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Abstract—Three-dimensional rotational angiography (3DRA) is a new and promising technique
for obtaining high-resolution isotropic 3D images of vascular structures. However, due to the
relatively high noise level and the presence of other background structures in clinical 3DRA images,
noise reduction is inevitable. In this paper, we evaluate a number of linear and nonlinear diffusion
techniques for this purpose. Specifically, we analyze the effects of these techniques on the threshold-
based visualization and quantification of vascular anomalies in 3DRA images. The results of in-
vitro experiments indicate that edge-enhancing anisotropic diffusion filtering is most suitable: the
increase in the user-dependency of visualizations and quantifications is considerably less with this
technique compared to linear filtering techniques, and it is better at reducing noise near edges than
isotropic nonlinear diffusion. However, in view of the memory and computation-time requirements
of this technique, the latter scheme may be considered a useful alternative.

Keywords—Three-dimensional rotational angiography, noise reduction, linear diffusion, isotropic
nonlinear diffusion, edge-enhancing anisotropic diffusion, in-vitro evaluation.

1 Introduction

Three-dimensional rotational angiography (3DRA) is a relatively new technique for imag-
ing blood vessels in the human body, which has the potential to overcome some of the
limitations and drawbacks of conventional two-dimensional (2D) projective X-ray angiog-
raphy. With the latter type of imaging, projections from different angles are often required
in order to substantiate the accuracy of diagnostic findings, such as e.g. the precise lo-
cation, size, and morphology of arterial stenoses and aneurysms [6, 18, 34, 71]. This does
not only result in prolonged examination times, and hence prolonged exposure to X-rays,
but also requires multiple injections of contrast material, which altogether significantly
increase the discomfort for the patient.

With 3DRA, on the other hand, the same C-arm imaging system is used to acquire a
sequence of about one hundred low-dose X-ray angiography images during a 180-degree
rotation of the X-ray source-detector combination, following a single injection of contrast
material. Application of a subsequent reconstruction algorithm to the images results in
high-resolution 3D isotropic datasets of the vascular structures of interest, which can af-
terwards be studied interactively and from any desired angle by the use of 3D visualization
techniques [2,20,30,48,64,72]. The absence of overprojections and the high resolution of the
resulting datasets make the technique also potentially interesting for quantitative studies.
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However, visualization of raw clinical 3DRA datasets usually does not yield satisfactory
results, due to the relatively high noise level and the presence of other background struc-
tures resulting from inhomogeneous surrounding tissue. In order to improve the quality of
the renderings, some form of noise reduction must be applied to the original data prior to
visualization. In the 3DRA visualization software used in our institute, this is currently
done by simple uniform filtering. Although application of noise reduction techniques is
generally found to result in qualitatively better renderings, the effects of such techniques
on the quantification of vessels and their anomalies based on those renderings have, to our
knowledge, not yet been reported in the literature, save for a recently published confer-
ence paper by the present authors [46]. Analysis of these effects is important, as particular
techniques may influence the user-dependency of the renderings—which in general rely on
one or more user-defined thresholds—and thus the reliability of quantitative measurements
based on them.

In this paper we present the results of a study into the effects of several linear and
nonlinear noise reduction techniques on the accuracy of quantification and the quality of
visualization of vascular anomalies in 3DRA images. A brief description of the techniques
included in this study is given in Section 2, followed by a discussion of the vascular anoma-
lies and the measurements involved in their quantification in Section 3. The materials and
methods used in the in-vitro experiments are described in Section 4. The results of these
experiments are presented in Section 5, and discussed in Section 6. Concluding remarks
are made in Section 7.

2 Noise Reduction Techniques

Noise reduction techniques can be divided into linear and (adaptive) nonlinear techniques.
Concerning the former, we limited ourselves to uniform and Gaussian filtering. The nonlin-
ear filtering techniques included in this study were regularized isotropic nonlinear diffusion
and edge-enhancing anisotropic diffusion. We briefly describe each of them.

2.1 Uniform Filtering

The simplest and computationally cheapest approach to reduce noise in images is to av-
erage the grey-values of voxels in a cubic neighborhood around each voxel. This can be
implemented by means of separable uniform filtering (UF), also known as neighborhood
averaging [29] or box filtering [37]:

I(x) = (I0 ∗ Um)(x), x = (x, y, z) ∈ X, (1)

where I0 denotes the original 3D image, X ⊂ R
3 is the image domain, and Um denotes

the 3D normalized uniform filter given by

Um(x) = um(x)um(y)um(z), (2)

with um : R → R defined as

um(ξ) ,
{

1/m, if |ξ| 6 m/2
0, otherwise.

(3)

In these equations, the parameter m determines the support of the uniform filter, which,
in principle, can have any real value larger than zero. When dealing with discrete data,
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however, the possible values of m are effectively limited to odd integers, in which case this
parameter indicates the number of voxels in each dimension involved in the averaging.

The noise reduction capability of UF is explained from the fact that Um is a low-pass
filter; its Fourier transform can easily be derived to be

Ũm(f) = sinc(mfx) sinc(mfy) sinc(mfz), (4)

where f = (fx, fy, fz) ∈ R
3 denotes spatial frequency.

2.2 Gaussian Filtering

Another frequently used approach to image smoothing is Gaussian filtering (GF). Similar
to UF, it can be implemented by separable convolution:

I(x) = (I0 ∗ Gσ)(x), x = (x, y, z) ∈ X, (5)

where Gσ denotes the 3D Gaussian filter with standard deviation σ, given by

Gσ(x) = gσ(x)gσ(y)gσ(z), (6)

with gσ : R → R defined as

gσ(ξ) , 1
σ
√

2π
exp
(−ξ2

2σ2

)
. (7)

The ubiquitousness of the Gaussian convolution kernel in digital image processing ap-
plications is explained by the fact that it possesses some important properties: application
of this kernel does not create spurious details and the result is independent of the loca-
tion and orientation of image structures [40]. These are essential requirements for the
purpose of segmentation and analysis of image structures. For more details on these and
other properties of the Gaussian kernel, we refer to several books on scale-space theory in
computer vision [24,42,68].

The noise reduction capability of GF can be explained in the frequency domain by the
fact that Gσ is a low-pass filter; its Fourier transform is also a Gaussian, of the form

G̃σ(f) = exp
(
−2π2σ2

(
f2

x + f2
y + f2

z

))
. (8)

In the spatial domain, the smoothing effect of GF follows from the observation that (5)
constitutes the solution to the diffusion equation [40], or heat conductance equation:

∂tI(x; t) = div(∇I)(x; t),

I(x; 0) = I0(x),
(9)

provided that σ =
√

2t. The linear diffusion process governed by (9) is known to gradually
destroy all image structure and eventually result in a homogeneous image with intensity
equal to the mean of the original image.

2.3 Regularized Isotropic Nonlinear Diffusion

In order to better preserve edges while reducing noise, a smoothing algorithm should take
into account local image contrast. For this purpose, several nonlinear diffusion schemes
have been proposed [70,76,77]. In the present study, we included the scheme originally due
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to Perona & Malik [56] and refined by Catté et al. [8]. This so called regularized isotropic
nonlinear diffusion scheme—in the sequel referred to as regularized Perona-Malik diffusion
(RPM)—is obtained by modifying (9) so as to include a gradient-dependent diffusivity:

∂tI(x; t) = div
(
D
(‖∇Iτ‖2

)∇I
)
(x; t), (10)

where the gradient magnitude is computed at scale σn =
√

2τ , τ > 0. This noise-scale
parameter makes the filter insensitive to noise at scales smaller than σn, and also serves
as a regularization parameter that guarantees well-posedness of the process [8, 77].

In order to achieve intra-regional smoothing while avoiding smoothing across object
boundaries, the diffusivity D must be a monotonic function such that D → 1 when the
gradient magnitude is small and D → 0 when it is large. In our implementation, we used
the following diffusivity [77,79,80]:

D
(
ξ2
)

= 1 − exp

(
−C

(ξ/ζ)8

)
, (11)

where ζ > 0 acts as a “contrast” parameter: structures with ‖∇Iτ‖ > ζ are regarded as
edges, for which D → 0 and hence diffusion is inhibited, while structures with ‖∇Iτ‖ < ζ
are assumed to belong to the interior of a region, for which D → 1 and hence (10)
approaches the linear diffusion equation (9). The constant C must be chosen such that the
flux function ξ D(ξ2), the derivative of which determines whether (10) describes forward or
backward diffusion, is increasing for ξ ∈ [0, ζ] and decreasing for ξ ∈ (ζ,∞). This implies
[77,79] that C ≈ 3.31488.

2.4 Edge-Enhancing Anisotropic Diffusion

The second nonlinear diffusion scheme included in this study is edge-enhancing anisotropic
diffusion (EED), which does not only take into account the contrast of an edge, but also
its orientation. This is achieved by replacing the scalar-valued diffusivity in (10) by a
diffusion tensor:

∂tI(x; t) = div
(
D
(∇Iτ

)∇I
)
(x; t), (12)

where, for every x ∈ X, D is constructed from the system of orthonormal eigenvectors

v1 ‖ ∇Iτ ,

v2 ⊥ ∇Iτ ,

v3 ⊥ ∇Iτ and v3 ⊥ v2,

(13)

and corresponding eigenvalues

λ1 = D
(‖∇Iτ‖2

)
,

λ2 = D(0) = 1,

λ3 = D(0) = 1,

(14)

with D as given in (11). This is equivalent to saying D = D
(∇Iτ∇IT

τ

)
, where the argument

of D is known as the structure tensor [5, 51, 58, 79]. With this choice of D, smoothing
along edges is preferred over smoothing across them.
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3 Quantification of Vascular Anomalies

Three-dimensional rotational angiography is currently used primarily for visualization and
subsequent quantification of carotid stenoses and intracranial aneurysms [2, 32, 48, 72].
In this section, we briefly discuss the measures involved in the quantification of these
particular vascular anomalies.

3.1 Quantification of Carotid Stenosis

For the quantification of the degree of stenosis of the internal carotid artery (ICA), many
measures have been proposed and applied in the past [25]. Currently, the most frequently
used measures are the ones from the North American Symptomatic Carotid Endarterec-
tomy Trial [49,50] and the European Carotid Surgery Trial [15–17], as well as the common
carotid (CC) measure [82]. These measures are defined as follows:

DNASCET = 1 − dS/dICA, (15)

DECST = 1 − dS/dO, (16)

DCC = 1 − dS/dCCA, (17)

with diameters dS, dICA, dO, and dCCA as indicated in Figure 1. All three measures involve
measuring the luminal diameter at the point of maximum stenosis (dS), but the denomi-
nators used to compute the degree of stenosis differ. The NASCET measure involves the
diameter (dICA) of a visible portion of disease-free ICA distal to the stenosis, whereas the
ECST measure uses the estimated normal luminal diameter (dO) at the site of the lesion,
based on a visual impression of where the normal arterial wall was prior to the develop-
ment of stenosis. The CC measure involves the diameter (dCCA) of the visible disease-free
distal common carotid artery (CCA).

It has been shown that, given fixed percentage ranges to categorize stenosis severity, the
differences between results based on the NASCET and ECST measures are considerable
and of major clinical importance [60]. Results based on the ECST and CC measures are
comparable though, which is explained from the fact that the estimated normal luminal

Figure 1. Diameters involved in the different measures for quantification of the degree of
carotid stenosis. The stenosis depicted here is located in the internal carotid artery (ICA).
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Figure 2. Diameters used for quantification of the size and shape of intracranial saccular
aneurysms. The aneurysm depicted here is located at the tip of the basilar artery (BA).

diameter at the site of the lesion is usually approximately equal to the luminal diameter of
the CCA [60]. When using the NASCET measure, stenosis may be classified as mild (0%–
29%), moderate (30%–69%), or severe (70%–99%). (Corresponding percentage ranges
for the ECST and CC measure can be found by making use of the approximately linear
or parabolic relationships that have been shown to exist between experimental results
of the three measures [19, 60].) It has been demonstrated that surgery is beneficial in
symptomatic patients with severe stenosis [49, 53], while the immediate risks of surgery
outweigh any potential long-term benefit in patients with mild stenosis. However, there
are no definitive conclusions regarding the treatment of patients with moderate stenosis.

3.2 Quantification of Intracranial Aneurysms

For the quantification of intracranial aneurysms, several measures are important. In an
attempt to assess the risk of rupture of an aneurysm, early studies have focussed solely
on the dome diameter (dD, see Figure 2). It has been stated that unruptured saccular
aneurysms less than 10mm in diameter have a very low probability of subsequent rupture
[38, 81]. Later studies have indicated that smaller aneurysms are also associated with a
risk of rupture [36, 39, 47, 59, 62, 73, 83, 85]. Some authors have recommended treatment
for aneurysms larger than approximately 5mm in diameter [47], while others were unable
to find a critical size for unruptured aneurysms below which there is a benign prognosis
[39, 59]. Although increased size has been found to relate significantly to risk of rupture
[36,39,85], the critical size (in terms of dome diameter) is still controversial.

Knowledge of the diameter of the aneurysmal neck (dN) is important in selecting an
appropriate clip in the case of surgical intervention [23]. Neck size has also been shown to
be an important factor in predicting successful obliteration of the aneurysmal lumen in the
case of endovascular treatment [22,35]. In the literature, the neck of intracranial saccular
aneurysms has been classified into small (6 4mm) and large (> 4mm) [22, 54, 75]. It has
been shown that the probability of achieving complete occlusion is considerably larger for
small-necked aneurysms, which is explained from the fact that the smaller the neck, the
higher the probability that the mesh of coils bridges across the neck area [22,31,33,75].
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Other studies have indicated the possible importance of ratios. For example, the ratio
between the neck diameter (dN) and the dome diameter (dD) of the aneurysm may be used
as a guideline in deciding between surgical or endovascular treatment [3, 54]. It has also
been reported that the outcome of surgery for prolate spheroidal aneurysms (having a
small value for the ratio between dome diameter (dD) and dome height (dH)) is generally
worse than for more spherical lesions [14, 54]. A recent study on the effects of size and
shape on the hemodynamics of saccular aneurysms has revealed that the ratio between
the height (or depth) of the aneurysm (dH) and the neck diameter (dN) is an important
parameter in determining the dynamics of the flow [74]. It was found that aneurysms with
depth/neck ratios of more than 1.6 require special care, regardless of actual sizes, because
the associated localized low-flow conditions are suspected to induce degeneration of the
chemical structure of the aneurysmal wall, leading to increased risk for rupture [74].

4 In-Vitro Experiments

In order to investigate the capabilities of the filtering techniques described in Section 2 to
reduce noise and result in improved visualization and quantification of vascular anomalies
in 3DRA images, in-vitro experiments were carried out, involving phantoms for which
ground truth was available. In this section we briefly describe the phantoms, the image
acquisition, and the method of evaluation.

4.1 Phantoms and Image Acquisition

For the experiments concerning the quantification of the degree of carotid stenosis, we used
a carotid anthropomorphic vascular phantom (CAVP), modeling an asymmetrical stenosis
in the ICA. The experiments concerning the quantification of intracranial aneurysms were
carried out on an intracranial anthropomorphic vascular phantom (IAVP), modeling a
berry aneurysm located at the tip of the basilar artery (BA). Both phantoms (R. G. Shelley
Ltd., North York, Ontario, Canada) represent average dimensions of the corresponding
vascular structures in the human body [21, 67]. The relevant diameters in the CAVP
were (cf. Figure 1): dS = 1.68mm, dICA = 5.60mm, and dCCA = 8.00mm, which are equal
to the ones mentioned by Smith et al. [67]. In the IAVP, the relevant diameters were
(cf. Figure 2): dN = 2.6mm and dD = 12.9mm. We note that the latter diameters were
obtained from the manufacturer and may differ from the ones originally described by
Fahrig et al. [21].

Three-dimensional images of each of the phantoms were obtained as follows. First,
the phantom was filled with contrast material Ultravist-300 (Schering, Weesp, the Nether-
lands), diluted to 50% with Natriumchloride 0.9% (Fresenius, ’s-Hertogenbosch, the Nether-
lands). Next, the rotational angiography facility of an Integris V3000 C-arm imaging
system (Philips Medical Systems, Best, the Netherlands) was used to acquire a sequence
of 100 X-ray angiography images (see Figure 3 for examples) at different views by au-
tomatic rotation of the C-arm over 180 degrees in about eight seconds. All projection
images were acquired with a 20cm image intensifier, having a matrix size of 512 × 512
pixels, and a grey-level resolution of 10 bits per pixel. The X-ray intensity was 60kV,
15ms exposure per image. Finally, a modification of Feldkamp’s cone-beam algorithm [30]
was applied to generate 3D reconstructions at two different resolutions: 128 × 128 × 128
voxels of 0.6 × 0.6 × 0.6mm3 (hereafter referred to as the low-resolution reconstruction),
and 256 × 256 × 256 voxels of 0.3 × 0.3 × 0.3mm3 (referred to as the high-resolution
reconstruction). In both cases, the grey-level resolution was 16 bits per voxel.
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Figure 3. Sample X-ray projection images taken from the rotational angiography runs of
the CAVP (left) and the IAVP (right). These images are meant to give an impression of
the morphology and complexity of the modeled vasculature.

4.2 Method of Evaluation

We first investigated the capabilities of the filtering techniques to reduce background noise
while retaining vessel contrast as much as possible. In order to quantify this, we used the
contrast-to-noise ratio (CNR), which is defined as the squared difference between the mean
grey-value within a vessel segment of interest and the mean grey-value in a neighboring
background region, divided by the variance of the grey-values in the latter region [1,13]:

CNR =
(〈I〉V − 〈I〉B

σB

)2

, (18)

where V and B denote vessel and background regions, respectively. Since a given filtering
technique can be expected to behave similarly in all parts of the background in the phantom
images, we selected only a single background region in each of the images. However, the
effects of any technique on the local contrast may be dependent on the size and shape of
the vessel segment of interest. Therefore, the contrast was measured separately for the
CCA, the ICA, and the point of maximum stenosis in the images of the CAVP, and for
the dome and neck in the images of the IAVP.

The CNR was measured as a function of “evolution time”. This variable, t, is explicitly
present in the RPM and EED scheme (see (10) and (12), respectively) and, together with
the temporal step-size ∆t, determines the number of iterations of the discretized version
of the differential equation involved. In the GF scheme (when implemented by spatial
convolution), this variable is related to the standard deviation of the Gaussian kernel by
t = σ2/2, as explained in Section 2.2. In order to obtain an “evolution time” for the
UF scheme, we used that same expression, with σ the standard deviation of the kernel
defined in (3). This implies that t = m2/24, where m is a discrete variable for which we
took values of 3, 5, 7, 9, and 11. In order to allow for a direct comparison of the results of
the techniques, the CNR measurements for the GF, RPM, and EED scheme were carried
out at the corresponding evolution times t = 0.375, 1.042, 2.042, 3.375, and 5.042. The
measurements were also performed in the original 3DRA images (t = 0.0).
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Next, we investigated the effects of the different noise reduction techniques on the
quantification of the vascular anomalies discussed in Section 3. Concerning the quantifica-
tion of the degree of internal carotid stenosis, the experiments were limited to determining
DNASCET and DCC, which implied measuring dS, dICA, and dCCA (cf. (15), (17), and Fig-
ure 1). According to the specifications of the CAVP (Section 4.1), these measurements
should yield DNASCET = 70% and DCC = 79%. The ECST measure was not determined,
since it requires the normal luminal diameter at the point of maximum stenosis, dO, which
cannot be measured in the phantom images used in this study. As for the quantification of
intracranial aneurysms, the experiments were limited to measuring dN and dD (cf. Figure 2
and Section 4.1). The dome height, dH, was not determined, since it would require user
interaction to indicate the transition between the dome and the neck of the aneurysm.

The vessel diameters were measured as a function of both evolution time (t) and a
user-controlled threshold parameter (θ). Concerning the former, we used the same values
as in the CNR measurements. As explained in the introduction (Section 1), a threshold
parameter is currently used in practice to separate relevant (vascular) structures from
non-relevant (noise and other background) structures in the volume or surface renderings,
on the base of which quantification takes place. In order to be able to use acquisition
independent values for this parameter, the phantom images were “normalized” in such a
way that the average background intensity was 0.0, and the average intensity within the
vessels of interest 1.0. The measurements were carried out for thresholds ranging from
0.1 to 0.9, with a step size of 0.02. Together with the ground-truth values, the results of
these experiments allowed for the assessment of both accuracy and robustness to threshold
selection of quantitative measurements, and their dependency on the filter strength.

The actual determination of luminal diameters was done as follows. For each of the
vessel segments involved, a perpendicular cut-plane was determined interactively. In this
plane, grey-level profiles passing through the center of the vessel in question were analyzed.
Given a profile, the luminal diameter was defined as the distance between the points on
either side of the center of the vessel along that profile at which the grey-level passed
through the user-defined threshold level θ. The location of these points was determined
with a precision of 1/100th of a voxel by trilinear interpolation. In order to increase the
robustness of the measurements, we used 10 profiles, equally divided over 360 degrees
within the cut-plane, and the average of the resulting diameters was taken as the final
diameter. This was done for all segments, except for the neck of the aneurysm, which was
the only segment in the phantoms that did not have a circular cross section. Therefore, we
used only a single profile for the neck diameter measurements. Since in our IAVP only the
(smallest) neck diameter in the anterior/posterior direction was specified (dN), the single
profile was taken in that direction.

Finally, we looked at the visual (qualitative) effects of the different noise reduction
techniques. These concerned the apparent (not measured) dimensions of the vascular
anomalies in 3D visualizations of the filtered 3DRA datasets and their dependency on the
user-controlled threshold parameter, as well as the apparent smoothness of the vascular
structures in these visualizations. These effects may be important when 3D visualizations
are used for navigational purposes, such as e.g. in (future) endovascular interventional
applications. In order to give an impression of these effects, both exo- and endovascular
surface renderings were generated. All surface renderings were obtained by using a mod-
ification of the Phong light model [63], which separates reflected light into an ambient
component (factor ka), a diffuse component (factor kd), and a specular component (factor
ks). In all renderings, we used the following values: ka = 0.2, kd = 0.4, and ks = 0.4.



PP-10 Evaluation of Diffusion Techniques for 3DRA

We note that, apart from the time parameter, the RPM and EED schemes have two
additional parameters: the noise scale σn and the contrast parameter ζ. The former
causes the gradient-magnitude computations to be relatively insensitive to variations at
scales smaller than σn. Since the aim was to preserve the entire vasculature as much as
possible, and particular (segments of) vessels were quite small (e.g. the point of maximum
stenosis!), we chose to use a small value for this parameter, viz., σn = 0.5. The contrast
parameter ζ acts as a threshold against which local gradient magnitudes are compared in
deciding between destruction or preservation of the underlying image structure. Using the
same arguments, we concluded that the value of this parameter should be chosen as small
as possible. After initial experimentation with RPM and EED applied to the normalized
phantom images, we found that ζ = 0.05 yields satisfactory results for both schemes; much
larger values resulted in additional blurring of the vessel walls, while too much noise was
preserved with much smaller values. The just mentioned values for the noise and contrast
parameter were kept fixed in all experiments.

5 Results

The results of the CNR measurements carried out in the 3DRA images of the CAVP and
IAVP are presented in Figures 4 and 5. From the plots it follows that, for the range of
evolution times considered in these experiments, the four schemes UF, GF, RPM, and EED
reduced noise equally well in vessel segments with a large luminal diameter, where “large”
has to be taken relative to the voxel size of the image. This applies to the CCA and the
dome of the aneurysm in both the high- and low-resolution reconstruction of the CAVP
and IAVP, respectively, and the ICA in the high-resolution reconstruction of the CAVP.
For the segments with smaller diameters, viz., the point of maximum stenosis and the neck
of the aneurysm in both the high- and low-resolution reconstruction of, respectively, the
CAVP and IAVP, as well as the ICA in the low-resolution reconstruction of the CAVP, the
nonlinear filtering techniques (RPM and EED) outperformed the linear techniques (UF
and GF) for larger evolution times.

The results of the experiments concerning the effects of the different noise reduction
techniques on carotid stenosis and intracranial aneurysm quantification are presented in
Figures 6–8. We note that the results of the DCC measurements are not given here,
since they were very similar to those of the DNASCET measurements. The plots show
that for the linear techniques (UF and GF), the dependency of the measurements on
the user-controlled threshold parameter (θ) increased dramatically (in both the high- and
low-resolution reconstructions of the CAVP and IAVP) as the filtering was made stronger
(larger t). The RPM scheme, on the other hand, had a negligible influence on this depen-
dency, irrespective of resolution or evolution time. The effects of the EED scheme on the
user-dependency were found to be negligible only in the high-resolution reconstructions.
Concerning the low-resolution reconstructions, the effects of EED were most noticeable in
the quantification of the degree of stenosis.

Finally, examples of exo- and endovascular surface renderings generated from the high-
resolution 3DRA images of the CAVP and IAVP after application of the different noise
reduction techniques, are presented in Figures 9–12. The renderings show close-up 3D
visualizations of the vascular anomalies and give a visual impression of the effects of
the techniques on the smoothness of the vessel walls and the changes in the apparent
dimensions of the anomalies when varying the user-controlled threshold parameter. The
renderings support the findings of the quantification experiments: the linear techniques
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Figure 4. Contrast-to-noise ratio (CNR) as a function of evolution time (t) for the four
noise reduction techniques described in Section 2, measured in the stenosis (top row), ICA
(middle row), and CCA (bottom row) in the low- (left column) and high-resolution (right
column) 3DRA reconstruction of the CAVP.

(UF and GF) increased the user-dependency of the (measured or observed) dimensions
of the anomalies. In contrast, the negative effects of the nonlinear techniques (RPM and
EED) in the high-resolution 3DRA reconstructions were negligible. Notice, however, that
the smoothness of the vessel walls was considerably improved by EED, while most of the
noise in these edge regions was retained by RPM.

6 Discussion

Techniques for the reduction of noise in digital images have been developed and reported
since the 1970s. Concerning the preservation of edges, early evaluation studies [10, 45,
84] already indicated the superiority of nonlinear techniques such as median filtering or
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Figure 5. Contrast-to-noise ratio (CNR) as a function of evolution time (t) for the four
noise reduction techniques described in Section 2, measured in the neck (top row) and
dome (bottom row) of the aneurysm in the low- (left column) and high-resolution (right
column) 3DRA reconstruction of the IAVP.

adaptive K-nearest neighbor averaging over linear techniques. However, these nonlinear
techniques may easily result in a loss of resolution due to their tendency to suppress fine
details, as has been pointed out in the field of medical imaging by e.g. Gerig et al. [28].
Developments in the past decade have resulted in new approaches to noise reduction based
on nonlinear diffusion filtering [8,51,56,77–80]. These techniques were explicitly designed
to preserve edges and fine details, and to overcome the major drawbacks of conventional
filtering techniques, such as the inevitable trade-off between localization accuracy and
detectability, which occurs e.g. in edge detection based on linear operators [7], or the
difficulty of scale selection or multi-scale integration, which occurs in recently reported
approaches to vessel-enhancement filtering [9, 11, 12, 27, 44, 52, 57, 61]. Several nonlinear
diffusion schemes have already been applied successfully in biological and medical imaging
[4,26,28,43,55,65,66,69]. Evaluations of such techniques for the present application have
not been reported previously, however.

The experimental results presented in the previous section show that the four noise
reduction techniques considered in this study (UF, GF, RPM, and EED) were equally
capable of increasing the CNR in vessel segments with a relatively large luminal diameter.
This can be explained from the fact that in the experiments, the vessel regions V (see
Section 4.2) were taken rather small (typically a few voxels in all three dimensions) and
close to the center of the lumen. As a consequence, for the range of evolution times
considered, linear filtering (UF or GF) did not result in a blurring of the vessel walls to
the extent that it reduced the mean grey-level within regions V in segments with a luminal
diameter larger than about 10 voxels. Furthermore, the nonlinear techniques (RPM and
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Figure 6. The degree of internal carotid stenosis (DNASCET) as a function of the user-
controlled threshold (θ) and evolution time (t) for the four noise reduction techniques: UF
(first row), GF (second row), RPM (third row), and EED (last row), as measured in the
low- (left column) and high-resolution (right column) 3DRA reconstruction of the CAVP.
The horizontal line at DNASCET = 70% indicates the true value.
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Figure 7. The diameter of the neck of the aneurysm (dN) as a function of the user-
controlled threshold (θ) and evolution time (t) for the four noise reduction techniques: UF
(first row), GF (second row), RPM (third row), and EED (last row), as measured in the
low- (left column) and high-resolution (right column) 3DRA reconstruction of the IAVP.
The horizontal line at dN = 2.6mm indicates the true value.
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Figure 8. The diameter of the dome of the aneurysm (dD) as a function of the user-
controlled threshold (θ) and evolution time (t) for the four noise reduction techniques: UF
(first row), GF (second row), RPM (third row), and EED (last row), as measured in the
low- (left column) and high-resolution (right column) 3DRA reconstruction of the IAVP.
The horizontal line at dD = 12.9mm indicates the true value.
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UF GF RPM EED

Figure 9. Exovascular surface renderings illustrating the effects of the different noise
reduction techniques on the smoothness of the vessel walls and the apparent degree of
stenosis when varying the user-controlled threshold parameter. The renderings show a
close-up of the stenosis and its related vessels (ICA, ECA, and CCA; cf. Figure 1), and
were generated from the high-resolution 3DRA image of the CAVP after application of,
respectively, UF (left column), GF (middle-left column), RPM (middle-right column), and
EED (right column), at evolution time t = 2.042. The thresholds used were, respectively,
θ = 0.2 (top row), θ = 0.3 (middle row), and θ = 0.4 (bottom row).

EED) approached GF in these non-edge regions—(10) and (12) both converge to (9) for
‖∇Iτ‖�ζ. In the vessel segments with smaller diameters, the contrast-reducing effects of
linear filtering were noticeable at much earlier evolution times. This explains the lagging
CNR(t) curves of the linear techniques compared to those of the nonlinear techniques in
these cases (see again the plots in Figures 4 and 5), where the time of parting is determined
not only by the local luminal diameter, but also by the morphology of the surrounding
vasculature. The CNR measurement results also show that, of the nonlinear techniques,
RPM was superior to EED regarding the preservation of local contrast in vessel segments
with very small diameters (in these experiments only the point of maximum stenosis in the
low-resolution reconstruction of the CAVP, where the local luminal diameter was less than
three voxels). This is due to the fact that near edges, blurring is completely inhibited with
RPM, while the anisotropic behavior of EED still allows for some blurring in the plane
orthogonal to the local gradient.
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UF GF RPM EED

Figure 10. Exovascular surface renderings illustrating the effects of the different noise
reduction techniques on the smoothness of the vessel walls and the apparent size of es-
pecially the neck of the aneurysm, when varying the user-controlled threshold parameter.
The renderings show a close-up of the neck and the dome of the aneurysm and its related
vessels (the BA and both PCAs; cf. Figure 2), and were generated from the high-resolution
3DRA image of the IAVP after application of, respectively, UF (left column), GF (middle-
left column), RPM (middle-right column), and EED (right column), at evolution time
t = 2.042. The thresholds used were, respectively, θ = 0.3 (top row), θ = 0.4 (middle row),
and θ = 0.5 (bottom row).

Whereas the CNR measurements concerned the behavior of the noise reduction tech-
niques in the background and the interior of vessels, the diameter measurements were
intended to study their performance at the transitions from background to vessel interior.
The plots in Figures 6–8 reveal that the differences between UF and GF were negligible in
that respect: the increase in the dependency of the measurements on the user-controlled
threshold θ was comparable with the two techniques. However, as expected, this increase
was considerably less in the high-resolution reconstructions compared to the low-resolution
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UF GF RPM EED

Figure 11. Endovascular surface renderings illustrating the effects of the different noise
reduction techniques on the smoothness of the vessel walls and the apparent degree of
stenosis when varying the user-controlled threshold parameter. The renderings show the
ECA (left passage) and the stenosis in the ICA (right passage), viewed from within the
CCA, and were generated from the high-resolution 3DRA image of the CAVP after ap-
plication of, respectively, UF (left column), GF (middle-left column), RPM (middle-right
column), and EED (right column), at evolution time t = 2.042. The thresholds used were,
respectively, θ = 0.2 (top row), θ = 0.3 (middle row), and θ = 0.4 (bottom row).

reconstructions. For example, in the low-resolution reconstruction of the CAVP resulting
from UF at t = 1.042, changing the threshold from θ = 0.2 to θ = 0.4 implied an increase
in DNASCET from 60% to well over 90%. In the high-resolution reconstruction, on the
other hand, the increase was only from about 66% to about 77%. Since DNASCET = 70%
is usually considered an important threshold in deciding between intervention or no in-
tervention [25, 49, 53, 60], we may conclude that UF and GF put high demands on the
resolution at which user-controlled measurements are to be carried out. In contrast, RPM
did not increase the user-dependency of the measurements, and the plots show that this
dependency was somewhat less in the high-resolution reconstructions. The small amount
of anisotropic blurring allowed by the EED scheme near edges did not have appreciable
effects on the user-dependency of the measurements in the high-resolution reconstructions,
in which all diameters were larger than about five voxels. It is important to note here that
although RPM and EED did not increase the user-dependency of the measurements for
vessels of this size, they did not decrease it either, from which we have to conclude that
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Figure 12. Endovascular surface renderings illustrating the effects of the different noise
reduction techniques on the smoothness of the vessel walls and the apparent size of the neck
of the aneurysm, when varying the user-controlled threshold parameter. The renderings
show the neck and the BA (straight-through passage) and PCAs (left and right passages)
behind it, viewed from within the dome of the aneurysm, and were generated from the high-
resolution 3DRA image of the IAVP after application of, respectively, UF (left column), GF
(middle-left column), RPM (middle-right column), and EED (right column), at evolution
time t = 2.042. The thresholds used were, respectively, θ = 0.3 (top row), θ = 0.4 (middle
row), and θ = 0.5 (bottom row).

with the measurement technique employed in this study there is in fact no need to apply
such schemes for the purpose of quantification. Finally, the relatively large effects on the
user-dependency in the low-resolution reconstruction of the CAVP in the case of EED can
be ascribed primarily to the blurring effects at the point of maximum stenosis, where the
local diameter was considerably less than five voxels.

Notice that in these quantification experiments, we measured only diameters. This is
justified by the fact that, except for the neck of the aneurysm, all vessel segments in the
3DRA phantom images were known to have circular cross sections. Moreover, determining
diameters fits in with the currently used measures for quantification of vascular anomalies
(see Section 3). The reason that these diameter-based measures have become so estab-
lished is that, for many decades, quantification has been based on 2D projective X-ray
angiography, notably DSA. In fact, DSA is still considered by many the gold standard for
this purpose. In principle, 3DRA allows us to express important measures such as the
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degree of carotid stenosis in terms of cross-sectional areas rather than diameters. This
would indeed be more realistic, since in practice vessels do not necessarily have circular
cross sections and, in principle, the blood volume passing through a vessel per unit time is
dependent on its cross-sectional area. It is important to note, however, that the observed
effects of filtering on quantification will be much more severe when using areas instead of
diameters, due to the quadratic relation that exists between these two.

The sample exo- and endovascular surface renderings in Figures 9–12 clearly illustrate
that noise was heavily reduced with UF and GF, but the increased user-dependency easily
resulted in a misleading rendering of the dimensions of vessel segments with relatively small
diameters (mainly the point of maximum stenosis in Figures 9 and 11, and the PCAs and
connected neck of the aneurysm in Figures 10 and 12). The conceptual differences between
the two nonlinear techniques, mentioned previously in the discussion of the quantification
results, are also manifest in these figures. Although the user-dependency of the apparent
vascular dimensions was considerably less with both techniques, the anisotropic behavior of
EED resulted in smoother vessel walls, while most of the noise remained after application of
RPM. Notice that the renderings in these figures were generated from the high-resolution
reconstructions, and at time t = 2.042. Clearly, the observed effects were much more
pronounced in the low-resolution reconstructions and/or at larger t. One might argue
that the negative effects of linear filtering could be confined by keeping t low. However,
this would also limit the improvement in CNR (see again Figures 4 and 5). It is to be
expected that clinical 3DRA images require even larger t, since these images do not only
contain reconstruction noise, but also unwanted variations due to surrounding tissue. The
effects of the different techniques applied to an example clinical dataset are shown in
Figure 13. The renderings show once again that EED is better at smoothing vessel walls,
at the risk of losing vessels with very small diameters.

Overall, the results of the experiments suggest that for reconstructions with a suf-
ficiently high resolution, EED is most suitable: the increase in the user-dependency of
quantifications and visualizations is considerably less than with UF or GF, and EED is
better at reducing noise at the vessel walls than RPM. The sub-optimal performance of
EED in vessel segments with very small luminal diameters (occurring at lower resolutions),
is most probably due to the fact that the amount of blurring in the plane orthogonal to a
local gradient is equal in all directions—the eigenvalues λ2 and λ3 of the diffusion tensor
are equal, see Section 2.4. We suspect that in order for EED to work adequately also in
these cases, it is necessary to make a distinction between the directions corresponding to
minimal and maximal curvature; especially in vessel segments with small diameters, the
behavior of EED in these directions can be quite different. However, this would require
the use of second-order information (Hessian), which is not incorporated in the present
scheme. Early experiments with curvature-based anisotropic diffusion schemes [41] have
shown promising results, but more elaborate evaluations are required to determine the
clinical implications.

Other disadvantages of the current implementation of EED are its memory require-
ments and its relatively high computational cost. Concerning the former, EED requires
an amount of memory equal to nine times the size of the original image. With RPM and
UF/GF, respectively, only four and two times the size of the original image is required.
If computations are carried out with floating-point precision, this implies that in order
to process an image of size 256 × 256 × 256 voxels, the amount of memory required by
EED, RPM, and UF/GF, would be about 605MB, 270MB, and 135MB, respectively. For
an image of size 128 × 128 × 128 voxels, this would be about 76MB, 34MB, and 17MB,
respectively. Considering the fact that the amount of memory available in current worksta-
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Figure 13. Surface renderings illustrating the effects of the different noise reduction
techniques in the case of a clinical 3DRA dataset of a 57-year old patient with a giant
aneurysm at the splitting of the middle cerebral artery. The renderings were generated after
application of, respectively, UF (left column), GF (middle-left column), RPM (middle-right
column), and EED (right column), at evolution time t = 2.042. The thresholds used were,
respectively, θ = 0.3 (top row), θ = 0.4 (middle row), and θ = 0.5 (bottom row).

tions is usually 256MB or 512MB, we conclude that application of EED is as yet limited to
small-sized reconstructions. Regarding computational cost, the major difference between
the linear and the nonlinear schemes is that the former require only a single application of
the corresponding convolution equation in order to arrive at any given time t (UF allows
only particular discrete times though), while the latter usually require repeated application
of the discretized version of the differential equation involved. The number of iterations
is then determined by the temporal step-size, ∆t. In order to guarantee stability with
explicit or Euler-forward implementations, it is required that ∆t < 1/(2N), with N the
dimensionality of the dataset to which the schemes are applied [77,79,80]. In the case of
RPM, the use of additive operator splitting results in a much more efficient implementa-
tion [80]. However, such an approach is less beneficial in the case of anisotropic diffusion.
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The use of a diffusion tensor (EED) instead of a scalar-valued diffusivity (RPM) further
increases the number of operations to be carried out. We observed that with a step-size of
∆t = 1/8, EED required about eight minutes in order to arrive at t = 2.0 with a dataset
of size 128 × 128 × 128 voxels, while the other schemes required only a fraction of that
time. The computation times were measured on an Octane workstation (Silicon Graphics,
De Meern, the Netherlands) with one 195MHz MIPS R10000 processor and 256MB main
memory (instruction and data cache size both 32KB), after reconstruction. For compar-
ison we mention that on the same machine, the time required for the reconstruction of a
volume of mentioned size is less than five minutes.

7 Conclusions

We investigated the effects of linear (UF, GF) and nonlinear (RPM, EED) noise reduction
techniques on the visualization and quantification of vascular anomalies (carotid stenosis
and intracranial aneurysms) in 3DRA images. Several experiments were carried out on
low-resolution (0.6× 0.6× 0.6mm3 voxels) and high-resolution (0.3× 0.3× 0.3mm3 voxels)
3DRA reconstructions of a CAVP and an IAVP, modeling an asymmetrical stenosis in the
ICA and a berry aneurysm located at the tip of the BA, respectively. The results of CNR
measurements indicated that RPM and EED are better capable of reducing background
noise while preserving local contrast than UF or GF. In addition, the increase in the
dependency of diameter measurements on the user-controlled threshold was shown to be
considerably less with RPM and EED compared to UF or GF. In both type of experiments,
we observed that in vessel segments with very small luminal diameters (a few voxels), RPM
performs somewhat better than EED. However, for the range of diameters considered in
this study, the differences between the two techniques were found to be negligible in
high-resolution reconstructions. Finally, exo- and endovascular surface renderings of the
phantom images after processing with the different techniques revealed that RPM does not
improve the quality of visualizations near vessel walls. Therefore we conclude that, as far as
the trade-off between accuracy of quantification and quality of visualization is concerned,
EED is to be preferred for high-resolution reconstructions. However, considering the
relatively high demands of this scheme in terms of memory and computation time, RPM
may be considered a useful alternative where these are decisive factors.
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