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Abstract. Since years variational methods belong to the most accurate tech-
niques for computing the optical flow in image sequences. However, if based on
the grey value constancy assumption only, such techniques are not robust enough
to cope with typical illumination changes in real-world data. In our paper we
tackle this problem in two ways: First we discuss different photometric invari-
ants for the design of illumination-robust variational optical flow methods. These
invariants are based on colour information and include such concepts as spher-
ical/conical transforms, normalisation strategies and the differentiation of loga-
rithms. Secondly, we embed them into a suitable multichannel generalisation of
the highly accurate variational optical flow technique of Broxet al. This in turn
allows us to access the true potential of such invariants for estimating the optical
flow. Experiments with synthetic and real-world data demonstrate the success of
combining accuracy and robustness: Even under strongly varying illumination,
reliable and precise results are obtained.

1 Introduction

The recovery of the displacement vector field (optical flow) between two consecutive
frames of an image sequence is a classical problem in computer vision. In this con-
text, variational methods play an important role, since they allow to incorporate vari-
ous model assumptions in a transparent way and they yield dense flow fields. Numer-
ous modifications have been introduced since the first variational approaches of Horn
and Schunck [8] and Nagel [12]: More recent techniques such as [3, 11, 4] combine
discontinuity-preserving regularisers that respect motion boundaries, robust data terms
that improve the performance with respect to outliers and noise, and hierarchical op-
timisation strategies that handle large displacements. This has led to highly accurate
methods. Moreover, efficient numerical schemes allow for a real-time computation of
the results [5].

However, there is one topic that has hardly been addressed in the literature on vari-
ational optical flow methods, but which is of fundamental importance for their applica-
bility in practice: the robustness of the estimation under realistic illumination changes.
Such illumination changes include for instance shadow/shading, specular reflections
and globally varying illumination [7, 18]. They can provide severe perturbations for
important applications such as robot navigation or driver assistance systems.



So far, most of the illumination-robust optical flow techniques in the literature are
local methods: They are easy to implement, but they give non-dense flow fields and do
not belong to the currently best performing techniques in terms of error measures. In
particular, estimation techniques for colour image sequences are very popular [14, 6,
18]. Usually, such methods make use of photometric invariants that are derived from
the HSI colour space [6, 18], from normalised RGB channels [6], or from ther�� rep-
resentation that is obtained via the spherical coordinate transform (SCT) [18]. These
expressions are in general invariant under illumination changes of multiplicative and/or
additive type. Alternatively, in the context of grey value image sequences, different
methods have been proposed that tackle the illumination problem by an explicit mod-
elling of the underlying physical process [13, 7]. In this case, the optical flow field and
the parameters of the illumination model have to be estimated simultaneously. A last
class of methods, that are also applicable to grey value image sequences, makes use
of image derivatives [17]. However, one should note that derivatives are only invari-
ant under additive illumination changes. Thus, they may not be optimal with respect to
realistically varying illumination that always contains a multiplicative part [18].

In face of these strategies and the increasing accuracy of variational methods in
the last few years, it becomes evident why recently more efforts have been made to
embed such concepts into a suitable variational framework: Prominent examples are
the techniques of Broxet al. [4] and Papenberget al. [15] that are based on higher
order image derivatives, as well as the method of Kimet al. [9] that models the illu-
mination changes in an explicitly way. However, with respect to variational techniques
that make use of photometric invariants, only one approach is known to us: Barron and
Klette [2] incorporate a single invariant expression as part of a multichannel framework
into the classical method of Horn and Schunck [8]. Since photometric invariants com-
bine most of the advantages of derivative and model based approaches – they allow for
the modelling of multiplicative and additive illumination changes without requiring the
estimation of any additional model parameters – it is surprising that there has been no
further research done in this direction.

Thus, the goal of the present paper is twofold: First, it shall provide an overview
of the most important concepts to design photometric invariants for colour sequences.
Secondly, by embedding these invariants into the highly accurate optical flow technique
of Brox et al. [4], it shall investigate the true potential of recent variational optical flow
methods under realistic illumination conditions.

Our paper is organised as follows. In Section 2 we give a short review on the dichro-
matic reflection model and discuss the basic properties of photometric invariants. This
discussion allows us to propose five different invariants in Section 3. How these invari-
ants can be incorporated into a suitable variational framework is then demonstrated in
Section 4. Finally, we investigate the performance of the new method in Section 5. The
summary in Section 6 concludes this paper.

2 The Dichromatic Reflection Model

In order to understand the basic concept behind photometric invariants, it makes sense
to start by giving a short review of thedichromatic reflection model[16, 18]. This model
describes the observed RGB colourc(x) = (R(x); G(x); B(x))> at a certain location



x = (x; y)> as sum of an interface reflection componentci(x) and a body reflec-
tion componentcb(x): c(x) = ci(x) + cb(x): (1)

While the interface reflection component is caused by specularities or highlights, the
body reflection is directly related to the (Lambertian) reflection of the matte body. Phys-
ical characteristics of the camera are not modelled explicitly by this equation.

Underspectrally uniform illumination, these two terms can be decomposed further.
They can be factorized into the overall intensitye, the geometrical reflection factorm(x) and the reflectance colourbc(x). Thus, equation (1) becomes

c(x) = e �mi(x) bci(x) +mb(x) bcb(x)�; (2)

which actually describes a linear combination of the two reflectance coloursbci and bcb
with the corresponding geometric reflection factorsmi andmb as weights. At this
point one should note that the interface reflectance colourbci cannot be arbitrary: Since
we have assumed a spectrally uniform illumination, it is restricted to pure achromatic
colours, i.e. grey values of any type. This in turn means that all three channels ofbci
have equal contributions, i.e.cRi(x) = cGi(x) = cBi(x) =: wi(x).

If we furthermore assume aneutral interface reflection (NIR)[10], the valuewi(x)
of all three interface channels becomes independent of the location. By defining the
vector1 = (1; 1; 1)> we can thus rewrite the dichromatic reflection model as

c(x) = e �mi(x) wi 1+mb(x) bcb(x)�: (3)

One should note that this equation is equivalent to the formulation considered in [18].
However, for a better understanding, we have made all the simplifications explicit.

Now we are in the position to give a concrete definition of photometric invariants:
Photometric invariants are those expressions that are constructed from the observed
colour c and that are at least independent of one of the three photometric variablese, mb or mi. In general, three different classes of photometric invariants can be dis-
tinguished: (i) Invariants with respect toglobal multiplicative illumination changes–
these expressions are only independent of the light source intensitye. (ii) Invariants
with respect toshadowandshading– these expressions are independent of the light
source intensitye and the geometric body reflection factormb, at least for matte sur-
faces (i.e.mi=0). (iii) Invariants with respect tohighlightsandspecular reflections–
these expressions are independent of all three photometric variablese,mb andmi.
3 Photometric Invariants

After we have discussed the dichromatic reflection model, let us now investigate the
main design principles behind photometric invariants. To this end, we consider the
colourc(x) at a certain pointx in terms of its three componentsR(x),G(x) andB(x),
respectively. Then, three main strategies for designing invariants are proposed in the
literature: normalisation techniques, the differentiation of logarithmised channels, and
the transformation to other colour spaces in terms of spherical/conical coordinates. Let
us now discuss all three concepts in detail.



3.1 Normalisation Techniques

The first concept that we consider for designing photometric invariants is the transfor-
mation of the RGB colour space by means of normalisation [6]. In general, this trans-
formation can be formulated as

(R;G;B)> 7! �RN ; GN ; BN
�> ; (4)

whereN is a normalisation factor that depends onR, G andB. Such a proceeding
yields a so-calledchromaticity space. Two popular representatives for chromaticity
spaces are thearithmeticand thegeometric chromaticity spacethat are based on the
normalisation by the arithmetic meanN = (R + G + B)=3 or the geometric meanN = 3pRGB, respectively. However, with respect to the degree of invariance their
behaviour is identical: By plugging the dichromatic reflection model (3) into equa-
tion (4), one can see that in both cases the photometric variablese andmb cancel out
(if mi = 0). Thus, both the arithmetic and the geometric normalisation strategy yield
expressions that are invariant undershadowandshading.

3.2 Log-Derivatives Strategies

A second class of strategies for creating photometric invariants is the computation of
derivatives of the logarithmised colour channels. In the case of first order differential
operators this yields the mapping

(R;G;B)> 7! �(ln R)x; (ln R)y; (ln G)x; (ln G)y; (ln B)x; (ln B)y�>; (5)

where subscripts denote partial derivatives, i.e.Gx = @G=@x. However, in contrast to
the previous strategy this concept is not invariant with respect to shadow and shading:
Only the overall intensitye is eliminated formi = 0, since the geometric reflection
factormb depends on the locationx and thus does not vanish. Therefore log-derivatives
are only invariant under changes of theimage intensity.

Nevertheless, this strategy may be an interesting upgrade possibility for techniques
that are originally based on image derivatives such as the ones in [17, 4, 15]. By loga-
rithmising the colour channels before the computation, such methods are able to handle
global multiplicative illumination changes instead of global additive ones. Moreover, if
the spatial variations of the geometric reflection factormb are rather small, such a strat-
egy also provides a reasonable degree of invariance with respect toshadowandshading.

3.3 Spherical and Conical Transforms

The last concept for designing invariants that we discuss in this section is the consider-
ation of other colour spaces that are obtained via spherical or conical transforms. Such
colour spaces are e.g. the HSV and ther�� colour space [6, 18]. Let us start our dis-
cussion with the HSV colour space. This colour space represents each colour in terms
of hue, saturation and value. While the hue describes the pure colour and the saturation
stands for the acromatic/grey component, the value corresponds to the actual brightness.



If we defineM =max(R;G;B) andm=min(R;G;B), the corresponding transfor-
mation is given by:

(R;G;B)> 7!

8>>>>>>><
>>>>>>>:

H =
8<
:

G�BM�m � 60�; R � G;B;(2 + B�RM�m )� 60�; G � R;B; (mod 360�) ;(4 + R�GM�m )� 60�; B � R;G;
S = M�mMV =M :

(6)

Evidently, the hue is invariant under bothshadowandshadingas well ashighlightsand
specularities. However, since it involves the ratio of colour channel differences, it also
discards the most information of all invariants. The other two channels are less robust:
While the saturation allows to cope at least withshadowandshading, the value channel
is not invariant at all.

In contrast to the HSV colour space that describes the RGB colours in terms of a
cone, ther�� colour space is obtained via a spherical transformation of the RGB coor-
dinates. This transformation is given by

(R;G;B)> 7!
8><
>:

r = pR2 +G2 +B2

� = arctan �GR� :� = arcsin� pR2+G2pR2+G2+B2

� (7)

Here,r denotes the magnitude of the colour vector and� and� are the two angles that
describe longitude and latitude, respectively. As one can easily verify, both angles� and� are invariant with respect toshadowandshading. However, the colour magnituder
is no photometric invariant.

4 Variational Optical Flow Computation

Since we are interested in incorporating the previously discussed photometric invariants
into a variational framework, let us briefly recall the basic idea behind variational meth-
ods. To this end, let us consider an image sequencef(x; t), wherex = (x; y)> denotes
the location within a rectangular image domain
 andt � 0 denotes time. Then, varia-
tional optical flow methods compute the dense displacement fieldu = (u; v)> between
two consecutive framesf(x; t) andf(x; t+1) as minimiser of an energy functional
with the general structure

E(u) = ED(u) + �ES(u) ; (8)

whereED(u) andES(u) denote the data and the smoothness term, respectively, and� > 0 is a scalar weight that steers the degree of smoothness. While the data term
penalises deviations from constancy assumptions – e.g. the constancy of the grey value
of objects – the smoothness term regularises the often non-unique local solution of the
data term by assuming (piecewise) smoothness of the result.



4.1 A Multichannel Approach for Photometric Invariants

Having explained the main idea behind variational methods, let us now derive a suitable
model for computing the optical flow. Such a model must not only permit the integration
of our photometric invariants into the data term, it should also allow the estimation of
highly accurate optical flow fields. In order to satisfy both demands, we propose to
compute the optical flow as minimiser of an energy functionalE(u) with data term

ED(u) =Z
 D
� NX
i=1 i jfi(x+u; t+1)�fi(x; t)j2� dx dy (9)

and smoothness term

ES(u) = Z
  S
�jruj2 + jrvj2� dx dy : (10)

Here,ru = (ux; uy)> andrv = (vx; vy)> denotes the spatial gradient of the flow
componentu andv, respectively.

This energy functional can be considered as a 2-D multichannel extension of the
high accuracy technique of Broxet al. [4]. However, instead of assuming constancy on
the grey value and its spatial derivatives, our method is based on the assumption that
for corresponding objects in both frames theN different photometric invariants given
by the channelsfi remain constant. Thus, for instance, we consider in the case of the
spherical coordinate transform constancy assumptions on both channels of the image
sequencef = (f1; f2) = (�; �) which can be obtained from the original colour image
sequencef =(R;G;B) using equation (7) . In this context, the scalarsi > 0 serve as
weights that steer the importance of the different channels. In order to allow for a correct
estimation of large displacements, all photometric constancy assumptions are employed
in their original nonlinear form. Moreover, both the data and the smoothness term are
penalised in a non-quadratic way - to render the approach more robust to outliers and
noise in the case of the data term and to preserve motion boundaries by modelling a
piecewise smooth flow field in the case of the smoothness term. For both purposes the
regularised version of theL1-norm is used. It is given by (s2) = ps2 + �2, where�
is a small regularisation parameter. In our case� is set to10�3.
4.2 Minimisation

In order to minimise the previously proposed energy functional, one has to solve its
Euler-Lagrange equations. These equations are given by the following coupled pair of
nonlinear partial differential equations (PDEs):

0 =  0D(:::)� NX
i=1 i

�fi(x+u; t+1)�fi(x; t)� @@xfi(x+u; t+1)�
+ � div � 0S �jruj2 + jrvj2�ru� ; (11)

0 =  0D(:::)� NX
i=1 i

�fi(x+u; t+1)�fi(x; t)� @@y fi(x+u; t+1)�
+ � div � 0S �jruj2 + jrvj2�rv� ; (12)



where 0D(:::) is an abbreviation for

 0D(:::) =  0D� NX
i=1 i jfi(x+u; t+1)�fi(x; t)j2� :

After discretising these equations by means of finite difference approximations, the
resulting nonlinear system of equations is solved via two nested fixed point iterations
and a coarse-to-fine warping strategy as proposed in [4]. Alternatively, also a real-time
capable multigrid scheme could be used [5].

5 Experiments

In our first experiment, we investigate the usefulness of different photometric con-
stancy assumptions with respect to spatially varying multiplicative and additive illu-
mination changes (using a Gaussian model). To this end, we consider frame 10 and
11 of theStreetsequence available athttp://of-eval.sourceforge.net and
create two strongly degraded variants of frame 11 with heavily varying illumination
(cf. Figure 1). The different photometric constancy assumptions and the corresponding
results in terms of the average angular error [1] are listed in Table 1. As one can see,

Fig. 1. Robustness of the�� constancy assumption under varying illumination.Top Row: (a)
Frame 11 of theStreetsequence (200� 200). (b) Frame 11 with spatially varying multiplicative
illumination.(c) Frame 11 with spatially varying multiplicative and additive illumination.Bottom
Row: (d) Ground truth.(e) Computed result for (a) and (b).(f) Computed result for (c). The
direction is encoded by the colour (as shown at the boundaries), the magnitude by the brightness.



Table 1. Comparison of the different illumination invariants for theStreetsequence in its orig-
inal form (orig.), with locally varying multiplicative illumination (mult.) and with locally vary-
ing multiplicative and additive illumination (mult.+add.). All weightsi have been set to one.
The remaining parameters have been optimised with respect to the average angular error (AAE).
#Ch = number of channels.

Concept #Ch AAE orig. AAE mult. AAE mult. + add.
Standard RGB 3 2.65� 43.44� 43.44�

Colour Space HSL (Hue) 1 4.28� 4.28� 4.28�

spherical (�, �) 2 2.07� 2.07� 3.37�

Normalisation RGB (arithm. mean) 3 2.22� 2.22� 3.71�

RGB (geom. mean) 3 2.26� 2.26� 5.64�

Log-Derivatives r ln(RGB) 6 2.89� 3.04� 4.35�

Brox et al. (2-D) RGB +r RGB 9 2.64� 3.89� 3.92�

the standard RGB constancy assumption fails completely under varying illumination.
Thereby, the error of 43.44� refers to a zero displacement field which means in turn
that the underlying method could not make any use of the provided information. In
contrast, all techniques based on photometric invariants perform favourably. In particu-
lar the constancy assumption on the�� channels gives excellent results: With average
angular errors up to2:07�, it does not only outperform the hue channel, that offers a
higher degree of invariance at the expense of discarding too much information, it also
provides better results for the sequencewith spatially varying multiplicative illumina-
tion changes than the 2-D RGB Broxet al. for the sequencewithout. Compared to the
best result in the literature that is known to the authors – the result of4:85� by Weickert
and Schn̈orr [19] – this improvement is even more drastical. Thus it is not surprising
that the corresponding flow fields of the��-channels in Figure 1 show a precise estima-
tion of the optical flow: The shape of the car is well preserved and the camera motion
is also estimated accurately.

In our second experiment, we analyse the performance of the different photometric
invariants with respect to typical illumination changes in real-world data. To this end,
we consider the left frames 205 and 207 of theDIPLODOC Roadstereo sequence avail-
able athttp://tev.itc.it/DATABASES/road.html . As one can see from
the computed results in Figure 2, the method based on the standard RGB constancy
assumptions has again severe problems. Instead of compensating for the varying illu-
mination between both frames, it interprets this change as a global motion in upward
direction (street). Since the ego-motion of the camera system induces a divergent flow
field, this estimation is completely wrong. However, once again our techniques based
on photometric constancy assumptions give very good results. The��-channels and the
normalised RGB values (using the geometric mean) even allow to detect the pedestrian
at the lower left border of the image – in spite of the severely changed illumination con-
ditions. This confirms our findings from the first experiment: If suitable photometric
invariants are embedded within an accurate variational framework, they may render the
underlying method highly robust with respect to realistic changes of the illumination.
However, as the first experiment has also shown, one has to be careful not to discard
too much information, since otherwise the quality of the estimation decreases.



Fig. 2.Results under real illumination conditionsTop Row:(a) Left frame 205 of theRoadstereo
sequence of the DIPLODOC project (size320�240). (b) Left frame 207. (c) Flow with RGB con-
stancy assumption.Middle Row:(d) Hue constancy assumption. (e)�� constancy assumption. (f)
Normalised RGB constancy assumption (arithm.).Bottom Row:(g) Normalised RGB constancy
assumption (geom.). (h) Log-derivative constancy assumption. (i) 2-D Broxet al. (2-D).

6 Summary and Conclusions

Photometric invariants and variational methods are two successful concepts in image
analysis that have emerged without many interactions so far. In our paper we have
demonstrated the benefits of combining them in order to solve a challenging computer
vision problem: dense and highly accurate motion estimation under realistic changes of
the illumination conditions. We have thereby shown that the performance of variational
optical flow methods can be significantly improved, if traditional constancy assump-
tions are replaced by photometric invariants.

It is our hope that this research serves as another step that helps to bridge the gap
between mathematically well-founded theories and more robust real-life applications.
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