strategy cannot be used to extract
corners.

The chapter is organized as follows. Section 2 summarizes the tensor voting for-
malism. Section 3 shows the relationships between tensor voting and the structure
tensor. Section 4 describes a general methodology to extend tensor voting to differ-
ent types of images, in particular to gray-scale, vector- and tensor-valued images in
the specific application of image structure estimation. Section 5 shows some results
of tensor voting applied to image structure estimation. Finally, Section 6 discusses
the obtained results and makes some final remarks.

2 Tensor Voting

Medioni et al. [26] proposed tensor voting as a technique for extracting percep-
tual information from clouds of points, in particular in 3D. The method robustly
estimates saliency measurements of how likely a point lies on a surface, a curve,
a junction, or it is an outlier. It is based on the propagation and aggregation of the
most likely normal(s) encoded by means of second-order tensors modeled by means
of symmetric positive semidefinite matrices. In a first stage, a tensor is initialized at
every point in the cloud either with a first estimation of the normal, or with a ball-
shaped tensor if a priori information is not available. Afterwards, every tensor is
decomposed into its three components: a stick, a plate and a ball. Every component
casts votes, which are tensors that encode the most likely direction(s) of the normal
at a neighboring point taking into account the information encoded by the voter in
that component. Finally, the votes are summed up and analyzed in order to esti-
mate surfaceness, curveness and junctionness measurements at every point. Points
with low saliency are assumed to be outliers. More formally, the tensor voting at p,
TV(p) is given by:

TV(p) = ∑
q∈neigh(p)

SV(v,Sq)+PV(v,Pq)+BV(v,Bq), (2)

where q represents each of the points in the neighborhood of p, SV, PV and BV
are the stick, plate and ball tensor votes cast to p by every component of q, v =
p−q, and Sq, Pq and Bq are the stick, plate and ball components of the tensor at q
respectively. These components are given by:
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Sq = (λ1−λ2)
(
e1e1

T ) , (3)

Pq = (λ2−λ3)
(
e1e1

T + e2e2
T ) , (4)

Bq = λ3
(
e1e1

T + e2e2
T + e3e3

T ) , (5)

where λi and ei are the i-th largest eigenvalue and its corresponding eigenvector of
the tensor at q.

Saliency measurements can be estimated from an analysis of the eigenvalues of
the resulting tensors in (2). Thus, s1 = (λ1−λ2), s2 = (λ2−λ3), and s3 = λ3 can
be used as measurements of surfaceness, curveness and junctionness respectively.
Points whose three eigenvalues are small are regarded as outliers. In addition, eigen-
vector ±e1 represents the most likely normal for points lying on a surface, whereas
±e3 represents the most likely tangent direction of a curve for points belonging to
that curve.

Extensions of tensor voting to N-dimensions are staightforward. In this case,
tensors are decomposed into a stick, a ball and N-2 plate components, which are
processed through the N-D stick, N-D ball and N-D plate tensor voting respectively
[43]. These processes are natural extensions of the 3D case. The next subsections
describe how the stick, plate and ball votes are calculated in 3D.

2.1 Stick Tensor Voting

Stick tensors are used by tensor voting in 3D to encode the orientation of the surface
normal at a specific point. Tensor voting handles stick tensors through the so-called
stick tensor voting, which aims at propagating surfaceness in a neighborhood by
using the perceptual principles of proximity, similarity and good continuation bor-
rowed from the Gestalt psychology [5]. The stick tensor voting is based on the hy-
pothesis that surfaces are usually smooth. Thus, tensor voting assumes that normals
of neighboring points lying on the same surface change smoothly. This process is
illustrated in Figure 1. Given a known orientation of the normal at a point q, which
is encoded by Sq, the orientation of the normal at a neighboring point p can be in-
ferred by tracking the change of the normal on a joining smooth curve. Although
any smooth curve can be used to calculate stick votes, a circumference is usually
chosen. A decaying function, ws, is also used to weight the vote as defined below.

It is not difficult to show from Figure 1 that for a circumference:

SV(v,Sq) = ws

[
R2θpq Sq RT

2θpq

]
, (6)

where θpq is shown in Figure 1 and R2θpq represents a rotation with respect to the
axis v× (Sq v), which is perpendicular to the plane that contains v and Sq. Let λ be
the eigenvalue greater than zero of Sq. Angle θpq is given by:
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SV(v,Sq)

Sq

q

p
v

θpq l

2θpq

Fig. 1 The stick tensor voting. A stick Sq casts a stick vote SV(v,Sq) to p that corresponds to the
most likely tensorized normal at p.

θpq = arcsin

(√
vT Sq v
λvT v

)
. (7)

A point q can only cast stick votes for θpq ≤ π/4, since the hypothesis that both
points p and q belong to the same surface becomes more unlikely for larger values
of θpq. On the other hand, the weighting function ws is used to reduce the strength
of the vote with the arc length, l, given by:

l =
||v|| θpq

sin(θpq)
, (8)

and with its curvature, κ , given by:

κ =
2 sin(θpq)

||v||
. (9)

Thus, ws is defined as [33]:

ws(v,Sq) =

{
e
− l2

2ρ2−bκ2

if θpq ≤ π/4
0 otherwise,

(10)

where ρ is a scale parameter and b can be adjusted to give more importance to the
curvature. Following the methodology proposed in [33], b has been set to ||v||2/4 in
the experiments.
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2.2 The Plate Tensor Voting

A plate tensor is a tensor with λ1 = λ2 ≥ 0 and λ3 = 0. Plate tensors are processed
through the so-called plate tensor voting. The plate tensor voting uses the fact that
any plate tensor, P, can be decomposed into all possible stick tensors inside the
plate. Let SP(β ) = Rβ e1e1

T RT
β

be a stick inside the plate P, with e1 being its prin-
cipal eigenvector, and Rβ being a rotation with respect to an axis perpendicular to
e1 and e2. Thus, P can be written as:

P=
λ1 +λ2

2π

∫ 2π

0
SP(β ) dβ . (11)

Taking into account that SP(β ) is a stick tensor, the plate vote is defined as the
aggregation of stick votes cast by all the stick tensors SPq(β ) that constitute Pq.
Thus, the plate vote is defined as:

PV(v,Pq) =
λ1

π

∫ 2π

0
SV(v,SPq(β )) dβ . (12)

Although this integral cannot be simplified, plate votes can be computed efficiently
by using the method proposed in [33].

2.3 The Ball Tensor Voting

A ball tensor is a tensor with λ1 = λ2 = λ3 ≥ 0. The ball tensor voting is defined
in a similar way as the plate tensor voting. Let SB(φ ,ψ) be a unitary stick tensor
oriented in the direction (1,φ ,ψ) in spherical coordinates. Then, any ball tensor B
can be written as:

B=
λ1 +λ2 +λ3

4π

∫
Γ

SB(φ ,ψ) dΓ , (13)

where Γ represents the surface of the unitary sphere. Using the same argument as
in the case of the plate tensor voting, the ball vote is defined as:

BV(v,Bq) =
3λ1

4π

∫
Γ

SV(v,SBq(φ ,ψ)) dΓ . (14)

Similarly to the plate tensor voting, this integral cannot be simplified. However, ball
votes can be computed efficiently by using the method proposed in [33].
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3 Relationships Between the Structure Tensor and Tensor Voting

Although the structure tensor and tensor voting are usually applied to two different
scopes, images and clouds of points, both aim at estimating structure, as it will be
shown in this section. This section describes the relationships between the structure
tensor and tensor voting.

3.1 Similarities

With the exception of the rotation term and the restriction of θpq ≤ π/4 in (10),
the formulation of the stick tensor voting in (6) has a structure similar to that of
the structure tensor in (1). In particular, the term ∇u∇uT in (1) plays a similar role
as the term Sq in (6), while function ws of the stick tensor voting is closely related
to the Gaussian kernel used by the structure tensor. In addition to these structural
similarities, both methods have functional connections, since they can be adapted
to be applied to the same contexts. Especially, the structure tensor can be adapted
to estimation of structures in 3D, and tensor voting can be adapted to estimation of
structures in gray-scale images.

On the one hand, the structure tensor can be adapted to estimation of structures in
3D with the help of a norm estimator. For example, the local norm can be estimated
by computing the equation of the most likely tangent plane at every point. The norms
obtained with such an estimator can be tensorized and convolved with a Gaussian in
order to estimate structure in 3D. The resulting tensors yielded by both methods can
be analyzed in the same manner. For example, λ1−λ2 can be used as a measure of
surfaceness, λ2−λ3 as a measure of curveness, and λ3 as a measure of junctionness,
as in the case of tensor voting [26].

In turn, tensor voting can be adapted to image structure estimation by designing
an appropriate encoding step. Taking into account that the normal, nq in a gray-scale
image corresponds to the normalized gradient, ∇uq/||∇uq||, the stick component Sq
in (3) can be written as:

Sq = (λ1−λ2)

(
∇uq∇uT

q

||∇uq||2

)
, (15)

which can be further simplified by choosing (λ1−λ2) = ||∇uq||2. Thus:

Sq = ∇uq∇uT
q . (16)

In addition, if the components Pq and Bq are set to zero, the input of both, the
structure tensor and tensor voting, becomes equivalent for gray-scale images. As in
the 3D case, the output of both methods can be analyzed in a similar way, since, in
2D, the shape of the tensors at edges is closer to a stick, while the shape tends to a
ball at corners in both cases (in 2D, the plate component is undefined). However,
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the tensors obtained by means of tensor voting are in a different scale. Hence, it is
necessary to apply a rescaling function in order to have comparable results.

3.2 Differences

As already mentioned, both methods have two essential differences: the rotation
term in (6) and the restriction of θpq ≤ π/4 in (10). These differences are given by
the different assumptions made by both methods. On the one hand, the hypothesis
of tensor voting is that p and q belong to the same smooth curve and the voting
processes are adjusted according to this hypothesis. On the other hand, the hypoth-
esis made by the structure tensor is that the orientation of the normal at neighboring
points should be similar, by taking into account that the orientation of the normal in
a smooth curve usually changes slowly.

These differences can be seen in Figure 2. The structure tensor can be modeled
as a voting process in which every point votes for its own orientation with a strength
given by a Gaussian function. Thus, the structure tensor propagates its own orienta-
tion isotropically. This approach can be seen as a displacement to p of the surface
at q. In turn, tensor voting propagates a rotated version of the original orientation
when θpq ≤ π/4. It is expected that tensor voting performs better than the structure
tensor as it makes stronger assumptions.

p

q

uuq     q
T

Vote
Vote

1
p
2 p

q

Vote

uuq     q
T

p
Null vote

2
1

Fig. 2 Left: the structure tensor seen as a voting process. Right: the stick tensor voting. The main
differences between both are the rotation term (see the difference of votes at p1) and the anisotropic
behavior of tensor voting (tensor voting does not cast votes to p2).

4 Tensor Voting for Structure Estimation

The structural relationships shown in Section 3 lead to a general methodology to
extend tensor voting to different types of images. These extensions can be used to
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improve the image structure estimation obtained by means of the structure tensor.
The methodology comprises three steps. First, tensors are initialized in the same
way as for the structure tensor in every different type of images. Second, the Gaus-
sian convolution used by the structure tensor is replaced by tensor voting. Finally,
the resulting tensors are rescaled in order to renormalize the total energy stored in
the tensors. The following subsections show how this general methodology can be
applied to different types of images.

4.1 Gray-Scale Images

From Section 3, tensor voting can be directly applied to image structure estimation
in gray-scale images by following the next three steps. First, the tensorized gradi-
ent, ∇u∇uT , is used to initialize a tensor at every pixel. It is important to remark
that other types of tensor can be used in the initialization step, for example, ball
tensors as proposed in [23]. However, the advantage of initializing the tensors with
the tensorized gradient is that the input of the structure tensor and tensor voting is
the same, easing the comparison between both methods. Second, the stick voting
process is applied in order to propagate the information encoded in the tensors. That
is:

TV(p) = ∑
q∈neigh(p)

SV(v,∇uq∇uT
q ). (17)

Notice that it is not necessary to apply the plate and ball voting processes since
the plate and ball components are zero at every pixel due to the initialization step.
Finally, the resulting tensors are rescaled by the factor:

ξ =

∑
p∈Ω

trace(∇up∇up
T )

∑
p∈Ω

trace(TV(p))
, (18)

in order to renormalize the total energy of the tensorized gradient, where Ω refers to
the given image. This scaling is applied in order to get comparable results to those
obtained with the structure tensor.

4.2 Color and Vector-Valued Images

The structure tensor has already been extended to multivalued images in [7] and in
a more general way in [45]:



Adaptation of Tensor Voting to Image Structure Estimation 11

J=
d

∑
k=1

Gρ ∗wk∇u(k)∇u(k)T = Gρ ∗
d

∑
k=1

wk∇u(k)∇u(k)T , (19)

where d is the number of channels, ∇u(k) is the gradient at channel k, and wk are
weights used to give different relevance to every channel. From (19), the structure
tensor can be equivalently estimated either by adding d structure tensors, one for
every channel, or by applying a Gaussian kernel on the (weighted) summation of the
tensorized gradients ∇u(k)∇u(k)T . The reason why both alternatives are equivalent
for computing the structure tensor is that Gaussian convolution is linear. However,
this equivalence does not hold for non-linear averaging methods, including tensor
voting. Thus, there are two options to extend tensor voting for this kind of images,
considering that tensor voting must replace the Gaussian convolution used in the
structure tensor. The first option is to apply the stick tensor voting independently to
every channel and then adding up the individual results:

TV(p) =
d

∑
k=1

∑
q∈neigh(p)

wk SV(v,∇uq(k)∇uq(k)T ). (20)

The second option is to apply (2) to the sum of tensorized gradients with Sq, Pq and
Bq being the stick, plate and ball components of Tq = ∑d

k=1 wk∇uq(k)∇uq(k)
T . For

two-dimensional images, Pq = 0. In both options, rescaling the calculated tensors is
performed in a similar way as described for the gray-scale images. Figure 3 shows
the options described above.

∇u(1)∇u(1)T
∇u(2)∇u(2)T

∇u(3)∇u(3)T

d

∑
k=1

∇u(k)∇u(k)T

Fig. 3 Tensor voting can be applied to the channels independently (the red, green and blue sticks)
or to the sum of the tensorized gradients (the ellipse).

The first option has the advantage that only the application of the stick tensor
voting is necessary, whereas for the second option, the stick, plate (for 3D color
images) and ball tensor voting are required. On the other hand, the second option
tends to be more robust since it is less sensitive to bad initial estimations of the
gradient. However, in practice, Tq ≈ Sq in most pixels of natural images. As an
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(a) (b) (c) (d)

Fig. 4 (a) Lenna. (b) Mandrill. (c-d) Pixels (in black) with λ2 ≥ 0.1 λ1 of Tq for both images.
Processing channels independently is appropriate in most pixels of natural images.

example, in Figure 4 the number of pixels with λ2 greater than the 10% of λ1 of Tq
corresponds to only 0.8% of the total for Lenna and 12.2% for the more textured
Mandrill. Thus, the first option can be used in most of the pixels and the second one
only in those pixels in which the approximation is not valid.

4.3 Tensor-Valued Images

A tensor-valued image is an image in which a tensor is associated with every pixel
or voxel. As an example, images acquired through diffusion tensor magnetic reso-
nance imaging (DT-MRI) are tensor-valued. Figure 5 shows examples of this kind
of images.

Fig. 5 Left: 2D slice extracted from a 3D DT-MRI data set (128×128 voxels). Middle: magnified
slice around the lateral ventricles (40×55 voxels). Right: two synthetic data sets (32×32 voxels
each) of a spiral (top) and a cross (bottom). Ellipsoids are used to represent the tensors associated
with every voxel.
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Unlike gray-valued and color images, there are several ways to extend the struc-
ture tensor concept to tensor-valued images. One of them was proposed by We-
ickert and Brox [46] in which the structure tensor is calculated through (19), with
the channels corresponding to the entries in the tensors. Thus, the same methodol-
ogy presented in the previous subsection can be used for adapting tensor voting to
tensor-valued images by using the entries in the tensors as the channels of a vector-
valued image. Moreover, the factors wk can be set for tensor-valued images by using
the fact that any symmetric matrix, M, can be modeled by means of a vector, m,
which is given in an orthonormal tensorial basis with respect to the internal product
〈A,B〉= trace(ABT ) [37, 18]:

M=

m11 m12 m13
m21 m22 m23
m31 m32 m33

 ⇐⇒ m =



m11√
2m12√
2m13
m22√
2m23
m33

 . (21)

This modeling makes equivalent the Frobenius norm |M|F =
√

trace(MMT ) and
the norm of m. Thus, tensor voting can be applied to vectors m instead of to tensors
M by using the methodology presented in the previous subsection, with wk = 1 for
the diagonal entries and wk =

√
2 for the other entries.

Similarly to the case of color images, there are two options for applying tensor
voting: to compute six stick votes, one for every channel, or to compute the complete
tensor voting framework on the summation of six stick tensors, one for every channel
(cf. Figure 3). As in the case of color images, the more expensive second option is
only necessary at pixels (voxels) where the gradient computed for one channel is
very different from the one computed for one another channel.

An alternative extension of tensor voting for diffusion images can be proposed
by taking into account the differential nature of this type of images. In DT-MRI, the
eigenvectors of the acquired tensors are tangent to the main diffusivity orientations
of the movement of water molecules at every voxel. Instead, normal orientations are
required to compute structure. Following the approach in [2], such orientations can
be extracted from tensors R computed as:

R= trace(T) I−T, (22)

where T is the acquired tensor and I the identity matrix. This transformation only
modifies the eigenvalues, since tensors R and T share the same eigenvectors. The
eigendecomposition of these tensors is given by:

R=
3

∑
i=1

λieieT
i . (23)
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Factor eieT
i can be interpreted as tensorized gradients in the image. Thus, by using

this analogy, a structure tensor can be defined as:

J= Gρ ∗
3

∑
i=1

λieieT
i =

3

∑
i=1

Gρ ∗λieieT
i , (24)

where the equivalence is given by the linearity of the Gaussian convolution.
Similarly to the case of Figure 3, there are two approaches to extend tensor voting

to this type of images: to apply the stick tensor voting to every λieieT
i or to directly

apply the stick, plate and ball tensor voting to the tensors R.
In Chapter 9, the stick votes are represented and accumulated as higher-order

tensors, whose weight and orientation are derived from second-order tensors. The
analysis of these higher-order tensors is then performed through a low-rank approx-
imation, as proposed in [41].

More sophisticated methods have already been proposed for extending the con-
cept of the structure tensor to tensor-valued images. For example, Burgeth et al. [6]
use an algebraic approach to deal with the intrinsic third order nature of the gradi-
ent of tensor-valued images. Nevertheless, an adaptation of tensor voting based on
these methods requires the extension of the voting processes for higher-dimensional
tensor-valued images, which is out of the scope of this chapter.

5 Experimental Results

Figures 6 to 8 present the structure estimation in a fingerprint by means of both
the structure tensor and tensor voting. Figure 6 shows that tensor voting is able to
preserve the gaps in the image, while the structure tensor is not. This means that
tensor voting avoids estimating structure in unstructured regions, which is one of
the known problems of the structure tensor.

Figure 7 shows that the orientation of the gradient is smoothed by both the struc-
ture tensor and tensor voting. This is a good property of a structure estimator, since
orientation usually changes slowly in an image and is noisy in ∇u∇uT .

Figure 8 shows the map of λ1−λ2, which can be used to extract edges. It can
be seen that the structure tensor is more sensitive to the selection of the parameter
ρ , while tensor voting yields similar results for a greater range of values. Thus, it is
more difficult to tune the parameter of the structure tensor than the scale parameter
of tensor voting.

Figure 9 shows an example for edge detection. Since ideal edges are character-
ized by stick tensors, edges can be obtained by applying non-maximum suppression
and hysteresis to the map of λ1−λ2, which measures how far every pixel is from
that condition. It can be seen that the structure tensor blurs that map. This can lead
to misplacements of the binary edges extracted from these maps and to loss of small
edges. For example, edges inside faces are completely lost, and the eyebrow of the



Adaptation of Tensor Voting to Image Structure Estimation 15

(a) (b)

(c) (d)

Fig. 6 (a) A fingerprint with a region of interest (ROI).(b) ∇u∇uT in the ROI. (c-d) The structure
tensor and tensor voting in the ROI respectively (ρ = 2/

√
2). Tensor voting preserves gaps.

(a) (b) (c)

Fig. 7 (a-c) Color coded orientation (green= 0, yellow=π/4, red=π/2, blue=3π/4) of ∇uq∇uq
T ,

the structure tensor and tensor voting respectively (ρ = 3/
√

2) for the fingerprint of Figure 6a.
Both methods smooth the orientation of the gradient.

totem at the left-hand side is misplaced. Tensor voting is able to keep edges thinner,
reducing in that way the problems of the structure tensor.

Most corner detectors apply a function on the eigenvalues of the structure tensor
[16]. Hence, accuracy and robustness in the estimation of eigenvalues are require-
ments for this application. Figures 10 shows plots of λ1 and λ2 from tensors esti-
mated by means of both the structure tensor and tensor voting for a noiseless and a
noisy synthetic image. Figure 10 shows that tensor voting is more robust and more
accurate than the structure tensor in the estimation of λ1. In addition, the structure
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(a) (b) (c) (d)

Fig. 8 (a-b) Map of λ1−λ2 obtained with the structure tensor for ρ = 1/
√

2 and ρ = 2/
√

2 re-
spectively. (c-d) Map of λ1−λ2 obtained with tensor voting for the same values of ρ . The structure
tensor is more sensitive to ρ .

(a) (b) (c)

Fig. 9 (a) Original image. (b-c) Map of λ1−λ2 for the structure tensor and tensor voting respec-
tively (ρ = 3/

√
2). The structure tensor blurs the edges.

tensor mistakenly introduces a maximum in λ1 in the middle of the small hole inside
the star, while tensor voting does not.

In addition, Figure 10 shows that the structure tensor has a bad performance
for both noiseless and noisy images. Actually, it blurs λ2 in such a way that the
corners are displaced. In addition, it is very sensitive to noise and generates a false
maximum in the hole at the middle of the star. On the other hand, tensor voting has
a more consistent performance in estimating λ2 in both noiseless and noisy images.
Although tensor voting generates a halo near edges, it can be filtered out by taking
into account that it only appears near edges and has smaller values of λ2 than in the
corners.

Figure 10 also shows the effect of the rotation term in (6). This figure shows plots
of λ1 and λ2 from tensors estimated by means of tensor voting without the rotation
term for the image of the star. It can be seen that the effect of the rotation term in
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Structure tensor Tensor Voting Tensor Voting WRT

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 10 (a) Original image. (e) Noisy image (truncated Gaussian noise with σ = 100). (b-d) Maps
of λ1 obtained with the structure tensor, and tensor voting with and without rotation term (WRT)
in (6) respectively for the original image (ρ = 3/

√
2). (f-h) Maps of λ1 obtained with the three

methods for the noisy image. (j-l) Maps of λ2 obtained with the three methods for the original
image. (n-p) Maps of λ2 obtained with the three methods for the noisy image. (i) Detected corner
at a peak of the star by the structure tensor (red), tensor voting (green) and tensor voting without
the rotation term (blue). (m) Detected corners at two valleys of the star by the structure tensor (red)
and both versions of tensor voting (green).
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(6) on λ1 is almost negligible, since the results are similar for both the noiseless
and noisy images (see Figure 10c vs. 10d, and Figure 10g vs. 10h). Regarding λ2,
tensor voting without the rotation term has a better performance in the noiseless
image, since it does not insert halos (see Figure 10l). However, its performance is
not robust, since it is difficult to extract maxima from its estimation for the noisy
image (see Figure 10p). Thus, tensor voting with the rotation term is more robust in
the estimation of λ2. This effect also appears in curved edges, as shown in Figure
11. In conclusion, the rotation term of (6) robustifies the estimation of λ2 at a cost of
introducing halos that should be filtered out a posteriori. It is noteworthy to remark
that the method proposed by Köthe [20] is closely related to tensor voting without
the rotation term. The only difference between both methods is the use of a different,
but still closely related, weighting function.

(a) (b) (c) (d)

Fig. 11 (a) Original image with the detected corners with the structure tensor (in red) and tensor
voting with and without rotation term in (6) (in green). (b-d) Maps of λ2 obtained with the three
methods respectively for the original image (ρ = 3/

√
2).

Regarding precision, tensor voting both with and without the rotation term is able
to detect corners with a smaller error. Corners have been detected by looking at local
maxima in the map of λ2 (see Figures 10i, 10m and 11a). Table 1 shows the mean
errors yielded by both the structure tensor and tensor voting. The strategies based
on tensor voting yield better results than the structure tensor in all cases. Notice that
corners at the peaks of the star are more difficult to detect, since the angles between
the edges that abut at the corner are smaller. In turn, binary edges extracted from
the star and the spiral through non-maximum suppression coincide with the ground-
truth for both versions of tensor voting. The accuracy of the edges extracted from
the structure tensor is also good in regions far away from corners, but it is largely
degraded in regions close to corners.

Table 1 Mean error in corner detection (in pixels) for the synthetic images of Figures 10 and 11.

Structure tensor Tensor Voting Tensor voting (WRT)
Peaks of the star 6.4 3.1 0.9
Valleys of the star 6.5 0.2 0.2
Center of the spiral 9.5 0.0 0.0
Ends of the spiral 4.1 0.0 0.0
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Moreover, the method proposed by Loss et al. [23] has been implemented in
order to compare two different approaches for extending tensor voting to gray-scale
images. Figure 12 shows the results of applying this method to the images of Figures
10a and 10e. As can be seen, λ1−λ2 generates similar responses at both edges and
flat regions, making it difficult to detect edges in noisy images. In turn, λ2 gives no
additional information, since it yields a smoothed version of the original image.

(a) (b) (c) (d)

Fig. 12 (a-b) Maps of λ1− λ2 calculated with the method by Loss et al. [23] for the images of
Figure 10a and 10e respectively (ρ = 3/

√
2). (c-d) Maps of λ2 calculated with he method by Loss

et al. [23] for the images of Figure 10a and 10e respectively (ρ = 3/
√

2). Values have been inverted
for a better visualization.

Finally, Figure 13 shows that tensor voting is also a better option to be used
instead of the structure estimation for tensor-valued images. This figure shows the
results yielded for the images of Figure 5 by both the structure tensor and tensor
voting computed through the two alternatives described in Subsection 4.3, that is,
by modeling tensors as vectors, and by applying (24) and its extension to tensor
voting. Notice that both alternatives are not comparable since the former estimates
structure in the input tensorial image, while the latter estimates structure in an image
related to the inverse gradient [8] of the input image. This fact explains, for example,
why tensor voting detects two edges in Figure 13j for every leg of the cross, while
it detects only one edge in Figure 13l. As appreciated in these images, the structure
tensor blurs the resulting tensors in such a way that it is difficult to extract edges and
corners from them. On the contrary, tensor voting is able to estimate structure in a
better way.

6 Concluding Remarks

This chapter proposes a general methodology to adapt tensor voting for estimating
image structure based on the fact that the stick tensor voting and the structure ten-
sor are structurally similar, as shown in Section 3. Section 4 has shown how this
methodology can be applied to different types of images. Experimental results show
that tensor voting can estimate structure more appropriately than the structure ten-
sor. In addition, tensor voting yields more robust estimations of structure than the
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Str. tensor (Alt. 1) Tensor Voting (Alt. 1) Str. tensor (Alt. 2) Tensor Voting (Alt. 2)

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 13 Resulting tensor fields after applying the structure tensor and the two alternative extensions
of tensor voting described in Subsection 4.3 respectively (ρ = 5/

√
2) for the images of Figure 5.

Alt. 1 models tensors as vectors, and Alt. 2 is based on (24).

structure tensor. The rotation term in the stick tensor voting leads to more robust
estimations of λ2 but also generates halos that should be filtered out a posteriori.

It is interesting to remark that the close relationship between the structure tensor
and tensor voting has advantages and shortcomings. On the one hand, this relation-
ship can be used to extend tensor voting to different types of images, as proposed
in this paper. On the other hand, this relationship also limits the scope of use of
tensor voting to structure estimation. Thus, there are three options to extend tensor
voting to other applications. The first one is to use tensor voting in the process-
ing step where structure estimation is required, as many previous works have done.
The second one is to model the problem in terms of structure estimation, for exam-
ple, by using different encoding steps. The third one is to adapt the voting process
by encoding new application-dependent perceptual rules. Given its recent success
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[31, 32, 30], the third option appears to be the most promising approach for the
majority of applications.

Future work includes comparing different ways to perform tensor voting on
tensor-valued images and extending the proposed methodology to higher-order ten-
sors. In addition, the inclusion of new perceptual rules in the voting process will
be explored in order to eliminate the halos generated by tensor voting in the esti-
mation of λ2 without a post-processing step. Furthermore, comparisons with other
approaches in order to combine tensors locally, e.g. [48], are planned.
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