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“Every now and then, a man’s mind is stretched by a new idea or sensation and
never shrinks back to its former dimensions.”

Oliver Wendell Holmes Sr.





Short Abstract
This thesis is dedicated to image compression methods that optimise
and store a small subset of the image pixels, called the mask, and re-
construct the rest of the image through inpainting. Inpainting is the
general term for filling in missing or damaged parts of an image. How-
ever, saving fully optimised pixel positions is expensive and has, till
now, received little attention. We propose two new families of codecs
specifically addressing this problem that offer better performance or a
better trade-off between speed and performance. We achieve this by
extensively evaluating existing image and data compression methods,
understanding their most successful principles and combining them to
form new codecs. Inpainting-based image compression methods have
long since employed partial differential equations for their inpainting
method. They offer good reconstruction quality in most cases. However,
naive implementations are very slow, requiring significant efforts to be
sped up. In this thesis, we explore Shepard inpainting as a simple and
efficient alternative. By considering data selection and extensions such
as anisotropy, we propose our own Shepard-inpainting-based compres-
sion methods that offer a good mix of simplicity, efficiency, and qual-
ity. Multi-channel images are encountered more than single-channel im-
ages today. However, very few inpainting-based codecs have dedicated
colour modes. We propose colour extensions for Shepard inpainting, in-
cluding a luma-preference mode and a vector quantisation mode that
has not yet been proposed. The resulting codecs offer better compres-
sion performance than the base RGB mode on colour images. This thesis
tries to present efficient and better methods to compress fully optimised
masks and to see how far one can go with a simple but efficient operator
such as Shepard inpainting.





Kurzzusammenfassung
Diese Dissertation beschäftigt sich mit Bildkompressionsmethoden, die
eine kleine Teilmenge der optimierten Bildpixel, die sogenannte Maske,
speichern und den Rest des Bildes durch Inpainting rekonstruieren. In-
painting ist der allgemeine Begriff für die Rekonstruktion fehlender oder
beschädigter Teile eines Bildes. Das Speichern vollständig optimierter
Pixelpositionen ist jedoch teuer und wurde bisher wenig beachtet. Wir
führen zwei neue Codec-Familien ein, die sich speziell diesem Prob-
lem widmen und eine bessere Leistung oder einen besseren Kompro-
miss zwischen Geschwindigkeit und Leistung bieten. Wir erreichen
dies, indem wir bestehende Bild- und Datenkompressionsmethoden um-
fassend evaluieren und ihre erfolgreichsten Prinzipien kombinieren, um
neue Methoden zu entwickeln. Inpainting-basierte Bildkompressions-
methoden verwenden seit langem partielle Differentialgleichungen für
das Inpainting. Sie bieten in den meisten Fällen eine gute Rekonstruk-
tionsqualität. Naive Implementierungen sind jedoch sehr langsam und
erfordern erhebliche Anstrengungen, um sie zu beschleunigen. Diese
Arbeit untersucht Shepard-Inpainting als einfache und effiziente Al-
ternative. Unter Berücksichtigung der Datenauswahl und Erweiterun-
gen wie Anisotropie führen wir unsere eigenen, auf Shepard-Inpainting
basierenden Kompressionsmethoden ein, die eine gute Mischung aus
Einfachheit, Effizienz und Qualität bieten. Nur wenige auf Inpainting
basierende Codecs verfügen über dedizierte Farbmodi, obwohl Farb-
bilder beliebter sind. Wir führen Farbmodi für Shepard-Inpainting ein,
darunter einen Luma-Präferenzmodus und einen Modus mit Vektorqua-
ntisierung. Die daraus resultierenden Methoden bieten bei Farbbildern
eine verbesserte Kompressionsleistung gegenüber dem Standardver-
fahren. Diese Dissertation versucht, effiziente und bessere Methoden
zum Komprimieren vollständig optimierter Masken vorzustellen und
zu sehen, wie weit man mit einem einfachen, aber effizienten Inpainting-
Operator wie Shepard-Inpainting kommen kann.





Abstract
Inpainting-based codecs (coders and decoders) store sparse, quantised
pixel data and decode by reconstructing the discarded image parts. This
process of filling in the missing regions of the image just from the stored
pixel information is called inpainting. Storing the carefully optimised po-
sitions of known data creates a lossless compression problem on sparse
and often scattered binary images. This central issue is crucial for the
performance of such codecs. Since it has only received little attention in
the literature, we have conducted the first systematic investigation of
this problem. To this end, we first review and compare a wide range of
existing methods, from image compression and general-purpose coding,
regarding their coding efficiency and runtime. Afterwards, an ablation
study enables us to identify and isolate the most valuable components
of existing methods. We combine those ingredients into new codecs that
offer better compression ratios or a more favourable trade-off between
speed and performance.

Successful inpainting-based image compression codecs traditionally use
inpainting operators that solve partial differential equations. This re-
quires some numerical expertise if efficient implementations are neces-
sary. Our goal is to investigate variants of Shepard inpainting as sim-
ple alternatives for inpainting-based compression. They can be imple-
mented efficiently when we localise their weighting function. To turn
them into viable codecs, we have to introduce novel extensions of clas-
sical Shepard interpolation that adapt successful ideas from previous
codecs: Anisotropy allows direction-dependent inpainting, which im-
proves reconstruction quality. Additionally, we incorporate data selec-
tion by subdivision as an efficient way to tailor the stored information
to the image structure. On the encoding side, we introduce the novel
concept of joint inpainting and prediction for isotropic Shepard codecs,
where storage cost can be reduced based on intermediate inpainting re-
sults. In an ablation study, we show the usefulness of these individual
contributions and demonstrate that they offer synergies which elevate
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the performance of Shepard inpainting to surprising levels. Our result-
ing approaches offer a more favourable trade-off between simplicity and
quality than traditional inpainting-based codecs. Experiments show that
they can outperform JPEG and JPEG2000 at high compression ratios.

Few inpainting-based compression methods have a dedicated mode to
compress colour images, even though multi-channel images are more
prevalent than grayscale images. Therefore, we evaluate different ap-
proaches for inpainting-based colour compression focused on Shepard
inpainting. However, the principles can be extended to other inpaint-
ing operators. Inpainting operators can reconstruct an extensive range
of colours from a small colour palette of the known pixels. We exploit
this with a luma preference mode, which uses higher sparsity in YCbCr
colour channels than in the brightness channel. Furthermore, we pro-
pose the first full vector quantisation mode for an inpainting-based
codec that stores only a small codebook of colours. Our experiments
reveal that both colour extensions yield significant improvements.

This thesis is dedicated to making inpainting-based image compression
more efficient. We aim for compression efficiency by targeting known
pixel positions as they are more expensive to store and operational effi-
ciency by using Shepard inpainting and improving it with our proposed
extensions.



Zusammenfassung
Inpainting-basierte Codecs (Coder und Decoder) speichern spärliche,
quantisierte Pixeldaten und decodieren, indem sie die verworfenen Pix-
eldaten rekonstruieren. Dieser Prozess der Rekonstruktion der fehlen-
den Bildbereiche nur aus den gespeicherten Pixelinformationen wird als
Inpainting bezeichnet. Das Speichern der sorgfältig optimierten Positio-
nen bekannter Daten führt zu einem verlustfreien Kompressionsprob-
lem bei spärlichen und im Bild verstreuten binären Pixeldaten. Dieses
zentrale Problem ist entscheidend für die Leistung solcher Codecs. Da
es in der Literatur nur wenig Beachtung gefunden hat, haben wir die
erste systematische Untersuchung dieses Problems durchgeführt. Zu
diesem Zweck überprüfen und vergleichen wir zunächst eine breite
Palette bestehender Methoden, von der Bildkompression bis zur Al-
lzweckcodierung, hinsichtlich ihrer Codierungseffizienz und Laufzeit.
Anschließend ermöglicht uns eine Ablationsstudie, die zweckvollsten
Komponenten bestehender Methoden zu identifizieren und zu isolieren.
Wir kombinieren diese Bestandteile zu neuen Codecs, die bessere Kom-
pressionsverhältnisse oder einen günstigeren Kompromiss zwischen
Laufzeit und Leistung bieten.

Erfolgreiche inpainting-basierte Bildkompressionscodecs verwenden tra-
ditionell Inpainting-Operatoren, die partielle Differentialgleichungen
lösen. Dies erfordert einige numerische Fachkenntnisse, wenn effiziente
Implementierungen erforderlich sind. Unser Ziel ist es, Varianten des
Shepard-Inpaintings als einfache Alternativen für inpainting-basierte
Kompression zu untersuchen. Sie können effizient implementiert wer-
den, wenn wir ihre Gewichtungsfunktion lokalisieren. Um sie in brauch-
bare Codecs umzuwandeln, müssen wir neuartige Erweiterungen der
klassischen Shepard-Interpolation einführen, die erfolgreiche Ideen aus
früheren Codecs übernehmen: Anisotropie erlaubt richtungsabhängiges
Inpainting, was die Rekonstruktionsqualität verbessert. Darüber hinaus
integrieren wir die Datenauswahl durch Bildunterteilung als effiziente
Möglichkeit, die gespeicherten Informationen an die Bildstruktur anzu-
passen. Auf der Kodierungsseite führen wir das neuartige Konzept der
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gemeinsamen Vorhersage und Rekonstruktion für isotrope Shepard-
Codecs ein, bei denen die Speicherkosten basierend auf Zwischenergeb-
nissen des Inpaintings gesenkt werden können. In einer Ablationsstudie
zeigen wir die Nützlichkeit dieser einzelnen Beiträge und demonstri-
eren, dass sie Synergien bieten, die die Leistung von Shepard-Inpainting
auf ein überraschendes Niveau heben. Unsere daraus resultierenden
Ansätze bieten einen besseren Kompromiss zwischen Einfachheit und
Qualität als herkömmliche inpainting-basierte Codecs. Unsere Exper-
imente zeigen, dass sie JPEG und JPEG2000 bei hohen Kompression-
sraten übertreffen können.

Nur wenige inpainting-basierte Kompressionsmethoden verfügen über
einen dedizierten Modus zum Komprimieren von Farbbildern, obwohl
Farbbilder häufiger vorkommen als Schwarzweißbilder. Daher bewerten
wir verschiedene Ansätze für inpainting-basierte Farbkompression mit
Schwerpunkt auf Shepard-Inpainting. Die Prinzipien können jedoch auf
andere Inpainting-Operatoren erweitert werden. Inpainting-Operatoren
können aus einer kleinen Farbpalette der bekannten Pixel eine umfan-
greiche Farbpalette rekonstruieren. Wir nutzen dies für einem Luma-
Präferenzmodus, der in den YCbCr-Farbkanälen weniger Daten verwen-
det als im Helligkeitskanal. Darüber hinaus führen wir den ersten voll-
ständigen Vektorquantisierungsmodus für einen inpainting-basierten
Codec ein, der nur eine kleine Farbpalette speichert. Unsere Experi-
mente zeigen, dass beide Erweiterungen zu erheblichen Verbesserungen
führen.

Diese Dissertation widmet sich der effizienteren inpainting-basierten
Bildkompression. Unser Ziel ist es, teure bekannte Pixelpositionen besser
zu komprimieren und eine höhere Leistung zu erreichen, indem wir
Shepard-Inpainting verwenden und es mit unseren vorgeschlagenen
Erweiterungen verbessern.
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Chapter 1

Introduction

Inpainting, as the name suggests, is an image restoration technique that
was introduced to reconstruct damaged or missing regions of an im-
age, physical or digital [20]. Masnou and Morel [88] proposed an early
inpainting model based on variational methods. The use of partial dif-
ferential equations (PDEs) for inpainting was proposed by Bertalmío
et al. [20]. Inpainting for textures was then proposed by Efros and Le-
ung [43], where they used similar regions in other parts of the image to
inpaint, also known as exemplar-based inpainting.

Currently, our lives revolve almost exclusively around digital media.
We take pictures and videos with our mobile phones and upload them,
download images or stream videos. Today’s average mobile phone can
capture images at a resolution of 20 MP (20 · 106 pixels), and some
phones can even capture at a resolution of 100 MP. Assuming an RGB
image with three channels and each channel is stored with a bit-depth
of 8, that amounts to approximately 60 MB (60 · 106) for a 20 MP image.
Even though storage is very cheap today, storing an image as is is still
inefficient, especially when it will most likely be transferred somewhere
else via the internet. The inefficiency of storing data in its original form is
much more evident in the case of videos. A full HD video of five seconds
with a resolution of 1920 pixels by 1080 pixels at 24 frames per second
amounts to 746 MB (746 · 106), whereas a 4K video of the same length
and framerate would need four times as much storage. With our cur-
rent internet speeds, video streaming would be utterly infeasible if the
videos were downloaded as is. However, transferring images or stream-
ing videos quickly is currently possible, mainly because we compress
them before sending them.
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Data compression is the process of compressing a source data stream
such that it occupies less storage space. This can be done by rearranging
and reformulating the source data where no information is discarded,
also called lossless compression. This process is completely reversible
and is performed primarily on data we would like to keep unaltered,
for example, text files. However, higher compression performance can
be obtained by irreversibly eliminating some data. This is performed
mainly on images and video by throwing away perceptually unimpor-
tant data. Therefore, they will look very similar to the original image or
video to the human eye while taking up much less storage space.

In addition to its primary purpose as a restoration method for damaged
images, inpainting has found a new purpose as a method to compress
images and videos. Inpainting-based image compression is unconven-
tional in two aspects: It drives inpainting to the extreme by consider-
ing very sparse data and combines it with data optimisation. In the
encoding step, one stores only a tiny, carefully optimised fraction of the
image pixels. During the decoding phase, the unknown data are approx-
imated by inpainting. Since inpainting-like filling-in mechanisms are
postulated to play an essential role in the human visual system [134],
inpainting-based compression appears natural and conceptually appeal-
ing. Moreover, aiming at sparsity in the spatial domain is particularly
simple and distinguishes inpainting-based compression from widely-
used transform-based approaches such as JPEG [97], JPEG2000 [121],
and HEVC intra [44]. The latter ones aim at sparsity in the discrete co-
sine or wavelet domain, which is achieved by applying a transform to
the target domain and quantising the coefficients coarsely. Advanced
inpainting-based codecs can outperform JPEG2000 [111], and they can
be far ahead of the state-of-the-art for data with a low to moderate
amount of texture, such as depth maps [66].

Inpainting-based image compression methods store a fraction of the
image pixels and reconstruct the rest during decoding. There are two
aspects to optimise when selecting the pixels to store. One can optimise
the positions of the stored pixels (spatial optimisation) as well as their cor-
responding grey or colour values (tonal optimisation). The positions of
the stored pixels constitute the inpainting mask. While numerous meth-
ods have been proposed for spatial and tonal optimisation, there is a
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general tradeoff between simplicity, efficiency, and quality.

However, these approaches require careful optimisation of both the po-
sitions and values of the known data. To obtain maximum reconstruc-
tion quality, mask optimisation methods should be allowed to freely
choose any pixel as a mask point [19, 31, 37, 55, 70, 85]. This is called
unconstrained optimisation. This creates a delicate compression prob-
lem: Generally, storing optimised data is expensive. Any deviations, e.g.
by inexact, cheaper positions, can also reduce the reconstruction quality
during decompression. While having deviations in pixel values is feasi-
ble, and many inpainting operators are robust under quantisation [100,
102, 111], storing pixel locations is a much more sensitive task. Storing
pixel locations is equivalent to storing a sparse binary image.

Most inpainting operators perform best for unconstrained, optimised
data stored losslessly [102]. Consequently, many optimisation meth-
ods [19, 31, 37, 55, 70, 85] would benefit from codecs specifically aimed
at optimised inpainting masks. Even beyond inpainting-based compres-
sion, unconstrained mask codecs could be useful for other applications
such as storage of sparse image features (e.g. SIFT [78], SURF [17]). How-
ever, there is only a small number of publications [38, 87, 102] that di-
rectly address the compression of unconstrained masks. In Chapter 3,
we will implement a new family of codecs specifically tailored for the
compression of sparse binary images and compare them to existing
general-purpose image compression methods and other specialised meth-
ods.

Apart from a few notable exceptions such as exemplar-based inpaint-
ing [70], inpainting with concepts from Smoothed Particle Hydrody-
namics [36], and linear spline inpainting [37, 41, 87], most inpainting-
based codecs (coders and decoders) employ partial differential equa-
tions (PDEs) of diffusion type for inpainting. Homogeneous diffusion
allows very efficient algorithms if one uses sophisticated numerical
ideas [32, 59, 68, 69, 72, 84] while edge-enhancing anisotropic diffusion
offers the highest quality due to its anisotropy [48, 111].

On the other hand, Shepard interpolation relies on the idea of normalised
weighted averaging. If one uses a localised weighting function, only a
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few surrounding mask pixels influence a given unknown pixel. The lo-
cality of the resulting Shepard inpainting allows simple and fast inpaint-
ing and tonal optimisation. This distinguishes it from PDE-based meth-
ods, where high efficiency in the inpainting step is possible but requires
the adaptation of advanced numerical concepts such as multigrid tech-
niques [72, 84], Fast Explicit Diffusion [104], Green’s functions [59, 68], fi-
nite element methods [32], and domain decomposition approaches [69].
Moreover, all exact methods for the tonal optimisation of PDE-based
approaches are relatively time-consuming and may be substantially
slower than a fast PDE-based inpainting step. Shepard interpolation
is non-iterative and requires less numerical expertise. The original pa-
per by Shepard [116] intended this method to be used for interpolation,
whereas we use a variant proposed by Achanta et al. [2], which per-
forms approximation instead. We prefer this version since its ability to
modify known data can be helpful for our compression purposes. Shep-
ard inpainting provides a solid alternative to PDE-based inpainting that
offers a better compromise than existing approaches w.r.t. implementa-
tional simplicity, computational efficiency, and approximation quality.
In Chapter 4, We explore this further and its viability and performance
in an image compression setting by proposing a family of simple and
highly efficient end-to-end codecs that do not require the numerical so-
phistication of PDE-based codecs while keeping certain quality-critical
features such as anisotropy [5] and inpainting mask optimisation.

Although inpainting-based image compression methods are mainly pro-
posed and developed for single-channel images, multi-channel or colour
images make up most of the images we see daily. Contemporary transform-
based codecs have dedicated colour modes to compress colour images.
For instance, JPEG [97] and JPEG2000 [121] use chroma subsampling in
YCbCr space, guided by the idea that structural information is visually
more important than colour. Discarding some of the information in the
colour channels Cb and Cr allows them to store more accurate trans-
form coefficients for the structure component of the image. On colour
images, inpainting-based codecs rely on coarse quantisation of RGB val-
ues. Interestingly, inpainting operators tend to fill in gaps not only in
the spatial domain but also in the co-domain of colour values. Despite
this property, little research has been invested into colour modes for
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inpainting-based codecs. In particular, the potential of techniques that
create sparse colour palettes, such as vector quantisation, remains un-
explored. In Chapter 5, we will look at multi-channel specific concepts
such as vector quantisation and luma preference and apply them to
inpainting-based compression methods, specifically codecs which use
Shepard inpainting.
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Chapter 2

Related Work

Every inpainting-based image compression method has three vital com-
ponents: the inpainting operator, data selection strategy (spatial and
tonal), and encoding of the selected data. In this section, we dive further
into previous work done on each of these three components.

2.1 Inpainting Operators

2.1.1 Overview

Since the inpainting operator recovers the missing image parts from the
known data, it is crucial for the reconstruction quality. A significant num-
ber of operators use partial differential equations (PDEs). In particular,
homogeneous diffusion [63] is a popular choice for compression [27, 49,
58, 65, 84, 102] since it is simple and fast compared to other PDE-based
methods. It is an isotropic operator, i.e. it propagates information from
stored pixels equally in all directions. As a higher-order alternative to ho-
mogeneous diffusion, biharmonic inpainting [42] is another applicable
isotropic operator for sparse image inpainting [31, 48, 111]. Last but not
least, anisotropic variants of nonlinear PDEs have been explored, most
notably edge-enhancing diffusion (EED) [48, 130, 132] and higher-order
variants [67, 103]. They adapt themselves to the local data structure. EED
is the core component in some of the qualitatively best diffusion-based
compression methods such as R-EED [111] and R-EED-LP [103].

While diffusion-based inpainting methods perform very well on piece-
wise smooth and mildly textured images, they struggle with high-frequent
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texture data. To address this particular issue, sparse exemplar-based in-
painting methods have been proposed [45]. They reconstruct images by
copying pixels or whole image patches from similar neighbourhoods.
It is also possible to combine diffusion and exemplar-based inpainting
methods in hybrid codecs [106].

Deep learning-based inpainting methods have also generated interest [96,
137, 138]. Successful concepts include generative adversarial networks
(GANs) [99, 125], deep prior approaches [124], and stable diffusion [79].
While deep learning approaches are undoubtedly powerful, they are
computationally expensive to train, and the models are not as transpar-
ent as PDE-based inpainting.

Shepard interpolation [116] is a simple and straightforward inpainting
operator. It can be interpreted as a special case of a class of inpainting
operators known as radial basis functions (RBFs) [25, 53] which have
been successfully applied for scattered data interpolation [12, 40, 80, 133].
Also, anisotropic variations of RBFs have been considered [18, 28, 36].
The work of Daropoulos et al. [36] is closest in spirit to our work, as they
employ anisotropic RBF kernels with spatial and tonal optimisation.

Multiple publications have proposed improvements for isotropic Shep-
ard interpolation. This includes restrictions of Shepard interpolation
to a localised averaging of known data [46], which is also crucial for
our own applications. This influence area of known data has also been
adapted locally [75, 107]. Shepard interpolation has been used success-
fully in sparse image inpainting [2, 71]. However, our conference publi-
cation [100] is the first that applies it to compression.

2.1.2 Inpainting with Diffusion Processes

Diffusion has a long tradition in image processing [63, 98, 129], and
it has also been used for image inpainting; see e.g. [27, 132]. Let f :
Ω → R denote a grey value image on a rectangular image domain
Ω ⊂ R2 that is only known on a subset K ⊂ Ω, also called the inpainting
mask. To reconstruct the unknown image data in Ω \ K, diffusion-based
inpainting computes the steady state (t → ∞) of the following initial
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value problem:

∂tu = div (D∇u) on Ω \ K× (0, ∞), (2.1)

u (x, y, t) = f (x, y, 0) on K× [0, ∞), (2.2)

n⊤D∇u = 0 on ∂Ω× (0, ∞) . (2.3)

Here, u(x, y, t) denotes the image pixel value at position (x, y) and time
t, and n is the outer normal vector at the image boundary ∂Ω. The spa-
tial gradient operator is denoted by ∇ = (∂x, ∂y)⊤, and div = ∇⊤ is the
divergence. The diffusion tensor D ∈ R2×2 is a positive semi-definite
matrix. Its eigenvectors determine the propagation directions of the dif-
fusion process, and their eigenvalues determine the amount of diffusion
along those directions. The Dirichlet boundary conditions in Eq. (2.2)
specify that known pixel values stay unmodified. Reflecting boundary
conditions are defined in Eq. (2.3) to avoid diffusion across the image
boundaries.

The simplest choice for the diffusion tensor is D = I, where I is the
identity matrix. In that case, we can write Eq. (2.1) as

∂tu = div (∇u) = ∆u = ∂xxu + ∂yyu. (2.4)

The above equation describes homogeneous diffusion, which propagates
information isotropically in all directions [63].

There are more sophisticated choices for D, which allow, e.g. direction-
dependent (anisotropic) adaptation of the inpainting. For example, edge-
enhancing anisotropic diffusion (EED) [130, 132] considers the diffusion
tensor D(∇uσ), where uσ represents the convolution of the evolving
image u with a Gaussian kernel of standard deviation σ. This Gaussian
convolution makes the edge detector |∇uσ|2 more robust under noise,
where | . | denotes the Euclidean norm. The first normalised eigenvector
of D(∇uσ) is chosen as v1 = ∇uσ/|∇uσ|. It is perpendicular to the
edge, while the second normalised eigenvector v2 is parallel to the edge.
The eigenvalues µ1 and µ2 denote the contrast in the direction of these
eigenvectors. By setting µ2 = 1, one allows full diffusion along edges.
To reduce diffusion across edges, one uses for µ1 a decreasing diffusivity
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such as the one by Charbonnier et al. [30]:

µ1 = g
(
|∇uσ|2

)
=

1√
1 + |∇uσ|2

λ2

. (2.5)

with some contrast parameter λ > 0. With these choices, D(∇uσ) can
be written as

D (∇uσ) = g
(
|∇uσ|2

)
v1v⊤1 + v2v⊤2 . (2.6)

For inpainting with homogeneous diffusion or EED, one observes global
convergence where the steady state does not depend on the initialisation.
However, since a good initialisation can accelerate the convergence, a
pragmatic approach is to initialise the non-mask pixels with the average
grey value of the mask pixels.

For EED inpainting, one discretises the parabolic PDE (2.1) with finite
differences and computes the reconstruction by means of numerical
solvers [92]. An explicit time discretisation is simple but has to obey se-
vere time step size restrictions for stability reasons. There are ways to ac-
celerate explicit schemes by using cyclically varying time step sizes [131],
or extrapolation ideas [52, 123]. A semi-implicit time discretisation does
not suffer from any time step size limits [129] but requires solving a
large linear system with a matrix that is symmetric, positive definite,
and sparse. To this end, one can use iterative solvers such as conjugate
gradients.

For homogeneous diffusion inpainting, efficient numerical solvers often
exploit direct discretisations of the Laplace equation ∆u = 0 that arises
in the steady state. This has been done with multigrid methods [72, 84],
discrete Green’s function approaches [59, 68], finite element discretisa-
tions with conjugate gradient solvers [32], and domain decomposition
algorithms [69].

These discussions show that diffusion-based inpainting requires quite
some numerical expertise if one aims at highly efficient algorithms. This
motivates us to study alternatives that also offer efficient algorithms but
do not rely on such knowledge and lead to relatively simple implemen-
tations.
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2.1.3 Inpainting with Radial Basis Functions

In contrast to diffusion-based approaches, inpainting with radial basis
functions [25, 133] does not rely on a PDE-based formulation. As in the
previous subsection, we want to reconstruct an image u from the known
data f ∈ Rm×n known only on a subset K of the image domain Ω. An
unknown pixel ui := u(xi) at xi = (x1i, x2i) ∈ Ω is reconstructed with
the RBF w according to [53]

u(xi) = ∑
xj∈K

w(xj − xi)cj . (2.7)

A common choice for w are multiquadrics [133]. The coefficients cj are
determined by the interpolation condition

u(xj) = f (xj) ∀ xj ∈ K . (2.8)

Plugging these conditions into Eq. (2.7) yields a linear system of equa-
tions that can be solved for the coefficients cj.

At first glance, RBF approaches seem to have little in common with the
PDE-based inpainting from Section 2.1.2. However, Augustin et al. [12]
have shown that linear diffusion inpainting and RBF interpolation can
be expressed in a unifying pseudo-differential framework. Since we aim
to find simple alternatives to diffusion-based inpainting for compres-
sion, we consider a simplified special case of RBF interpolation.

2.1.4 Isotropic Shepard Inpainting

Classical Shepard interpolation [116] computes the reconstructed values
ui directly from the known data fi according to

u(xi) =


∑xj∈K w(xj−xi) f j

∑xj∈K w(xj−xi)
, if ∀ j : |xi − xj| > 0 ,

fi, if ∃ j : |xi − xj| = 0 .
(2.9)

In this approach, the family of weighting functions w is defined by

w
(
xj − xi

)
=

1
|xj − xi|p

. (2.10)
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The exponent p > 1 controls the influence of neighbouring points, where
higher values of p result in fewer contributions from distant points. Com-
pared to the RBF formulation in Eq. (2.7) Shepard interpolation Eq. (2.9)
explicitly includes the interpolation condition and does not require com-
puting the coefficients cj. Instead, it specifies them directly as

cj :=
f j

∑xj∈K w
(
xj − xi

) , (2.11)

considerably simplifying the interpolation problem.

We can further simplify the computation and reduce the computational
load by using a truncated Gaussian of size (⌈4σ⌉+ 1)× (⌈4σ⌉+ 1) as
the RBF

Gσ (x) := exp
((
−|x|2)/(2σ2

))
. (2.12)

To ensure that the influence of the truncated weighting functions covers
all unknown image areas, we adapt the standard deviation σ to the mean
free path between known data points [2] according to

σ =
√
(m · n) /(π|K|) . (2.13)

Here m and n denote the image dimensions, and |K| is the number of
mask pixels. Our codecs in Section 4.3 benefit from this limitation of the
influence area of the known pixels. This allows us to design algorithms
with reduced computational complexity and ease of implementation.

Additionally, as done by Achanta et al. [2], we remove the interpolation
condition from Eq. (2.10) for our Shepard inpainting. In Chapter 4, we
discuss why approximation instead of interpolation benefits our specific
application.

After all simplifications, we obtain the final formulation for Shepard
inpainting

ui =
∑xj∈K Gσ

(
xj − xi

)
f j

∑xj∈K Gσ

(
xj − xi

) . (2.14)

Since the weighting function only depends on the distance between
pixels, it is independent of orientation. Thus, we refer to this strategy as
isotropic Shepard inpainting. In Section 4.2, we extend this to an anisotropic
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concept with oriented Gaussians which distribute information along
dominant image structures [5].

2.2 Data Selection

While the inpainting operator plays a significant role in the final recon-
struction quality, choosing the correct pixel data is equally important.
The selected data for inpainting-based compression consists of two com-
ponents: the positions of the pixels and their corresponding values. The
optimisation of the pixel positions is called spatial optimisation, whereas
optimising their values is called tonal optimisation. A comprehensive
overview of different spatial and tonal optimisation methods can be
found in Peter et al. [105].

2.2.1 Spatial Optimsiation

Spatial data optimisation or selecting the positions of the mask pixels
can be broadly classified into two categories: unconstrained and con-
strained. Unconstrained mask optimisation approaches optimise only
for reconstruction quality without placing additional restrictions on se-
lecting the pixels. On the other hand, constrained optimisation methods
also optimise for quality and keep other factors in account, such as cod-
ing costs.

Unconstrained Mask Optimisation

Analytic Approaches Belhachmi et al. [19] presented an optimal distri-
bution of known data locations in the continuous setting. The locations
in the discrete case can be approximated by dithering on the input im-
age’s Laplacian magnitude.

Non-smooth Optimisation Methods Many approaches [22, 31, 55, 94,
95] optimise over a non-smooth function to compute the mask locations
for a specific inpainting operator. The locations come with confidence
values from the algorithms, which are then binarised and stored.
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Stochastic Approaches In stark contrast to the previously mentioned
analytic methods, stochastic approaches rely on probability to derive
the mask points. The first possibility is probabilistic sparsification [37,
54, 85], which is starting with the whole image and discarding the pixels
with the least error iteratively until the desired number of known points
is reached. The other possibility is to start with an empty mask and pop-
ulate it with points where the reconstruction is the largest. The process is
done until the desired mask density is achieved. This approach is called
probabilistic densification [32, 36, 85].

The reconstruction error from the mask positions derived from all of
the approaches mentioned above can be further improved through a
post-processing step called non-local pixel exchange (NLPE) [85]. NLPE
randomly selects a mask pixel and exchanges it with another random
non-mask pixel as long as the reconstruction error is reduced.

Semantic approaches Semantic approaches select known data directly
based on image features and belong to the oldest inpainting-based com-
pression techniques. They date back to the early approaches of Carls-
son [27]. Contemporary semantic codecs are particularly popular for
the compression of images with pronounced edges [1, 14] such as car-
toons [16, 84, 136, 139], depth maps [49, 58, 74], or flow fields [65]. These
methods extract and store image edges and use those as known data
for inpainting. Since edges are connected structures, chain codes can be
used for efficient encoding.

Although unconstrained mask locations result in very low reconstruc-
tion errors, this is not necessarily the best approach from a coding view-
point. The reason for that is storing these optimised positions can be
very expensive. The compression of such unconstrained binary masks
has been explored in detail in [91].

Constrained Mask Optimisation

Regular grid approaches These approaches restrict the positions of
sparse known data to a fixed grid. Some codecs specify only a global grid
size of Cartesian [100] or hexagonal [58] grids, thus steering the density
of the inpainting mask. Apart from a few exceptions, such as Peter [100],
most regular grid approaches for inpainting-based compression do not
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offer competitive performance. Additional information, such as edges,
can be combined with regular masks [65, 66]. In this work, we consider
rectangular grids when dealing with regular masks.

Subdivision approaches Subdivision approaches are the next class of
approaches that additionally allow some adaptation to the image, but
the points are placed in a specific pattern. Most use error-based refine-
ment of the grid, splitting areas with high inpainting errors into smaller
subimages with a finer grid. They store these splitting decisions effi-
ciently as a binary or quad tree. Earlier approaches such as [37, 41, 48,
76] employed a triangular subdivision, while later works [102, 103] use
the more efficient rectangular subdivision by Schmaltz et al. [111]. Sub-
division allows image adaptivity while offering efficient storage in the
form of trees. This motivates us to consider subdivision for our Shepard
inpainting-based compression pipelines.

2.2.2 Tonal Optimisation

In addition to optimising the spatial positions of the data, it is also pos-
sible to optimise their pixel value. This so-called tonal optimisation [54,
57, 85] modifies the known pixel values to minimise the reconstruction
error. Significant reconstruction improvements in the large unknown
areas outweigh the errors introduced to the sparse stored data.

Tonal optimisation constitutes a linear least squares problem with a sym-
metric, positive-definite and dense system matrix for linear inpainting
operators such as homogeneous diffusion [85]. Cholesky, LU, and QR
factorisations are some direct methods that can be used to solve such
systems. In addition, there are also iterative methods, for example, conju-
gate gradients and LSQR [21]. In the literature, this has been solved, for
instance, with gradient descent [54], L-BFGS [31], or by reformulating the
problem with the help of so-called inpainting echoes [85]. Hoffman [57]
uses Green’s functions to express the least squares problem in a way
that allows the use of an efficient Cholesky solver. Chizhov et al. [32]
deviate from previous approaches by relying on finite elements instead
of finite differences. They solve the tonal optimisation problem with an
efficient nested conjugate gradient algorithm.
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The non-smooth optimisation methods [22, 31, 55, 94, 95] that perform
spatial optimisation return a set of mask locations with a non-binary
confidence value. Hoeltgen et al. [56] argued that they perform joint spa-
tial and tonal optimisation, as the pixel values can be adjusted through
the confidence values.

If the inpainting operator is local [36, 101] or if it can be localised arti-
ficially [58, 66, 103], tonal optimisation methods can be tailored to be
more efficient. In Section 5.3.2, we take advantage of the fact that Shep-
ard inpainting is local to propose a direct tonal optimisation method.

A simple alternative is proposed by Schmaltz et al. [111]. They visit
known pixels in random order and adjust their values to a higher or
lower quantisation level in case this yields a lower inpainting error. This
method can be used seamlessly with any inpainting operator and quanti-
sation method. The only drawback of this method is the need to compute
a full inpainting every time a pixel value is changed, which can be quite
time-consuming. Other approaches exist that take quantisation into ac-
count. For example, Peter et al. [102] combine inpainting echoes and
projecting the computed values to the set of quantised values. In con-
trast, Marwood et al. [87] implements a stochastic approach to perform
tonal optimisation.

Recently, various deep-learning approaches for inpainting and data op-
timisation have been proposed. Connections between PDEs and neural
networks have been explored by Alt et al. [6, 7]. Schrader et al. [112]
put forth a fast learning-based spatial optimisation approach for high-
resolution images while maintaining similar quality to conventional
probabilistic spatial optimisation methods. Learning-based joint spatial
and optimisation methods have also been explored by Peter [99, 105].
The rising usage of deep-learning-based approaches in various aspects
of inpainting-based compression also makes it sensible for us to explore
efficient ways to store and compress the optimised known data.

2.3 Encoding

After selecting the mask locations and corresponding pixel values, we
must compress this information to reduce the final file size further. In
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this section, we review data compression approaches that are not spe-
cialised to image data but are still vital to most image codecs. The prin-
ciple of entropy coders is to convert input data into a more compact
representation, which can be converted back to its original form by ex-
ploiting the redundancies present in said data. Such general-purpose
coders take a sequence of generic symbols from an alphabet as an input.
In most cases, this alphabet is some subset of integers.

2.3.1 Huffman Coding

Huffman coding [61] is a classical prefix-free encoding scheme that maps
a binary codeword to each alphabet symbol. These codewords are as-
signed according to a binary tree, which is constructed from the occur-
rence probabilities of the symbols. As a classical entropy coder, Huff-
man coding aims to distribute the code lengths to minimise the overall
coding cost. The theoretical lower limit for the coding cost of a given
symbol distribution S → {S1, S2, ..., Sn} with a probability distribution
p1, p2, ..., pn is given by the Shannon entropy [115],

H (S) = ∑
i

pi · log2 (pi) .

Huffman coding is simple, easy to implement, and fast. However, it is
inefficient for symbol probabilities that are not close to powers of 1

2 , as
all symbols are encoded with an integer number of bits. While Huffman-
coding has been superseded by more efficient entropy coders, it is still
part of some widely-used image compression codecs such as JPEG [97]
and PNG [24].

2.3.2 Arithmetic Coding

In contrast to Huffman coding, arithmetic coding can encode symbols
with fractional bit cost per symbol, as it maps the whole source word
directly to a binary code word.

In its original form [110], arithmetic coding achieves this by an interval
subdivision scheme. Starting with the range [0, 1), each symbol from the
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alphabet A is associated with a subinterval. The length of these subin-
tervals is proportional to the probability of the associated symbol. Suc-
cessively, each encoded symbol leads to a refinement of the interval. A
dyadic fraction uniquely represents the final interval. Due to the cou-
pling of the interval size to the symbol probabilities, the code length
adapts to the symbol distribution.

Since this strategy requires floating-point operations and is therefore
slow and prone to rounding errors, we consider the WNC implementa-
tion of Witten, Neal and Cleary [135]. It replaces the real-valued intervals
with sets of integers. This greatly improves computational performance
and allows an easier generation of the binary code word.

Due to its good approximation of the Shannon limit, arithmetic coding
is used in many lossless and lossy image compression codecs [23, 26, 38,
48, 60, 64, 87, 111, 120]. It also forms the foundation for more advanced
general-purpose encoders, such as context coding and context mixing
methods, which we will discuss in the subsequent sections.

2.3.3 Context Coding

Arithmetic coding estimates the symbol probabilities only from the sym-
bol counts, i.e. the number of times that the symbol has been encoun-
tered. This pure consideration of the occurrence frequency is referred to
as a 0th-order context from which the probabilities are derived. How-
ever, more complex contexts can be considered to incorporate more
structural information of the input data into the encoding process, thus
allowing a better compression performance.

As a direct extension of the 0th-order context, we can use a history of m
previously encoded symbols to predict the next symbol. The collection
of m previously encoded symbols is called the mth-order context. For
images, one can also consider 2D neighbourhoods of varying size (see
Fig. 3.4). Using a single context allows us to adapt the probabilities
to recurring patterns inside the scope of the corresponding contexts.
This enables approaches like Prediction by Partial Matching (PPM) [33],
Context Adaptive Binary Arithmetic Coding (CABAC), which is used
in HEVC [120] and Extended Block Coding with Optimised Truncation
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(EBCOT) which is used in JPEG2000 [26], which have better performance
than standard arithmetic coding.

2.3.4 Context Mixing

Context mixing approaches extend upon the idea of context coding. In-
stead of using only a single context to estimate the symbol probability,
the probabilities derived from many contexts can be combined with
weighted averaging.

Originating from the pioneering work of Mahoney, the so-called PAQ1
context-mixing algorithm [83], many versions with increasingly sophis-
ticated contexts have been developed. All versions of PAQ encode bits
individually rather than the symbols themselves and convert input data
into a bit stream accordingly. The small alphabet reduces the number
of possible contexts and has the additional advantage that PAQ can be
combined with fast binary arithmetic coding algorithms.

As general-purpose compressors, the full versions of PAQ aim to com-
press mixed data such as combinations of text, audio, executables, HTML
code, and many other data types. Thus, many of their additional con-
texts would not be helpful for our purposes. In the following sections,
we consider LPAQ2 by Rhatushnyak [82] since we identified it as the
most promising member of the expansive PAQ family.

LPAQ is a lightweight variant of PAQ that uses six local contexts and
a prediction context. The local contexts depend on the bits already en-
coded in the current byte and the previously encoded 4 bytes. The pre-
diction context finds the longest context that was already seen, which is
the same as the current one and tries to predict the next bits. A neural net-
work mixes the probabilities which were obtained from the mentioned
contexts.

The neural network has a simple structure: an input layer with seven
nodes and an output layer that computes the weighted average of the
probabilities in the logistic domain. This method of mixing the proba-
bilities is called logistic mixing and uses logarithmic transformations
known as stretching and squashing. Their mathematical formulations
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are given by

ti = ln (pi/ (1− pi)) , (stretching)

p = ∑
i

wi · ti, (mixing)

p f inal = 1/
(
1 + e−p) . (squashing)

The algorithm learns the weight for each context during the encoding
process by a modified form of gradient descent that tries to minimise
the coding cost. This results in larger weights for contexts that give good
predictions for the input data. The mixed probability obtained from the
neural network is still not perfect. The algorithm refines this probability
further using two SSE (Secondary Symbol Estimation) stages. Each SSE
stage takes an input probability and then stretches and quantises it. The
encoder interpolates the output using a context table to give an adjusted
probability. Finally, we use this probability to encode the next bit using
arithmetic coding.

However, depending on the local statistics, an individual context can
contribute differently in predicting the next bit. Therefore, using the
same neural network to encode all bits can be sub-optimal. To this end,
LPAQ2 maintains 80 neural networks and chooses which one to use by
looking at the match length from the prediction context combined and
the bits already encoded in the current byte.

Variants of PAQ have been used successfully in many inpainting-based
compression approaches, primarily for storing quantised pixel values
[48, 58, 102, 103, 111]. Since the PAQ family of codecs is so successful,
we dedicate Section 3.4 to a detailed, separate analysis for them.

2.3.5 Compressing Colour Images

While various inpainting-based codecs can compress colour images [37,
48, 87, 100, 111], the only dedicated colour mode so far is the luma pref-
erence (LP) mode for rectangular subdivision (R-EED) [103] with edge-
enhancing diffusion (EED) [130]. It relies on the core idea to dedicate a
higher budget to the luma channel of YCbCr space than to the colour
channels. We adapt this concept to the setting of RJIP. In contrast to our
approach, R-EED relies on a more complex inpainting method [132] and
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a tree-based subdivision scheme to select and store positions of known
data. In a broader sense, LP mode resembles the chroma subsampling
of JPEG [97].

Vector quantisation is a concept already described by Shannon [115]
in his influential early works on information theory. Due to the large
amount of research activity in the early 80s and ’90s for compression
of both visual and audio data, a full review is beyond the scope of this
work. We refer the reader to the comprehensive monograph of Gersho
and Grey [50] instead.

More recent works that deal with lossy compression and vector quanti-
sation are rare. Venkateswaren and Ramana Rao [126] quantise wavelet
coefficients from different sub-bands with vector clustering, while So-
masundaram and Rani [118] focus solely on more efficient vector quanti-
sation with a modified k-means clustering. For compression with neural
networks, vector quantisation is gaining popularity again [4]. However,
it is not applied to colour values but is more generically applied to image
features or network parameters to be stored. Zhou et al. [140] combine
vector quantisation with inpainting, but in contrast to our work, they
quantise blocks of grey value data instead of individual colour values.

Even though they do not deal with colour images, the work of Hoelt-
gen et al. [73] comes close in spirit to our research. They assess how
clustering techniques affect inpainting-based reconstruction from sparse
data. However, they only use scalar quantisation. This work confirms,
together with the findings of Celebi [29], that the k-means clustering
algorithm by Lloyd [77] is one of the best clustering techniques for quan-
tisation. Consequentially, we rely on k-means clustering for our vector
mode. We discuss these methods in more detail in Section 5.4.1.

2.3.6 Example End-to-End Compression Methods

In the previous subsections, we have seen the individual components
required to build a complete inpainting-based compression method.
Now, we discuss some example codecs that use the elements mentioned
above.
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The first example we discuss is R-EED [103], which works on natural
images. They use edge-enhancing diffusion [130, 132] as the inpaint-
ing method. The mask points are selected using rectangular subdivi-
sion, and the values are optimised using quantisation-aware pixel ad-
justments [111]. Finally, the mask locations and values are stored using
PAQ [81].

Specialised compression methods have been developed for specific kinds
of piecewise smooth images. They store some sort of edge information
and reconstruct the regions through inpainting. For cartoon-like images,
Mainberger et al. [84] store mask points on either side of an edge and
perform homogeneous diffusion to reconstruct the full image. The mask
locations are stored with JBIG [64], and the values are stored with PAQ.

Jost et al. [65] proposed a method to store flow fields, where they store
the edges and a uniform mask in the smooth parts and compress them
using PAQ. The regions are then reconstructed with homogeneous diffu-
sion. Finally, Jost et al. [66] proposed a general compression method for
piecewise-smooth images where the edges are derived by the energy-
minimising Mumford-Shah cartoon model [93] and the smooth parts
are inpainted with a uniform mask. They found Shepard inpainting as
the best option for the inpainting method for their codec.

Another example is the inpainting-based video coder proposed by An-
dris et al. [10]. Like many other video compression methods, only some
frames, known as intra-frames, are stored as images. The rest, known as
inter frames, are encoded using flow fields w.r.t. the previous frame and
the difference to the actual frame, known as the residual. Inter-frames
can only be decoded by decoding the intra-frame and adding it with the
corresponding stored flow field and the residual. This codec used ho-
mogeneous diffusion inpainting with a rectangular subdivision spatial
optimisation. The spatial and tonal data and the flow fields are stored
with adaptive arithmetic coding [135], while the residuals are encoded
using bzip2 [114]. Andris et al. [9] proposed an extension to this codec
to handle full HD images. The intra-frames are reconstructed using ho-
mogeneous diffusion with a coarse-to-fine strategy [39] to speed up
the inpainting process, while the residuals are inpainted with pseudo-
differential inpainting [12]. The spatial optimisation for the intra-frames
and flow fields is done with rectangular subdivision. Finally, the entropy
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coding is performed by Finite State Entropy (FSE) [34], which was used
for its speed.
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Chapter 3

Sparse Binary Image
Compression

3.1 Introduction

Inpainting-based compression methods must store the known pixel lo-
cations, also known as the mask and the corresponding pixel values.
However, careful and unconstrained optimisation of both the positions
and values of the known data [19, 31, 37, 55, 70, 85] is required for maxi-
mum reconstruction quality. However, storing optimised mask data is
expensive. Depending on the inpainting operator, the distribution of
these points aligns with image structures or might lack obvious patterns
(see Fig. 3.1). In our case, storing pixel locations is equivalent to stor-
ing a sparse binary image. In this chapter, we will propose specialised
methods to compress spare binary images and compare them with exist-
ing end-to-end image compression methods and general data compres-
sion methods. This chapter follows our journal publication, Mohideen
et al. [91].

3.1.1 Our Contributions

We aim to offer the first systematic review and in-depth analysis of suit-
able compression techniques from different fields and propose best prac-
tice recommendations for storing unconstrained masks. Our contribu-
tions are three-fold:
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We start with a systematic review of suitable coding strategies from dif-
ferent fields of compression. We cover dedicated positional coding strate-
gies [38, 87], image compression codecs (JBIG [64], PNG [24], JBIG2 [60],
DjVu [23], BPG lossless [26]), and state-of-the-art general purpose en-
coders (PAQ, LPAQ [81]). In addition, we discuss how these approaches
can be applied to different representations of the sparse binary images,
such as run-length encoding and methods from data science like Coor-
dinate List (COO) [109] and Compressed Sparse Row (CSR) [109].

Afterwards, we perform an ablation study of context mixing methods.
Such approaches combine information from multiple sources of already
encoded information to predict the remaining file content, thus increas-
ing compression efficiency. In a top-down approach, we evaluate which
parts of complex state-of-the-art methods like LPAQ2 [82] are useful.
Moreover, we use a bottom-up strategy to construct a novel context mix-
ing strategy that is simple, yet effective.

Finally, we provide a methodical comparison of all existing and newly
proposed methods from the previous two contributions w.r.t. compres-
sion efficiency and runtime. In our experiments, we choose the Kodak
image dataset [35], which is widely used in compression studies. To ob-
tain meaningful results, we consider different densities of known data
(1% through 10%) and different point distributions. We take into account
random masks, results from probabilistic sparsification [85] with homo-
geneous diffusion [62], and densification [3] with Shepard interpolation
[116]. In total, this yields a database of 720 diverse real-world test im-
ages. This setup allows us to propose best practice recommendations
based on our analysis.

Overall, our three contributions allow us to identify the coding methods
that yield the best compression performance as well as the best trade-off
between speed and coding efficiency.

3.2 Evaluation of Image Compression Codecs

Before discussing specialised methods to compress sparse binary im-
ages, we consider well-established image compression methods to pro-
vide a performance baseline for the specialised codecs. We discuss and
compare five popular lossless image compression methods: PNG, JBIG,
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original image [35] 5% random mask

5% sparsification + 5% densification +
homogeneous diffusion Shepard interpolation

F I G U R E 3 . 1 : We can see here that even though we start with the
same image, different point selection strategies or inpainting opera-

tors can lead to very different unconstrained mask distributions.

DjVu, JBIG2, and BPG-lossless. Since the salient information of a sparse
binary image is the non-zero pixels, the compression ratio as a tradi-
tional metric is not the most transparent choice for our evaluation. To
this end, we use bytes per mask pixel instead, which can be computed as
the compressed file size divided by the number of non-zero pixels in the
image. Such a normalisation allows us to attribute the cost to the salient
image features that need to be stored.

3.2.1 PNG

Portable Network Graphics (PNG) [24] is a widely used lossless image
compression codec. PNG compression has two stages: filtering and en-
tropy coding. The filtering stage aims to predict the pixel to be encoded
from its already encoded neighbourhood. While the prediction can be
wrong, the errors are generally cheaper to compress than the original
pixel values due to an overall lower entropy. For predictions, PNG uses
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only the left, upper and the upper-left diagonal neighbours – either di-
rectly as a prediction or by averaging.

The entropy coding uses LZ77 and Huffman coding. LZ77 [141] is a
dictionary-based coding method where the subsequent values are en-
coded by looking for a match in the already encoded values. If a match
is found, the difference in position to the current position and the length
of the match is encoded. If no match is found, the next value is written
explicitly. PNG compresses the values given by LZ77 using Huffman
coding.

3.2.2 JBIG

Joint Bi-Level Image Expert Group (JBIG) [64] is a specialised codec from
the JPEG family for binary images. JBIG was initially implemented for
fax transmissions. It employs progressive coding, which uses a coarse-
to-fine strategy to encode the image. On the decoding side, JBIG decodes
the coarse scale pixels first to give a low-resolution preview of the image
and then the finer scale pixels to display the high-resolution image.

JBIG uses arithmetic coding to encode the lowest resolution pixels, es-
timating the probabilities using the neighbouring pixels as contexts. It
encodes the next finer scale using the neighbouring coarser scale pixels
and the neighbouring pixels in the current scale. The algorithm does this
until it finishes encoding the finest scale pixels. The cartoon-like image
compression codec by Mainberger et al. [84] uses JBIG to store the edge
positions.

3.2.3 DjVu

DjVu is an image compression algorithm [23] originally written for com-
pressing images in documents. DjVu includes a bi-tonal image compres-
sion algorithm called JB2, which stores the binary image that separates
the image into foreground and background. The foreground and back-
ground images are then compressed using other methods. If the input
is a binary image, DjVu uses only JB2. The algorithm segments the im-
age into connected components of black pixels called marks. The marks
are clustered based on similarity. Then DjVu compresses and codes a
mark using the previously encoded marks by storing the mark index
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F I G U R E 3 . 2 : Performance vs. time comparison of different image-
specific compression methods tested on masks derived from the Ko-
dak image dataset. PNG is the fastest, and DjVu is the most efficient.
JBIG and JBIG2 give a good trade-off between speed and efficiency.

and relative position. The other marks with no matches are stored using
a statistical model and arithmetic coding.

3.2.4 JBIG2

JBIG2 [60] is a binary image codec based on the DjVu JB2 coder. JBIG2
has separate methods for encoding text, which uses pattern matching
similar to JB2. It also contains separate methods to encode half-tones
and generic data. For our purposes, we need to look at only the generic
data coder, which stores two binary images, the coarse image and the re-
finement bits like in JBIG. The bit-planes are then stored with arithmetic
coding.

3.2.5 BPG

Better Portable Graphics (BPG) [26] is a coding method used within the
video coding standard HEVC [120]. BPG employs a prediction method
that uses three modes: One to model constant regions, one to model
directional structures, and one to model smooth areas.
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3.2.6 Performance and Runtime Comparisons

In Fig. 3.2, we see that on masks derived from the Kodak dataset, PNG
compresses the fastest as it combines simple prediction schemes with
Huffman coding. DjVu performs best w.r.t. file size reduction. JBIG and
JBIG2 use similar methods to compress non-text data, which explains
their comparable performance and compression times. Both give a good
trade-off between speed and performance. BPG yields inferior results
because our sparse test images violate BPG’s assumptions on natural
images.

3.3 Representation of Sparse Binary images

As with any other data stream, there are many ways to represent sparse
binary images, and how the data is represented impacts the final per-
formance of lossless compression. In the following, we describe and
compare common representations originating from different research
fields.

3.3.1 Vector Representation

The vector representation is a naive representation that allows the ap-
plication of many standard sequential entropy coders. We convert the
image into a vector by traversing it row-by-row.

3.3.2 Run-length Encoding

One of the most popular methods for the compression of sparse images
is run-length encoding. It replaces sequences of identical symbols, so-
called runs, by their length.

For our setting, where sparse binary images are considered, run-length
encoding becomes even more efficient. We assume that known values
are primarily isolated and thus only have to store runs of intermediate
zeroes. A zero run can represent consecutive ones.

The image has to be scanned in some order to calculate the run-lengths.
Potential options include, for example, column-by-column, row-by-row,
diagonal or zigzag, as done in JPEG. We found that the scanning order
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1 0 1 0
0 0 0 1
0 1 0 0
0 0 1 0

Vectorised form 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0
Run-length Encoding (RLE) 0 5 1 2 1

Coordinate List (COO) (1,1), (1,3), (2,4), (3,2), (4,3)
Compressed Sparse Row (CSR) 1 3 4 2 3 | 2 1 1 1

TA B L E 3 . 1 : Example: binary image and its different sparse image
representations.

does not significantly impact the final compressed file size. Therefore,
we only consider the most straightforward approach, which is column
by column.

3.3.3 Coordinate List (COO)

A COO [109] stores each non-zero point as a (row, column) tuple. A
differential scheme on the coordinates can also be considered, where
we encode the difference in position between the current point and the
previous point. However, sorting the points based on their rows and
columns, we get an almost identical representation to run-length encod-
ing.

3.3.4 Compressed Sparse Row (CSR)

As another well-known sparse image representation, CSR [109] is mainly
used for fast operations on large images in scientific computing. CSR
traverses the image row-by-row and stores the column positions of each
non-zero element. In addition, the total number of non-zero elements
encountered is stored when a complete row is encoded. We slightly mod-
ify the basic CSR method to yield better compression results. Instead of
storing the total number of non-zero elements encountered, we only
store the number of non-zero elements encountered in the previous row.
This reduces the range of values needed to be stored, thus reducing the
source entropy.
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F I G U R E 3 . 3 : Compression performance of different representa-
tions compressed using LPAQ2 w.r.t. density over the mask images
derived from the Kodak image dataset. Vectorised form and run-
length encoding are good choices to represent sparse matrices for

compression.

3.3.5 Performance Comparisons

In Fig. 3.3, we see that the vector representation and run-length encoding
are the better choices as they clearly lead to smaller compressed files
than both COO and CSR.

After compression, the file size depends on the initial file size and the
file’s entropy. The vectorised form has the same probability distribution
as the original image. The probability distribution is heavily skewed
towards zero for a sparse binary image, yielding a low entropy. This
means that the original image is highly compressible, which leads to
high performance.

Run-length encoding gives the shortest representation, as seen in Ta-
ble 3.1, which yields high compression performance, especially for lower
densities. On the other hand, COO and CSR have short representations,
but not as short as RLE. Also, their entropy is not as low as the vectorised
form. These factors combined make COO and CSR non-viable choices
for compression.
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3.4 An Ablation Study for Context Mixing

In Sections 2.3 and 3.2, we have introduced various coding strategies
that are viable candidates for good performance on binary images. How-
ever, context mixing is not only the most sophisticated coding strategy,
it also has a track record of many applications in inpainting-based com-
pression [48, 58, 102, 103, 111]. Therefore, we investigate which of the
many components of these complex methods are helpful for our pur-
pose.

This section describes our setup for a detailed ablation study for context
mixing on sparse binary images. In Fig. 3.3, we saw that the vector and
RLE representations were best suited for compression. Therefore, we
pursue two approaches involving these representations: In a bottom-up
strategy, we combine established and new contexts in a novel, mini-
malistic context mixing codec involving the vector representation. Fur-
thermore, we deconstruct LPAQ2 in a top-down approach to compress
run-lengths.

3.4.1 Bottom-Up Context Mixing

The reference point that we start with is the codec used by Marwood
et al. [87]. It uses a global context where the probability of the next bit
being a one is estimated as Vr/Nr where the remaining number of sig-
nificant pixels to be encoded is denoted by Vr, and the total remaining
pixels to be coded is Nr. From now on, we will refer to this probability
as the Marwood context probability. We also considered using the con-
text proposed by Demaret et al. [38], where the context is defined by the
number of non-zero pixels in the 12 neighbouring pixels to the current
pixel already encoded. However, we found that even though this per-
forms well independently, it does not offer any performance gain when
combined with our models.

BPAQ-2D-S

We implemented a lightweight codec BPAQ-2D-S (Skeletal PAQ for 2D
binary data) inspired by the context-mixing structure of Mahoney [81]
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F I G U R E 3 . 4 : Local contexts for our version of PAQ. X is the pixel
currently being coded. The mth-order context corresponding to pixel
X is the pixels that have an index less than or equal to m where

1 ≤ m ≤ 12.

where we have only the first order local context (neighbouring pixel to
the left) in addition with the Marwood context.

The set of equations is given in Algorithm 1 where n10,n11,w1 are the
counts for 0 and 1 occurring in the first order context and its weight. The
bit currently being encoded is denoted by x. A semi-stationary update
for local contexts is done where we halve the count of the non-observed
symbol. We update counts this way so that the context probabilities can
quickly adapt to local statistics [81]. Vr is initialised to the number of
non-zero pixels in the image, and Nr is initialised to the total number of
pixels in the image.

When calculating p f inal, we use a dynamically weighted local proba-
bility, a statically weighted local probability, and a statically weighted
global probability. The global probability is statically weighted since
the counts for 0 and 1 cannot be defined for the Marwood context as
it is done for the local context. We noticed through experimental ob-
servations that combining static and dynamic weights gives a better
performance than just using dynamic weights. We determined the static
weights empirically. Finally, we encode the next bit with arithmetic cod-
ing using p f inal.

BPAQ-2D-M

BPAQ-2D-M (More efficient PAQ for 2D binary data) is an extended
version of BPAQ-2D-S. As shown in Fig. 3.4, it has twelve local contexts
instead of one. Increasing the order from m to m+ 1 adds one pixel to the
context-neighbourhood and allows a better adaptivity to local statistics.

The difference in expressions from BPAQ-2D-S (Algorithm 1) is given in
Algorithm 2 where ni0, ni1, wi are the counts for 0 and 1 occurring in the
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Algorithm 1 BPAQ-2D-S
1: Compute evidence for the next bit being 0:

S0 = ε + w1n10

2: Compute evidence for the next bit being 1:

S1 = ε + w1n11

3: Compute total evidence:

S = S0 + S1

4: Compute weighted local probability that the next bit is 1:

pdyn = S1/S

5: Compute unweighted local probability from the first order context:

pstat = n11/(n10 + n11)

6: Compute Marwood probability:

pglobal = Vr/Nr

7: Update weight for the first order context:

w1 = max[0, w1 + (x− p1)(Sn11 − S1(n10 + n11))/S0S1]

8: Semi-stationary update of local context weight:

n1x = n1x + 1
n1(1−x) = n1(1−x)/2 if n1(1−x) > 2

9: Update counts for the Marwood probability:

Vr = Vr − 1 (if x = 1)
Nr = Nr − 1

10: Compute final probability:

p f inal = 0.4 · pdyn + 0.2 · pstat + 0.4 · pglobal
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i-th context and its corresponding weight, where 1 ≤ i ≤ 12. The static
local probability here comes from the fourth-order context instead of the
first context in BPAQ-2D-S. Again, it was found out experimentally that
the fourth-order context worked best. Apart from these changes, the rest
of the expressions stay the same as in BPAQ-2D-S.

Algorithm 2 BPAQ-2D-M
1: Compute evidence for the next bit being 0:

S0 = ε + ∑
i

wini0

2: Compute evidence for the next bit being 1:

S1 = ε + ∑
i

wini1

3: Compute unweighted local probability from the fourth order con-
text:

pstat = n41/(n40 + n41)

4: Update context weights:

wi = max[0, wi + (x− p1)(Sni1 − S1(ni0 + ni0))/S0S1]

BPAQ-2D-L

BPAQ-2D-L (Logistic PAQ for 2D binary data) is similar to BPAQ-2D-M
that uses logistic mixing instead of linear mixing where the probabilities
are first stretched, and then the final probability is squashed. Unlike
BPAQ-2D-M, where the final probability is obtained by statically mixing
the mixed local context probability and the Marwood context probability,
here the final probability is obtained dynamically where the weights
change in each step for all contexts.

In Algorithm 3, p1,. . . ,p12 are the probabilities obtained from the 12 local
contexts and p13 from the Marwood context. ni0, ni1, wi are the counts
for 0 and 1 occurring in the i-th context and its weight. The bit currently
being encoded is denoted by x, and the learning rate α is set to 0.02.
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Algorithm 3 BPAQ-2D-L
1: Compute context probabilities:

pi = ni1/(ni0 + ni1)

2: Stretch context probabilities:

ti = log(pi/(1− pi))

3: Combine stretched probabilities:

p = ∑
i

wi · ti

4: Compute the final probability by squashing:

p = 1/(1 + e−p)

5: Update context weights:

wi = wi + α · ti · (x− p)

6: Semi-stationary update of local context counts:

nix = nix + 1
ni(1−x) = ni(1−x)/2 if ni(1−x) > 2

7: Update counts for the Marwood probability:

Vr = Vr − 1 (if x = 1)
Nr = Nr − 1
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BPAQ-2D-S Uses 1 local context with linear mixing
BPAQ-2D-M Uses 12 local contexts with linear mixing
BPAQ-2D-L BPAQ-2D-M but with logistic mixing

BPAQ-2D-XL BPAQ-2D-L but with non-contiguous contexts

TA B L E 3 . 2 : Summary of the four proposed bottom-up PAQ ap-
proaches

BPAQ-2D-XL

Finally, we have BPAQ-2D-XL (eXtended Logistic PAQ for 2D binary
data), which is derived from BPAQ-2D-L where the only change is the
structure of the local contexts. In the previous models, the higher-order
contexts were always contiguously extended from the lower context, as
seen in Fig. 3.4. Here, we removed the contiguity conditions and gen-
erated contexts that could be disconnected. We only consider the four
nearest pixels to the current pixels. Consequently, we would have four
different first-order contexts, six different second-order contexts, four
different third-order contexts and one fourth-order context. Therefore,
we have 15 local contexts in total. The main differences between the
proposed bottom-up PAQ models are listed in Table 3.2.

Evaluation: Performance vs. Runtime

In Fig. 3.5, we see that the performance mostly correlates with the com-
plexity of our proposed models. The simplest model, BPAQ-2D-S, is the
fastest, and BPAQ-2D-XL is the slowest. Surprisingly, BPAQ-2D-L out-
performs all other approaches.

BPAQ-2D-M performs better w.r.t. compression ratio than BPAQ-2D-S
due to the additional contexts at the cost of speed. BPAQ-2D-L gains
additional compression efficiency, but using logarithmic and exponen-
tial functions in logistic mixing slows down the method further. The
additional contexts of BPAQ-2D-XL increase its complexity and slightly
increase the cost per mask point. Thus, one should either choose BPAQ-
2D-L for the lowest bit cost per mask point or the method of Demaret et
al. [38] for an excellent mix of compression ratio and speed.
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F I G U R E 3 . 5 : Performance vs. time comparison of different PAQ-
based models that were implemented as part of the ablation study
and the codecs proposed by Marwood et al. [87], Demaret et al. [38]
and LPAQ2 applied on the image for reference. BPAQ-2D-S is the
fastest and BPAQ-2D-L is the most efficient. The method of Demaret

et al. gives a good trade-off between speed and efficiency.

3.4.2 Top-down Approaches

LPAQ2 is an excellent entropy coder for a wide range of data and already
constitutes a lightweight version of PAQ. However, it is unclear if all of
the individual steps of the method contribute to its performance. To
identify these parts, we eliminate features step-by-step in a top-down
manner to see the performance and runtime behaviour.

We start with the original implementation of LPAQ2 with parameter
settings for the highest compression (compression level 9). From there
on, we perform multiple reduction steps.

Step 1: We remove the prediction context (no prediction model).

Step 2: We reduce the amount of neural nets from 80 to a single one
(single net model).

Step 3: We retain only the intra-byte context and discard the rest
(intra-only model).

Step 4: For ULPAQ (ultra lite PAQ), we also discard the second SSE
stage (RLE + ULPAQ).
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F I G U R E 3 . 6 : Performance vs. time comparison of the step-by-step
removal of LPAQ2 features to compress run-lengths as part of the
ablation study and LPAQ2 (Level 0) (fastest mode) and arithmetic
coding for reference. RLE + ULPAQ and RLE + LPAQ2 (Level 0) give

a good trade-off between speed and efficiency.

Performance and Runtime Comparisons

A comparison of the aforementioned reduction steps is shown in Fig. 3.6.
As the most complex model, the original LPAQ is the slowest of the
evaluated methods. The no prediction model and the single network
model only have a minor difference in bits per mask pixel, but they
are about 20% faster than the original version. This shows that a single
neural net without prediction comes at virtually no disadvantage to the
more complex full version of the codec.

The intra-only model and ULPAQ are even ten times faster than the
original version. Additionally, ULPAQ performs better than the intra-
only model. Thereby, the second step of SSE is detrimental to binary
input data. We also consider LPAQ level 0, the fastest parameter setting
for standard LPAQ. It is not as fast as RLE+ULPAQ but also produces
smaller encoded files. In practice, ULPAQ offers a slight advantage in
speed, while LPAQ (Level 0) provides a slight advantage in compression
ratio.
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3.5 Best Practice Recommendations

In this section, we perform a consolidated comparison of the best can-
didates for sparse binary mask compression from the previous Sections
2.3, 3.3, and 3.4. We consider BPAQ-2D-L and the codec of Demaret et
al. [38] from Fig. 3.5, RLE + ULPAQ and RLE + LPAQ2 (Level 0) from
Fig. 3.4.2, as well as JBIG2 and DjVu from Fig. 3.2.

Our evaluation is based on the two essential mask characteristics: Point
distribution and density. Both of these aspects are relevant for practi-
cal use. The distribution depends on the inpainting operator and mask
selection strategy, while the density is closely connected to the desired
final compression ratio of the inpainting method. Thus, any best practice
recommendations need to consider the behaviour of the algorithms w.r.t.
these two factors.

3.5.1 Comparing Compression Performance based on Point

Distributions

The methods we considered to generate the mask points have varying
point distributions; see Fig. 3.1. We want to see if compression perfor-
mance changes w.r.t. the point distribution. Here, we present the results
averaged over all densities from 1% to 10% for different point distribu-
tions.

From Fig. 3.7, we observe that the relative rankings of different compres-
sion methods change over different types of distributions. DjVu offers
fast compression and an excellent compression ratio for homogeneous
diffusion masks. If runtime is no concern, BPAQ-2D-L provides the low-
est bit cost per mask point.

For Shepard and random masks, we see that the two best methods on ho-
mogeneous diffusion masks, BPAQ-2D-L and DjVu, perform worse. This
is because masks derived from homogeneous diffusion are more struc-
tured. BPAQ-2D-L and DjVu can benefit from their ability to detect such
patterns. This structure is absent from the masks derived using Shepard
interpolation and, in the extreme case, completely random mask distri-
butions. This is also why all the codecs perform better on homogeneous
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F I G U R E 3 . 7 : Performance vs. time comparison of different coders
tested on masks derived from different methods but averaged over
all densities. For homogeneous diffusion masks, DjVu gives a good
performance-speed trade-off where BPAQ-2D-L gives the best per-
formance. For Shepard and random masks, the method of Demaret

et al. is the best choice as it is fast and performs well.



3.6. Conclusions 43

diffusion masks than Shepard and random masks. In such a case, the
approach of Demaret et al. [38] is a good alternative.

3.5.2 Comparing Compression Performance over Image

Density

Next, we evaluate if the relative performance of the selected codecs dif-
fers for varying densities. We present the results averaged over all point
distributions for masks having densities of 1%, 5%, and 10%. In addition,
we also consider an average over all point distributions and all point
densities between 1% and 10%.

Fig. 3.8 shows that the relative rankings between codecs are consistent
over increasing densities and the average of all densities. This implies
that the choice of the binary mask compression algorithm has to be only
adapted to the distribution but not to the compression ratio.

For time-critical applications, RLE + ULPAQ is the most suitable combi-
nation. BPAQ-2D-L, from our ablation study of context mixing, yields
the best compression performance at the cost of runtime. Between those
two extremes, the method of Demaret et al. provides a good balance
between speed and performance.

A general trend can also be inferred from Fig. 3.3: The relative cost of
storing positions declines for denser masks. This shows that storing
mask positions will decrease the compression performance by a larger
amount for sparse masks than dense masks.

3.6 Conclusions

The first systematic study of sparse binary image compression allows
us to understand, compare, and improve upon various codecs. With
an ablation study, we have determined the aspects of context mixing
methods that make them successful for the compression of sparse bi-
nary images. As a consequence of the ablation study, we proposed two
different classes of methods: one to compress the image itself and the
other to compress run-lengths.
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F I G U R E 3 . 8 : Performance vs. time comparison of different coders
tested on different densities averaged over masks derived from the
Kodak image dataset using sparsification + homogeneous diffusion,

densification + Shepard interpolation, and random masks.



3.6. Conclusions 45

Our best practice recommendations provide a foundation for future in-
painting-based codecs that use unconstrained masks. Our results from
Section 3.5 suggest that optimal mask compression should adapt to the
specific point distribution caused by the combination of the inpainting
operator and mask selection method. However, the compression method
does not need to be changed based on density since that does not impact
the relative rankings of the codecs.

Based on our full evaluation, we have concrete recommendations for
different use cases: RLE + ULPAQ for time-critical applications, BPAQ-
2D-L for highest amount of compression, and the codec of Demaret et
al. [38] for a good compromise between compression performance and
speed.

These results have exciting implications for future codecs that use uncon-
strained mask-based inpainting methods. Due to the increased relative
cost of storing very sparse, unconstrained masks, we can infer that this
is viable only when they offer a massive improvement in inpainting
quality over regular or structured masks. It might also be interesting to
consider codecs that produce unconstrained masks, which consider not
only inpainting quality but also the cost of storing them.
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Chapter 4

Compression with Isotropic and
Anisotropic Shepard Inpainting

4.1 Introduction

The goal of this chapter is to set a new benchmark in inpainting-based
compression that offers a better compromise than existing approaches
w.r.t. implementational simplicity, computational efficiency, and approx-
imation quality. We aim at a family of simple and highly efficient codecs
that do not require the numerical sophistication of PDE-based codecs
while keeping certain quality-critical features such as anisotropy and
inpainting mask optimisation. It is based on variants of the classical
Shepard interpolation idea [116].

Shepard interpolation provides a fast and easy way to implement sparse
image reconstruction by weighted averaging. While the original paper
by Shepard [116] proposes inverse distance weighting functions without
localisation, we use a variant proposed by Achanta et al. [2], which em-
ploys a truncated Gaussian weight function and only approximates the
function values in the mask points. We then perform tonal optimisation
to maximise the approximation quality.

Due to these deliberate errors in the known data, we choose to perform
approximation over interpolation for our inpainting in Section 2.1.4. Ac-
cording to Eq. (2.14), we also inpaint the known data itself, which resem-
bles previous approaches that have addressed this issue through inter-
polation swapping instead [111]. They explicitly remove disks around
the known data in post-processing and inpaint those from the initial re-
construction. This also addresses additional sources for errors in known
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data: quantisation and noise. Coarse quantisation intentionally reduces
the number of permissible pixel values in the grey-level domain, reduc-
ing storage costs. On the other hand, noise is unintentional and results
in imperfections during image acquisition. Quantisation can be applied
as a post-processing after tonal optimisation but might revert some of
its improvements. Thus, it is often preferred to account for quantisa-
tion already during the tonal optimisation. This chapter follows our
manuscript, Mohideen et al. [89].

4.1.1 Our Contribution

Shepard inpainting has not been explored for compression before the
conference publication by Peter [100], where it was shown that it al-
lows highly efficient image compression with reasonable quality. Its
usefulness has also been confirmed for the compression of piecewise
smooth images [66]. In the present work, we extend and improve the
results from [100] by fusing the best of both worlds: the high efficiency
from Shepard inpainting with two quality improvements from success-
ful PDE-based codecs [48, 111], namely anisotropy [5] and spatial mask
adaptation.

We propose a novel anisotropic version of Shepard inpainting, which
allows elongated Gaussian kernels to adapt the inpainting direction to
the local image structure. Subdivision-based strategies enable us to find
better inpainting data than regular masks but are less expensive to store
than fully optimised masks. Our experiments show that our codecs can
outperform transform-based approaches, particularly at high compres-
sion ratios. Moreover, they can offer substantial speed-ups over most
implementations of PDE-based inpainting approaches. Our resulting
methods are still simple and maintain a favourable trade-off between
computational efficiency and reconstruction quality.

4.2 Anisotropic Shepard Inpainting

As seen in Section 2.1.4, Shepard inpainting uses Gaussian functions,
which propagate information isotropically in all directions. However,
additional directional information is implicitly encoded in the known
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pixels. This information has been successfully used for anisotropic dif-
fusion inpainting [48, 132]. In the following, we aim to augment our
Shepard inpainting with ideas from EED [130] while preserving its sim-
plicity and ease of implementation.

To this end, we introduce anisotropic Shepard inpainting [5], which adapts
the weighting function to the local directional structure of the available
data. We compute gradient information from the known data and use
this information to guide the influence function accordingly. Thus, we
achieve an anisotropic inpainting effect. In particular, when the known
data are arranged regularly, we can compute the gradient information
without any overhead.

We propose to modify the weighting function w based on structural
information which is encoded in the vector containing the mask pix-
els f ∈ Rmn for an image of resolution m × n. To this end, we adapt
the weighting function at each mask position xj ∈ K to obtain a set of
functions wj. Our anisotropic Shepard inpainting computes the recon-
struction ui as

ui =
∑xj∈K wj(xj − xi) f j

∑xj∈K wj(xj − xi)
. (4.1)

The spatially varying weighting functions wj depend on the local struc-
ture of the masked image f .

To derive our anisotropic approach, we switch to the continuous set-
ting. We consider a greyscale image f : Ω→ R, which is fully available
on a continuous domain Ω ⊂ R2. The gradient ∇ f encodes the struc-
tural information of f , which allows the definition of structure-adaptive
weighting functions.

As a weighting function, we choose an oriented Gaussian with standard
deviations σ1, σ2, and a rotation angle θ. The two standard deviations
σ1, σ2 determine the major and minor directions of the Gaussian. For
σ1 = σ2, we want to obtain a rotationally invariant Gaussian correspond-
ing to the isotropic case.
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∇ f

∇⊥ f

x

yθ

σ1

σ2

F I G U R E 4 . 1 : Local adaptation of the weighting function to the
image structure in a continuous setting. The gradient ∇ f spans a
coordinate system rotated by θ w.r.t. the (x, y)-system. The gradi-
ent magnitude shrinks the level lines of the Gaussian kernel (blue)
across dominant structures. This gives elliptic level lines with major

and minor axes proportional to σ1 and σ2, respectively.

A model which fulfils the above properties based on the structural in-
formation described by the image gradient ∇ f = ( fx, fy)⊤ in the (x, y)-
coordinate system is given by

σ2
1 = σ2, (4.2)

σ2
2 = g

(
|∇ f |2

)
σ2, (4.3)

θ = arctan
(
− fx

fy

)
. (4.4)

Here σ is an input parameter determining the base standard deviation
of the Gaussian as in the isotropic case. Note that σ1 and σ2 are func-
tions of σ and ∇ f , but have been abbreviated for readability. In Fig. 4.1,
we visualise the relation between these parameters in the continuous
setting.

In our experiments, we found the rational Perona–Malik diffusivity [98]
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g
(

s2
)
=

1

1 + s2

λ2

, (4.5)

to be a suitable choice for g. It attenuates the variance σ2 at image
locations with dominant structures where the edge detector |∇ f | ex-
ceeds some contrast parameter λ. Choosing the constant diffusivity [63]
g(s2) = 1 yields the isotropic Shepard inpainting model.

The angle θ determines the rotation of the deformed Gaussian function.
As ∇ f points into the direction of the steepest ascent of f , the deformed
Gaussian should be oriented along the orthogonal direction ∇⊥ f . In 2D,
a vector which is orthogonal to the gradient can be easily constructed,
e.g. as ∇⊥ f = ( fx,− fy)⊤. The angle of this vector in the respective
coordinate system is given by θ in Eq. (4.4).

In the (∇⊥ f ,∇ f )-coordinate system, the resulting Gaussian weighting
function should scale the kernel along the principal directions by the
standard deviations σ1, σ2 given above. Thus, we obtain

z⊤Σz =
(

z1 z2

) 1
2σ2

1
0

0 1
2σ2

2

(z1

z2

)
(4.6)

as an argument for the Gaussian function, where z is the spatial differ-
ence between two positions in the (∇⊥ f ,∇ f )-coordinate system. Let
us bring this argument to the (x, y)-coordinate system. To this end, we
multiply a rotation by θ from the right and its inverse from the left,
yielding

R−1
θ z⊤ΣzRθ = d⊤R−1

θ ΣRθd. (4.7)

Here, d is the spatial distance between two positions in the (x, y)-coordinate
system. We used the relation z = Rθd to move the rotation matrices in-
side the expression.

Expressing the inner matrix with parameters α, β, γ, we obtain(
α β

β γ

)
= R−1

θ ΣRθ. (4.8)
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By additionally using the identity cos(θ) sin(θ) = 1
2 sin(2θ), we obtain

α(θ, σ1, σ2) =
cos2(θ)

2σ2
1

+
sin2(θ)

2σ2
2

, (4.9)

β(θ, σ1, σ2) = −
sin(2θ)

4σ2
1

+
sin(2θ)

4σ2
2

, (4.10)

γ(θ, σ1, σ2) =
sin2(θ)

2σ2
1

+
cos2(θ)

2σ2
2

. (4.11)

The resulting Gaussian weighting function takes the distance d = (d1, d2)
⊤ =

x− y between the two spatial positions x and y. This yields the formula
for the anisotropic weighting function,

Gθ,σ1,σ2(d) = exp
(
−αd2

x + 2βdxdy − γd2
y

)
. (4.12)

Here α, β and γ are functions of θ, σ1 and σ2.

The discrete implementation of our anisotropic approach is obtained by
truncating the Gaussian kernels and using a finite difference approxima-
tion for the derivatives dx and dy. For regular masks, we can estimate
these via the known data. The irregular case is described in Section 4.3.2.

4.3 Compression Pipeline

4.3.1 Regular Grid Codec with Isotropic Shepard inpaint-

ing

Our first method aims for maximal simplicity. The regular grid codec with
joint inpainting and prediction (RJIP) is based on our conference publi-
cation [100] with modifications to the tonal optimisation. While it is
not image-adaptive, it exploits novel prediction principles with inpaint-
ing instead. We store the known data on a regular mask, which means
the only storage cost for positional data is the grid size parameter h.
This generates minimal overhead. For the grey value data correspond-
ing to the mask positions, we use an equally straightforward uniform
scalar quantisation: We map the 8-bit colour values to a reduced range
{0, . . . , q − 1} by partitioning the tonal domain into q subintervals of
equal length.
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Shepard inpainting from Eq. (2.14) is implemented by visiting each mask
point xj ∈ K: Its contribution to the numerator is added to the value ac-
cumulation map v and the contribution to the denominator is added to
the weight accumulation map w. Thus, for all points xi in the truncated
Gaussian neighbourhood Nj of xj ∈ K, the maps are updated by

wi ← wi + Gσ(xi − xj) , (4.13)

and
vi ← vi + Gσ(xi − xj) f j , (4.14)

with wi := w(xi) and vi := v(xi). The new inpainting at point xi can
then be computed as

ui = vi/wi. (4.15)

RJIP employs joint inpainting and prediction to decrease the final com-
pressed file size further. Many codecs store the known pixel data directly.
However, some compression methods achieve better efficiency by pre-
dicting the values to be stored and encoding the prediction error, the
so-called residuals, instead. Good predictions yield residuals that cluster
around zero, thus reducing entropy, which directly translates to reduced
storage cost.

We integrate this idea seamlessly into Shepard inpainting. During image
compression, the mask points are traversed one by one. If the weight
accumulation map w is non-zero at the location of the next mask point
to be encoded, an initial prediction can computed through a preliminary
inpainting

pi = v̂i/ŵi . (4.16)

Here, v̂i and ŵi specify the intermediate maps computed only from pre-
viously visited known data. Then we encode the residual between the
prediction and the actual mask value as

ei = (pi − fi)mod q. (4.17)

Using a sufficiently large Gaussian as in Eq. (2.13) ensures we predict at
least one additional data point in each step. We repeat these steps until
all mask points have been visited. Finally, we compress the residuals
with a suitable entropy coder. RJIP relies on finite state entropy (FSE) [34],
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a fast alternative to arithmetic coding [135].

For a given compression ratio, RJIP chooses the parameters h and q
through a golden-section search to obtain the best reconstruction qual-
ity for the desired file size is obtained. While the iterative random walk
method that we discussed in Section 2.2.2 is already well-suited for Shep-
ard inpainting due to its locality, it even allows a closed-form solution
for the tonal optimisation of individual pixels.

In the following, uold
i and unew

i are the old and new pixel value at xi ∈
K. We want to find unew

i , such that it minimises the mean squared error
(MSE). Here,Ni is the neighbourhood of points around xi, vj denotes the
value accumulation map, and wj is the weight accumulation map from
Eq. (2.14). Gσ is the Gaussian defined in Eq. (2.12), and f j is the ground
truth value at xj. As the tonal error function described at a particular
pixel position is convex, an optimal tonal value can be obtained directly
by minimising the error function.

This yields the closed-form solution

unew
i =

∑xj∈Ni

Gσ(xj−xi)
wj

(
f j −

vj−Gσ(xj−xi)uold
i

wj

)
∑xj∈Ni

Gσ(xj−xi)2

w2
j

. (4.18)

A detailed derivation for this improved tonal optimisation is presented
in Section 5.3.2. To account for quantisation, we project these optimal
values to the set of admissible quantised values. We iterate over all mask
points multiple times until the process converges. As we do not have
to compute the inpainting for the entire image every time we change
a pixel value, the tonal optimisation for isotropic Shepard inpainting is
highly efficient. Our experiments in Section 4.4.2 demonstrate that it is
competitive to sophisticated diffusion-based tonal optimisation despite
its simplicity.

4.3.2 Subdivision Codec with Anisotropic Shepard in-

painting

Subdivision masks offer a good balance between image adaptivity, cod-
ing costs, and complexity. We adopt this concept from Schmaltz et al. [111]
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by starting with the whole image as a single block and placing a mask
point in each corner of the image. If the reconstruction error in a block
exceeds a threshold parameter, we split the block in half along its largest
dimension and add mask points at each corner of the smaller blocks.
This process is repeated until no block violates the error threshold. We
store the splitting decisions efficiently in the form of a binary tree.

To overcome the issue of approximating derivatives on a non-uniform
grid, we first perform an isotropic Shepard inpainting on the mask and
then compute derivatives on the inpainted image. With these deriva-
tives, we compute the final anisotropic inpainting.

Uniform mask codecs use a global Gaussian standard deviation σ in
Eq. (2.13). However, a global σ that ensures no holes in sparse image re-
gions leads to overly smooth reconstructions, especially in regions with
high mask density. Therefore, in the case of subdivision mask codecs, we
adapt σ to the local density of the mask. Unfortunately, explicitly storing
individual variance values for each mask point would be too costly. In-
stead, we derive the local variance from the mask itself following [127]:

σk = (log(1 + Ak))
p . (4.19)

Here, σk is the variance at mask point k, and p is a constant. We obtain Ak

from a Voronoi decomposition [13]. It partitions the image into Voronoi
cells: For each mask point xk, the corresponding cell contains all image
points closer to xk than any other mask point. Therefore, the area Ak of
a Voronoi cell provides a way to estimate the local mask density and,
thus, the desired standard deviation. Instead of optimising and storing
individual values for σ, we optimise and store p instead.

We also have to optimise for the diffusivity function’s contrast parameter
λ. As λ only determines the degree of anisotropy for all kernels, it does
not need to be adapted locally.

Unlike RJIP, which had a target ratio as a model parameter, we optimise
our subdivision and quantisation w.r.t. a target splitting error. We first
find the quantisation parameter q. To that end, we consider the curve
that maps quantisation levels to the corresponding quantisation error
for the original image. This curve is decreasing because an increasing
number of quantisation levels implies a reduction of the quantisation
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Algorithm 4 Summary of the subdivision codec with anisotropic Shep-
ard inpainting

1: Compute q from the quantisation error curve.
2: while number of nodes split > 0 do
3: Place mask points at leaf nodes.
4: while n < iter_max, iter_max ∈N do
5: Optimise for λ and p.
6: Perform tonal optimisation.
7: Compute reconstruction error at each leaf node.
8: Split leaf nodes with error > target splitting error.
9: Compress tree and mask values with LPAQ.

error. We select the value of q such that the curve has a derivative value
of 1. This value of q is the point of diminishing return, after which in-
creasing q does not result in a significant decrease in quantisation error.

After fixing q, we perform the actual subdivision. We start at the root of
the tree and reconstruct the image with just the four corner points of the
image with anisotropic Shepard inpainting with optimised p and λ and
then tonal optimisation. The parameter optimisation and tonal optimisa-
tion are alternated to adapt the parameters and the tonal values to each
other so that the inpainting quality is increased. If the reconstruction
error is higher than the target splitting error, we split the node and go
to the next level. This process of adjusting the parameters p and λ, the
tonal optimisation, and node splitting is repeated for each tree level by
going deeper into the tree until all sub-images or leaf nodes of the tree
have a reconstruction error lesser than the target splitting error. Finally,
the subdivision tree and the mask values are compressed by applying
LPAQ2 [82]. An overview of the algorithm can be seen in Algorithm 4.

4.4 Experiments

In this section’s four parts, we systematically evaluate our inpainting
operators and compression pipelines. In the first part, we compare our
proposed and existing inpainting operators on a synthetic disc image.
Then we compare their runtime scaling behaviour w.r.t. the number of
pixels on a single image of the Sintel [108] database. In the third part, we
run our uniform mask-based codecs on the trui image and the greyscale
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version of the Berkeley dataset [86] and compare them to JPEG and
JPEG2000. The final part is dedicated to our subdivision-based codecs,
where we consider performance on the greyscale version of the Kodak
dataset [35] with JPEG as a reference.

4.4.1 Comparing Inpainting Operators

In Fig. 4.2, we consider the inpainting quality and computational effort
on a synthetic binary disk image with a uniform mask of density 11.11%.
In addition to our isotropic Shepard and anisotropic Shepard inpainting,
we also consider homogeneous diffusion inpainting [63] as a baseline
since it is widely used in compression applications due to its relative
simplicity compared to more sophisticated diffusion inpainting. Thus,
it is the direct competitor for our Shepard inpainting. To ensure a fair
comparison w.r.t. timing, we use several contemporary solvers for ho-
mogeneous diffusion [32, 57].

From Fig. 4.2, we can see that the isotropic Shepard inpainting result
yields slightly blurrier edges than homogeneous diffusion. However,
the inpainting is faster by one to three orders of magnitude. Tonal opti-
misation can even be faster by up to five orders of magnitude compared
to the approach of Hoffmann [57]. Even the recent highly efficient finite
elements method is still slower by one order of magnitude. This is a
direct effect of the closed-form solution from Section 4.3.1 for isotropic
Shepard inpainting. Thus, it constitutes a good alternative to homoge-
neous diffusion inpainting for time-critical applications while being sig-
nificantly easier to implement.

The anisotropic version of Shepard inpainting yields much sharper re-
sults than its competitors. However, this comes at the price of a higher
computational load. For pure inpainting, anisotropic Shepard is still
faster than homogeneous diffusion by one to three orders of magnitude
depending on the solver. However, homogeneous diffusion can be faster
for tonal optimisation. Here, the anisotropy prevents the efficient closed-
form solution and requires a fall-back to a simple trial-and-error algo-
rithm. Thus, anisotropic Shepard is a good choice for pure inpainting
applications and compression which requires high quality.
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Input data

disk mask

Homogeneous diffusion

Greens functions finite difference method finite element
with a Cholesky solver with a CGNR solver method

TO ≈ 1113 s TO ≈ 0.32 s TO ≈ 0.15 s
inpainting ≈ 7.9 s inpainting ≈ 0.03 s inpainting ≈ 0.04 s

MSE = 65.57 MSE = 65.61 MSE = 80.37

Shepard inpainting

isotropic anisotropic
TO ≈ 0.036 s TO ≈ 54.69 s

inpainting ≈ 0.004 s inpainting ≈ 0.024 s
MSE = 92.85 MSE = 16.35

F I G U R E 4 . 2 : We compare the inpainting quality, time for tonal
optimisation (TO), and inpainting time of Shepard inpainting to sev-
eral contemporary solvers for homogeneous diffusion inpainting on
a synthetic image of a disk of size 400 × 400. All approaches use
the same uniform mask of density 11.11% (1 in 9 pixels). The exper-
iments were run on a single core of a single core of an Intel Core
i7-6700A@3.40GHz with 32 GB RAM. The experiment highlights
sharper results of anisotropic Shepard inpainting compared to all
competitors at an inpainting speed comparable to homogeneous dif-
fusion. Localised isotropic Shepard inpainting can be up to an order
of magnitude faster than non-localised homogeneous diffusion in-

painting at a similar quality.
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F I G U R E 4 . 3 : We compare the runtime scaling behaviour of our
pipelines with homogeneous diffusion on five downsampled ver-
sions of frame 917 of the 4K CinemaScope movie Sintel (4096× 1744).
Here, both axes are presented in a log scale. The experiments are con-
ducted on a single core of an Intel Core i7-6700A@3.40GHz with 32

GB RAM.

4.4.2 Timing Experiments

In the following, we investigate the scaling behaviour of our Shepard
inpainting-based compression methods and homogeneous diffusion with
the number of pixels. We consider RJIP and a uniform mask codec with
anisotropic Shepard inpainting.

Our experiments consider a single compression with a fixed sampling
distance h = 4 (≈ 4% mask density) and q = 32 quantisation levels.
We implemented a version of our RJIP codec, which uses homogeneous
diffusion solved through a conjugate gradient scheme. We refer to this
homogeneous diffusion version of the codec HOM. It is to be noted that
our proposed tonal optimisation does not apply to HOM, which, there-
fore, uses the simple iterative pixel adjustment scheme. From Fig. 4.3,
we can see that RJIP is faster than HOM by up to 5 orders of magnitude.
The compression times for RJIP range from 0.009s for a 128× 55 image
to 5.45s for a 4K image.
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In contrast to RJIP, it is unpopular to localise HOM by choosing a fi-
nite stopping time, since one is usually not willing to accept the quality
deterioration. Thus, the tonal optimisation is more time-consuming for
non-localised homogeneous diffusion than for the localised RJIP. Peter
et al. [102] proposed an alternative quantisation-aware tonal optimisation
(QAT) which increases the speed at the cost of high memory consump-
tion. We could not test QAT for images larger than 512× 218, as our test
machine ran out of memory. RJIP is still 2 to 3 orders of magnitude faster
than this specialised algorithm.

We also implemented a uniform mask compression method like RJIP
but improved it with anisotropic Shepard inpainting, which we call RJIP-
A. In addition to the parameter optimisation for the grid size and the
quantisation parameter, we also run an optimisation to find the con-
trast parameter λ and the variance of the Gaussians σ similar to our
anisotropic Shepard codec on trees. We fall back to the iterative random
walk method for tonal optimisation, as a clean, optimal solution for the
tonal value cannot be computed here as in the case of RJIP. We also alter-
nate the tonal and parameter optimisation to further increase quality as
in Section 4.3.2. Finally, as we need all neighbouring pixels to compute
derivatives and consequently the inpainting at that pixel, we cannot
perform joint inpainting and prediction as used in RJIP. Therefore, we
compress the pixel values with LPAQ.

We can also observe that RJIP-A is about two orders of magnitude slower
than RJIP. This can be easily explained by the fact that, in addition to
searching for h and q, we have to search two additional parameters (λ, σ)
for every combination of (h, q). Each inpainting is slower due to the
computations required to calculate the Gaussian kernel at each point.
Additionally, as changing a pixel requires us to update the neighbour-
hood derivative information, tonal optimisation is slower than RJIP. De-
spite all the additional computations, we are still faster than HOM by
about one to two orders of magnitude. Furthermore, we can see that
our anisotropic codec is slightly slower than QAT for very low resolu-
tions but quickly becomes more efficient as resolution increases. Conse-
quently, the additional computations required for anisotropic Shepard
inpainting results in a considerable increase in reconstruction quality.
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trui JPEG

MSE=160.57, SSIM=0.738

HOM JPEG2000

MSE=127.38, SSIM=0.751 MSE=109.91, SSIM=0.809

RJIP RJIP-A

MSE=82.86, SSIM=0.825 MSE=71.50, SSIM=0.850

0 50 100 150
0

200

400

compression ratio

M
SE

RJIP
HOM
JPEG
JPEG2000
RJIP-A

Comparisons on the trui image

F I G U R E 4 . 4 : We compress trui with different compression meth-
ods at a ratio of 70:1 and compare them with the MSE error measure.
Additionally, we display the SSIM [128] scores for the presented im-
ages. We can see that our Shepard inpainting-based methods do not
present any unpleasant artefacts. From the rate-distortion curves,
we can observe that our anisotropic Shepard codec with uniform
masks outperforms JPEG2000 over most compression ratios, while
the base RJIP codec outperforms JPEG2000 at a compression ratio of

60.
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F I G U R E 4 . 5 : On the Berkeley database with textured images, RJIP-
A is competitive to JPEG at low compression ratios, whereas RJIP
and RJIP-A outperform JPEG and JPEG2000 at high compression

ratios. Both axes in the plot are presented in a log scale.

4.4.3 Comparing Uniform Mask Codecs

In this set of comparisons, we compare the base RJIP codec with isotropic
Shepard inpainting on uniform masks to RJIP-A, the uniform mask
codec with anisotropic Shepard inpainting. This allows us to evaluate
the relative performance of the anisotropic Shepard operator on the
piecewise smooth test image trui image and the 500 textured images
of the Berkeley dataset [86]. Moreover, we also compare against JPEG
and JPEG2000.

From Fig. 4.4, we observe that on the piecewise smooth trui image, RJIP-
A performs the best across almost all compression ratios, even compared
to JPEG2000. It benefits from its superior reconstruction of directional
structures with anisotropic Shepard inpainting.

For the Berkeley dataset, this advantage is also visible for low to medium
compression ratios in Fig. 4.5: RJIP-A outperforms its isotropic counter-
part RJIP and is competitive with JPEG. At higher compression ratios,
both Shepard codecs yield very similar quality and are able to beat both
JPEG and JPEG2000. These very sparse mask grids contain less reliable
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information on anisotropy, which can cause the anisotropic Gaussian
kernels to degenerate to an isotropic setting.

The more favourable rate-distortion behaviour at higher compression
ratios compared to transform-based compression results from the fact
that the number of mask points to be stored does not need to be reduced
proportionally to the compression ratio. At high ratios, coarse quantisa-
tion can be used to reduce the coding cost, and the smooth inpainting is
able to restore a wider range of grey values than that of the mask pixels.
This makes our codecs particularly suited for compressing images at
high compression ratios.

4.4.4 Comparing Subdivision-Based Codecs

In our final comparison, we consider the rate-distortion behaviour of our
subdivision codecs for isotropic and anisotropic Shepard inpainting on
the greyscale Kodak dataset. We also include the uniform mask codecs
from the previous set of experiments and consider JPEG as a reference.

Our uniform mask codecs use multiple target compression ratios while
we specify different target splitting errors for our subdivision codecs
to steer the rate-distortion trade-off. For this set of experiments, we
present images that show representative performance for different im-
age content and different behaviour of our algorithms in Fig. 4.6. The
rate-distortion curves for all images in the Kodak dataset can be found
in the supplementary material.

Fig. 4.6 illustrates that for images with a dominant foreground and a
homogeneous background, the subdivision codecs outperform their reg-
ular grid counterparts. In such images, the subdivision codecs benefit
from denser known data in textured regions. This also leads to a higher
accuracy of the derivative approximations for anisotropic Shepard in-
painting in such dense regions, yielding a better overall reconstruction
quality. Even at higher compression ratios, our subdivision codecs can
retain more structures compared to the original RJIP codec.

On the other hand, for images that are highly textured overall, the advan-
tages of the subdivision codec diminish. Since all regions are similarly
detailed, it produces uniformly distributed masks and thus degenerates
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kodim23 JPEG
ratio 116:1, MSE = 124.63

uniform isotropic (RJIP) tree isotropic
ratio 117:1, MSE = 113.06 ratio 116:1, MSE = 97.82

uniform anisotropic (RJIP-A) tree anisotropic
ratio 109:1, MSE = 107.10 ratio 120:1, MSE = 83.93
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F I G U R E 4 . 6
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kodim05 JPEG
ratio 37:1, MSE = 357.34

uniform isotropic (RJIP) tree isotropic
ratio 46:1, MSE = 423.26 ratio 41:1, MSE = 433.64

uniform anisotropic (RJIP-A) tree anisotropic
ratio 41.56:1, MSE = 316.24 ratio 42:1, MSE = 401.38
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F I G U R E 4 . 6 : Our anisotropic Shepard inpainting-based codecs
perform better than their isotropic counterparts overall and out-
perform JPEG at higher compression ratios. The plots show that
the subdivision-based codecs perform better than the regular mask-
based codecs if the image has a clear foreground subject since they
can adapt the mask such that the detailed regions are reconstructed
better. On the other hand, the regular mask-based codecs perform

better if the image is textured overall.
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to the uniform codec. However, it still requires significant overhead for
the tree structure and thus performs worse than its simpler counterpart.
This suggests switching between both coding archetypes depending on
the image content.

4.5 Conclusions

We have presented a family of simple image compression methods
based on Shepard inpainting. This family of codecs relies on new ideas,
such as a more powerful anisotropic extension of Shepard inpainting
and the novel concept of joint inpainting and prediction. Our codecs are
easy to implement and can be orders of magnitude faster than classical
PDE-based inpainting methods due to the locality of Shepard inpainting.
In particular, codecs with isotropic Shepard inpainting offer efficiency
and ease of implementation, while our anisotropic Shepard operators
balance efficiency and reconstruction quality well.

Our anisotropic Shepard inpainting offers better quality than isotropic
Shepard inpainting, especially at lower compression ratios. For piece-
wise smooth images, our family of codecs is competitive with JPEG and
JPEG2000. On textured data it can yield competitive results to transform-
based compression at high compression ratios.

We are working on extending RJIP and our anisotropic and subdivi-
sion codecs to colour images by employing dedicated strategies that
exploit human perception. As Shepard inpainting excels on piecewise
smooth data, we hope it contributes to the compression of depth maps
or flow fields. First attempts that followed our earlier conference publi-
cation [100] already yielded promising results [66].
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Compression of Colour Images

5.1 Introduction

In the previous section, we discussed image compression with Shep-
ard inpainting. However, the codecs were designed for single-channel
grayscale images. Popular transform-based codecs have dedicated colour
modes to compress multi-channel images. Although each codec [97,
121] implements it differently, the underlying idea for dedicated colour
modes is that structural information is visually more important than
colour. By discarding more information in the colour channels, they can
store the structure information more accurately. Inpainting-based codecs
usually perform scalar quantisation on each channel, which is inpainted
separately. An exciting side-effect of inpainting is that it tends to fill in
gaps not only in the spatial domain but also in the colour domain. Till
now, colour modes for inpainting-based codecs have not been explored
much. In addition, inpainting-based compression methods that create
sparse colour palettes through vector quantisation have not yet been
proposed. This chapter follows our manuscript, Mohideen et al. [90].

5.1.1 Our Contribution

We aim to evaluate different concepts for inpainting-based colour image
compression. To this end, we propose two new colour modes for the
recent regular grid coding with joint inpainting and prediction (RJIP)
codec [100]. Our first mode adapts a state-of-the-art colourisation-based
concept [103] in YCbCr mode to the RJIP setting: We dedicate a higher
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budget to the image structure than to colour and augment it with ef-
ficient post-processing specifically tailored to fast Shepard interpola-
tion [116]. Additionally, we propose the first full vector quantisation
mode for inpainting-based compression. Our evaluation on the Kodak
database [35] reveals that both colour modes significantly outperform
the original RGB mode.

5.2 Review: Inpainting-based Compression

with Scalar Quantisation

5.2.1 Inpainting

At their core, all inpainting-based image compression codecs rely on
interpolation from sparse image data. For a typical inpainting problem
in RGB space, the colour image f : Ω → R3 is only known at a few
locations, the inpainting mask K ⊂ Ω. The missing parts of the image
domain Ω need to be reconstructed during decoding.

For the isotropic Shepard inpainting in RJIP [100], computing an un-
known pixel value uc(xi), xi ∈ Ω \ K for each channel c ∈ {R, G, B}
comes down to a simple weighted averaging of the known data accord-
ing to

uc(xi) =
∑xj∈K w(xj − xi) fc(xj)

∑xj∈K w(xj − xi)
, (5.1)

as discussed in Section 2.1.4. Following Achanta et al. [2], we use a
truncated Gaussian w with standard deviation σ =

√
(m · n)/(π|K|)

for a discrete m× n image where |K| is the number of mask pixels.

5.2.2 Data Selection and Storage

Each inpainting-based codec requires an adequate strategy to select and
encode the inpainting mask. RJIP stores the known data on a regular
grid with grid size parameter h. This approach is fast and generates
little overhead but results in many colour values that need to be stored.
RJIP compensates for this fact by joined inpainting and prediction: While
decompressing the image, it performs a partial inpainting whenever a
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new mask point is decompressed and uses this to predict the remaining
mask points. Thus, only prediction errors need to be stored.

For the colour data corresponding to the mask positions, existing inpainting-
based codecs use uniform scalar quantisation in each channel: They map
the 8-bit colour values to a reduced range {0, . . . , q− 1} by partitioning
the tonal (i.e. colour value) domain into q subintervals of equal length,
limiting the number of different colours for the known data to q3. These
quantised values are then stored with a suitable entropy encoder. RJIP
relies on finite state encoding (FSE) [34], a fast coder similar to arithmetic
coding.

For a given compression ratio, RJIP chooses the parameters h and q to
obtain the best reconstruction quality for the desired file size.

5.2.3 Tonal Optimisation

RJIP benefits from tonal optimisation in post-processing. It performs it-
erative random walks over all 3|K| R, G, or B values, adjusting them
to a higher or lower quantisation level if this yields a lower inpainting
error. Even though this introduces a bias to the sparse stored data, it
can significantly increase the overall reconstruction quality in the large
unknown areas. We need to adapt this step for vector quantisation.

5.3 RJIP with Luma Preference Mode

5.3.1 File Size Budget Distribution

As a first colour mode for RJIP, we consider a luma preference mode
in the YCbCr colour space. This technique is an application of image
colourisation that has been successfully used in the codec R-EED [103].
Its core idea is to store more data for the luma channel Y to reconstruct
the image colour accurately and fill in the colour information in the Cb
and Cr channels from very sparse masks.

To this end, we distribute the total file size budget B between Y and
CbCr according to a new parameter, the luma factor f such that BY =

f · BCbCr. The compression pipeline remains the same as in Section 5.2:
On a regular mask, we employ uniform quantisation, joint inpainting
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and prediction, and FSE encoding. However, we use a separate mask
for the Y channel and a joint mask for the Cb and Cr channels. The
respective grid sizes h and quantisation parameters q are chosen to fulfil
the budget constraints. Afterwards, we perform tonal optimisation for
all channels.

5.3.2 Tonal Optimisation

We do not use the random walk trial-and-error approach of RJIP de-
scribed in Section 5.2 for tonal optimisation. Instead, we propose a di-
rect, more efficient algorithm. We exploit that the truncated weights in
Eq. (5.1) limit the influence of each pixel to a local area. In the following,
given a current pixel value, uold

i at xi ∈ K, we want to find unew
i , such

that it minimises the mean squared error (MSE).

To shorten notation, we define the value accumulation map v as the nu-
merator of Eq. (5.1) and write wi,j for w(xj − xi) for weights at positions
xj from a neighbourhood Ni relative to its centre xi. Then the new error
after changing uold

i to unew
i is given by

e(unew
i ) = ∑

xj∈Ni

(
f j −

vj + wi,j
(
unew

i − uold
i
)

wj

)2

, (5.2)

where
wj = ∑

xj∈Ni

wi,j.

Since the optimal new tonal value unew
i should minimise e(·), we solve

d
dunew

i
e(unew

i ) = 0 (5.3)

for unew
i and obtain

unew
i =

∑xj∈Ni

Gi,j
wj

(
f j −

vj−Gi,juold
i

wj

)
∑xj∈Ni

G2
i,j

w2
j

. (5.4)

Instead of testing neighbouring quantisation levels, we can now di-
rectly compute the locally optimal value. However, note that we must
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project these unconstrained solutions onto the set of admissible quan-
tisation values after each computation. Iterating these steps eventually
converges to a fully optimised inpainting mask.

5.4 RJIP with Vector Quantisation

We propose the first full vector quantisation mode for inpainting-based
colour image compression as an alternative to the LP mode from Section
5.2. In the following, we describe the corresponding modifications to the
compression pipeline of RJIP.

5.4.1 Clustering with K-means

Experimental evaluations have shown that the simple k-means algo-
rithm for clustering by Lloyd [77] is still one of the most successful tech-
niques for vector quantisation [29]. Given an initial set of colour vectors
V := {v1, ..., vn}, k-means clustering aims to partition V into k disjoint
clusters C1, ..., Ck ⊂ V such that they minimise the cumulative squared
Euclidean distance of the points in each cluster Cℓ to the corresponding
cluster centre µℓ.

To achieve this goal, the k-means algorithm first randomly selects k clus-
ter centres. Alternating assignment and update steps refine this initial-
isation iteratively. The assignment step maps all colours to the cluster
with the nearest mean value. In the subsequent update, the mean values
are set to the centroids of the newly assigned clusters. Note that there
are many more sophisticated initialisation strategies than the random
one, e.g. k-means++ [11], histogram-based approaches [47, 51, 113, 117,
122], and iterative subdivision methods [119]. Even though the initialisa-
tion method impacts the quantisation error, we empirically determined
that it does not significantly impact the final compression performance.
The tonal and cluster post-processing steps described in the following
paragraphs ensure we achieve good final results regardless of the initial-
isation.

A representative histogram of an image after vector quantisation can
be seen in Fig. 5.1 (c). The same figure also reveals that inpainting can
approximate such a histogram well from data that is simultaneously
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image histogram

(a) original kodim07

(b) inpainting mask

(c) reconstruction

F I G U R E 5 . 1 : Colour histograms for the original image kodim07 and
the reconstructed image with Shepard inpainting. The histograms
(created with Colour Inspector 3D [15]) show each bin as a ball with
a radius proportional to the number of contained colours. Inpainting
can reconstruct a good approximation to the original histogram from
only a few quantised colours present in the inpainting mask. Here,
the image is compressed to a ratio of 50:1, and the mask has only 92

different colours
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sparse in the spatial domain and the colour space after coarse vector
quantisation.

5.4.2 Cluster Post-Processing

We use our improved method from Section 5.3 for tonal optimisation
to find optimal unconstrained values. After each iteration, we project
them onto the closest cluster centre w.r.t. Euclidean distance. However,
for vector quantisation, we consider an additional post-processing step.

Just as the original colour values do not necessarily yield the best in-
painting result, the k-means clusters are not necessarily optimal w.r.t. re-
construction quality. As another post-processing step, we can check if
moving a cluster centre to a neighbouring vector from {0, ..., 256}3 de-
creases the MSE, and each such global change affects all known pix-
els with the same label. Thus, we optimise the quantisation codebook
for final reconstruction quality and can simultaneously compensate for
suboptimal initialisations of the k-means algorithm. Even though the
overall quantitative gain is negligible for lower compression ratios, it
becomes significant for higher ones.

5.4.3 Storing Colour Palettes and Entropy Coding

In contrast to uniform scalar quantisation, we need to store the colour
palette used by the encoder. In the header, we first save the number
q ≤ 256 of quantised colours with one byte, and the cluster centres them-
selves with one byte per channel. The position of known data points is
stored as in standard RJIP, but their value is now represented by a cluster
centre index (0, ..., q− 1) from the stored codebook.

Finally, we apply entropy coding. Unfortunately, the joint prediction and
inpainting from Section 5.2 yields unsatisfactory results in the vector
case. While inpainting can still predict the colour value of neighbouring
known data, the codebook labels are not tied to the distance between
vectors in the colour space. Thus, an accurate prediction of the colour
itself can still yield a high error in the label prediction. Therefore, we
replace this step with Prediction by Partial Matching (PPM) [33].

The original version of PPM uses the linear sequence of previously en-
coded symbol contexts for deriving conditional probabilities for entropy
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original kodim20 RJIP (scalar RGB)
MSE = 106.38

Our RJIP (scalar LP) Our RJIP (vector RGB)
MSE = 63.55 MSE = 28.81
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F I G U R E 5 . 2 : RJIP compression results (RGB-MSE) for kodim20
(768× 512 pixels) with a compression ratio of 20:1. Both our colour
modes outperform RGB RJIP significantly. On images with low and
moderate amount of texture, vector quantisation also outperforms

LP mode considerably.
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original kodim13 RJIP (scalar RGB)
MSE = 580.98

Our RJIP (scalar LP) Our RJIP (vector RGB)
MSE = 398.64 MSE = 462.47
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F I G U R E 5 . 3 : RJIP compression results (RGB-MSE) for kodim13
(768× 512 pixels) with a compression ratio of 50:1. Both our colour
modes outperform RGB RJIP significantly. On images with a high
amount of texture, LP mode outperforms vector quantisation con-

siderably.
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F I G U R E 5 . 4 : On the full Kodak database, both our new colour
modes for RJIP outperform RGB scalar RJIP consistently and yield a

similar error on average.

coding. However, this approach discards the 2-D relations of image pix-
els. Instead, we iterate over all mask pixels and use their three direct
neighbours that have already been encoded as a 2-D context. The result-
ing conditional probabilities are then used for arithmetic coding.

5.5 Experiments

On the well-known Kodak image database [35], we compare the RGB
scalar mode of the original RJIP [100] to our two new colour modes: RGB
with vector quantisation and YCbCr luma preference mode (LP) with
scalar quantisation. We use the MSE over all RGB channels as our error
measure. For LP mode, we choose the luma factor f ∈ {0.5, 0.6, 0.7, 0.8, 0.9}
that minimises the MSE.

Fig. 5.4 shows that our new colour modes for RJIP consistently outper-
form the scalar RGB mode by a large margin. This also significantly
improves visual quality, as illustrated by Fig. 5.2 and Fig. 5.3. On aver-
age, both colour modes yield a similar error over the whole database.
However, a more detailed analysis shows that both modes have distinct
advantages in different types of image content.
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For images with low amounts of texture, vector quantisation is the better
choice and can reduce the MSE by up to 85% compared to scalar LP, as
shown in Fig. 5.2. This yields a noticeable increase in visual quality due
to higher RGB mask densities. However, LP mode yields better results
on heavily textured images such as the one in Fig. 5.3. Here, more data
in the luma channel allows a more accurate reconstruction of the image
structure.

In general, vector quantisation yields a significant speed-up compared
to LP mode. Even though vector quantisation is more complex than uni-
form scalar quantisation due to k-means clustering, it does not require
to optimise the luma factor f . This yields a runtime reduction of up to
50%.

5.6 Conclusions

Our two new colour modes for RJIP offer a significant visual and quanti-
tative improvement over the standard RGB mode. Moreover, we assess
the potential of vector quantisation for the first time. Our evaluation
reveals that inpainting-based image compression can reconstruct a wide
range of colours from a sparse codebook. A scalar luma preference mode
can reproduce the image structure more accurately on highly textured
images. In future research, we want to investigate our colour modes on
data with many channels, e.g. hyperspectral imaging [8].
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Chapter 6

Conclusions and Outlook

In this thesis, the goal was to systematically identify successful working
principles of inpainting-based compression methods and to build new
efficient codecs based on those findings. Fully optimised masks were reg-
ularly considered non-viable for end-to-end compression methods due
to high storage costs despite offering the best quality for a given density.
In this thesis, we explored existing compression methods dealing with
sparse binary images and general data compression methods to make
unconstrained mask storage more efficient. As a result, we propose two
families of coders to store sparse binary images: one that compresses the
image directly and the other that compresses run-lengths in Chapter 3.

From our experiments, we can provide solid recommendations for any
inpainting-based coder required to store unconstrained masks. We sug-
gest that the compression method needs to be adapted to the distribution
of mask points and not the density of the mask. Nevertheless, storing
an unconstrained mask over a constrained mask can only be considered
if the improvement in reconstruction quality outweighs the increase in
storage costs. In the future, codecs could also account for the storage
costs when performing spatial optimisation. Our work helps all cur-
rent inpainting-based compression methods that employ unconstrained
masks.

Inpainting-based compression methods have primarily used partial dif-
ferential equations (PDEs) as their inpainting method, which in most
cases offer good quality. Still, they are slow and require significant nu-
merical expertise to speed up. In this thesis, we set out to propose an
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alternative for PDEs which has similar reconstruction quality and is effi-
cient and straightforward to implement. To that end, we study Shepard
inpainting as a potential candidate.

We have proposed a family of image compression methods that employ
Shepard inpainting in Chapter 4. We also introduce concepts such as
anisotropic Shepard inpainting and direct tonal optimisation, which lead
to improved results compared to the original RJIP codec, especially at
lower compression ratios. We found that our codecs can be orders of
magnitude faster than classical PDE-based inpainting methods and, in
addition, are easy to implement.

Even though we can treat multi-channel images as many single-channel
images combined into one and compress them as such, we can attain
better compression performance if compression methods are tailored for
multi-channel images. In this thesis, we delve into multi-channel image
compression.

We present two new colour modes for RJIP that are specially tailored for
RGB images in Chapter 5. These colour modes offer better visual quality
and compression performance than the original RGB mode. Further-
more, we observed that inpainting could reconstruct a broader palette
of colours from a stored codebook of colours obtained through vector
quantisation. At the same time, the luma preference mode can reproduce
image structures better.

In the future, the colour-specific modes we proposed for RJIP could be
combined with the other improvements we suggested, such as anisotropic
Shepard inpainting and subdivision. All upgrades for Shepard inpaint-
ing indicated in this thesis can also be applied to other inpainting meth-
ods that perform weighted averaging with slight modifications. This
thesis presents Shepard inpainting as a solid alternative to classical PDE-
based inpainting. Shepard inpainting has the potential to be used in
many applications as is, and it could also be improved in the future if
the weighting between pixels is learned and refined instead of depend-
ing on only the Euclidean distance.

Through the use of PAQ [81], existing inpainting-based codecs and those
proposed in this thesis already use learning, albeit only for entropy cod-
ing. In the future, deep learning could work its way into every aspect
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of inpainting-based compression. A deep-learning approach for end-to-
end inpainting-based codecs, where the spatial and tonal optimisation,
the inpainting, and the entropy coding are learned, could be very inter-
esting. At the very least, our findings regarding mask storage could be
used in conjunction with the already existing deep-learning-based data
optimisation methods [99, 105, 112] or inpainting methods [96, 99, 124,
125, 137, 138] to produce full-fledged end-to-end compression methods.
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tion 4.4. We present the rate-distortion results for images 1 through
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