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Abstract. Finding optimal inpainting data plays a key role in the field of image
compression with partial differential equations (PDEs). In this paper, we optimise
the spatial as well as the tonal data such that an image can be reconstructed
with minimised error by means of discrete homogeneous diffusion inpainting. To
optimise the spatial distribution of the inpainting data, we apply a probabilistic
data sparsification followed by a nonlocal pixel exchange. Afterwards we op-
timise the grey values in these inpainting points in an exact way using a least
squares approach. The resulting method allows almost perfect reconstructions
with only 5% of all pixels. This demonstrates that a thorough data optimisation
can compensate for most deficiencies of a suboptimal PDE interpolant.
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ing, optimisation, homogeneous diffusion

1 Introduction

Research on PDE-based data compression suffers from poverty, but enjoys liberty [1,
2, 8, 18]: Unlike in pure inpainting research [14, 3], one has an extremely tight pixel
budget for reconstructing some given image. However, one is free to choose where and
how one spends this budget.

Let us explain the problem of PDE-based image compression in more detail. The
basic idea is to reconstruct some given image by inpainting from a sparse set of pixels
with a suitable partial differential equation (PDE). There is an evident tradeoff between
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Fig. 1. Reconstruction of the test image trui using only 5% of all pixels and homogeneous
diffusion inpainting. (a) Original image. (b) Unoptimised data (randomly selected from original
image). (c) Optimised tonal and spatial data.

the number of pixels to store and the achievable reconstruction quality. Even if the
number of pixels and the PDE are already specified, we still have many degrees of
freedom: On one hand we can place the pixels wherever we want. On the other hand we
can freely choose the grey value (or colour value) in each selected pixel.

The goal of the present paper is to optimise this spatial and tonal data selection. In
order to show the real potential behind this approach, we choose an extremely simple
PDE that has a bad reputation for inpainting tasks: We interpolate with the steady
state of a homogeneous diffusion process, i.e. we solve the Laplace equation. Figure 1
illustrates the huge potential that one can exploit with this optimisation. Even with
homogeneous diffusion and a pixel density of only 5%, astonishing results can be
achieved. One should note that we did not optimise our algorithm with respect to its
runtime, as we regard it as a proof-of-concept only. Thus, our methods can require
several hours to days to process typical images. However, we are confident that this
runtime can be significantly reduced, and are going to address this issue in our ongoing
research.

Organisation of the paper. Section 2 gives a brief introduction to homogeneous dif-
fusion inpainting. In Section 3 we present two approaches that are applied sequentially
to optimise the pixel locations: a probabilistic sparsification method, followed by a
nonlocal pixel exchange. Afterwards, in Section 4, we show how the results can be
improved further by an exact optimisation of the tonal data. Finally, we summarise and
conclude our paper in Section 5.

Related work. The most similar work to our paper is a recent publication by Bel-
hachmi et al. [2] where a continuous analysis on spatially optimal data selection for
homogeneous diffusion interpolation is presented. Their framework is based on the
theory of shape optimisation and suggests to choose a pixel density that is an increasing
function of the modulus of the image Laplacian. In order to make this result applicable
to the practically relevant discrete setting, dithering techniques must be applied that can
introduce additional errors. In the experiments we compare our results with the ones
from [2]. It should be mentioned that in [2] no tonal optimisation is performed.
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There is a long tradition to restore image data by homogeneous diffusion inpainting
from edges [5, 7, 9, 13, 20] or specific feature points in Gaussian scale space [10–12].
Although such features can be perceptually relevant, one cannot expect that they are
optimal w.r.t. some error norm.

In order to come up with data-adaptive point distributions, some publications use
subdivision strategies in connection with anisotropic diffusion [8, 18]. They offer the
advantage that the resulting tree structures allow an inexpensive coding of the selected
pixels, but they severely constrain the set of admissible point distributions. For a more
sensitive interpolant such as homogeneous diffusion, this restriction is too prohibitive.

The holographic image representation presented in [4] maps the image into a se-
quence of sample pixels, such that any partition of this sequence allows for a recon-
struction of the whole image with similar quality. This requires the samples in each
portion to be equally optimal. On the contrary, our goal is to reduce the image to only
one set of optimal samples.

From the Green function of the Laplace operator it follows that homogeneous diffu-
sion inpainting involves radial basis functions. These functions are popular for scattered
data interpolation, and some of them have also been used for inpainting corrupted
images [6, 19]. However, such problems usually do not allow to optimise the location
and the grey values of the inpainting data set.

2 Image Inpainting with Homogeneous Diffusion

Continuous formulation. Let f(x) be a continuous grey value image, where x =
(x, y)> denotes the location within a rectangular image domain Ω ⊂ R × R. Fur-
thermore, let ΩK ⊂ Ω be a subset of the image domain, denoting known data. A
reconstruction u(x) by means of homogeneous diffusion inpainting can be obtained
by keeping known data and using them as Dirichlet boundary conditions, while solving
the Laplace equation on the set of unknown data Ω \ΩK :

u(x) = f(x) for x ∈ ΩK ,
∆u(x) = 0 for x ∈ Ω \ΩK ,

(1)

with homogeneous (reflecting) Neumann boundary conditions across the image bound-
ary ∂Ω. These two equations can be combined to a single equation

c(x)(u(x)− f(x))− (1− c(x))∆u(x) = 0 , (2)

by using a confidence function c(x) which specifies whether a point is known or not:

c(x) =

{
1 for x ∈ ΩK ,
0 for x ∈ Ω \ΩK .

(3)

Discrete formulation. To apply the homogeneous inpainting process to a digital image,
we need a discrete formulation of Equation 2. The discrete version of a continuous
image f is represented as a one-dimensional vector f = (f1, . . . , fN )> = (fi)i∈J ,
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where J = {1, . . . , N} denotes the set of all pixel indices. Analogously, u describes
the solution vector and c the binary pixel mask that indicates whether a pixel is known
or not. The set K contains the pixel indices i of known pixels, i.e. for which ci = 1.
The Laplacian ∆u is discretised by means of finite differences [15]. Then the discrete
formulation reads

C(u− f)− (I −C)Au = 0 , (4)

where I is the identity matrix, C := diag(c) is a diagonal matrix having the com-
ponents of c as diagonal entries, and A is a symmetric N × N matrix, describing
the discrete Laplace operator ∆ with homogeneous Neumann boundary conditions. Its
entries are given by

ai,j =



1

h2`
(j ∈ N`(i))

−
∑

`∈{x,y}

∑
j∈N`(i)

1

h2`
(j = i)

0 (else) ,

(5)

where N`(i) are the neighbours of pixel i in `-direction.
Reformulating Equation 4 yields a linear system of equations:

(C − (I −C)A)︸ ︷︷ ︸
=:M

u = Cf . (6)

This linear system of equations has a unique solution and can be solved efficiently by
using bidirectional multigrid methods [13].

3 Optimising Spatial Data

Now that we know how an image can be reconstructed by means of homogeneous
diffusion inpainting, let us optimise the spatial data. This means we are looking for
a pixel mask that selects for example only 5% of all pixels and that minimises the
reconstruction error.

The good news on the pixel selection is that it is a discrete problem and thus it is
finite and a global optimum exits. The bad news is that selecting the best 5% pixels of
a 256× 256 image offers already

(
65536
3277

)
≈ 1.72 · 105648 possible solutions.

We overcome this problem by introducing two optimisation approaches. The first
one is the probabilistic sparsification, which step by step removes pixels until the
desired amount of pixels is left. Since this method can be trapped in local minima,
we apply in a second step a method which we call nonlocal pixel exchange. It takes the
mask that was created by the probabilistic sparsification and tries to improve the result
by globally exchanging mask pixels with non-mask pixels.

3.1 Probabilistic Sparsification

Given an fixed discrete image f , let r(c,f) be a function which computes the solution
u of the discrete homogeneous inpainting process described by Equation 6, depending
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Input: Original image f , fraction p of mask pixels used for
candidate set, fraction q of candidate pixels that are finally
removed, desired pixel density d.

Output: Pixel mask c, s.t.
∑
i∈J ci = d · |J |.

Initialisation: c := (1, . . . , 1)>, thus K = J .

While |K| > d · |J | do

1. Choose randomly p · |K| pixel indices from K into a candidate set T .
2. For all i ∈ T reassign ci := 0.
3. Compute u := r(c,f).
4. For all i ∈ T compute the local error ei = |ui − fi|.
5. For all i of the (1− q) · |T | largest values of {ei|i ∈ T}, reassign ci := 1.
6. Update K and clear T .

Fig. 2. Probabilistic sparsification

on a mask c. Our goal is to obtain a pixel mask c, marking only a predefined fraction d
of all pixels J such that the mean squared error (MSE)

MSE(u) =
1

|J |
∑
i∈J

(fi − ui)2 (7)

is minimised. To obtain a suitable, approximatively optimal pixel mask, we suggest a
method that we call probabilistic sparsification.

In each iteration, we first randomly remove a fraction of mask pixels, inpaint, com-
pute the error in each removed pixel, and put a subset of the removed pixels with largest
error back into the mask again. Thus, pixels which are supposed to be least significant
are step by step removed until the desired fraction of pixels remains. The algorithm is
given in detail in Figure 2.

Note that our algorithm removes p · q · |K| pixels in each step. Thus, in the k-th
iteration, there are (1 − pq)k · |J | mask pixels left, since K is initially J . In total, we
need log(1−pq) d many steps to obtain the desired fraction d. Hence, the larger p and q
are chosen, the faster the algorithm converges. On the other hand, it is then more likely
that significant pixels are removed. Since we aim for an optimal pixel mask, we suggest
to choose small values, such as p = 0.02 and q = 0.02.

3.2 Nonlocal Pixel Exchange

The previously presented method has the disadvantage that once a pixel is removed
from the mask, it will never be put back again. Moreover, by selecting pixels randomly,
it might be possible that we also remove some significant pixels. To this end, we add a
post-optimisation step, called nonlocal pixel exchange.

In each iteration, we choose randomly a fixed amount of non-mask pixels into a
candidate set. A subset of those which exhibit the largest inpainting error, are exchanged
with randomly chosen mask pixels. If the inpainting error for the new mask does not
decrease, we reset the mask to its previous configuration. Thus, we allow mask pixels to
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Input: Original image f , (pre-optimised) pixel mask c,
size m of candidate set and number n of mask pixels
exchanged per iteration.

Output: Post-optimised pixel mask c.
Initialisation: u := r(c,f) and cnew := c.

Repeat:

1. Choose randomly m ≤ |K| pixel indices from J \K into a candidate set T and compute
for all i ∈ T the local error ei = |ui − fi|.

2. Choose randomly n ≤ |T | pixel indices i from K and reassign cnew
i := 0.

3. For all i of the n largest values of {ei|i ∈ T}, reassign cnew
i := 1.

4. Compute unew := r(cnew,f).
5. If MSE(u) > MSE(unew)

u := unew and c := cnew.
Update K.

else
Reset cnew := c.

6. Clear T .

Fig. 3. Nonlocal pixel exchange.

move globally as long as the reconstruction result improves. The details of the algorithm
are given in Figure 3.

For our experiments, we exchange only one pixel per iteration (n = 1) and keep the
candidate set small by choosing m = 10. Interestingly, the results cannot be improved
by larger candidate sets. Restricting it to this size adds some moderate amount of
randomness such that we are not trapped in the next local minimum.

3.3 Results

Let us now evaluate the capabilities of the probabilistic sparsification and the nonlocal
pixel exchange. To this end, we consider the test image trui, which is depicted in
Figure 1(a). We apply the probabilistic sparsification to select only 5% of all pixels. For
comparison, we choose the same amount of pixels randomly. In addition, we compare
our method with an inpainting mask which relies on the analytic approach of Belhachmi
et al. [2]: We first compute the Laplace magnitude |∆fσ| of the Gaussian presmoothed
original image, using a standard deviation σ. Then we rescale the obtained data and
apply electrostatic halftoning [17] such that we obtain a dithered version which contains
only 5% of all pixels. We decided to favour the electrostatic halftoning over simpler
dithering approaches, since it has proven to be the state-of-the-art method for discretis-
ing a continuous distribution function. In the following, we say “analytic approach”
when referring to this method and choose the standard deviation σ of the Gaussian
presmoothing such that the MSE is minimal.

The resulting masks as well as the corresponding reconstruction results are depicted
in Figure 6(a)–(c) and (e)–(g). As expected, the random mask gives poor quality re-
constructions. Comparing the reconstructed images of the analytic approach and the
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Fig. 4. Convergence behaviour of the nonlocal pixel
exchange (m = 10, n = 1, 500,000 iterations) applied
to the mask obtained by the probabilistic sparsification
(see Figure 6(c)) with 5% of all pixels.

probabilistic sparsification, we observe that the latter has a lower reconstruction error.
This shows that we cannot immediately deduce an optimal pixel set from the optimal
continuous theory.

If we now additionally apply the nonlocal pixel exchange to the mask that was
obtained by the probabilistic sparsification, we also get a visually more pleasant result
(see Figure 6(d) and (h)). The MSE is decreased to 23.21, which is much better than the
MSE of the analytic approach that is 49.47.

The plot in Figure 4 shows that the nonlocal pixel exchange achieves the most sig-
nificant improvement during the first 50,000 iterations. On the other hand, it illustrates
that after 500,000 iterations the real optimum is still not reached, even though we are
probably rather close to it.

4 Optimising Tonal Data

So far we explained how to obtain approximatively optimal positions for a predefined
amount of pixels. This is considered as spatial data optimisation. However, it is also
possible to optimise the data with respect to the tonal data (i.e. the co-domain).

For inpainting, we usually use the original grey values of the input image. Now we
allow arbitrary grey values and thus accept to introduce some error at the positions of
mask pixels in favour of a lower overall reconstruction error.

4.1 Grey Value Optimisation

Let us start by stressing that the homogeneous inpainting function r(c,f) is a linear
function with respect to the grey values f . This allows us to formulate a least squares
approach, with which we can compute the optimal grey values for a given mask exactly.

For a given mask c and given data f the solution u = r(c,f) of the discrete
homogeneous inpainting process (6) is given by

r(c,f) :=M−1Cf . (8)

SinceM only depends on c it follows directly that r is a linear function in f .

Least squares approximation. Our goal is to find grey values g such that MSE(r(c, g))
becomes minimal for a fixed mask c. To this end, we suggest the following minimisation
approach:

argmin
α

‖f − r(c,f +α)‖2 , (9)
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such that g = f +α. Let ei denote the vector with a 1 in the i-th coordinate and zeros
elsewhere. Then we call r(c, ei) the inpainting echo of the i-th pixel. By linearity and
α =

∑
i∈J αiei it follows that

r(c,f +α) = r(c,f) + r(c,α) = r(c,f) +
∑
i∈J

αir(c, ei) . (10)

Since the r(c, ei) is 0 if ci = 0 (i.e. i ∈ J \K), we get

r(c,f +α) = r(c,f) +
∑
i∈K

αir(c, ei) . (11)

For our minimisation problem (9), this means that αi can be chosen arbitrarily if i ∈
J \K. Thus, for the sake of simplicity, we set αi = 0 for i ∈ J \K. The remaining αi
with i ∈ K can be obtained by considering the least squares problem:

argmin
αK

‖UαK − b‖2 , (12)

where b = r(c,f) − f is a vector of size |J |, αK = (αi)i∈K is a vector of size |K|,
and U is a |J | × |K| matrix which contains the vectors r(c, ei), i ∈ K as columns.

Its solution is given by solving the normal equations:

U>UαK = U>b . (13)

Let us first prove that the matrix U>U is invertible: Since U contains the vectors
r(c, ei), i ∈ K as columns, it is sufficient to show that the vectors r(c, ei) with i ∈ K
are linearly independent. It holds that

r(c, ei) =M
−1Cei

i∈K
= M−1ei . (14)

Hence, r(c, ei) is the i-th column of M−1 and since M−1 exists [13], the vectors
r(c, ei) have to be linearly independent. Thus, U>U is invertible.

Iterative approach. The linear system given by Equation 13 can be solved exactly by
using standard methods such as an LU-decomposition. Since this is rather slow, we
suggest the following iterative solver.

Let us for a moment consider the simplified optimisation problem, where a vector g
and the inpainting result u = r(c, g) are initially given. We want to optimise only the
i-th grey value and keep the remaining grey values fixed:

argmin
α

‖f − r(c, g + αei)‖2 . (15)

Then the solution is

α =
r(c, ei)

>(f − u)
r(c, ei)>r(c, ei)

. (16)

The optimised grey value can be computed as gi := gi+α. Moreover, provided we have
precomputed all inpainting echos r(c, ei), i ∈ K, we can not only efficiently compute
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Input: Original image f , attenuation factor ω.
Output: Optimised grey values g.

Initialisation: u := r(c,f) and g := f .

Do

For all i ∈ K (randomly chosen):
1. Get the inpainting echo ui := r(c, ei).

2. Compute the correction term α :=
u>

i (f−u)

u>
i
ui

.

3. Set uold := u.
4. Update the reconstruction u := u+ ω · α · ui.

and the grey value gi := gi + ω · α.

while |MSE(u)−MSE(uold)| > ε .

Fig. 5. Grey value optimisation.

α, but also the inpainting result for the updated image g. To this end, we exploit again
the linearity of r:

r(c, g) := r(c, g + αei) = r(c, g) + α · r(c, ei) = u+ α · r(c, ei) . (17)

If we apply this optimisation for each i ∈ K iteratively, and update the grey values
in each step directly, we obtain an algorithm which corresponds to the Gauss-Seidel
method [16] for the previously presented linear system of equations (see Equation 13).

Optimising one grey value at a time means that this grey value might be shifted
extremely in order to reduce the inpainting error in its neighbourhood. However, there
could be mask points nearby which are not optimised yet and a combined optimisation
would lead to a smaller shift for each of them. Thus, to prevent over- and undershoots
we suggest to introduce an attenuation factor ω. This can be seen as a variant of the
so-called successive over-relaxation method (SOR) [16] with under-relaxation instead
of over-relaxation. Figure 5 summarises our iterative algorithm.

We terminate our algorithm when the qualitative improvement from one to the next
iteration step decreases to a value smaller then ε = 0.001. Moreover, note that we
choose the indices i ∈ K randomly in each run. This allows more stable results, since
we do not rely on a specific pixel ordering for each run and thus the approximation error
is better distributed over the whole image.

4.2 Results

We apply the presented grey value optimisation to the test image trui and the mask
obtained by our spatial optimisation method (see Figure 6(d)). However, we actually
can use the grey value optimisation to optimise the grey values for any fixed mask.
Thus, for the sake of comparison, we also consider the random mask, the mask obtained
by the analytic approach, and the mask created with the probabilistic sparsification
(see Figure 6(a),(b) and (c)). The reconstruction results are depicted in the last row
of Figure 6.



10 Mainberger et al.

randomly analytic probabilistic + nonlocal pixel
selected approach sparsification exchange

m
as

k

MSE 189.90 49.47 41.08 23.21

re
co

ns
tr

uc
tio

n

MSE 106.17 31.62 20.68 17.17

re
co

ns
tr

uc
tio

n
w

ith
op

tim
al

to
na

ld
at

a

Fig. 6. Evaluation of different inpainting data using 5% of all pixels. Top row: Different
masks obtained by (a) random selection, (b) analytic approach (σ = 1.44), (c) probabilistic
sparsification (p = 0.02, q = 0.02, d = 0.05), (d) nonlocal pixel exchange (m = 10,
n = 1, 500,000 iterations) applied to (c). Middle row: (e-h) Reconstructions with homogeneous
diffusion inpainting using the masks (a-d). Bottom row: (i-l) As middle row but using optimal
tonal data.

For all examples the MSE has decreased. However, we observe that the worse the
spatial data are selected, the larger the improvement that can be achieved by the grey
value optimisation. The explanation for this behaviour is simple. Both our spatial opti-
misation method as well as the analytic approach select the pixels depending on the grey
values of the original image. Thus, the spatial data are optimised by incorporating these
tonal data. If we choose random spatial data, it is more likely that we can compensate
bad locations by adapting the grey values.

Besides this observation, the smallest MSE of only 17.17 is obtained by the combi-
nation of the presented spatial and tonal optimisation methods. To further evaluate this
combined approach, we apply it to two other test images. The results are depicted in
Figure 7. Moreover, Table 1 gives a comparison with the analytic approach and the
results obtained with a random pixel mask. In all cases, we obtain by far the best
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original MSE: 8.14 original MSE: 19.38

Fig. 7. Reconstruction results with 5% of all pixels, spatially and tonally optimised, for the test
images walter and peppers256.

Table 1. Comparison of the reconstruction error (MSE) with 5% of all pixels for different test
images and different inpainting data.

unoptimised analytic approach spatially and tonally
(randomly selected) (|∆fσ| dithered) optimised

trui 198.90 49.47 (σ = 1.44) 17.17
walter 183.37 24.59 (σ = 1.37) 8.14

peppers256 179.22 49.71 (σ = 1.15) 19.38

reconstruction results with our new approach. This confirms that it is a suitable method
for the selection of optimal inpainting data.

5 Conclusion

While many researchers have tried to find highly sophisticated PDEs for inpainting
problems with given data, we have investigated the opposite way: finding optimal data
for a given PDE. We have shown that even for the simplest inpainting PDE, namely
homogeneous diffusion, one can obtain reconstructions of astonishing quality using
only 5% of all pixels. However, this requires to optimise the data carefully in the domain
and the co-domain.

Since we are able to reduce the amount of data needed for high quality reconstruc-
tions drastically, our ongoing research addresses the problem how these data can be
encoded efficiently. This includes appropriate adaptations of the grey value optimisation
to quantised data. Moreover, we are interested in applying our optimisation framework
also to nonlinear inpainting methods. As a result, we might obtain similar qualitative
reconstructions with even less data, allowing further cuts in our pixel budget.
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