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Short Abstract

This thesis investigates image compression with partial differential equa-
tions (PDEs) based on edges and optimal data.

It first presents a lossy compression method for cartoon-like images.
Edges together with some adjacent pixel values are extracted and encoded.
During decoding, information not covered by this data is reconstructed by
PDE-based inpainting with homogeneous diffusion. The result is a com-
pression codec based on perceptual meaningful image features which is able
to outperform JPEG and JPEG2000.

In contrast, the second part of the thesis focuses on the optimal selection
of inpainting data. The proposed methods allow to recover a general image
from only 4% of all pixels almost perfectly, even with homogeneous diffu-
sion inpainting. A simple conceptual encoding shows the potential of an
optimal data selection for image compression: The results beat the quality
of JPEG2000 when anisotropic diffusion is used for inpainting.

Finally, the thesis shows that the combination of the concepts allows for
further improvements.
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Kurzzusammenfassung

Die vorliegende Arbeit untersucht die Bildkompression mit partiellen Dif-
ferentialgleichungen (PDEs), basierend auf Kanten und optimalen Daten.

Sie stellt zunächst ein verlustbehaftetes Kompressionsverfahren für car-
toonartige Bilder vor. Dazu werden Kanten zusammen mit einigen benach-
barten Pixelwerten extrahiert und anschließend kodiert. Während der De-
kodierung, werden Informationen, die durch die gespeicherten Daten nicht
abgedeckt sind, mittels PDE-basiertem Inpainting mit homogenener Diffu-
sion rekonstruiert. Das Ergebnis ist ein Kompressionscodec, der auf visuell
bedeutsamen Bildmerkmalen basiert und in der Lage ist, die Qualität von
JPEG und JPEG2000 zu übertreffen.

Im Gegensatz dazu konzentriert sich der zweite Teil der Arbeit auf
die optimale Auswahl von Inpaintingdaten. Die vorgeschlagenen Methoden
ermöglichen es, ein gewöhnliches Bild aus nur 4% aller Pixel nahezu perfekt
wiederherzustellen, selbst mit homogenem Diffusionsinpainting. Eine einfa-
che konzeptuelle Kodierung zeigt das Potential einer optimierten Datenaus-
wahl auf: Die Ergebnisse übersteigen die Qualität von JPEG2000, sofern
das Inpainting mit einem anisotropen Diffusionsprozess erfolgt. Schließlich
zeigt die Arbeit, dass weitere Verbesserungen durch die Kombination der
Konzepte erreicht werden können.
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Abstract

This thesis investigates image compression with partial differential equa-
tions (PDEs) based on edges and optimal data.

It first presents a lossy compression method for cartoon-like images,
which is based on edge information. Edges together with some adjacent
grey/colour values are extracted and encoded using a classical edge detector,
binary compression standards such as JBIG and state-of-the-art encoders
such as PAQ. During decoding, information not covered by these encoded
data is reconstructed by solving the Laplace equation, i.e. by inpainting
with the steady state of a homogeneous diffusion process. The result is a
simple codec that is able to encode and decode in real time. The thesis
shows that for cartoon-like images this codec outperforms the successful
JPEG standard, and even its more advanced successor JPEG2000.

The second part of this thesis does not aim for a fully developed com-
pression codec. In contrast, it tries to answer the more fundamental ques-
tion how to find the optimal spatial and tonal inpainting data such that
an image can be reconstructed with minimised error. For this purpose
besides homogeneous diffusion also inpainting with the biharmonic oper-
ator and edge-enhancing diffusion (EED), an anisotropic diffusion process,
is analysed. To optimise the spatial distribution of the inpainting data,
two algorithms are proposed: a probabilistic data sparsification followed
by a nonlocal pixel exchange. Afterwards, the grey values in the selected
pixels are optimised. In the case of linear inpainting operators an exact
optimisation is possible based on a least squares approach. In the case of
EED the solution of a nonlinear least squares problem is approximated.
The resulting method allows almost perfect reconstructions with only 4%
of all pixels even with homogeneous diffusion inpainting. With more soph-
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isticated PDEs such as anisotropic diffusion, and with a simple conceptual
encoding, one can already beat the quality of JPEG2000, even for natural
images.

Finally, this thesis shows how optimised data can be integrated into
the edge-based codec. While the application of the tonal optimisation is
straightforward, the integration of optimal spatial data requires a few al-
gorithmic adaptations. By maintaining the edges, but at the same time
adding a few spatially optimised points, especially low contrast or blurry
edges can be represented well. As a result, cartoon-like images that con-
tain smooth variations can be compressed even more efficiently. Also the
application of this codec to non-cartoon-like images delivers results of good
quality, even though it is just based on homogeneous diffusion inpainting.



Zusammenfassung

Die vorliegende Arbeit untersucht die Bildkompression mit partiellen Dif-
ferentialgleichungen (PDEs), basierend auf Kanten und optimalen Daten.

Sie stellt zunächst ein verlustbehaftetes Kompressionsverfahren für car-
toonartige Bilder vor, welches auf Kanteninformationen basiert. Dabei wer-
den Kanten zusammen mit einigen benachbarten Grau/Farbwerten unter
Verwendung eines klassischen Kantendetektors extrahiert und anschließend
mittels binärer Kompressionstandards wie JBIG und modernen Kodierern
wie PAQ kodiert. Während der Dekodierung, werden Informationen, die
nicht durch die kodierten Daten abgedeckt werden, als Lösung der Laplace-
Gleichung rekonstruiert, also durch Inpainting mit dem stationären Zustand
eines homogenen Diffusionsprozesses. Das Ergebnis ist eine einfacher Codec,
der in der Lage ist, in Echtzeit zu enkodieren und dekodieren. Die vorliegen-
de Arbeit zeigt, dass der Codec für cartoonartige Bilder den erfolgreichen
JPEG-Standard und auch seinen weiterentwickelten Nachfolger JPEG2000
übertrifft.

Der zweite Teil dieser Arbeit zielt nicht auf einen vollentwickelten Kom-
pressionscodec ab. Im Gegensatz dazu wird versucht, die grundsätzlichere
Frage zu beantworten, wie optimale räumliche und tonale Inpaintingda-
ten gefunden werden können, so dass ein Bild mit minimiertem Fehler re-
konstruiert werden kann. Zu diesem Zweck werden neben homogener Dif-
fusion auch Inpainting mittels biharmonischem Operator und kantenver-
verstärkender Diffusion (EED) – ein anisotropes Diffusionsverfahren – ana-
lysiert. Zur Optimierung der räumlichen Verteilung der Inpainting Daten
werden zwei Algorithmen vorgeschlagen: Eine probabilistische Ausdünnung
gefolgt von einem nichtlokalen Pixelaustausch. Danach werden die Grau-
werte in den ausgewählten Pixeln optimiert. Im Falle der linearen Inpain-
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tingoperatoren ist eine exakte Optimierung auf Grundlage der Methode
der kleinsten Quadrate möglich. Im Falle von EED wird die Lösung ei-
nes nichtlinearen Kleinste-Quadrate-Problems angenähert. Das resultieren-
de Verfahren ermöglicht nahezu perfekte Rekonstruktionen mit nur 4% aller
Pixel, selbst mit homogenenem Diffusionsinpainting. Mit anspruchsvolleren
PDEs wie anisotroper Diffusion, und mittels einer einfachen konzeptionellen
Kodierung, kann bereits die Qualität von JPEG2000 sogar für natürliche
Bilder übertroffen werden.

Schließlich zeigt diese Arbeit, wie optimierte Daten in den kantenbasier-
ten Codec integriert werden können. Während die Anwendung der tonalen
Optimierung einfach ist, erfordert die Integration der optimalen räumlichen
Daten einige algorithmische Anpassungen. Indem die Kanten beibehalten
werden, aber zugleich einige wenige räumlich optimierte Punkte hinzu-
gefügt werden, können vor allem Kanten mit geringem Kontrast oder einer
Unschärfe gut dargestellt werden. Somit können cartoonartige Bilder, die
weiche Variationen enthalten noch effizienter komprimiert werden. Auch die
Anwendung dieses Codecs auf nicht-cartoonartige Bilder liefert Resultate
von guter Qualität, obwohl der Codec auf homogenem Diffusionsinpainting
basiert.
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Chapter 1
Introduction

1.1 Motivation

We are living in an age in which mobile phones have become digital cam-
eras, able to take high resolution pictures and able to share them almost
instantly via the Internet, in which we can transfer the screen content of
our laptops, notepads and mobile devices in realtime to our TVs, in which
social networks are flooded by selfies, cartoons and videos of any kind and
size, in which people shoot the same scene again and again, just to make
sure that one of the pictures would be flawless, and in which 3D movies
have found their ways into our homes. In this age which becomes more and
more characterised by digital images being omnipresent in our daily life, the
need for efficient ways to compress digital image information is as strong as
never before.

Thereby, lossy image compression methods are of particular interest.
They allow much higher compression rates than lossless ones, but at the
same time supply sufficient quality by means of our human visual system.
Until today, the most prominent methods in the area of lossless image com-
pression rely on basis transforms such as the over 20 years old JPEG [PM92]
standard, which uses a discrete cosine transform (DCT). Its more advanced
successor JPEG 2000 [TM02] was created in 2000 and intended to replace
JPEG, but is still not widespread. Its transform is based on biorthogonal
wavelets.

1



2 CHAPTER 1. INTRODUCTION

a b c

Figure 1.1: (a) Old picture, which contains defects by being crumpled. (b)
Inpainting mask: Sound data is coloured white while missing information is
marked by black. (c) Restored image by homogeneous diffusion inpainting.

1.1.1 PDE-based Image Compression

As an alternative, algorithms based on partial differential equations (PDEs)
have been gaining more and more attention in research in the last few
years. In contrast to the transform-based methods, they are directly applied
in the spatial image domain and thus more intuitive to understand. The
underlying concept is quite simple: During encoding, a specific amount
of pixels is selected and stored. For decoding, the missing information is
then reconstructed by means of PDE-based inpainting [MM98a, BSCB00a,
CS01a, BGS05, TD05, BM07].

In its classical application image inpainting is used for the reconstruction
of lost or deteriorated image information. Thereby, a few missing parts are
filled in on the basis of the given sound image data. For instance, one can
restore images that contain scratches and defects as it is shown in Figure 1.1.

If we turn the amount of sound data to the other extreme so that the
missing data is dominating, we reach the field of research of data interpol-
ation. In this context PDE-based inpainting has for example been applied
for upsampling digital images [RM07, WW06]. The potential of PDE-based
inpainting techniques for scattered data interpolation (see Figure 1.2) has
been shown in [GWW+05] and [GWW+08].

If we want to exploit the capabilities of PDE-based inpainting for im-
age compression, there is an evident trade-off between the amount of data
which is stored and the achievable reconstruction quality. This leads to
two important differences to pure inpainting research: On the one hand the
amount of data available for reconstruction is usually highly restricted. In
this sense PDE-based image compression is closer to scattered data inter-
polation. On the other hand, one has the freedom to choose the data which
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a b c

Figure 1.2: Example for scattered data interpolation with EED-inpainting as
presented in [GWW+05]. (a) Cropped version (256 × 256) of the famous test
image lena. (b) Scattered data: two percent of all pixels of (a), chosen randomly.
Missing data is given as white pixels. (c) Restored image by EED-inpainting
(parameters λ = 0.1, σ = 1).

will be available for reconstruction.
In general, compression codecs based on PDE-based inpainting are char-

acterised by the following degrees of freedom to influence compression rate
and reconstruction quality:

The inpainting mask is a binary image that is 1 at locations at which
grey or colour information is available for inpainting during decoding,
and 0 otherwise. Therefore, it determines where and also how much
information is stored, which means it encodes spatial data. Actually,
even non-binary inpaining masks are conceivable [HSW13]. However,
in this thesis we stick to the classical approach using a binary mask.

The Tonal Data corresponds to the grey or colour values stored for each
location defined by the inpainting mask. In classical inpainting this
data is prescribed by the grey values of the original image. In image
compression, they can be set to arbitrary values.

The Differential Operator determines how the given data is inpainted.
Whereas homogeneous diffusion [Iij59] inpainting for example spreads
the information evenly in all directions, more sophisticated operators
that base on anisotropic diffusion [Wei96e] can even allow to recon-
struct edges.

In addition the selected spatial and tonal data is most often further com-
pressed by lossy and loss-less compression techniques, as for example en-
tropy coding.
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a b c

Figure 1.3: PDE-based image compression based on edges: (a) Test image
svalbard (380 × 431) (b) Decoded data before inpainting; Missing data is given
as white pixels. (c) Decoded image after compression with edge-based codec;
PSNR: 30.14 dB; compression ratio 145:1.

1.1.2 Objective

In the first part of this thesis we present a PDE-based compression codec
that is based upon the work of [MW09] and [MBWF11]. Our codec allows
high quality reconstructions for cartoon-like images at high compression
rates and even outperforms the quality of JPEG2000. In this codec the
inpainting mask is described by edges and the tonal data is chosen from
the adjacent grey/colour values. Homogeneous diffusion inpainting serves
as differential operator. The resulting codec allows us to encode and decode
images in real-time. An example is given in Figure 1.3.

The second part of the thesis extends the work presented in [MHW+12]
(see also [Tan10, How10]). Whereas in the first part of the thesis, we have
based the data selection on semantically meaningful data, namely edges, the
goal here is the selection of the optimal spatial and tonal data by means of
reconstruction quality. We show that astonishing results can be achieved
with only 4% of all pixels (see Figure 1.4). Note that the second part of
the thesis is more of a conceptual nature without an interest in a fully
optimised and directly applicable compression codec. Instead we evaluate
the theoretical limits and the potential of optimal data selection for PDE-
based image compression. The insights obtained in this section may pave
the way for future developments of novel efficient compression codecs.

In the last part of the thesis we use the gained knowledge to show how
the edge-based codec from the first part of the thesis can be improved by
integrating optimal data.
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a b c

Figure 1.4: PDE-based image reconstruction with optimal data: (a) Test
image trui (256 × 256). (b) Decoded data before inpainting; Missing data is
given as white pixels. Corresponds 4% of all pixels. Tonal and spatial data have
been optimised. (c) Reconstruction with EED-inpainting.

1.1.3 Related Work

Let us now discuss some related work with respect to PDE-based image
compression. We will not go into detail for the specific areas of edge-based
image compression or choosing the optimal data for inpainting, but post-
pone this to the later chapters.

The simple but not less appealing idea to exploit the capabilities of PDE-
based inpainting for lossy image compression was introduced first by Galić
et al. [GWW+05] in 2005 and extended in 2008 [GWW+08]. In their ap-
proach, the inpainting mask is obtained by an adaptive triangulation. Thus,
it can be stored efficiently as binary tree structure. Tonal data is taken from
the original image and requantised. For the differential operator, an aniso-
tropic diffusion process called edge-enhancing diffusion (EED) [Wei96e] is
used. This codec is already able to outperform JPEG at low and high com-
pression rates, but cannot exceed the compression efficiency of JPEG2000.
The codec of Schmaltz et al. [SWB09] overcomes this problem. It is us-
ing the basic ideas of Galić et al. but improves the codec substantially by
several concepts. Considering the inpainting mask, the adaptive triangula-
tion is replaced by a subdivision in rectangles. Moreover, the grey values
are adjusted by a brightness rescaling before they are requantised. With
respect to EED, an optimisation of the contrast parameter within the dif-
fusion processes of encoding and decoding, and a so-called interpolation
swapping is introduced. Besides those changes Schmaltz et al. apply a
better entropy coder to compress the tonal data. In [SPM+14] a revised
version of this codec is presented, which improves the quality further. This
paper additionally states a comprising evaluation of differential inpaint-
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ing operators within the compression framework and explicitly shows that
EED provides the most favourable differential operator in the context of
PDE-based image compression. Furthermore, the codec is extended to 3-D
data as done originally in [Pet12], and states an approach for shape-coding.
In [SW12] various concepts and ideas have been combined to create a video
compression codec. A progressive mode is developed in [SMMW13] and an
adaptation and optimisation with respect to colour images is proposed in
[PW14].

The most prominent difference of those approaches to the ones presented
in this thesis is the fact that their inpainting mask is restricted to locations
predetermined by the underlying tree structures. Thus, the positions of the
interpolation points usually follow a pattern which makes them less optimal
from a reconstruction point of view. This is the reason why those methods
require more sophisticated interpolation functions, which are often based
on nonlinear anisotropic diffusion processes. In contrast, our approaches
even deliver astonishing results with homogeneous diffusion inpainting.

In [MSB+12] it is demonstrated how PDE-based image compression
techniques can be adapted to be ideally suited for steganographic purposes.
The adapted codec allows to hide large colour images within small greyscale
images. Besides this, it is well-suited for uncensoring applications.

While all aforementioned codecs and the one presented in this thesis use
PDE-based inpainting as their core part for compression, other approaches
apply it in a preprocessing [TSYK02, KS05] or postprocessing [For96,
ADF05] step.

Another work in which PDE-related approaches are used for compres-
sion is [CZ00]. The authors of this paper use total variation regularisation
to modify coefficients in a wavelet decomposition in order to minimise os-
cillatory artefacts.

Variational approaches and PDEs can also be used for the recon-
struction of surfaces. A variational taxonomy for surface reconstruction
from oriented points is presented in [SSW14]. The work in [BW10] in-
vestigates the geometric diffusion equation for the interpolation of sur-
faces from scattered point sets. On the basis of this investigation it sug-
gests a lossy compression method for triangulated surfaces. Examples in
which PDEs are involved in the field of digital elevation maps compression
are [FLA+06, SCSA04, XFC+07].

The idea to use inpainting for image compression is also exploited
in [LSW+07b, RSB03, XSWL07]. In contrast to the aforementioned ap-
proaches those do not involve PDEs but integrate instead so-called structure
and texture inpainting ideas in standard codecs such as JPEG.

There are also a number of alternative compression approaches that
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are, as PDE-based compression methods, storing only a few pixels taken
from the spatial domain. Those however differ in the way they reconstruct
the missing data. Examples are [DNV97, DDI06, BPC09] that propose
adaptive triangulations and reconstruct the missing data by interpolation
within each triangle.

Furthermore, there have been methods for the reconstruction from
a specific set of feature points in Gaussian scale space. Examples in-
clude [JSGA86, KLD+05] that rely on top points and [LNG03] that use
a suitable set of feature points and their derivatives.

1.2 Outline

This thesis is organised as follows. In the next chapter we will introduce
PDE-based inpainting as it is the basis of our later research on PDE-based
image compression. We start with the general continuous formulation for
homogeneous diffusion and embed it into the inpaining framework. The
continuous formulation is then discretised giving a linear system of equa-
tions. We prove that the solution of this linear system exists and is unique.
Then we give a detailed explanation how it can be computed efficiently.
Furthermore, we extend the inpainting framework to the more advanced
differential operators for biharmonic inpainting and inpainting with edge-
enhancing diffusion (EED). We also show how to apply it to colour valued
images.

In Chapter 3 we present our PDE-based compression codec that allows
us to encode and decode cartoon-like images. Thereby, we first describe
the encoding method, including edge detection, edge location encoding,
and pixel value encoding. Afterwards we explain how the encoded image
can be decoded with the help of homogeneous diffusion inpainting. In our
experimental evaluation we will see that our codec can beat the quality of
JPEG and even JPEG2000.

Afterwards we study in Chapter 4 how to obtain optimised spatial and
tonal data regarding the reconstruction quality of PDE-based inpainting.
In the first part we restrict the problem to homogeneous diffusion inpaint-
ing and start with the spatial optimisation. This includes an explanation
of the method suggested by Belhachmi et al. [BBBW09]. Moreover, we de-
velop a probabilistic sparsification method and a non-local pixel exchange
that approximate the optimal positions for a fixed amount of pixels. Af-
terwards, we show how the results can further be improved by calculating
the optimal tonal data exactly, for the set of kept pixels. We illustrate that
the combination of optimised spatial and optimal tonal data allows high
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quality reconstructions, even though we use homogeneous diffusion inpaint-
ing. Furthermore, in the second part of the chapter we investigate how
those optimisation concepts can be used with the more advanced differen-
tial operators, which were introduced in Chapter 2. Finally we show the
potential of the optimised data for PDE-based image compression. To this
end we encode the obtained data using straight forward concepts as applied
in Chapter 3. The results are compared with JPEG and JPEG2000.

In Chapter 5 we explain how to include optimised data into the edge-
based codec presented in Chapter 3. Thereby, we reuse the methods of
Chapter 4 and adapt them accordingly. We evaluate the improved codec,
by comparing it to previous results.

The thesis is closed in Chapter 6. Besides an overall summary and
conclusion we furthermore give an outlook on possible future work. The
thesis is supplemented by a bibliography.



Chapter 2
PDE-based Inpainting

2.1 Motivation

In this chapter, we set the foundations for PDE-based image compression,
by recapitulating PDE-based inpainting. We start in Section 2.2 by ex-
plaining the simplest differential operator in its original application: homo-
geneous diffusion. Then, in Section 2.3 we show how it is embedded into the
inpainting framework, and state the corresponding continuous formulation
for PDE-based inpainting. This formulation is, in Section 2.4, transferred
to the discrete setting such that it can be applied to digital images. In this
context, we also provide a proof of existence and uniqueness for the solu-
tion of the underlying inpainting scheme as it was first given in [MBWF11].
Afterwards, we proceed to show in Section 2.5 an efficient solver for comput-
ing the solution of the discrete homogeneous diffusion inpainting problem.
This allows us to perform inpainting in real-time for this type of differen-
tial operators. In Section 2.6, we will additionally consider more advanced
differential operators. For each of those operators, we show the continuous
and discrete formulation, and present how to efficiently solve the arising
systems of equations. We end the chapter in Section 2.7 with an explan-
ation of how the methods carry over if they are applied in a multichannel
setting as it is the case for colour images.

9
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2.2 Homogeneous Diffusion

The term diffusion is derived from the Latin word diffundere meaning “to
spread out”. It describes a mass-preserving equilibration of concentrations
or temperature in a given region over time.

The simplest diffusion equation is the so-called homogeneous heat equa-
tion [Iij59, Wit83], which is a parabolic partial differential equation (PDE).
Mathematically, it can be defined as follows: Let u(x, t) : Rn × R+ → R
denote a function that represents the distribution of heat at time t ∈ R+

and location x ∈ Rn. Then, the homogeneous heat equation states relations
between the partial derivatives of u:

∂tu = ∆u . (2.1)

Thereby, ∂tu denotes the partial derivative w.r.t. time t, and ∆u is the
Laplace operator applied to u. In the 2-D case with x = (x, y)>, the
Laplace operator is given by ∆u = ∂xxu + ∂yyu. Knowing the initial tem-
perature distribution at time t = 0 and supplementing additional boundary
conditions, Equation (2.1) allows us to compute the concentration u at any
location x and at any time t > 0. In the following, we will refer to this
process as homogeneous diffusion.

In image processing, we can consider images to be smooth two-
dimensional functions f : Ω → R, where Ω ⊂ R2 denotes a rectangular
image domain. Hence, we may identify a grey value f(x) at location
x = (x, y)> with a specific temperature. Using f as initial state, i.e.
u(x, 0) := f(x), we are then able to compute the evolution of the grey
values over time t. To prevent information from leaving the image domain,
we additionally assume reflecting boundary conditions at the boundary of
our image domain Ω, i.e. ∂nu = 0, where n is a normal vector to the
boundary.

In terms of images, homogeneous diffusion uniformly distributes the grey
values more and more, while the average grey value is preserved. Eventually,
a flat image is reached for t→∞. One can show [Wei98a] that homogeneous
diffusion fulfils a maximum-minimum principle, i.e. that the values of u
never leave the value range of the original image f .

Diffusion in general, and homogeneous diffusion [Iij59, Wit83] in par-
ticular, are ubiquitous in image processing and computer vision for many
years. To name only a few examples, homogeneous diffusion is used in the
context of smoothing and denoising [KZ96], and frequently applied as a
regulariser for variational methods [HS81, WB02].
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2.3 Homogeneous Diffusion Inpainting

If we use homogeneous diffusion in its aforementioned form, we are usually
interested in a specific intermediate result, i.e., in a result u(x, T ) for some
stopping time T . Its steady state solution, namely the average grey value,
is of minor interest.

This changes as soon as we introduce additional Dirichlet boundary
conditions that prescribe the grey values in specific areas ΩK . The effect of
this modification can be explained very intuitively as follows: Let us regard
the image domain Ω as a room. Due to the reflecting boundary conditions at
∂Ω, this room is perfectly insulated. Areas ΩK where Dirichlet boundaries
are defined, would be represented by heaters. The heaters are all configured
to individual temperatures which correspond to the prescribed grey values.
During the whole process, those temperatures are kept constant. Thus, the
heaters can not only have a heating effect, but also a cooling one. If we
then let the temperature spread, it perfectly resembles the diffusion process
described by Equation (2.1).

However, due to the heaters we now obtain a stationary temperature
distribution (t→∞), which is not necessarily flat anymore, but instead re-
flects gradual transitions between the different temperatures of the heaters.
Interpreting again temperatures as grey values, this means we have a process
that is able to fill in missing information in images: We use known grey val-
ues of the original image f to form the Dirichlet boundaries at the specified
areas ΩK . The missing, unknown grey values in Ω \ ΩK are reconstructed
with diffusion. In general the process of filling in missing information in
images by using given data is called inpaining. More specifically, in our
case it is called homogeneous diffusion inpainting [MM98a, BSCB00a]. The
set of known data ΩK is usually referred to as inpainting data, whereas the
set of unknown data Ω \ ΩK is called inpainting domain. Note that from a
mathematical point of view, homogeneous diffusion inpainting comes down
to a specific type of two-dimensional interpolation.

Instead of solving the parabolic PDE in Equation (2.1) for t → ∞,
we can also exploit that in this case, ∂tu = 0. Thus, the homogeneous
heat equation (2.1) can be simplified to the Laplace equation ∆u = 0, and
the time parameter t vanishes. As a consequence, homogeneous diffusion
inpainting is now described by an elliptic PDE instead of a parabolic one.
Including the boundary conditions, it reads:

∆u = 0 on Ω \ ΩK ,
u = f on ΩK ,

∂nu = 0 on ∂Ω .
(2.2)
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Note that for inpainting, the domain Ω\ΩK , for which we solve the PDE, is
not necessarily rectangular anymore. However, there exists an alternative
formulation which allows us to look again for a solution on the whole image
domain Ω. For this purpose, let us introduce a confidence function c(x)
which determines whether a point is known or not:

c(x) =

{
1 for x ∈ ΩK ,
0 for x ∈ Ω \ ΩK .

(2.3)

In the context of inpainting, this confidence function c(x) is often called
inpainting mask, or simply mask. We can now eliminate the Dirichlet
boundary conditions in Equation (2.2) by integrating them into the Laplace
equation:

c(x)(u− f) − (1− c(x))∆u = 0 on Ω ,
∂nu = 0 on ∂Ω .

(2.4)

By evaluating the two possible values of c(x) in this equation, one can easily
verify that its solution is equivalent to the one given in Equation (2.2).
For the remainder of this thesis we will be referring to Equation (2.4) as
the extended formulation since the solution u is computed on the whole
image domain Ω. In contrast, we are calling Equation (2.2) the reduced
formulation as the PDE is only solved on the subset Ω \ ΩK .

2.4 Discrete Theory

As we are eventually considering digital images, we need a discrete formu-
lation of the extended or the reduced inpainting problem given in Equa-
tion (2.2) and Equation (2.4), respectively.

To this end, let us assume we have an image with N pixels, lying on
a regular grid, with grid spacing h = (hx, hy)

> in x- and y-direction, re-
spectively. Moreover, we enumerate all pixels consecutively row-by-row and
denote J = {1, . . . , N} to be the set of all pixel indices whereas K ⊂ J is
the set of known pixel indices. The discrete version of a continuous function
f is then given by a one-dimensional vector f = (f1, . . . , fN)> = (fi)i∈J .
Analogously, we define the solution vector u and the binary mask c, where
ci = 1 if i ∈ K and ci = 0 otherwise. Finally, the Laplacian ∆ is discretised
by means of finite differences [MG80, EBY99, MM05].



2.4. DISCRETE THEORY 13

2.4.1 Extended Discrete Formulation

Let us start with the discrete version of the extended formulation (2.4). A
straightforward discretisation yields the following system of equations:

ci(ui − fi)− (1− ci)[∆u]i = 0 for all i ∈ J . (2.5)

Thereby, [∆u]i is the discretised Laplacian of u in pixel i. Taking homo-
geneous Neumann boundary conditions into account, it can be computed
as:

[∆u]i :=
∑

`∈{x,y}

∑
j∈N`(i)

uj − ui
h2
`

, (2.6)

with N`(i) denoting the set of indices of pixels that are adjacent to pixel i in
`-direction (contains up to two elements per direction). In order to rewrite
the system of equations (2.5) in matrix-vector notation we define A to be
the symmetric, hepta-diagonal N ×N matrix with entries

ai,j =



1

h2
`

if j ∈ N`(i) ,

−
∑

`∈{x,y}

∑
j∈N`(i)

1

h2
`

if j = i ,

0 otherwise .

(2.7)

Moreover, let I be the identity matrix and C := diag(c) a diagonal matrix
with the components of c as diagonal entries. Then the discrete formulation
of Equation (2.4) can be written as

C(u− f)− (I −C)Au = 0 . (2.8)

Thereby A describes the discrete Laplace operator ∆ including the homo-
geneous Neumann boundary conditions. Reordering yields the linear system
of equations:

(C − (I −C)A)︸ ︷︷ ︸
=: Mext

u = Cf . (2.9)

The entries of the system matrix Mext are given by

mextij =

{
−(1− ci)aij if i 6= j ,

ci − (1− ci)aij if i = j ,
(2.10)

or equivalently when evaluating ci by

mextij =


0 if i 6= j

}
and i ∈ K ,

1 if i = j

−aij if i ∈ J \K .

(2.11)
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u1 f2 u3

f4 u5 u6

Figure 2.1: Inpainting example of size 3× 2 with two known pixels, coloured in
grey.

Let us illustrate the structure of the extended system by a simple ex-
ample: Figure 2.1 depicts a 3 × 2 image, where f2 and f4 are known, and
the grid spacing has been chosen to be hx = hy = 1. We then obtain the
following linear system of equations:

2 −1 0 −1 0 0
0 1 0 0 0 0
0 −1 2 0 0 −1

0 0 0 1 0 0
0 −1 0 −1 3 −1
0 0 −1 0 −1 2


︸ ︷︷ ︸

Mext


u1

u2

u3

u4

u5

u6


︸ ︷︷ ︸
u

=


0
f2

0
f4

0
0


︸ ︷︷ ︸
Cf

. (2.12)

2.4.2 Reduced Discrete Formulation

Let us now show how the system of equations for the discretised reduced
formulation (2.2) reads. Using the discrete Laplacian as given in Equa-
tion (2.6) we get for the Laplace equation ∆u = 0:∑

`∈{x,y}

∑
j∈N`(i)

uj − ui
h2
`

= 0 for all i ∈ J \K . (2.13)

Using Dirichlet boundaries, i.e. inserting uj = fj for j ∈ K, we can rewrite
these equations such that only the unknowns remain on the left hand side:

−
∑

`∈{x,y}

∑
j∈N`(i)∩J\K

uj − ui
h2
`

=
∑

`∈{x,y}

∑
j∈N`(i)∩K

fj
h2
`

for all i ∈ J \K . (2.14)

We can also use the matrix entries of A to express the Equations (2.13)
and (2.14): ∑

j∈J aijuj = 0 for all i ∈ J \K
uj=fj

for j∈K⇔ −
∑

j∈J\K aijuj =
∑

j∈K aijfj for all i ∈ J \K .
(2.15)
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However, as the reduced formulation is only solved for a subset of all pixels,
we cannot use A to express the discrete equation system in matrix-vector
notation, as we did in the extended case. Only by introducing a new reduced
system matrix Mred and vectors ured and bred, the equation system (2.15)
can be written in matrix-vector notation:

Mredured = bred . (2.16)

By ured, we denote the vector which contains only those ui for which no
Dirichlet data is given, i.e. with i ∈ J \K. The right-hand-side bred contains
for each unknown pixel the sum over the known neighbours. The system
matrix Mred is a reduced version of A where every i-th row and column
with i ∈ K has been deleted (i is the index of a know pixel). Thus, Mred

is of size (J \K)× (J \K), and since A is symmetric, Mred is symmetric
as well. Note that in contrast, Mext is a non-symmetric, J × J matrix.

As for the reduced formulation, let us illustrate the structure of this
system by the example given in Figure 2.1:

2 0 0 0
0 2 0 −1

0 0 3 −1
0 −1 −1 2


︸ ︷︷ ︸

Mred


u1

u3

u5

u6


︸ ︷︷ ︸
ured

=


f2 + f4

f2

f2 + f4

0


︸ ︷︷ ︸

bred

. (2.17)

A comparison of the two system matrices Mext (see Equation (2.12))
and Mred shows us the different treatment of known pixels: While they are
“recomputed” as a part of the solution in the extended system, they have
been eliminated from the solution vector completely in the reduced system.
Instead, the corresponding grey values fi are shifted from the right-hand-
side of the known pixels to the right-hand-side of their neighbours.

Despite of these differences, both equation systems have two things in
common: (i) They have the same solution in the unknown pixels. Thus,
proofs for existence, uniqueness and a maximum-minimum principle will
carry over. (ii) For a given grid spacing h, they are fully described by the
binary mask c = (c1, ..., cN)> and the values of f = (f1, ..., fN)>. This is
important for Section 2.5, where we will consider the systems at different
scales.

2.4.3 Discrete Well-Posedness

Now that we have established discrete formulations of our reduced and
extended interpolation problems, let us show that these problems have a
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unique solution that remains within the convex hull of the specified pixel
data:

Theorem 1 (Discrete Well-Posedness)

Let K be nonempty. Then the linear systems Mextu = Cf and Mredured =
bred have a unique solution. In the unknown pixels i ∈ J \ K they satisfy
the maximum-minimum principle

min
j∈K

fj ≤ ui ≤ max
j∈K

fj . (2.18)

Proof.

It is sufficient to prove existence and uniqueness for the reduced problem
Mredured = bred, since both formulations are equivalent. Thus, let us show
that the system matrix Mred is invertible. Since Mred is symmetric, its
eigenvalues are real. Moreover, by inspecting the Gerschgorin disks ofMred,
it follows that all eigenvalues are nonnegative. However, we have to exclude
that 0, which can lie on the boundary of some Gerschgorin disks, is an
eigenvalue. To this end, we apply a result by Feingold and Varga [FV62,
Theorem 3]: If A is block irreducible and λ is an eigenvalue of A that lies
on the boundary of the union of all Gerschgorin disks, then it must lie in
all Gerschgorin disks. It is easy to verify that our matrix Mred is block
irreducible. Let us now consider some pixel i ∈ J \K that has at least one
pixel j ∈ K in its 4-neighbourhood. Then, its Gerschgorin disk Gi does not
contain 0. It follows that 0 cannot be an eigenvalue of Mred and the inverse
of Mred exists.

To prove the maximum-minimum principle, it is more convenient to
consider the extended discrete model (2.9). Since Mred is invertible, we
know from the equivalence of both models that the inverse of Mext also
exists.

First, we show that the inverse of Mext is nonnegative. To this end,
we note that Mext has nonpositive off-diagonal entries, positive diagonal
entries, nonnegative row sums, and at least one positive row sum. Hence,
Mext is an M-matrix. It is well-known that the inverse of a nonsingular
M-matrix is a nonnegative matrix.

Secondly we prove that each inpainted value ui ∈ J \K can be written
as a convex combination of the specified grey values {fj | j ∈ K}. Let us
consider the vector of ones, i.e. e ∈ RN with ei = 1 for all i ∈ J . As the
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row-sum of A is 0, we have

Mexte = (C − (I −C)A)e (2.19)

= Ce− (I −C)Ae (2.20)

= c− (I −C)0 (2.21)

= c . (2.22)

Hence, as the inverse of Mext exists, it holds that

e = M−1
extc , (2.23)

and therefore with B := M−1
ext∑

j∈J

bi,jcj =
∑
j∈K

bi,j = 1 for all i ∈ J . (2.24)

The inpainting solution u is given by

u = M−1
extCf = BCf , (2.25)

or considering the single vector entries, by

ui =
∑
j∈J

bi,jcjfj =
∑
j∈K

bi,jfj for all i ∈ J . (2.26)

Consequently, by Equation (2.24) and as B is nonnegative, we know that
ui is in the convex hull of {fj | j ∈ K}. Thus, our maximum-minimum
principle is satisfied. This concludes the proof.

2.5 Efficient Numerical Solvers

After we have shown existence and uniqueness as well as the maximum-
minimum principle for our discrete solution, let us in this section discuss how
it can be efficiently computed. There are various possibilities how to do this.
Among the most efficient solvers are those that use or are derived from the
so-called fast explicit diffusion (FED) [GWB10, GWSB13, Gre13]. Their
main advantage is that they are simple to implement and especially well
suited for modern parallel architectures such as GPUs [GZG+10, Gwo12].
For sequential architectures like CPUs, an alternative is the so-called full
multigrid method – a hierarchical iterative technique which belongs to the
fastest methods for solving the Laplace equation [Bra77, Hac85]. In this
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thesis we will use the latter one since it provides the best average perform-
ance across different desktop architectures, independent of the availability
of programmable graphics hardware.

Let us from now on consider the extended formulation (2.9) only, as
it is more convenient to work with. To simplify the notation, we rename
the system matrix M := Mext. Moreover, as the algorithm will compute
solutions on different grid levels, we add to all the vectors and matrices a
superscript that denotes the corresponding grid spacing h.

The development of the full multigrid method is then done in four steps.
First, we select a simple non-hierarchical solver that forms the basis of our
multigrid implementation. Then, we show how this solver can be embedded
in a two-grid cycle that performs useful correction steps at a coarser resol-
ution. Afterwards, we focus on advanced multigrid strategies that extend
this hierarchical concept to more than two grid levels. Finally, we discuss
how the transfer between the different grids is accomplished.

2.5.1 Basic Solver

A common solver in the context of linear systems, as given by the extended
formulation (2.9), is the classical Gauss-Seidel method [You71, Saa03]. The
corresponding iteration step can be derived as

uh,k+1
i =

1

mh
ii

chi fhi −∑
j∈J
j<i

mh
iju

h,k+1
j −

∑
j∈J
j>i

mh
iju

h,k
j

 . (2.27)

Inserting the values for mh
ij (see Equation (2.10)) yields

uh,k+1
i =

chi f
h
i −

∑
j∈J
j<i

−(1− ci)ahiju
h,k+1
j −

∑
j∈J
j>i

−(1− ci)ahiju
h,k
j

ci − (1− ci)ahii
(2.28)

=

chi f
h
i + (1− ci)

∑
j∈J
j<i

ahiju
h,k+1
j +

∑
j∈J
j>i

ahiju
h,k
j


ci − (1− ci)ahii

, (2.29)
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and inserting the values of ahij (see Equation (2.7)), we obtain

uh,k+1
i =

chi f
h
i + (1− chi )

 ∑
`∈{x,y}

∑
j∈N`(i)
j<i

1
h2`
uh,k+1
j +

∑
`∈{x,y}

∑
j∈N`(i)
j>i

1
h2`
uh,kj


chi − (1− chi )

∑
`∈{x,y}

∑
j∈N`(i)

1
h2`

(2.30)

=

chi f
h
i + (1− chi )

∑
`∈{x,y}

1
h2`

( ∑
j∈N−` (i)

uh,k+1
j +

∑
j∈N+

` (i)

uh,kj

)
chi − (1− chi )

∑
`∈{x,y}

|N`(i)|
h2`

, (2.31)

where |N`(i)| denotes the number of neighbours of pixel i in direction of
the axis `, N−` (i) := {j | j ∈ N`(i) and j < i} is the set of neighbouring
pixels in direction of the axis ` that have already been processed, while
N+
` (i) := {j | j ∈ N`(i) and j > i} stands for the pixels that yet have to

be updated. If we finally evaluate chi , we see that at known locations, we
actually obtain the original data:

uh,k+1
i =



fhi for chi = 1 ,∑
`∈{x,y}

1
h2`

( ∑
j∈N−` (i)

uh,k+1
j +

∑
j∈N+

` (i)

uh,kj

)
−

∑
`∈{x,y}

|N`(i)|
h2`

for chi = 0 .

(2.32)

2.5.2 Bidirectional Multigrid

Unfortunately, iterative solvers, such as the presented Gauss-Seidel method,
have one decisive drawback: Due to the local coupling of neighbours in the
iteration scheme, it may take thousands of iterations to spread information
over large distances. As a consequence, only high frequencies of the error
are reduced, while low frequencies remain almost undamped. This leads to
a convergence rate that is very fast at the beginning, but which then slows
down significantly after a few iterations.

In order to overcome this problem, bidirectional multigrid methods
[Bra77, BHM00, Hac85, TOS01, Wes04] utilise the coarser levels where they
obtain useful correction steps. How this works exactly, will be described
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in detail by the following example of a two-grid cycle, which will form the
basis of our implementation (cf. [MBWF11]).

(1) Presmoothing Relaxation First, we perform a few iterations with
the Gauss-Seidel method given by Equation (2.31). By doing this, we reduce
the high frequency components of the estimation error.

(2) Coarse Grid Computation The first step only gives us an approx-
imation ũh of the correct solution uh. To correct our result, it would be
desirable to know the error wh = uh − ũh. However, this error cannot be
determined directly as we do not know the solution uh. Nevertheless, it is
possible to compute the residual rh = Chfh −Mhũh that is related to
the error wh via the following equation:

Mhwh = Mhuh +Mhũh = Chf −Mhũh = rh. (2.33)

The basic idea of bidirectional multigrid methods is to transfer this so-called
residual equation Mhwh = rh to a coarser grid, with grid spacing H > h,
by restricting the entries of Mh and rh. Apart from the reduced compu-
tational effort on the coarse grid, this strategy offers the advantage that
low frequencies on the fine grid reappear as higher ones on the coarse grid.
Hence, they can be efficiently attenuated by reapplying the Gauss-Seidel
solver as done in the presmoothing relaxation step. Moreover, transferring
the residual equation to the coarse grid yields a system that has almost the
same structure as the original one from the fine grid given by Equation (2.9):

(CH − (I −CH)AH)︸ ︷︷ ︸
MH

wH = rH . (2.34)

Thus the Gauss-Seidel step here looks very similar to the one from Equa-
tion (2.31):

wH,k+1
i =

rHi + (1− cHi )
∑

`∈{x,y}

1
H2
`

( ∑
j∈N−` (i)

wH,k+1
j +

∑
j∈N+

` (i)

wH,k
j

)
cHi − (1− cHi )

∑
`∈{x,y}

|N`(i)|
H2
`

,

(2.35)

If the number of pixels is small enough, we use a direct solver, for example
Gaussian elimination [Sch97c], to obtain the solution.
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h

H

H
′

H
′′

Fine

Coarse

Figure 2.2: V–cycle (left) and W–cycle (right) for four levels with increasing
resolution from H ′′ to h (decreasing grid size).

(3) Coarse Grid Correction After we have solved the residual equation
system on the coarse grid, we have to transfer the computed error back on
the fine grid to correct our previous approximation. This correction step is
given by ũhnew = ũh +wh.

(4) Postsmoothing Relaxation Finally, we perform again a few iter-
ations with the original Gauss-Seidel method from Equation (2.31). This
step allows us to remove high frequency errors that have been introduced
by the interpolation of the coarse grid error.

2.5.3 Advanced Multigrid Strategies

In the previous explanation, we have only considered a two-grid cycle. How-
ever, instead of solving the residual equation system at the coarse grid dir-
ectly, it is more efficient to use a third, even coarser grid that provides a
correction step for the second one. By repeating this approach recursively,
we obtain a so-called V–cycle (see Figure 2.2, left). An even better con-
vergence rate, at the expense of slightly increased computational costs, can
be reached with a so-called W–cycle (see Figure 2.2, right). Whenever we
obtain a fine grid solution from a coarser level for the first time, we fur-
ther improve this result by applying the whole procedure for a second time.
Thus, we visit each coarse grid twice per corresponding fine level. Addition-
ally, one can speed up the computation by starting with a reasonably good
initialisation. To this end, we embed the W–cycle in a coarse-to-fine estim-
ation framework: Starting from a very coarse grid, we successively refine
the original problem (see Equation (2.9)). Solutions u from coarser levels
serve as initialisations of unknown pixels on finer ones. At each level, the
aforementioned W–cycle is used to solve the resulting linear system. The
combination of error correction steps and hierarchical initialisation, yields
the so-called full multigrid method. Figure 2.3 illustrates how the differ-
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h
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H
′

H
′′

Fine
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Figure 2.3: Full multigrid scheme for four levels with increasing resolution
from H ′′ to h (decreasing grid size). At each level one W–cycle is used to solve
the resulting system.

ent grids are successively traversed. In this thesis, we use a full multigrid
scheme with one W–cycle per level. The choice of the number of pre- and
postsmoothing iterations depends on the problem in which inpainting is
applied and will be stated in the corresponding chapters.

2.5.4 Transfer between Grids

The transfer between the different grids is usually achieved by a pair of
so-called restriction and a prolongation operators. The restriction operator
delivers the coarse grid version to the fine one. Vice versa, we obtain the
fine grid version from a coarse one by applying the prolongation operator.

Considering Equation (2.34), we only need to define the restriction of
the mask ch and the residual vector rh as well as the prolongation of the
error eH . The discretisation of the Laplacian, i.e. AH , is redone on each
level and follows directly from the corresponding grid spacings. For the
coarse-to-fine strategy mentioned in Section 2.5.3, we need in addition the
restriction of f and the prolongation of the solution uH .

As proposed in [BWF+03], the restriction and prolongation operators
can usually be realised by non-dyadic versions of area-based averaging and
area-based interpolation, respectively. However, this approach leads to non-
binary, blurred masks with values in the range between 0 and 1, and is thus
not in accordance with the original problem. A straight-forward restriction
of the original image f is not possible since it is only known at specific
locations. The only way is to restrict its sparse version Cf . This in turn
leads to undesired averaging effects between the known values of f and the
zero entries of c.

As a remedy, we propose a strategy similar to normalised convolution
known from scattered data interpolation [KW93]. The key idea in this con-
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text is to exploit that all averaging effects become explicit in the restricted,
non-binary version c̃H obtained from the binary mask ch. Thus, assuming
that we have some coarse grid data ṽH given by the restriction of the sparse
fine grid data vh := (Cf)h, we define the following normalisation:

vHi :=


ṽHi
c̃Hi

for c̃Hi 6= 0 ,

0 for c̃Hi = 0 .

(2.36)

By applying this normalisation in addition to the restricted mask c̃h itself,
i.e. ṽh := c̃h, it becomes binary again. In contrast, since the residual vector
r is dense, despite of f being sparse, it does not need any normalisation
during restriction.

What is left is the prolongation of the error eH and the solution uH

from a coarser to a finer grid. For this purpose, we apply the area-based
interpolation scheme with a slight modification: We can exploit the fact
that the results for uh and eh are known at mask pixels, i.e. where chi = 1.
Thus, after prolongation we simply set back the data to the known values
uhi = fi and ehi = 0 at those locations.

2.6 Advanced Differential Operators

Homogeneous diffusion inpainting is actually just one of the various pos-
sible alternatives that the class of so-called PDE-based inpainting methods
offers. The type of the method is generally characterised by the differential
operator that is the Laplacian ∆ in the case of homogeneous diffusion in-
painting. It determines how the given data is filled into the unknown areas.
In contrast to the Laplace operator, which spreads given information homo-
geneously, there exist more sophisticated operators, which even allow the
reconstruction of edges. In this section, we will briefly discuss two of those
alternatives, which will also be used later in this thesis.

Let us start by briefly rephrasing the extended inpainting formula-
tion (2.4), where we replace the Laplace operator ∆ by a general differential
operator L. PDE-based inpainting can then be more generally described
by:

c(x)(u− f) − (1− c(x))Lu = 0 on Ω ,
∂nu = 0 on ∂Ω .

(2.37)

There are various possibilities how to choose L. Intuitively, one would use
more advanced diffusion operators. Besides homogeneous diffusion, there
are nonlinear versions which adapt the strength of the diffusion depending
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on image structures. In addition, it is possible to implement an anisotropic
behaviour to steer the direction of the diffusion process [Wei98a]. Common
choices, are also higher order versions of the Laplacian ∆, i.e. using ∆p

with some exponent p ∈ N+. Besides those there are even more exotic
choices. Caselles et al. [CMS98] for example justified the use of the absolute
minimal Lipschitz extension (AMLE) [Aro67]. Other PDE-based inpainting
algorithms were introduced by [TS06] and [BM07]. A nice overview and
evaluation of the different operators in the context of PDE-based image
compression is given by [Sch12, SPM+14].

Besides homogeneous diffusion, in this thesis, we will consider the so-
called biharmonic operator as well as edge-enhancing (anisotropic) diffusion
(EED) [Wei96b]. Still the largest part will be concerned with with homo-
geneous diffusion.

Note that in contrast to homogeneous diffusion, the implementations
of the inpainting methods that are based on the biharmonic operator and
on nonlinear anisotropic diffusion are more complicated and considerably
slower. Thus, for the examples used in this thesis, they only provide close
to real-time performance. This can be remedied by efficient algorithms
and hardware different to CPUs. In [KSFR07] Köstler et al. developed
multigrid methods for the EED-based codec as proposed in [GWW+05].
They could show that it is possible to use these to encode videos in real-
time on a Playstation 3 device. Moreover, for EED-inpainting, efficient
implementations using the FED-scheme on GPUs exist [Gwo12].

2.6.1 Biharmonic Operator

The biharmonic operator is the simplest higher order linear operator and
is defined as

Lu := −∆2u . (2.38)

Using it for interpolation comes down to thin plate spline interpola-
tion [Duc76], a rotationally invariant multidimensional generalisation of
cubic spline interpolation. Its corresponding Green function belongs to
the family of radial basis functions [Buh03]. Compared to the Laplace op-
erator, it yields a smoother solution u around the interpolation data. This
reduces the typical singularity artefacts (see Figure 2.4) which distort the
visual quality with homogeneous diffusion inpainting. On the other hand, it
is prone to over- and undershoots, i.e., the values of u leave the range of the
original image. This cannot happen for homogeneous diffusion inpainting
which fulfils the maximum-minimum principle (cf. Section 2.4.3).
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a b c d e

f g h i j

Figure 2.4: Reconstructions with different differential operators. (a) Original;
(b) Inpainting mask, marking 4% of all pixels, randomly chosen; (c-e) Recon-
structions with homogeneous diffusion (c), biharmonic operator (d) and edge-
enhancing diffusion (EED) (e) when using the inpainting mask (b) and grey
values as given by the original (a). Last row: Zoom into (a-e), region marked
by red rectangle.

Discretisation

Unfortunately, the direct discretisation of the biharmonic operator is not
straightforward since the resulting expression contains fourth order (mixed)
derivatives: −∆2u = −(uxxxx+2uxxyy+uyyyy). However, it can be rewritten
as −∆2u = ∆(−∆u). The discretisation of this expression is now simple
again as we can use the discrete version of the Laplacian, i.e. the matrix A
as defined in Equation (2.7). Hence, the discrete formulation of biharmonic
inpainting reads:

C(u− f)− (I −C)A(−Au) = 0 . (2.39)

If we now introduce an auxiliary vector v := −Au the whole problem can
be reformulated as

Cu− (I −C)Av = Cf , (2.40)

−Au− v = 0 , (2.41)

which essentially means we replaced our second order problem by two first
order ones. Equivalently, we can combine Equation (2.40) and (2.41) to one
equation system:(

C −(I −C)A
−A −I

)(
u
v

)
=

(
Cf
0

)
. (2.42)
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Numerics

This system of equations could now be solved for u and v with the normal
Gauss-Seidel scheme. However, since there is a strong coupling of the un-
knowns u and v in this equation system, it makes sense to update in each
step not only one unknown, but instead for each pixel i the two unknowns
ui and vi at once. This can be done by solving for each pixel a 2× 2 equa-
tion system. In the literature such schemes are known as coupled point
relaxation methods [Wes04]. More specifically, in combination with the
Gauss-Seidel method it is called Block-Gauss-Seidel method. The general
update step reads as follows:

Biix
k+1
i = bi −

∑
j∈J
j<i

Bijx
k+1
j −

∑
j∈J
j>i

Bijx
k
j for each block i . (2.43)

Thereby xi is a vector that contains n consecutive unknowns which are
updated simultaneously. The original system matrix is divided into blocks
Bij of size n × n, i.e. each block describes a sub-matrix of the original
matrix. Hence, to make the method applicable to our problem, we re-
order the rows of Equation (2.42) such that the entries of the solution vec-
tor are ordered pixel-wise, i.e. it is given by (u1, v1, . . . , u|J |, v|J |)

> rather
than (u1, . . . , u|J |, v1, . . . , v|J |)

>. Similar to how it was done in the previ-
ous chapter, let us illustrate the structure of the resulting equation system
by the example of the 3 × 2 image given by Figure 2.1, with grid spacing
hx = hy = 1:

0 2 0 −1 0 0 0 −1 0 0 0 0
2 −1 −1 0 0 0 −1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
−1 0 3 −1 −1 0 0 0 −1 0 0 0

0 0 0 −1 0 2 0 0 0 0 0 −1
0 0 −1 0 2 −1 0 0 0 0 −1 0
0 0 0 0 0 0 1 0 0 0 0 0
−1 0 0 0 0 0 2 −1 −1 0 0 0

0 0 0 −1 0 0 0 −1 0 3 0 −1
0 0 −1 0 0 0 −1 0 3 −1 −1 0
0 0 0 0 0 −1 0 0 0 −1 0 2
0 0 0 0 −1 0 0 0 −1 0 2 −1





u1

v1

u2

v2

u3

v3

u4

v4

u5

v5

u6

v6



=



0
0
f2

0
0
0
f4

0
0
0
0
0


(2.44)

Note the alternating structure of the rows, which was created by reordering
the solution vector. While grey coloured rows refer to Equation (2.40),
white ones relate to Equation (2.41).
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Applying the block Gauss-Seidel method to our equation system yields
as left-hand-side of Equation (2.43)

Biix
k+1
i =

 ci −(1− ci)
∑

`∈{x,y}

|N`(i)|
h2`

−
∑

`∈{x,y}

|N`(i)|
h2`

−1

( uk+1
i

vk+1
i

)
, (2.45)

and as right-hand-side

bi −
∑
j∈J
j<i

Bijx
k+1
j −

∑
j∈J
j>i

Bijx
k
j

=


cifi + (1− ci)

∑
`∈{x,y}

1
h2`

( ∑
j∈N−` (i)

vk+1
j +

∑
j∈N+

` (i)

vkj

)
∑

`∈{x,y}

1
h2`

( ∑
j∈N−` (i)

uk+1
j +

∑
j∈N+

` (i)

ukj

)
 . (2.46)

In order to simplify notation, we introduce the following abbreviations:

[
∆Ci
]

:=
∑

`∈{x,y}

|N`(i)|
h2
`

, (2.47)

which is denoting the weight of the central element of the discretised Lapla-
cian, and

[
∆Ni (u)

]
:=

∑
`∈{x,y}

1

h2
`

 ∑
j∈N−` (i)

uk+1
j +

∑
j∈N+

` (i)

ukj

 . (2.48)

which is denoting the Laplacian weighted sum over the current neighbouring
grey values of u (i.e. the central element is excluded). Then the equation
system of the Block-Gauss-Seidel method (2.43) reads for all i ∈ J :(

ci −(1− ci)
[
∆Ci
]

−
[
∆Ci
]

−1

)(
uk+1
i

vk+1
i

)
=

(
cifi + (1− ci)

[
∆Ni (v)

][
∆Ni (u)

] )
.

(2.49)
We can solve this 2× 2 equation system explicitly by applying for instance
Cramer’s rule. Sorting the obtained nominator and denominator by the
mask entries, i.e. by ci and (1 − ci), finally gives the following update
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equations:

uk+1
i =

cifi − (1− ci)
([

∆Ci
]
·
[
∆Ni (u)

]
−
[
∆Ni (v)

])
ci + (1− ci) · [∆Ci ]

2 (2.50)

vk+1
i =

ci ·
([

∆Ci
]
·fi +

[
∆Ni (u)

])
+ (1− ci)·

[
∆Ci
]
·
[
∆Ni (v)

]
−ci − (1− ci) [∆Ci ]

2 . (2.51)

The embedding into a full multigrid solver as done in Section 2.5 is then
straight forward.

2.6.2 Edge-Enhancing Anisotropic Diffusion

Secondly we consider edge enhancing-diffusion [Wei96b], which is an aniso-
tropic nonlinear diffusion operator. It can be described with the general
diffusion equation:

Lu := div(D∇u) , (2.52)

where, D is the so-called diffusion-tensor, a symmetric 2 × 2 matrix. As
one can easily verify, we obtain homogeneous diffusion, by using the identity
matrix as diffusion tensor, i.e. by setting D := I:

div(I∇u) = div(∇u) = ∆u . (2.53)

In general,D steers the diffusion process by its eigenvectors and eigenvalues.
This explains the uniform behaviour of homogeneous diffusion inpainting,
as both eigenvalues are equal. In contrast, the eigenvalues and eigenvectors
of D for EED are designed in dependence of ∇uσ, i.e. the gradient of
the Gaussian-smoothed version uσ of the image u with standard deviation
σ. The first eigenvector v1 of D is chosen to be orthogonal to ∇uσ, and
the corresponding eigenvalue µ1 is fixed at 1. Since ∇uσ acts as a fuzzy
edge detector, this gives full diffusion along image edges. In contrast, the
second eigenvector v2 is chosen to be parallel to ∇uσ, and its eigenvalue µ2

is computed, by applying the so-called Charbonier diffusivity [CBAB97] to
the squared gradient magnitude |∇uσ|2:

g(|∇uσ|2) :=
1√

1 + |∇uσ |2
λ2

. (2.54)

Thus, across edges with high contrast the decreasing behaviour of the second
eigenvalue w.r.t. |∇uσ| reduces the diffusion. The parameter λ > 0 allows
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to steer this contrast dependence. Having defined its eigenvalue and the
corresponding eigenvectors, D is given by the following composition:

D := µ1v1v
>
1 + µ2v2v

>
2 (2.55)

=
∇u⊥σ
|∇uσ|

(
∇u⊥σ
|∇uσ|

)>
+ g(|∇uσ|2)

∇uσ
|∇uσ|

(
∇uσ
|∇uσ|

)>
. (2.56)

In image inpainting EED has the capability to reconstruct image edges.
Due to this behaviour this operator is one of the most favourable ones espe-
cially in the context of PDE-based image compression [GWW+08, SWB09,
SPM+13]. Moreover, as a diffusion process, it preserves a max-min-principle
and at the same time singularities are not as frequent as they are for ho-
mogeneous inpainting.

Discretisation

In the context of diffusion filtering, it is usually desirable that a dis-
cretisation fulfils specific scale space requirements. They lead to well-
posedness and other scale space results, such as average grey level invari-
ance, maximum-minimum principle, and convergence to a constant steady
state. However, in the case of anisotropic nonlinear diffusion filtering, such
as EED, it is often difficult to meet those requirements. Typical discret-
isations [Wei99c] of the operator (2.52) cause problems since the diagonal
entries of the diffusion tensor cannot be ensured to be non-negative. As
a result one of the demanded scale space requirements will be violated.
There is also a so-called non-negativity discretisation [Wei98a] which gives
more stable results. It fulfils the requirements if the condition number of
the diffusion tensor does not exceed a value of 3 + 2

√
2 ≈ 5.8284. How-

ever, concerning rotational invariance even this discretisation might in some
scenarios not give satisfying results. In such cases the recently published
discretisation framework of [WWW13] can help.

In practice, any of those discretisations could be used for our purposes
and would in most cases deliver comparable results. In this thesis we will
use a non-negativity discretisation as it allows sufficiently precise results.
We will not go further into detail how the discretisation looks like as it is of
minor interest in this thesis. Instead, we refer the reader to the respective
literature mentioned above.

Even though there are different possibilities for the discretisation of the
expression (2.52), its discrete equivalent is in general given by a matrix with
a similar structure as the ones of the homogeneous and the biharmonic op-
erators. However, for EED this matrix depends on the reconstruction u
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and thus the resulting system of equations becomes nonlinear (cf. Equa-
tion (2.9)):

(C − (I −C)A(u))︸ ︷︷ ︸
=:M(u)

u = Cf . (2.57)

Numerics

In order to solve it, we use a method which is also known as time-lagged
diffusivity or Kačanov method [FKN73, CM99]: We replace the nonlinear
system by a sequence of linear problems:

(C − (I −C)A(us))us+1 = Cf , (2.58)

where us denotes the result of the s-th iteration and we set u0 := f as
initialisation. Those linear system of equations can then again be solved
with the Gauss-Seidel method, so that we get the following update-step (cf.
Equation (2.29)) for all i ∈ J :

us+1,k+1
i =

cifi + (1− ci)

∑
j∈J
j<i

asiju
s+1,k+1
j +

∑
j∈J
j>i

asiju
s+1,k
j


ci − (1− ci)asii

, (2.59)

where we abbreviated the entries of A(us) by asij := aij(u
s) for notational

simplicity.
As for homogeneous diffusion inpainting and biharmonic inpainting we

could again embed this basic solver into a full multigrid scheme (cf. Sec-
tion 2.5). However, experiments have shown that the overhead necessary
to perform the V/W-cycles in combination with the Kačanov- and the
Gauss-Seidel iterations does not pay off in terms of runtime for the case
of EED [Bru10a]. Instead, it is more convenient to replace the Gauss-Seidel
method by a variant, the so-called method of successive over-relaxation
(SOR) [Saa03] and to embed it into a pure coarse-to-fine strategy. Let us
write ũs+1,k+1

i for the solution of one Gauss-Seidel step for the pixel i ∈ J
as given in Equation (2.59). Then the SOR method replaces this solution
by its pointwise extrapolation:

us+1,k+1
i = us+1,k

i + ω(ũs+1,k+1
i − us+1,k

i ) , (2.60)

with a so-called relaxation parameter ω ∈ (1, 2). In our case we choose
ω = 1.93. Starting on the coarsest grid with initialisation 0 we refine the



2.7. COLOUR IMAGES 31

problem step by step by using the interpolated coarse results as initialisation
on the next finer level, and use the prolongation and restriction operators
as explained in Section 2.5.4. For our applications it suffices to perform
20 Kačanov-steps for each level and for each Kačanov-step 5 Gauss-Seidel
iterations.

2.7 Colour Images

So far we only considered greyscale images that were given as scalar valued
functions f : R2 → R. Since we will also deal with colour images in this
thesis, we have to extend the previous concepts of inpainting to vector-
valued functions f : R2 → Rn, where n denotes the number of channels.
More specifically, we will write an RGB colour image as a vector f(x) =
(fR(x), fG(x), fB(x))> that contains the values for the red, green and blue
channel.

Of course, the most obvious solution would be to simply apply diffusion
based inpainting channel-wise. However, from the perspective of compres-
sion it is questionable whether it really pays of to store a separate mask
for each channel. Often there is even a relation between the values of the
different channels, such that a coupling is desirable anyway. Therefore, we
will use the same mask for each channel.

It should be mentioned that there are cases in which it would be reas-
onable to have different masks. Using the YCbCr-colour space instead of
the RGB one constitutes such an example. There, the luma component Y
basically represents a greyscale version of the original colour image, which
means it contains all image structures. In contrast, the chroma components
Cb and Cr only measure the distance from grey in the blue-yellow and in
the red-cyan directions, respectively. As a result, the chroma channels can
be subsampled to a much coarser level than the luma channel. This tech-
nique is also applied in the well-known JPEG compression standard [PM92].
For PDE-based image compression this means, one can store much sparser
masks for the chroma channels, and invest more in the Y-channel, as it is
done in [PW14].

Using the same mask c for each channel, we can apply both, homo-
geneous diffusion inpainting as well as biharmonic inpainting, channel-wise.
This is different for EED. Because it is a space-variant filter, i.e. its diffu-
sion behaviour changes depending on the local structure, a coupling between
the channels via the diffusion-tensor is desirable. This means that for EED-
inpainting on RGB colour images we want to use a common diffusion tensor
for all the channels.
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As in the case of grey value images we would like to design it by consid-
ering the gradient of the smoothed image (see Equation (2.56)). The main
question is how the gradient of a colour image is defined. Summing up the
gradients of all channels is obviously not a good idea since they can cancel
out, even if in all channels a strong gradient and thus an edge is present.
Di Zenso [Di 86] suggests a solution to this problem: Let J be the sum over
the tensor products of the image gradients (in our case presmoothed) for
each channel:

J :=
∑

∗∈{R,G,B}

∇u∗σ∇u∗
>
σ . (2.61)

Then the gradient direction of a RGB colour image is given by the nor-
malised eigenvector w1 of J corresponding to the largest eigenvalue λ1.
Moreover, the eigenvalue λ1 serves as squared gradient magnitude. Note
that w1 can be interpreted as the unit vector that is so to say “most par-
allel” to all the gradients of the different channels whereas λ1 describes the
joint contrast in this direction. As in Equation (2.55), we can now again
compose the diffusion tensor, this time for the case of RGB colour images:

D = µ1v1v
>
1 + µ2v2v

>
2 := w⊥1 w

⊥
1

>
+ g(λ1) ·w1w

>
1 . (2.62)

Note that this definition also holds for grey value images: There, J simplifies
to ∇uσ∇u>σ . The normalised eigenvectors of J are then given by

w1 =
∇uσ
|∇uσ|

and w2 =
∇u⊥σ
|∇uσ|

. (2.63)

with associated eigenvalues λ1 = |∇uσ|2 and λ2 = 0, respectively. If we
insert those values in Equation (2.62), we arrive at Equation (2.56).

Now that we have defined the diffusion tensor for EED, the discretisation
can be carried out for all the operators in each channel exactly as in the
grey valued case.



Chapter 3
Edge-based Image Compression

3.1 Motivation

The fact that we are able to understand cartoons and line-drawings indicates
that edges provide perceptual meaningful data. This makes them also an
interesting feature for image processing and computer vision purposes where
edges are often understood as an intermediate step from a pixel-based to a
semantic image representation.

Since it is more compact to describe an image by a few contours than
by many pixels, edges are also of potential interest for image compression.

In general, approaches that incorporate properties of the human visual
system into image compression belong to the class of so-called second-
generation image coding methods [KIK85, RMB97]. They usually do not
rely on basis transforms, as it is the case for JPEG and JPEG2000. In-
stead, they extract perceptually relevant features of the image and neglect
visually insignificant data. Hence, those methods are in general also lossy.

Regarding the specific field of edge-based coding, there exist numerous
theoretical and experimental papers [BL77, COL85, YP86, ZR86, Che87,
Cai88, HM89, GG90, MZ92a, Dro93, SH93, AG94, AD96, DMMH96, Eld99,
Mai08, WZSG09] which have shown that in general reconstructions from
edge data are possible. However, it has been experienced that knowing the
locations of edges alone is not sufficient to reconstruct an image. Therefore,
the mentioned papers make different suggestions about additional data to
be added in order to obtain “complete” reconstructions. Some suggest to
incorporate gradient information, others propose to store the grey values
adjacent to the edges. It is also possible to consider subsampled image

33
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a b c

Figure 3.1: (a) Test image comic (512 × 512, synthetic). (b) Zoom into
reconstructed colour pixels adjacent to the edges of the test image comic. Un-
defined pixels are coloured white. (c) Zoom into corresponding reconstruction
with homogeneous diffusion inpainting.

data that lies not directly at the edge or to include some scale information.
Not all the mentioned papers used their reconstruction approaches with the
goal of application to image compression. However, those who did were not
able to come up with competitive results to compression standards such as
JPEG or JPEG2000. Either the required data could not be encoded in a
sufficiently compact way or the results turn out to be of inferior quality.

Only recently, we have presented in [MW09, MBWF11] that such ap-
proaches can clearly outperform the quality of JPEG2000 for cartoon-like
images. In this chapter, we are going to discuss this edge-based compression
algorithm. The basic idea is appealingly simple. During encoding we first
detect the edges of the original image. In a second step, we consecutively
collect only those grey or colour values that lie in the direct neighbourhood
of the edges. The obtained values are then further compressed and finally
stored together with the locations of the extracted edges. During decoding,
the colour values are again distributed along the edges. They now form the
Dirichlet data for inpainting (see Chapter 2.3). Since edges usually split
areas of different brightness or colour we end up with sufficient informa-
tion to fill-in the missing areas between the edges. Figure 3.1 shows an
exemplary result.

In our compression codec, we use homogeneous diffusion inpainting. We
prefer this simple inpainting approach in this setting over more advanced
ones such as biharmonic- or EED-inpainting for several reasons: First of
all, it is one of the analytically best understood inpainting approaches.
Recently, Belhachmi et al. [BBBW09] presented a continuous analysis on
spatially optimal data selection for homogeneous diffusion interpolation.
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a b c

Figure 3.2: (a) Test image svalbard (380 × 431, real world). (b) Modulus of
the Laplacian of (a) normalised to [0,255]. The darker the colour, the larger the
modulus of the Laplacian. (c) Zoom into (b).

Their framework is based on the theory of shape optimisation and sug-
gests to choose the interpolation data proportional to the modulus of the
Laplacian of the image1. As illustrated in Figure 3.2, this corresponds for
cartoon-like images to the pixels left and right of an edge contour. Hence,
by choosing homogeneous diffusion for inpainting and by using the pixels
adjacent to edges as inpainting data, we meet the suggestion of Belhachmi
et al. [BBBW09] to a certain extent.

Secondly, homogeneous diffusion inpainting is the simplest and compu-
tationally most favourable inpainting approach based on partial differential
equations (PDEs) [MM98a]. Using the full multigrid scheme as introduced
in Section 2.5, our codec is not only able to encode but also to decode
images in real time. This would be hardly possible with biharmonic or
EED-inpainting.

Moreover, one of the reasons for the bad reputation of homogeneous
diffusion for inpainting tasks is that individual points may create unpleasant
singularities in the solution of the Laplace equation (cf. Figure 2.4(c) and
(h)). Since we using connected contours this problem does not appear in
our case.

Last but not least, in 1935 Werner already stated an interesting hy-
pothesis [Wer35]: He claimed that a contour-based filling-in process is re-
sponsible for the human perception of surface brightness and colour. To this
end, filling-in information from image edges resembles a classical finding in
biological vision and thus again meets the spirit of second generation image
coding.

1 We will come back to this approach in the next chapter, see Section 4.2.1
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As a result of our work, there have been papers with modified versions
of our codec tailored to the compression of depth maps [LSJO12, GMG12].
Even though depth maps look cartoon-like at first glance, it turns out that
our codec gives unsatisfactory results in this case. This is because homo-
geneous variations cannot be represented well by our codec. As a remedy
the modified versions add further pixels values at regular grid points. Other
changes are the usage of different edge detectors and alternative encoding
techniques of the extracted data.

In [HMWP13], this concept was further improved. By replacing the
edges by segment boundaries and performing the inpainting within each
segment separately, the colour information along the edges became obsol-
ete. Moreover, the quality has been increased by including optimisation
techniques such as the ones we will introduce in the next chapter.

Closely related ideas to our approach have recently also found a
lot of attention in the computer graphics domain. So-called diffusion
curves [OBW+08] consist of a few smoothly varying colour values along
each side of a scalable curve. Similar to our approach, the colours from
each side of the curve are spread into the image. This allows artists to
create resolution-independent artworks. Furthermore, representing extrac-
ted edges of an image with Bézier splines allows an automatic conversion
of pixel based images into a representation with diffusion curves. However,
there are also indicators that an application to image compression in its
current form would likely require further improvements [OBB+13].

Finally, there is related work that also employs the idea of combin-
ing inpainting and edges for the purpose of image compression[WSWX06,
SWL06, LSW+07b]. In contrast to our codec, those apply structure and
texture inpainting techniques instead of PDE-based ones.

This chapter is structured as follows: Section 3.2 describes the encod-
ing method, including edge detection, edge location encoding, and pixel
value encoding. In Section 3.3 we briefly discuss the decoding. After an
experimental evaluation in Section 3.4 we conclude the chapter with a short
summary in Section 3.5.

3.2 Encoding

In this section we explain the encoding phase, which essentially consists of
three steps. First of all, edges are extracted which encode the location of
adjacent grey or colour values. The second step is to encode these locations
efficiently. The last step addresses the encoding of the grey or colour values.
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3.2.1 Edge Detection

Even though until today plenty of edge detectors have been developed,
we will use one of the oldest and most classical edge detectors: The
Marr-Hildreth edge detector [MH80]. It extracts edges as zero-crossings
of the Laplacian of a Gaussian presmoothed image fσ, where σ denotes
the standard deviation of the Gaussian kernel. For an RGB colour image
f = (fR, fG, fB)> we extract the zero-crossings of the sum of the Laplacians
over all channels:

∆f =
∑

∗∈{R,G,B}

∆f∗ = ∆

 ∑
∗∈{R,G,B}

f∗

 . (3.1)

In this form, the Marr-Hildreth edge detector is obviously very simple to im-
plement and at the same time one of the fastest edge detectors. Moreover,
it suits well the theory of Belhachmi et al. [BBBW09], mentioned in the pre-
vious section: Evidently at the zero-crossing itself the Laplacian magnitude
is zero, whereas it is larger than zero everywhere else. At sharp edges the
Laplacian magnitude is largest directly to the left an the right side of the
zero-crossing (see Figure 3.2).

As the Laplacian will be zero in homogeneous regions as well, and
those zero-crossings obviously have no perceptual significance, we combine
the Marr-Hildreth edge detector with hysteresis thresholding as sugges-
ted by Canny [Can86]. To this end we first identify edge candidates as
zero-crossing pixels where the edge magnitude exceeds a given threshold
T1. Thereby the edge magnitude of a grey value image is defined to be
the gradient magnitude of the original image. In the case of colour im-
ages, it is given as the length of the vector (|∇fR|, |∇fG|, |∇fB|)>, i.e. as√
|∇fR|2 + |∇fG|2 + |∇fB|2. The gradients are computed using Sobel op-

erators. Next, all edge candidates with an edge magnitude that is larger
than a threshold T2 > T1 become seed points for relevant edges. Moreover,
those pixels are already considered to be final edge pixels. Afterwards, we
recursively add all edge candidates that are adjacent to final edge pixels.
This allows to keep edge pixels connected as much as possible.

In general, we are of course not strictly bound to this specific edge
detector. However, modern edge detectors often aim at the detection of
object boundaries and are thus not necessarily well-suited for our purposes.
Other simple edge detectors such as the Canny edge detector [Can86] or
methods based on the Tobbogan watershed segmentation [Fai90] deliver
comparable results. Still our experiments have shown that best results for
cartoon-like images, can usually be obtained with a zero-crossings-based
edge detector.
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3.2.2 Encoding the Contour Location

As we will see, the detected edges indirectly encode the mask for the in-
painting process during decoding. Hence, it is necessary to store this in-
formation in an efficient way. Since the edges of an image can be visualised
as a bi-level image as depicted for example in Figure 3.3, it seems to be
natural to simply store this bi-level image with a suitable method. For the
compression of bi-level images several methods exists.

The so-called JBIG (Joint Bi-level Image Experts Group) stand-
ard [Joi93] has been developed as a specialised method for the compression
of bi-level images, mainly with respect to telefax transmission images which
mostly contain textual and line drawing information. An edge image – that
is how we denote a bi-level image that is depicting edges from now on – ac-
tually provides quite similar data. In this thesis we use JBIG-KIT [Kuh95],
which is a free C implementation of the JBIG coder. To get optimal com-
pression results for our data, we apply the method in its non-progressive
mode that also automatically excludes the so-called deterministic predic-
tion. Furthermore, we disable the typical prediction step of JBIG. Usually
the JBIG standard allows to subdivide an image into stripes and encodes
these stripes separately. We prevented the routine from doing this such that
the image is encoded in its entirety. Finally we set the maximum adapt-
ive template pixel offset to 0. With these settings, the routine essentially
comes down to a context-based arithmetic coder using a static template for
prediction.

JBIG2 [HKM+98, Joi99] is the successor of JBIG and can for example
be found as a compression scheme in PDF files versions 1.4 and above.
In this thesis we use the open source encoder jbig2enc (Version 0.27) as
well as the open source decoder jbig2dec (Version 0.10). JBIG2 offers a
so-called symbol mode. In this mode it tries to group the (textual) data
into symbols that are stored in a dictionary. This dictionary is encoded
using context-dependent arithmetic coding. Since similar looking symbols
are represented by a single bitmap jbig2enc is lossy. If the symbol mode
is disabled the coder typically relies on a context-based arithmetic coding
algorithm as JBIG does, and is lossless.

Last but not least we want to consider the computer file format
DjVu [BHH+98]. It was designed to store scanned documents. This com-
prises a combination of line drawings and text, but also photographs. For
pure bi-tonal images the open source DjVu-library DjVuLibre offers an en-
coder (cjb2) and a decoder (ddjvu). The method used by cjb2 is called
JB2 and is similar to the symbol mode of JBIG2. cjb2 provides a lossless
and a lossy mode. The lossy mode allows small changes on the input image
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Figure 3.3: Test set of edge images: (a) comic (512× 512), (b) coppit (256×
256), (c) boats (512× 512), (d) svalbard (380× 431), (e) trui (256× 256).

in order to improve the compression ratio. We applied cjb2 in its lossless
mode and in its highest possible lossy setting (i.e. losslevel=200).

Our codec allows to choose any of the presented coders by setting a flag
in the file header. Theoretically, if time is not an issue one could let the
algorithm try all different methods and always pick the one which gives the
best result. However, if we analyse which coder offers in general the best
performance on edge images, such an optimisation step seems to be a waste
of time: Table 3.1 gives a comparison of the methods applied to a test set
of five different edge images (see Figure 3.3). The results clearly suggest to
favour JBIG for the encoding of our data. Even the lossy mode of DjVu
cannot beat its compression rates. In addition, JBIG is most often the
fastest of all presented methods. Thus, for the results shown in Section 3.4
we restrict ourselves to the JBIG coder.

3.2.3 Encoding the Contour Pixel Values

Besides the edge image, we also need to store the grey or colour values
needed for inpainting. As mentioned in the previous sections, those pixel
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Table 3.1: Comparison of different bi-tonal coders regarding their compression
ratio and time when encoding the edge images from Figure 3.3. Coders: JBIG,
JBIG2 with generic coder, JBIG2 with symbol-mode (JBIG2S ), DjVu lossless
and DjVu losslevel 200 (DjVuL). CPU: Intel Core 2 Duo T7500 @ 2.20Ghz. The
best result in each line is in bold face letters.

coder
Edge image

comic coppit boats svalbard trui

compression ratio in bpp:
JBIG 0.099 0.124 0.256 0.044 0.173
JBIG2 0.109 0.137 0.273 0.053 0.198
JBIG2S 0.113 0.158 0.304 0.057 0.217
DjVu 0.105 0.160 0.298 0.054 0.199
DjVuL 0.104 0.143 0.295 0.053 0.198

encoding time in ms:
JBIG 3 1 4 3 <1
JBIG2 4 1 5 5 2
JBIG2S 8 7 19 5 5
DjVu 21 16 29 13 14
DjVuL 28 15 45 17 23

decoding time in ms:
JBIG 3 <1 2 3 1
JBIG2 4 1 5 1 <1
JBIG2S 2 3 6 4 1
DjVu 13 16 22 16 21
DjVuL 10 18 18 21 14



3.2. ENCODING 41

values are located adjacent to the extracted edges. In addition, we want to
store all pixel values from the border of the image domain. Experiments
have shown that this gives better results when reconstructing missing in-
formation during decoding.

Ordering of the pixel values

The simplest order in which the pixel values could be stored would be row
by row or column by column by the order of their occurrence. However,
pixel values of opposite edge sides usually differ by a considerable amount.
In contrast, pixel values along one side of a contour usually change only
gradually. Thus, a collection of the pixel values by the order of their oc-
currence along the edges decreases the entropy of the retrieved pixel value
stream. Entropy coders, as we will apply them later on, can benefit from
this ordering and thus offer higher compression rates.

It turns out that collecting the values properly along a contour side is not
as trivial as it seems at first glance. Often edges lie that close to each other
that they share several neighbours. Let us now assume we have a strategy
that would first collect all direct pixels of the first edge. While tracing the
second edge, we would of course not like to recollect pixels values that have
already been fetched for the first edge. Instead, we would only pick the
remaining pixels values. As a result the values of the second edge would
appear highly fragmented, which may lead to high contrast differences in
the pixel value stream. Hence, the entropy would increase.

To overcome this problem it is desirable to have a method that fetches
not only the direct but also adjacent pixel values in a certain neighbour-
hood along the edges. That means pixel values of edges that are close to
each other would then be collected at once. Since those values are anyway
expected to have similar brightness or colour, we prevent the entropy to
increase.

Let f be a grey value image, and let K be the set of mask pixel indices
(cf. Chapter 3), i.e. the indices of the pixels which should be available for
reconstruction when decoding. Here, they are given by those pixels that
are adjacent to edges and in addition the border pixels of the image f . The
following algorithm, which we explain below, yields a 1-D output stream s
that contains the desired pixel values.
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Algorithm: Pixel tracing

Input:

Set of mask pixel indices K, original image f , distance dtr.

Initialisation:

Kvisit := K, empty queues Q1 and Q2.

Compute:

For all i ∈ K:

1. If i ∈ Kvisit, initialise Q1 with i.

2. While Q1 is not empty do:

a. Get and remove a pixel index i from Q1.

b. If i ∈ Kvisit initialise Q2 with i,
remove i from Kvisit, append fi to s and set ilast := i.

c. While Q2 is not empty do:

i. Get and remove a pixel index i from Q2.

ii. For each pixel iN in the 4-neighbourhood of i
with iN ∈ Kvisit do:

If spatial distance between the pixels iN and ilast is
larger than dtr

Put iN on Q1

else

Put iN on Q2, remove it from Kvisit, append fiN to
s and set ilast := iN .

Output:

Pixel value stream s.

Note that in the following subsection, we may refer to a pixel’s index
when saying pixel, depending on the context. We start our algorithm by
creating a set Kvisit that initially contains all pixels of the inpainting mask.
Using this set, we keep track of the pixels that still have to be visited. Thus,
whenever a pixel value is added to the output stream s, we remove it from
the set Kvisit. Moreover, we add it to a queue Q2 as we want to explore
its 4-neighbourhood for unvisited pixels. Last but not least we temporarily
save it in an auxiliary variable ilast so that we know at any time which pixel
contributed last to the output stream.



3.2. ENCODING 43

The core of the algorithm is then essentially given by the loop starting
in Step 2c. There, we retrieve pixels from Q2 until this queue is empty. In
the very first run Q2 contains only one pixel, namely the one corresponding
to the first and only pixel value which has been added to the output stream
s so far. Now we want to explore its neighbours one after the other. For
any neighbour that has not been visited yet and thus is still in Kvisit we
make a decision: If its distance to the pixel whose value has been added
last to s (i.e. ilast) is still smaller than dtr, we append its value to s and
consequently we also remove it from Kvisit, add it to Q2 and store it in ilast.
However, if the distance exceeds dtr, we regard the currently considered
pixel to be too far away from the one whose value has been stored last.
That means the differences between their values are probably high. In this
case we postpone its processing by adding it to a queue Q1. As soon as Q2

is empty, we reinitialise Q2 with the next pixel from Q1, provided it has still
not been visited in the meantime. As soon as all pixels that are 4-connected
to the first one have been visited, Q1 will be empty as well. Only in this case
we reinitialise Q1 with another unvisited pixel from Kvisit. Since the whole
procedure is repeated until all mask pixels have been visited, i.e. Kvisit is
empty, the algorithm is guaranteed to terminate.

In contrast to a pure depth-first search this strategy collects not only
the direct pixel values along an edge. Depending on dtr also reachable pixel
values which lie up to a certain distance close to the edge can be found.

Note that for the sake of simplicity, the algorithm above was given for
the case of a grey value image. It is obvious that in the case of colour
images we simply append the pixel values of each channel to three different
output streams s∗ with ∗ ∈ {R,G,B}.

Subsampling

Our tracing strategy from the previous section takes care to collect the pixel
values in the order of their appearance along the edge. Apart from the fact
that entropy coders can benefit from such an ordering, it also allows us to
reduce the amount data in another way. Instead of storing all collected pixel
values, we only keep every d-th value which means we perform a uniform
subsampling of each pixel value stream. Since pixel values along an edge
change only marginally, the missing pixels can most often be reconstructed
reasonably well with linear interpolation during decoding. The proper re-
construction only fails when neighbouring sample points belong to distinct
edges that do not share any pixels. In this case, the grey or colour values
of those edges will mix and usually lead to a distorted result.
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As a remedy, we consider how the pixel values along edges have been
collected (see previous section). Whenever the queue Q2 is empty, we as-
sume the previously collected pixels to belong to the same edge segment
as there were no more neighbours to be explored. For each edge segment,
we then perform the subsampling separately. We keep both, the start and
the end point of each segment. Note that this approach does not demand
to store any additional information since it fully relies on the stored edge
image.

According to the sampling theorem, the quality of a reconstructed sig-
nal can be improved by presmoothing the original signal. In our method,
we suggest to smooth the separated 1-D signals by a Gaussian convolution
with standard deviation 1, assuming a grid size of 1. This removes small
variations, and thus also improves the compression rate of the entropy coder
later on. Furthermore, smoothing includes some neighbourhood informa-
tion of the removed pixels into the sampled pixels.

In the case of colour images we allow that each stream s∗ is subsampled
with a different resolution, i.e. we have different sampling distances d∗ for
each channel ∗. In the case of RGB images such a different subsampling
usually does not pay not off, as the importance of all three channels is
equally high. In contrast, with other colour spaces such as YCbCr it is quite
common to have different resolutions for the different channels. We have
experienced that our codec could not benefit from such a colour transform.

We also tried different non-uniform subsampling strategies, including a
tree-based approach, as well as setting the locations optimally. However,
those approaches need to store additional overhead to encode the locations
of the sample positions. This additional effort in storage did not pay off in
terms of quality. The results could also not be improved when using higher
order interpolation methods, such as cubic B-spline interpolation, for the
reconstruction of missing information between sample points.

Requantisation

Another way to reduce the data further, is a requantisation of the pixel
values. Originally, our image consists of 256 different pixel values per chan-
nel. By requantising, we reduce the co-domain to q different values. One of
the simplest quantisation approaches is the so-called midtread quantisation.
This is a uniform quantisation that allows to reconstruct the minimal and
maximal value of the original range.

Let s ∈ {0, . . . , 255} be an original value, and let a := 255
q−1

. Then the
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quantised value is given by

squantised =

⌊
s

a
+

1

2

⌋
, (3.2)

where b.c denotes the floor function, i.e. bxc is the largest integer that does
not exceed x. As a result, we obtain squantised ∈ {0, . . . , q − 1}. In order to
reconstruct the value, we simply compute

s ≈ a · squantised . (3.3)

Note that this means we subdivide our original range in q intervals. All
intervals have the width a, except the last and first one which have width a

2
.

After reconstruction, all original values within the first interval have been
mapped to 0, whereas the values of the last interval have been mapped
to 255. The original values of the other intervals have been mapped to
the central value of the interval. For colour images, our method allows to
requantise each channel separately, i.e. we have q∗ with ∗ denoting the ∗-th
channel.

Instead of using a uniform quantisation method, it can pay off to use
a non-uniform method as for example the Max-Lloyd quantiser [Max60,
Llo82]. The goal is to adapt the width of the intervals to the probability at
which the pixel values occur in the original signal: We start with uniform
quantisation. Instead of mapping the values of an interval to the central
value, we map it to the centre of mass within this interval. We will refer
to these points as reconstruction points. Then, the interval boundaries are
adapted such that they lie again exactly between two reconstruction points.

Starting from this setting, we repeat the whole procedure until the inter-
val boundaries do not change anymore. Using the obtained reconstruction
points, we achieve better reconstructions. However, for this quantiser we
have to store the reconstruction points additionally to reconstruct the pixel
values during decoding.

In our case Max-Lloyd quantisation did not pay off, except when using
only a few quantisation levels. Thus, our codec uses uniform quantisation
in channel ∗ if q∗ > 8 and Max-Lloyd quantisation otherwise.

Entropy Coding

Now that we have subsampled and requantised the pixel values, we want
to apply an entropy coder. The most classical entropy coders are Huffman
coding2 [Huf52] and arithmetic coding2 [Ris76]. Meanwhile, there are much

2 sources from: http://michael.dipperstein.com
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more sophisticated compression methods available that often rely on Huff-
man or arithmetic coding as part of their coding chain. Such compression
methods are for example given by gzip (we use version 1.3.12) or bzip2 (we
use version 1.0.5).

One of the best compressors available so far are given by the PAQ
data compressors [Mah05]. PAQ describes a whole family of lossless, GPL-
licensed data compression archivers. They are based on a context mixing al-
gorithm, which is related to prediction by partial matching (PPM) [Mof90].
More precisely, PAQ uses a predictor that is provided with a large number
of models conditioned on different contexts, often even tuned to special file
formats. This predictor is applied in combination with arithmetic coding.
We consider the PAQ8o6 release.

Unfortunately, the PAQ8o6 compressor is rather slow. Therefore, we
can also use the single file compressor LPAQ instead, more precisely the
LPAQ2 release. LPAQ is a modified version of PAQ, which is faster at the
expense of compression.

Our codec allows to choose between all mentioned compressors. A com-
parison of their compression capabilities regarding our data is depicted in
Table 3.2. For almost all examples, PAQ outperforms the other methods re-
garding the compression rate. However, it is also by far the slowest method.
Huffman and arithmetic coding, as well as gzip and bzip2 are up to small
differences the fastest methods. Depending on the application, it is up to
the user which entropy coder should be chosen. For highest compression,
PAQ is recommended. For fastest compression, bzip2 or gzip should be
used. LPAQ is a reasonable trade-off between high quality compression
and run time. Thus, we decided to set LPAQ as default pixel value encoder
in our codec.

3.2.4 File Format

After this last step, we end up with two encoded data parts, namely the
encoded edge image and the encoded grey or colour values. Including header
data, our encoded image consists of the following parts:

• size of edge data, needed to split the encoded edge image from the
encoded grey or colour values, (requires 4 bytes).

• edge image coder, indicating how the edge image has been encoded;
default: JBIG, (3 bit).

• colour bit, indicating if a greyscale or colour image has been encoded,
(1 bit).
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Table 3.2: Comparison of different entropy coders regarding their compression
ratio and time. Considered are six randomly chosen pixel value data files, created
by our codec. Coders: Huffman coding (HC), Huffman coding using canonical
codes (HCc), arithmetic coding with static model (ACs), arithmetic coding with
adaptive model (ACa), gzip (Version 1.3.12), bzip2 (Version 1.0.5), LPAQ2, and
PAQ8o6. CPU: Intel Core 2 Duo T7500 @ 2.20Ghz. The best result for each file
is in bold face letters.

coder
File

1 2 3 4 5 6

file size in bytes:
original 12606 9006 29298 96063 13128 5514

HC 7058 4164 27398 48808 2178 6342
HCc 7160 4336 26380 48900 2420 5439
ACs 6944 4087 26714 48243 1491 5800
ACa 7066 4241 25972 42168 1710 5253
gzip 4300 2222 21655 8093 697 5223
bzip2 4016 2095 24163 7281 746 4981
LPAQ2 3112 1658 17974 5504 467 4300
PAQ8o6 2842 1495 14766 4967 468 3949

encoding time in ms:
HC 3 1 4 5 1 1
HCc 3 2 4 6 <1 1
ACs 3 2 9 19 <1 1
ACa 11 3 16 57 6 4
gzip <1 2 3 11 5 <1
bzip2 4 2 7 68 1 3
LPAQ2 42 31 86 168 29 39
PAQ8o6 1411 686 2470 9041 941 693

decoding time in ms:
HC <1 3 5 5 <1 2
HCc 4 4 19 26 <1 4
ACs 2 3 9 18 1 3
ACa 10 4 16 51 5 2
gzip 3 2 3 9 2 1
bzip2 <1 1 4 5 <1 <1
LPAQ2 37 34 89 190 29 34
PAQ8o6 1200 694 2438 8377 825 711
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• entropy coder, indicating which entropy coder has been used; default:
LPAQ2, (3 bit).

• parameter dtr for recursive search of grey/colour values; default: 1, (1
byte).

• numbers of quantisation intervals q∗; default: 25, (1 or 3 bytes).

• sampling distances d∗; default: 10, (1 or 3 bytes).

• encoded edge image, (variable length, given in first 4 bytes of header).

• encoded pixel values, (variable length).

3.3 Decoding

The decoding process is now straight-forward. We start our decoding ap-
proach by reading the header information. We split the encoded edge image
from the encoded grey or colour values and decode them with the corres-
ponding decoders of the bi-level or entropy compression methods. On one
hand, this gives us a binary edge image. Note that by this edge image, we
also know the final image size. On the other hand, we get the quantised and
subsampled grey or colour values. For those, we first revert the quantisa-
tion using Equation (3.3). Since we already know the edge image, we can
now perform the pixel tracing algorithm again, as done during encoding
(see Section 3.2.3). We redistribute the subsampled grey or colour values
along the edge segments and fill in missing pixels by linear interpolation.
The outcome is an image which contains the decoded colours on both sides
of each edge (see Figure 3.1(b)). Those pixels now form the inpainting
data such that the remaining grey or colour values can be reconstructed by
homogeneous diffusion inpainting (Chapter 2).

Remark In the 1-D case, homogeneous diffusion inpainting is equival-
ent to a simple linear interpolation. In this sense, we first perform a 1-D
homogeneous diffusion process along the edges when reconstructing the sub-
sampled signal. Then we perform a 2-D homogeneous diffusion inpainting
to recover pixels between edges. Using the 2-D homogeneous diffusion in-
painting on the subsampled pixels directly would give results that are not
nearly as good as the ones obtained by the successive application.
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3.4 Experiments

Let us now investigate the capabilities of the suggested codec. To this end,
we first give a comparison to well-established and state-of-the-art compres-
sion methods, namely JPEG and JPEG2000. We then want to identify
the limitations of our method. For the quantitative comparison, we use the
peak-signal-to-noise ratio (PSNR), a common error measure for the com-
parison between compressed images:

Let fmax be the maximal possible pixel value, which is 255 in our
case. Furthermore, let J be the set of all pixel indices, and (f∗,i)i=1..N

and (u∗,i)i=1..N the pixel values of the original image in channel ∗ and its
reconstructed/decompressed version, respectively. The PSNR is defined via
the mean squared error (MSE):

PSNR(u,f) := 10 · log10

(
fmax

2

MSE(u,f)

)
[dB] , (3.4)

with
MSE(u,f) = 1

|J |·|{R,G,B}|

∑
∗∈{R,G,B}

∑
i∈J

(f∗,i − u∗,i)2 . (3.5)

For grey valued images – having only one channel – |{R,G,B}| is re-
placed by 1 and the sum over the channels vanishes.

In the following experiments, all runtime measurements are based on
one core of an Intel Core 2 Duo T7500 @ 2.20Ghz CPU and measure the
elapsed time.

3.4.1 Comparison with JPEG and JPEG2000

For the comparison with the well-established JPEG standard and with the
more advanced JPEG2000 codec, we use the encoders provided by the im-
age processing tool imagemagick. We fix all parameters of our codec to
their default values (see Section 3.2.4). Figure 3.5 shows three different
test images and their compressed versions using JPEG, JPEG2000 and our
codec. The underlying edge images used for our results are depicted in
Figure 3.4. They were created by choosing parameters that give visually
pleasant inpainting reconstructions. Moreover, we demand that the edge
images look reasonable. That means we avoid false edges by choosing ap-
propriate thresholds. A cropped detail for each result is shown in Figure 3.6.
The compression rates for all images lie between 0.16 and 0.37 bits per pixel
(bpp). This corresponds to compression ratios between roughly 145:1 and
65:1, provided the original colour images use 3 bytes per pixel. Besides the
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a b c

Figure 3.4: Edge images obtained by zero-crossings-based edge detection such
that visually pleasant reconstructions are obtained. Edge detector parameters are
chosen such that false edges are avoided. Edge image for (a) coppit (T1 = 4.3,
T2 = 23, σ = 0.5), (b) svalbard (T1 = 3.5, T2 = 20, σ = 0.6) and (c) comic
(T1 = 20, T2 = 20, σ = 0.47)

visual comparison, Table 3.3 summarises the corresponding quantitative
comparison, and depicts the encoding and decoding times for all images.

The quantitative and the visual analysis illustrate that our approach
can be better than JPEG and even JPEG2000. For the test image comic
we observe a remarkable difference of more than 3 dB between JPEG2000
and our approach. Also visually, crucial differences become apparent (see
Figure 3.6). JPEG as well as JPEG2000 suffer from severe ringing artefacts.
These are a consequence of their quantisation step in the corresponding
frequency/wavelet domains and the following inverse transforms. Moreover,
JPEG applies the cosine transform in 8 × 8 blocks and thus suffers from
unpleasant block artefacts, as well as highly distorted edges. Our method in
contrast stores edges explicitly and gives clean reconstructions. In addition,
JPEG is not able to preserve the smooth gradient in the background of
svalbard or comic. Our codec interpolates between the quantised colours so
that the smooth gradient can be reconstructed almost perfectly. Thereby
also for a greatly reduced grey or colour range, quantisation artefacts are
hardly visible. Another drawback of the transform-based approaches can
be discovered in the cropped detail image of svalbard. The screw cap within
the bear completely vanishes for both JPEG as well as JPEG2000. Our
approach stores the edges of such details, so that they are well preserved.

The previous results have been obtained with the default settings of our
codec (see Section 3.2.4). By changing the parameters, we can influence
the compression rate and quality of an image. Most obviously, we can get
higher compression rates with larger sampling distances or fewer quantisa-
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Figure 3.5: Comparison of compression methods for different test images at
0.37, 0.16 and 0.19 bits per pixel (bpp) (from left to right). Columns from
left to right: coppit (256 × 256, real world), svalbard (380 × 431, real world),
comic (512 × 512, synthetic), Rows from top to bottom: original image,
JPEG, JPEG2000, and our codec with default parameters and edge images as
depicted in Figure 3.4.
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Figure 3.6: Cropped detail (64× 64) for each image depicted in Figure 3.5.



3.4. EXPERIMENTS 53

Table 3.3: Comparison of the PSNR and elapsed encoding/decoding time for
the different test images (see Figure 3.5) and different compression methods. The
best results are in bold face letters.

image coppit svalbard comic

compression
0.37 0.16 0.19

rate (bpp)

error measure (PSNR in dB):
JPEG 26.61 23.38 24.25
JPEG2000 28.13 27.68 26.77
our method 30.31 30.14 30.20

encoding time in ms:
JPEG 8.66 13.80 19.34
JPEG2000 57.51 93.47 164.42
our method 117.08 146.79 212.55

decoding time in ms:
JPEG 7.14 13.35 4.20
JPEG2000 28.50 49.39 74.20
our method 172.78 316.94 458.40

tion intervals. Figure 3.7 demonstrates what is possible if this is carried
to the extreme: We reduce the number of edge pixels by choosing T1 = 15
instead of 3.5. Thus, low contrast edges are not detected anymore and we
obtain an edge image which contains only the visually most important edges
(see Figure 3.7(c)). For each channel only 15 different values are used. The
sampling distance along the edges is set to 45 and for the recursive search
along edges dtr = 10.

Using the lowest quality parameter provided by imagemagick, JPEG
reaches only a compression ratio of 200:1. Its visual and quantitative quality
(21.68 dB) is already far below the PDE-based result (28.18 dB). Moreover,
our codec exhibits a compression ratio of 315:1.

In contrast to JPEG, for JPEG2000 imagemagick is able to compress
the image with a ratio of 315:1. With a PSNR of 23.09 dB, the quality of
this image is better than the JPEG result but still not comparable to the
result of our method. Considering the extreme compression rate, a PSNR
of 28.18 dB for the our result is more than satisfactory.

As we have seen, the compression rate can also be influenced by the
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a b c

original our codec ∼ 315:1 edge image

d e

JPEG ∼ 200:1 JPEG2000 ∼ 315:1

Figure 3.7: Compression methods driven to the extreme: (a) Original image;
(b) Our codec using the edge image as depicted in (c) and default settings except
for q∗ = 15, d∗ = 45 (∗ ∈ {R,G,B}) and dtr = 10 gives 0.08 bpp (i.e. approx.
315:1) with PSNR 28.18 dB; (c) Edge image obtained with zero-crossings based
edge detector (T1 = 15, T2 = 20, σ = 0.6); (d) JPEG with minimal quality
parameter at 0.12 bpp (i.e. approx. 200:1) with PSNR 21.68 dB; (e) JPEG2000
at 0.08 bpp (i.e. approx. 315:1) with PSNR 23.09 dB.
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a b

c d

Figure 3.8: (a) Test image trui (256× 256) (b) Edge image, obtained by zero-
crossings-based edge detector (T1 = 1.1, T2 = 2.6, σ = 1.2). (c) Reconstructed
colours adjacent to the edges. (d) Inpainting result (PSNR of 30.16 dB); Com-
pression rate of encoded image: 0.54 bpp.

underlying edge image. By choosing T1 = 15 instead of T1 = 3.5 we removed
some edge pixels, yielding a higher compression rate. Note that these edge
pixels should usually not be removed in order to guarantee quality. For
cartoon-like images the corresponding edge image is up to small variations
more or less unique.

Finally the compression rate can be increased by using PAQ8o6 instead
of LPAQ2 at the expense of run time. Vice versa, a faster compression with
lower compression rate is obtained when LPAQ2 is replaced for example by
bzip2.

3.4.2 Limitations

At the end of this section we briefly mention the limitations of our codec.

Obviously, our method is not well suited for images that contain a lot
of textured areas. Figure 3.8 gives an example where our method is not
competitive to conventional compression methods anymore. We detect so
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many texture edges that our method requires too much storage to get results
of reasonable quality. For this example and default settings our codec gives
a compression rate of 0.54 bpp and a PSNR of 30.16 dB. At the same
compression rate JPEG leads to a PSNR of 36.02 dB and JPEG2000 to a
PSNR of 37.24 dB.

Another limitation is the low robustness of our decompression algorithm
against corrupted files which typically result from transmission channels
being exposed to noise. Since pixel locations and colours are encoded sep-
arately, errors in either part might result in a wrong assignment of colours
to mask points, or to pixels being reconstructed at arbitrary locations in the
image. However, such problems can already be handled in the transmission
of the file: Modern digital communication channels are typically equipped
with fast error correction algorithms and retransmission mechanisms that
assure file integrity.

3.5 Conclusion

In this chapter we have presented a conceptually simple, but highly efficient
way to compress cartoon-like images. By extracting edges and adjacent
pixel values, encoding them efficiently and using homogeneous diffusion for
reconstruction, we have created a new codec, which can even outperform
JPEG2000. Our results clearly indicate that cartoon-like images need a
specialised treatment as offered by our codec. By storing edges explicitly,
small details and sharp discontinuities are well preserved. Thereby, our
codec is not only able to encode, but is also able to decode images in real
time.



Chapter 4
Optimising Spatial and Tonal

Data

4.1 Motivation

In the previous chapter, we have presented a PDE-based image compression
codec for cartoon-like images. In the spirit of second generation image
coding, the selection of the location for the inpainting data was based on
edges.

Apart from the fact that edges provide meaningful image features, this
choice can also be motivated by the optimality of the chosen data corres-
ponding to the theory of Belhachmi et al. [BBBW09]. As already mentioned
in Section 3.1, they present a continuous analysis on spatially optimal data
selection for homogeneous diffusion interpolation. Their framework is based
on the theory of shape optimisation and suggests to choose a pixel density
that is an increasing function of the modulus of the image Laplacian. Thus,
the selection of inpainting data for cartoon-like images adjacent to edges
(cf. Figure 3.2) is justified. However, as it is illustrated in in Figure 4.1,
for blurry edges the interpolation data would apparently need to be spread
more smoothly and with a larger distance to each side of the edges.

Thus, although features like edges can be perceptually relevant, one
cannot expect that they are in general optimal w.r.t. some error norm.
This might be another reason for the bad performance of the edge-based
codec regarding natural images (cf. Section 3.4.2).

As a result, this raises the fundamental question of which data is ac-
tually optimal, and how to determine it. In order to make the optimality

57
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a b

Figure 4.1: (a) Zoom into test image trui (256×256, real world). (b) Modulus
of the Laplacian of (a) normalised to [0,255]. The darker the colour, the larger
the modulus of the Laplacian.

result of Belhachmi et al. applicable to the practically relevant discrete
setting, they suggest to apply dithering techniques. However, those can in-
troduce additional errors. Moreover, the continuous optimality result only
holds for homogeneous diffusion inpainting, but not for more sophisticated
differential operators.

Another aspect that is often forgotten in PDE-based image compression,
is the fact that not only the spatial data, but also the tonal data can be
selected freely. Thus, unlike in pure inpainting, we are not bound to the grey
or colour values as given in the original image. The question for optimal
tonal data is as valid as the one for optimal spatial data.

The goal of this chapter is to address the aforementioned aspects. We
show how optimised spatial and tonal data can be obtained for the discrete
inpainting problem. In this process, we specify a fixed amount of freely
distributed inpainting data. As the amount of pixels approximately correl-
ates with a specific compression ratio, this is also expedient with respect to
image compression.

We first develop our methods using the simplest PDE, homogeneous
diffusion inpainting, as it was done in [MHW+12]. This allows us to show
the potential behind our approach, as homogeneous diffusion usually has a
bad reputation for inpainting tasks. Then, we extend the concepts towards
the biharmonic operator and edge-enhancing diffusion.

Note that the optimality in our results in this framework solely refers to
the reconstruction quality, but only indirectly includes coding costs via the
amount of pixels. However, it is well known that specific pixel distributions
can be encoded more efficiently than others. Examples are tree-based codecs
such as the ones that have been mentioned in Chapter 1. Thus, the results
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in this chapter constitute only a first step towards an optimal data selection
in PDE-based image compression. Nevertheless, we will see that even with
those methods, it is already possible to beat the quality of JPEG2000.

One should also note that we did not optimise our algorithms with
respect to runtime, as we regard it as a proof-of-concept only. Thus, our
methods can require several hours to days to process typical images.

As a response to our work, Hoeltgen et al. have proposed an energy-
based approach to optimise the interpolation data for homogeneous dif-
fusion inpainting [HSW13]. The solution of the resulting optimal control
problem is approximated by solving a series of simpler convex optimisation
problems. As a result, their approach gives slightly better results than our
method, and is considerably faster. In [CRP14], Chen et al. have extended
this framework to make it applicable for inpainting with the biharmonic
operator as well as TV regularised inpainting. In contrast to biharmonic
inpainting, TV regularised inpainting has not given considerably better res-
ults than inpainting with homogeneous diffusion. In contrast to those meth-
ods that need the differential operators to meet specific requirements, our
spatial optimisation approaches can be applied to any inpainting method
out of the box. Moreover, we can easily impose further requirements to a
mask, for instance demanding that specific mask pixels are not included
into the optimisation framework. This is particularly useful if optimised
data is included into existing codecs as we will do it in Chapter 5.

Let us briefly mention more related work before we dive deep into our
algorithms. From the Green function of the Laplace operator, it follows
that homogeneous diffusion inpainting involves radial basis functions. These
functions are popular for scattered data interpolation, and some of them
have also been used for the inpainting of corrupted images [DFTT11, US05].
However, such problems usually do not allow to optimise the location and
the grey values of the inpainting data set.

The holographic image representation presented in [BHN98] maps the
image into a sequence of sample pixels, such that any partition of this
sequence allows for a reconstruction of the whole image with similar quality.
This requires the samples in each portion to be equally optimal. On the
contrary, our goal is to reduce the image to only one set of optimal samples.

The idea to approximate an image by identifying significant pixels has
also been investigated in several papers. In [ELPZ97] this concept is used
for progressive sampling. Similarly [DFI02], introduce an adaptive thinning
strategy based on Delaunay triangulations for the sampling of scattered
data. In [DI04] and [DDI06], they improve this strategy for image compres-
sion.

Finally, the problem of optimising the sampling of data with fixed re-
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construction method is also known in the spline literature as so-called free
knot problem [dR68].

This chapter is organised as follows: We start Section 4.2 with the spatial
optimisation problem for the case of homogeneous diffusion inpainting. To
this end we first review the analytic approach of Belhachmi et al. [BBBW09].
Then we present two approaches that are applied sequentially to optimise
the pixel locations: a probabilistic sparsification method, followed by a non-
local pixel exchange. At each step we evaluate the corresponding method
and compare it to the previous ones. In the second part of this chapter,
in Section 4.3, we show how the results can be improved further by an
exact optimisation of the tonal data. In Section Section 4.4 we explain
how the optimisation algorithms can be generalised for inpainting with the
biharmonic operator and EED, respectively. Afterwards, in Section 4.5 we
evaluate the potential of the optimisation concepts for PDE-based image
compression. We conclude the chapter in Section 4.6.

4.2 Optimising Spatial Data

4.2.1 The Analytic Approach

In order to answer the question about the optimal data selection, Belhachmi
et al. use the sophisticated mathematical theory of shape optimisation. By
investigating different models for homogeneous diffusion interpolation, it
could be proven that the density distribution of the data points should be
chosen as an increasing function of the Laplacian magnitude of the ori-
ginal image |∆f |. However, this true optimality result returns a continuous
density function rather than a discrete pixel mask.

In order to obtain a method that is applicable to the discrete setting,
we follow the steps suggested in the original paper: We first apply a small
amount of Gaussian presmoothing with standard deviation σ and obtain
fσ. As stated in the paper, this is a common procedure in image analysis to
address the ill-posedness of differentiation. Then we compute the Laplacian
magnitude |∆fσ| using finite differences and rescale it such that its mean
represents the desired point density, given as fraction θ of all pixels. Finally,
any dithering algorithm that preserves the average grey value can be applied
to obtain the binary point mask.

In the original paper, the widely used error diffusion method of Floyd
and Steinberg [FS76] is used. However, as depicted in Figure 4.3 different
dithering methods result in different discrete point masks, and eventually in
reconstructions of different quality. In this thesis we favour the sophisticated
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a b c

Figure 4.2: Test images: (a) trui (256 × 256), (b) walter (256 × 256), (c)
peppers256 (256× 256).

a b c

Figure 4.3: (a) Smoothed Laplacian magnitude of the test image trui (see
Figure 4.2) using σ = 1 (rescaled and inverted). (b, c) Dithered versions of (a)
using Floyd-Steinberg error diffusion and electrostatic halftoning, respectively.
Using (b) and (c) as mask for homogeneous diffusion inpainting we obtain an
MSE of 138.98 and 101.14, respectively. The masks have a density of 4%.

electrostatic halftoning [SGBW10] over simpler dithering approaches, since
it has proven to be state-of-the-art for discretising a continuous distribution
function, particularly in this specific scenario [Sch12]. Nevertheless, even
with this method, dithering introduces errors. It remains an open question
if it is the most suitable approach to discretise the continuous optimality
result.

Another unsolved problem is that the theory demands the data points
to be chosen as an increasing function of |∆f |. Yet, the optimal increasing
function is still unknown. So far, we simply used the identity function of
the Laplacian magnitude. As a remedy, we add now a parameter s > 0 and
dither |∆fσ|s instead. This choice is also motivated at the end of Section 6
in the original paper and allows to tune the density of the selected points
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in homogeneous regions. The complete method, which we call the analytic
approach, is summarised as follows:

Algorithm: Analytic approach

Input:

Original image f , Gaussian standard deviation σ, exponent s, desired
pixel density θ.

Compute:

1. Perform Gaussian presmoothing with standard deviation σ: fσ =
Kσ ∗ f .

2. Compute |∆fσ|s.
3. Rescale |∆fσ|s to θ·fmax

mean(|∆fσ |s) · |∆fσ|
s where fmax is the maximal

possible grey value.

4. Apply electrostatic halftoning to get C.

Output:

Discrete pixel mask C.

In order to evaluate the analytic approach let us apply it on the three
test images trui, walter and peppers256 (see Figure 4.3). Out of 256 ·256 =
65, 536 pixels we want 2601 mask pixels. That corresponds roughly a mask
pixel density of 4% of all pixels and hence θ = 0.04. As underlying error
measure we use the mean squared error (MSE) (see Equation (3.5)). The
parameters σ and s are chosen such that the MSE of the reconstruction
becomes minimal (σ = 1.6 and s = 0.8). The Figures 4.7, 4.9 and 4.11 show
the resulting masks (a) as well as the corresponding reconstructions (b). For
comparison, we choose the same amount of pixels once randomly and once
on a rectangular grid. In addition we consider a hexagonal grid that has
due to its structure slightly more mask pixels (2612 instead of 2601). The
resulting masks (a,d,g) as well as the reconstructions (b,e,h) are depicted in
Figures 4.6, 4.8 and 4.10. Clearly, we can see that the visual as well as the
quantitative reconstruction quality highly benefits from a dedicated point
selection as done in the case of the analytic approach.

Note that in contrast to the following approaches, the analytic approach
does not need to reconstruct the image over and over again. Therefore, it
is realtime-capable, provided a fast dithering method is used. However,
rather than on speed, the focus is here on the maximum possible quality
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when spatial and tonal data can be chosen freely. The following methods
can require several hours to days to process typical images. We are confident
that this runtime can be significantly reduced, e.g. by exploiting parallel
architectures. This is part of our ongoing research and is already tackled
in [HSW13].

4.2.2 Probabilistic Sparsification

The analytic approach is a first suggestion how to choose the spatial data
in a digital image. However, due to the mentioned sources of error this
data might actually not be optimal yet. Since one of those sources of error
concerns the discretisation of the continuous theory, it could justifiably be
asked whether optimisation strategies that ground directly on the discrete
inpainting formulation (2.8) could outperform the previous result.

Therefore, we refrain from the continuous formulation and investigate
discrete optimisation strategies. The good news in the discrete setting is
that the number of possible solutions is finite. Thus, there must be a
pixel mask for a desired density that minimises the reconstruction error and
we could find this mask by simply trying all possible solutions. However,
already for an image of size 256× 256 pixels and a desired pixel density of

4% there are
(

65536
2601

)
≈ 4.65 · 104749 possible solutions. To overcome this

combinatorial problem we introduce a method which we call probabilistic
sparsification.

Let f be a discrete given image and let r (C,f) be the function,
which computes the solution u of the discrete homogeneous inpainting pro-
cess (2.9), depending on a mask C:

r (C,f) := u = M−1Cf . (4.1)

The objective is to find the pixel mask C, which marks a given fraction θ
of all pixels and minimises the MSE(u,f) (see Equation (3.5)).

Starting with a dense mask, i.e. any pixel is a mask pixel, probabilistic
sparsification removes iteratively the least significant mask pixels until a
desired density is reached. In each step candidate pixels are selected and
removed from the mask. The resulting sparser mask is used for inpainting.
The significance of a candidate pixel can then be estimated by computing
the local error, i.e., taking the squared difference of inpainted and original
image in this pixel. Thus, we remove the candidates which exhibit the
smallest error permanently from the mask and put back the remaining ones.
A detailed description of our algorithm is given as follows:
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Algorithm: Probabilistic sparsification

Input:

Original image f , fraction pcand of mask pixels used as candidates,
fraction prm of candidate pixels that are removed in each iteration,
desired pixel density θ.

Initialisation:

C := diag(1, . . . , 1)>, thus K = J .

Compute:

While |K| > θ · |J | do

1. Choose randomly a candidate set T of max (1, dpcand · |K|c) pixel
indices from K, where d·c denotes rounding to the closest integer.

2. For all i ∈ T reassign ci := 0.

3. Compute u := r (C,f).

4. For all i ∈ T compute the local error ei = (ui − fi)2.

5. For all i of the max (1, d(1− prm) · |T |c) largest values of {ei | i ∈
T}, reassign ci := 1.

6. Remove from K the indices i /∈ T and clear T .

Output:

Pixel mask C, s.t.
∑

i∈J ci = θ · |J |.

The parameters pcand and prm determine the fraction of mask pixels used
as candidates and the fraction of candidates that are removed in each step,
respectively. The larger pcand and prm are chosen, the faster the algorithm
converges: In each step around pcand · prm · |K| pixels are removed. After
k steps there are about (1 − pcandprm)k · |J | mask pixels left. Hence, for a
density θ, the algorithm terminates after roughly log(1−pcandprm) θ iterations.
In the worst case in each iteration only one pixel is removed. Thus, a lower
bound is given by 1− θ iterations.

Since there is a global interdependence between selected mask pixels,
probabilistic sparsification does not guarantee to deliver optimal solutions
but only approximate ones. It is a valid question, how the parameters
pcand and prm influence the quality of the resulting mask. Moreover, it is of
interest, how much the quality of the results depends on the selected seed
of the random number generator.
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Table 4.1: Influence of the parameters pcand and prm of probabilistic sparsific-
ation. In total, there have been 100 runs for each pair (pcand, prm) on the test
image trui with desired pixel density θ = 0.04. Numbers in the table are the
mean and standard deviation of the MSE.

prm
pcand

0.01 0.02 0.05 0.1

0.000001 77.6 ± 1.40 67.7 ± 1.40 66.1 ± 1.36 70.7 ± 1.76
0.001 77.4 ± 1.33 67.8 ± 1.26 66.3 ± 1.41 70.5 ± 1.67
0.01 81.8 ± 1.68 73.0 ± 1.44 68.9 ± 1.81 69.4 ± 1.84
0.02 85.3 ± 1.71 76.4 ± 1.78 71.4 ± 1.56 70.6 ± 1.83
0.05 91.6 ± 1.82 82.7 ± 2.02 77.1 ± 2.03 74.6 ± 1.79
0.1 97.7 ± 2.14 89.5 ± 2.00 83.9 ± 2.22 80.8 ± 2.24

In order to answer those two questions, we run several experiments
with different pcand and prm values. The results for the test image trui are
depicted in Table 4.1. Note that the candidate set as well as the set of
pixels that are going to be removed is 1 if pcand or prm would lead to sets
smaller than 1 (cf. Step 1 and 5 of the algorithm).

Intuitively one would expect that the best results can be achieved by
choosing pcand as large as possible whereas prm is kept very small. In this
case, we evaluate the quality of many mask pixels but remove only the very
worst of them. However, there is an error in this reasoning. The measured
error in each candidate pixel is referring to the combined removal of all
candidates, not only the currently considered one. Thus, the error gives
only an approximative measure of the significance of this pixel. The larger
the candidate set is, the less accurate is this error estimate.

On the other hand, pcand should also not be chosen too small, since
it might then happen that the candidate set contains a lot of important
mask pixels. As a consequence, it is more likely that important pixels are
removed.

In contrast, the parameter prm should in general be chosen as small as
possible, i.e., such that only one candidate is removed in each iteration, here
prm = 0.000001. With larger values for prm, the probability that we remove
important pixels increases. Only in the case where the candidate set is too
large and thus results become unreliable, it might pay off to optimise prm

as well.
Another observation of the results given in Table 4.1 is the robustness of

the algorithm: The standard deviation does not exceed a value of 2.3 and
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is even smaller for optimal pcand/prm-values. This means that although the
obtained masks for different seeds differ usually in a big part of the selected
pixels, we still get qualitatively comparable results.

In Figure 4.7, Images (d) and (e) show the results of the probabilistic
sparsification for the test image trui with a mask pixel density of 4% of
all pixels, i.e., θ = 0.04. Since we are interested in the maximal possible
quality we set pcand = 0.2 and prm = 0.000001 (cf. Table 4.1). Both the
visual as well as the quantitative results clearly outperform the ones of the
analytic approach. This can also be observed for the other two test images
walter and peppers256 (see Figure 4.9 and Figure 4.11, Images (d) and (e),
pcand and prm have been optimised for each image individually). Thus, our
assessment is confirmed that even though Belhachmi et al. offer a theory
for the optimal selection of data in a continuous sense, yet the analytic
approach is a suboptimal discretisation of this theory.

4.2.3 Non-local Pixel Exchange

As we have seen in the previous section probabilistic sparsification already
outperforms the analytic approach. Still, it is not guaranteed to deliver the
real optimum. Indeed, an obvious drawback of probabilistic sparsification is
the fact that once a point is removed, it will never be put back again into the
mask. Thus, especially at later stages, where only few mask pixels are left,
important points might be removed. Moreover, due to the interdependence
of the mask pixels, a point that was removed earlier might actually be
useful to be set again at a later stage. The approach presented in this
section, the so-called non-local pixel exchange is a remedy to this problem:
It starts with a sparse, possibly suboptimal mask which contains already
the desired density θ of mask pixels. In each step it iteratively chooses a
set of m randomly selected non mask pixels as candidates. The candidate
which exhibits the largest local error is then exchanged with a randomly
chosen mask pixel. If the inpainting result with the new mask is worse
than before, we revert the exchange. Otherwise we proceed with the new
mask. Therefore, the non-local pixel exchange can only improve the result.
In detail the algorithm reads:
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Algorithm: Non-local pixel exchange

Input:

Original image f , (pre-optimised) pixel mask c (and thus K), size
m ≤ |K| of candidate set

Initialisation:

u := r (C,f) and Cnew := C.

Compute:

Repeat

1. Choose randomly a candidate set T of m pixel indices from J\K.

2. For all i ∈ T compute the error ei = (ui − fi)2.

3. Exchange step:
Choose randomly a index j from K and set cnew

j := 0.
Set cnew

i = 1 for the i of the largest value of {ei | i ∈ T}.
4. Compute unew := r (Cnew,f).

5. If MSE(u,f) > MSE(unew,f)

u := unew and C := Cnew.
Update K.

Else

Reset Cnew := C.

6. Clear T .

until no exchange-pairs can be found that improve the result
(or alternatively until a desired number of repetitions is reached).

Output:

Post-optimised pixel mask C.

Because at each iteration we always exchange only one candidate pixel, it
is clear that the approach is not equivalent to an exhaustive search through
all possible combinations. Thus, we cannot guarantee convergence towards
the global minimum.

Consequently, we are interested in an optimal parameter selection. It
is a fallacy to think that larger candidate sets (i.e. larger values for m)
would lead to better solutions. This becomes evident if we set m to the
maximal possible value, i.e. m = |J \ K|. Then, when performing the
exchange, the algorithm always picks out of all mask pixels the one that
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a b c d e
original image initial mask optimised masks

MSE: 9966.23 1667.71 2432.27 1239.06

Figure 4.4: (a) Test image of size 2×3. (b) Initial mask with three mask pixels.
(c-e) Different solutions after the application of the non-local pixel exchange with
m = 1 depending on which pixels are randomly exchanged.

depicts the largest error. Eventually, the solution cannot be improved, no
matter which mask pixel is exchanged. However, at this stage it cannot
be ruled out that the exchange with a different non-mask pixel depicting a
smaller error improves the solution further. This is due to local nature of
our error measurement which is not necessarily giving a reliable estimate
for the actual significance of a pixel position.

Choosing the other extreme, i.e. m = 1, it seems we are on the safe
side. We randomly exchange in each iteration only one mask pixel by a
non-mask one. Since this is repeated until the solution does not improve
any further, we expect that in this case the algorithm converges towards an
optimal solution in terms of a two-pixels-exchange. However, this does not
hold as well: Since each exchange has a global impact, it might happen that
an exchange leads to a mask that cannot further be improved by additional
exchanges. However, another previous exchange, would have maybe allowed
further improvements. In other words, we can get stuck in local minima.
Figure 4.4 illustrates this problem. Depending which pixels are randomly
selected and exchanged, we obtain different solutions (c-e) for the given test
image (a) and the initial mask (b). Moreover, the results are different in
quality. The right most solution (e) corresponds to the real optimum. As a
consequence, we can also conclude that the solutions by the non-local pixel
exchange depend on the initial mask.

Table 4.2 shows the results for different choices of m when the non-local
pixel exchange is applied for 500,000 iterations to the masks of the test
image trui from the previous sections (randomly selected, rectangular grid,
hexagonal grid (see Figure 4.6(a,d,g)) and analytic approach, probabilistic
sparsification (see Figure 4.7(a,d))).
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Table 4.2: Mean squared error after 500,000 iterations for different values for
m, when the non-local pixel exchange is applied to different masks of the trui
test image (see Figure 4.6(a,d,g) and Figure 4.7(a,d)). The best result for each
mask is marked in boldface.

mask
m

1 5 10 20 30 40 50 100

randomly
49.88 46.43 44.99 44.78 45.00 45.07 45.25 48.22selected

rectangular
49.67 45.79 45.19 44.76 45.16 45.56 45.76 48.33grid

hexagonal
49.13 45.91 45.01 44.99 44.39 45.41 45.27 47.54grid

analytic
49.19 45.88 45.14 44.70 45.33 45.56 46.13 49.31approach

probabilistic
43.72 42.45 42.34 41.92 41.97 42.49 42.19 43.65sparsification

As expected, our results confirm that neither very small values for m
nor large values give the optimal results. In this case, the best choice for m
is given by a value around 10 to 30. It seems that restricting the size of m
to these values, adds a moderate degree of randomness which allows us to
escape from local minima. Moreover, we observe that for most of the masks
we end up after 500, 000 iterations with masks of comparable quality (MSE
lies in the range of 41 to 45). Thus, the algorithm is not too sensitive to
the initialisation.

To investigate the influence of the initialisation more closely, let us con-
sider the convergence behaviour of the non-local pixel exchange, illustrated
in Figure 4.5. For each mask we choose the optimal values for m.

Our first observation is that the method is able to improve any mask
significantly, especially within the first few iterations (see Graph (a)). After
500, 000 iterations there are only minor improvements (see Graph (b). The
best result with an MSE of 41.92 is obtained with the mask from prob-
abilistic sparsification. Moreover, when using this mask, after only 3, 000
iterations the MSE is already below 50. Using the other masks we need
around 50, 000 iterations to reach a comparable quality. This demonstrates
the benefits we gain from the probabilistic sparsification. Another obser-
vation is that, even though after 500, 000 iterations the improvements are
minor, still the quality slightly enhances. Thus, the method actually did
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Figure 4.5: Convergence behaviour when the non-local pixel exchange is applied
to different masks (cf. Figure 4.6(a,d,f), Figure 4.7(a,d)) of the trui test image
with optimal parameter m (cf. Table 4.2). (a) first 20, 000 iterations; (b) last
20, 000 iterations up to 500, 000.

not converge yet. Although we found a good solution, it is not the optimal
one. This assessment is supported by the fact that there is still a quality gap
between the results obtained by the different masks. Another initialisation
could potentially even yield better results.

Figure 4.7(g) depicts the mask that allows the so far best reconstruction
(see Figure 4.7(h)) for trui, namely the one which was obtained by applying
the non-local pixel exchange to the result obtained by probabilistic sparsi-
fication. The MSE improved from 66.11 to 41.92. This improvement is also
reflected by comparing the images visually. As for the previous methods,
Figure 4.9(g,h) and Figure 4.11(g,h) provide the results for the test im-
ages walter and peppers256, supporting the made observations (m has been
optimised for each image individually).
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4.3 Optimising Tonal Data

So far, all the optimisation approaches only proposed a solution for the
spatial optimisation problem. For the reconstruction, we use the original
grey values of the input image at the selected locations. However, there is
no reason that would prevent us from using different grey values at those
positions. In contrast, we may accept to introduce some error at the posi-
tions of mask pixels in favour of a lower overall reconstruction error. From
a data compression perspective, changing the grey value will not increase
the amount of data that needs to be stored but possibly allows a significant
gain in quality. In this section we present an approach that allows us to
determine the optimal grey values exactly for any given mask.

4.3.1 Least Squares Approximation

In order to find the optimal grey values g for a given mask C, we consider
the following minimisation approach:

arg min
g
|f − r (C, g) |2 , (4.2)

where | · | denotes the euclidean norm, f denotes as before the original
image and r (C, g) (see Equation (4.1)) the function, which computes the
solution of the discrete homogeneous inpainting process. Since r is a linear
function in g we can decompose the reconstruction r (C, g) as follows:

Let ei denote the i-th canonical basis vector of R|J |, i.e. the vector with
a 1 in the i-th coordinate and zeros elsewhere. Then we call bi = r (C, ei)
the inpainting echo of the i-th pixel and we obtain:

r (C, g) = r

(
C,
∑
i∈J

giei

)
=
∑
i∈J

gir (C, ei) =
∑
i∈J

gibi . (4.3)

Note that the inpainting echo of non-mask pixels is 0, i.e. bi = 0 if i ∈ J\K:

bi = r (C, ei) = M−1Cei
i∈J\K

= M−10 = 0 . (4.4)

Thus, we can simplify Equation (4.3) to

r (C, g) =
∑
i∈K

gibi . (4.5)

For our minimisation problem (4.2), this means that gi can be chosen ar-
bitrarily if i ∈ J \ K. The remaining gi with i ∈ K can be obtained by
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considering the least squares problem:

arg min
gK

|BKgK − f |2 , (4.6)

where gK = (gi)i∈K is a vector of size |K|, and BK is a |J | × |K| matrix
which contains the vectors bi, i ∈ K as columns.

The associated normal equations are given by

B>KBKgK = B>Kf . (4.7)

The matrixB>KBK needs to be invertible, so that the solution of the normal
equations is also a solution of the least squares problem. This, however,
can easily be proven: It is sufficient to show that the column vectors of
BK , i.e. all bi with i ∈ K, are linearly independent. It holds that (cf.
Equation (4.4))

bi = r (C, ei) = M−1Cei
i∈K
= M−1ei . (4.8)

Hence, for i ∈ K, r(C, ei) is the i-th column ofM−1. SinceM−1 exists (see
Section 2.4.3), the vectors bi with i ∈ K have to be linearly independent.
Thus, B>KBK is invertible.

Remark: Considering Equation (4.5), any reconstruction u = r (C, g) is
a vector in a |K|-dimensional subspace of R|J |, spanned by the inpainting
echos bi with i ∈ K. Thereby, the basis formed by the inpainting echos is
non-orthogonal: Since at least the i-th pixel is non-zero (i ∈ K and thus
bii = eii = 1) the inpainting echos are non-negative and thus the inner
product b>i bj 6= 0 for i 6= j.

Solving the minimisation problem (4.2) means essentially getting the
vector which minimises the distance to f in R|J |, which is basically nothing
more than the projection of f into the subspace.

4.3.2 Iterative Approach

The linear system given by the normal equations (4.7) can be solved exactly
by using standard methods such as an LU-decomposition [Hig02]. However,
since the system matrix is dense, this approach is rather slow. Therefore,
we favour an iterative solver, namely the Gauss-Seidel method (cf. Equa-
tion (2.27)).

Let gki denote the grey value of the i-th pixel in the k-th iteration, and
let g0

i = fi for all indices i. Then the corresponding Gauss-Seidel step for
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solving the linear system of equations (4.7) with respect to gK is given as
follows:

Consecutively for all i ∈ K do

gk+1
i =

1

(B>KBK)i,i
·

(
(B>Kf)i −

∑
j∈K
j<i

(B>KBK)i,j g
k+1
j −

∑
j∈K
j>i

(B>KBK)i,j g
k
j

)

(4.9)

=
1

b>i bi
·

(
b>i f −

∑
j∈K
j<i

b>i bjg
k+1
j −

∑
j∈K
j>i

b>i bjg
k
j

)
(4.10)

=

b>i

f −∑
j∈K
j<i

bjg
k+1
j −

∑
j∈K
j≥i

bjg
k
j + big

k
i


b>i bi

. (4.11)

Replacing bj in the sums by its definition and exploiting the linearity of r
yields:

gk+1
i =

b>i

f −∑
j∈K
j<i

r (C, ej) g
k+1
j −

∑
j∈K
j≥i

r (C, ej) g
k
j + big

k
i


b>i bi

(4.12)

= gki +

b>i

f − r
C,∑

j∈K
j<i

ejg
k+1
j +

∑
j∈K
j≥i

ejg
k
j




b>i bi
. (4.13)

(4.14)

This result can further be simplified by defining the grey value vector
g to contain the “up-to-date” grey values at any step. That means right
before updating the i-th entry of g, it is given by

g =
∑
j∈K
j<i

ejg
k+1
j +

∑
j∈K
j≥i

ejg
k
j , (4.15)
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and when we do the update, the new g is computed as

gnew := gold +
b>i (f − r

(
C, gold

)
)

b>i bi
ei . (4.16)

Exploiting the linearity of r we can also efficiently compute an “up-to-date”
reconstruction u = r (C, g) at each step:

unew = r (C, gnew) (4.17)

= r

(
C, gold +

b>i (f − r
(
C, gold

)
)

b>i bi
ei

)
(4.18)

= r
(
C, gold

)
+
b>i (f − r

(
C, gold

)
)

b>i bi
r (C, ei) (4.19)

= uold +
b>i (f − uold)

b>i bi
bi . (4.20)

Remark Let us now for a moment consider the simplified optimisation
problem, where we optimise only the i-th grey value gi by computing how
much the given one needs to be changed. Let g be a given grey value vector
and u = r (C, g) its corresponding inpainting result. Then we aim for a
solution of

arg min
γ
|f − r (C, g + γei) |2 . (4.21)

Using the linearity of r we get r (C, g + γei) = u + γ bi. We obtain the
least squares solution

γ =
b>i (f − u))

b>i bi
. (4.22)

Thus, the new grey value vector is given by

gnew = gold + γei . (4.23)

This corresponds exactly to one Gauss-Seidel update step as given in
Equation (4.16).
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The complete algorithm is summarised as follows:

Algorithm: Greyvalue optimisation

Input:

Original image f , inpainting mask C.

Initialisation:

u := r (C,f) and g := f .

Compute:

For all i ∈ K:

Compute the inpainting echo bi := r (C, ei).

Do

1. Set uold := u.

2. For all i ∈ K:
a. Compute the correction term γ :=

b>i (f−u)

b>i bi
.

b. Update the grey value gi := gi + γ and
the reconstruction u := u+ γ · bi.

while |MSE(u,f)−MSE(uold,f)| > ε .

Output:

Optimised grey values g.

Our algorithm terminates when the qualitative improvement from one
to the next iteration step decreases to a value smaller then ε = 0.001. For
the masks that are considered in this paper, we obtain the solution after
not more then 10 Gauss-Seidel iterations.

4.3.3 Results

In order to evaluate the capabilities of the grey value optimisation, we apply
it to the all masks obtained for all test images so far (see first column of
Figure 4.6 - Figure 4.11). The visual and quantitative results are depicted in
the last column of Figure 4.6 - Figure 4.11. For reasons of clarity, Table 4.3
recapitulates the quantitative results. Indeed, we are able to improve the
quantitative as well as the visual quality for all the reconstructions. Espe-
cially suboptimal masks benefit from this optimisation. This is because the
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Table 4.3: Quantitative comparison of the reconstruction error (MSE) with 4%
of all pixels for different test images and different inpainting data.

image trui walter peppers256

optimal
no yes no yes no yestonal data

randomly
276.25 156.95 297.07 155.50 278.61 156.15selected

rectangular
181.72 101.62 184.00 91.97 185.04 104.41grid

hexagonal
187.08 102.74 181.82 89.97 180.22 101.62grid

analytic
84.04 42.00 39.85 20.19 70.05 43.77approach
(σ=1.6, s=0.80) (σ=1.5, s=1.00) (σ=1.5, s=0.95)

probabilistic
66.11 36.04 32.96 19.24 44.75 28.58sparsification
(pcand =0.3 ,
prm =0.000001)

(pcand =0.2 ,
prm =0.000001)

(pcand =0.1 ,
prm =0.000001)

non-local
41.92 27.24 18.37 12.45 29.63 25.10pixel exchange
(m=20 ,
5·105 iterations)

(m=30 ,
5·105 iterations)

(m=30 ,
5·105 iterations)

spatial optimisation approaches choose the optimal locations in dependence
of the given grey values of the original image. Thus, the optimal spatial
data fits to already given grey values. Greyvalue optimisation can com-
pensate much more for the deficiencies that result of a suboptimal spatial
selection. This becomes particularly apparent when considering the result
for the random mask. It is remarkable how much the quality can be im-
proved by simply choosing different grey values. This even holds for the
spatially most optimal masks, namely the one given by the probabilistic
sparsification in combination with the non-local pixel exchange. Compared
to the random unoptimised mask, we are able to reduce the MSE by more
than one order of magnitude for all test images. This shows the importance
of data optimisation in PDE-based image compression.
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Figure 4.6: Evaluation of different inpainting data for the test image trui
(see Figure 4.2(a)) using 4% of all pixels. Left column: Different masks
obtained by (a) random selection, (d) rectangular grid, (g) hexagonal grid.
Middle column: Reconstructions with homogeneous diffusion inpainting using
the masks (a,d,g). Right column: Similar to middle column, but using optimal
tonal data.
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Figure 4.7: Evaluation of different inpainting data for the test image trui (see
Figure 4.2(a)) using 4% of all pixels. Left column: Different masks obtained
by (a) analytic approach (s = 0.80, σ = 1.6), (d) probabilistic sparsification
(pcand = 0.3, prm = 0.000001), (g) non-local pixel exchange (m = 20, 500,000
iterations) applied to (d). Middle column: Reconstructions with homogeneous
diffusion inpainting using the masks (a,d,g). Right column: Similar to middle
column, but using optimal tonal data.
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Figure 4.8: Evaluation of different inpainting data for the test image walter
(see Figure 4.2(b)) using 4% of all pixels. Left column: Different masks
obtained by (a) random selection, (d) rectangular grid, (g) hexagonal grid.
Middle column: Reconstructions with homogeneous diffusion inpainting using
the masks (a,d,g). Right column: Similar to middle column, but using optimal
tonal data.
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Figure 4.9: Evaluation of different inpainting data for the test image walter (see
Figure 4.2(b)) using 4% of all pixels. Left column: Different masks obtained
by (a) analytic approach (s = 1.00, σ = 1.5), (d) probabilistic sparsification
(pcand = 0.2, prm = 0.000001), (g) non-local pixel exchange (m = 30, 500,000
iterations) applied to (d). Middle column: Reconstructions with homogeneous
diffusion inpainting using the masks (a,d,g). Right column: Similar to middle
column, but using optimal tonal data.
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Figure 4.10: Evaluation of different inpainting data for the test image pep-
pers256 (see Figure 4.2(c)) using 4% of all pixels. Left column: Different
masks obtained by (a) random selection, (d) rectangular grid, (g) hexagonal
grid. Middle column: Reconstructions with homogeneous diffusion inpainting
using the masks (a,d,g). Right column: Similar to middle column, but using
optimal tonal data.
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Figure 4.11: Evaluation of different inpainting data for the test image pep-
pers256 (see Figure 4.2(c)) using 4% of all pixels. Left column: Different
masks obtained by (a) analytic approach (s = 0.95, σ = 1.5), (d) probabil-
istic sparsification (pcand = 0.1, prm = 0.000001), (g) non-local pixel exchange
(m = 30, 500,000 iterations) applied to (d). Middle column: Reconstructions
with homogeneous diffusion inpainting using the masks (a,d,g). Right column:
Similar to middle column, but using optimal tonal data.
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4.4 Extensions to the Biharmonic Operator

and Edge-Enhancing Diffusion

In the previous section, we saw that a careful optimisation of the interpol-
ation data allows us to obtain impressive reconstructions with only 4% of
all pixels. Those results get even more impressive in view of the fact that
we used an interpolation operator which usually gives only poor reconstruc-
tions. In this section we want to answer the question to what extend the
spatial and tonal optimisation algorithms of the previous sections can be
used with, or extended to more advanced inpainting operators. To this end,
we will consider the two operators introduced in Section 2.6, namely the
biharmonic operator and the one given by edge enhancing-diffusion (EED).

4.4.1 Spatial Optimisation

Let us first consider the spatial optimisation. The theory of the analytic
approach bases on homogeneous diffusion and cannot easily be extended
to more sophisticated inpainting operators. Therefore, we will not consider
this approach in this section. In contrast, the probabilistic approach as
well as the non-local pixel exchange can be used without any restrictions or
changes. As before, we search for the best parameters of the optimisation
methods. The two EED parameters are kept fixed as λ = 0.8 and σ = 0.7.
Experiments have shown that this is a reasonable choice, giving results of
high quality.

Results with the Biharmonic Operator

The resulting masks and reconstructions with the biharmonic operator
operator when applied to the test image trui are shown in the left and
middle column of Figure 4.13. For comparison we also applied the inpaint-
ing method to the randomly selected as we well as the rectangular and
hexagonal grid masks (see Figure 4.12, left and middle column). Table 4.4
allows an easy quantitative comparison of the obtained results.

For the unoptimised masks the biharmonic operator in general performs
better than the homogeneous one. The reconstructions clearly benefit from
the additional smoothness at the given inpainting data. This does not
hold for probabilistic sparsification. There, the biharmonic operator cre-
ates strong over- and undershoots which outweigh the benefits of additional
smoothness. Indeed, the minimum and maximum values of the given re-
construction lie around −59 and 346, respectively. This is far beyond the
range of the original image with minimum and maximum values 56 and 241.
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The reason for this behaviour is that at the beginning probabilistic sparsi-
fication mainly removes pixels in homogeneous areas as those can easily be
reconstructed. Edges at that stage are still finely represented, as there is
still enough inpainting data located. Therefore, for a larger number of mask
pixels, the biharmonic operator can usually outperform the homogeneous
one when using probabilistic sparsification. However, for very sparse masks,
such as in our case, the algorithm will also remove some important pixels
at edges in particular during later iterations. As a result, the biharmonic
operator creates over- and undershoots in the reconstruction. In general it
holds that the less data is given and the more non-uniformly this data is
distributed, the more likely it is that the biharmonic operator creates such
over- and undershoots.

With additional non-local pixel exchange we can overcome this problem.
It redistributes the mask pixels to more favourable locations. A compar-
ison of the mask shows that indeed several pixels have been relocated into
homogeneous areas in order to prevent the over- and undershoots. The
minimal and maximal grey values return to 47 and 248, respectively. As a
consequence, the MSE falls from 79.26 to 20.89, which is again below the
one of homogeneous diffusion inpainting.

Results with EED

The results for EED are analogously given in Figure 4.14 and Figure 4.15,
left and middle column. Table 4.4 summarises the quantitative results.

Compared to the biharmonic operator, the reconstructions of the unop-
timised masks can merely benefit from the good reconstruction capabilities
of EED. The corresponding MSE is only slightly smaller. In contrast, in
the case of probabilistic sparsification EED is clearly superior. There, EED
does not create over and undershoots, but still gives smooth reconstruc-
tions, and allows even to recreate edges. We obtain an MSE of 24.20 which
is already lower than the overall best result obtained with homogeneous
diffusion. By applying additionally the non-local pixel exchange we even
reach an error of only 12.62.

Figure 4.16, left column allows a direct comparison of the best masks
we could find for each of the inpainting operators. Especially when com-
paring the best mask of homogeneous diffusion inpainting with the others,
we can observe that optimal masks from different operators can differ quite
a lot. Even though there is no obvious structural difference between the
biharmonic mask and the EED mask the differences become evident if we
exchange the corresponding masks: Reconstructing with EED using the
biharmonic-mask gives an error of 51.17 instead of 12.62. Even more signi-
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ficant are the differences if the biharmonic operator is used in combination
with the optimal EED-mask. There we obtain an MSE of 222.27 instead
of 20.89. Thus, the selected optimal data highly depends on the chosen
operator.

4.4.2 Greyvalue Optimisation

Let us now see how we can optimise the grey values for the obtained masks.
In Section 4.3 we optimised the grey values by considering the minimisation
approach (4.2) and by making use of the fact that the inpainting function
r is linear in its second argument, i.e. the given grey values. As it is
for the Laplace operator, the biharmonic operator ∆2 is linear. Therefore,
our approach for grey value optimisation can be transferred one-to-one.
Unfortunately, this does not hold for EED. There the inpainting operator,
represented in the matrix A, now depends on u (see Equation (2.57)). Its
corresponding inpainting function r is in this case no longer linear in its
second argument and Equation (4.2) becomes a non-linear least squares
problem. Before we discuss how to solve it, let us first have a look at the
results for the biharmonic operator when using the algorithm as introduced
in Section 4.3.2.

Results with Biharmonic Operator

The results for the grey value optimisation with the biharmonic operator
are given in the right column of Figure 4.12 and Figure 4.13. As before,
the quantitative results can also be found in Table 4.4. Especially in the
case of probabilistic sparsification, the gain in quality is impressive: The
MSE can be reduced to 23.50. This is due to the fact that by adapting the
grey values, over- and undershoots are damped. Indeed, after optimisation
the values lie between 32 and 254 instead of −59 and 346, respectively.
However, for the best mask, namely the one given after the non-local pixel
exchange, the improvements are not that tremendous since the over- and
undershoots are anyway not as predominant as in the case of probabilistic
sparsification. Still, we can improve the result such that we end up with an
MSE of 16.73.

Greyvalue Optimisation in the Non-Linear Case

Let us now come back to the grey value optimisation in the case of
EED. As we mentioned before, Equation (4.2) becomes a non-linear least
squares problem. In order to solve it, we will apply the Gauss-Newton
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algorithm [Bjõ96]: Starting with g0 = f the optimal grey values are ap-
proximated by the iterative scheme

gs+1 = gs + (J sr
>J sr)

−1J sr
>(f − r (C, gs))︸ ︷︷ ︸

=: αs

, (4.24)

where (J sr)i,j = (Jr(C, g
s))i,j = ∂ri

∂fj
(C, gs) is the Jacobian matrix of r at

gs. One determines αs by solving the linear system of equations

J sr
>J srα

s = J sr
>(f − r (C, gs)) . (4.25)

The entries of the Jacobian matrix are approximated by finite differences:

(Jr(C,f))i,j ≈
ri(C,f + δej)− ri(C,f)

δ
, (4.26)

where δ should usually be a small constant. Moreover, we denote the j-th
column vector of Jr(C,f) by rfj(C,f) and call it the inpainting derivative
of r for the j-th pixel:

rfj(C,f) ≈ r(C,f + δej)− r(C,f)

δ
. (4.27)

Note that (Jr(C,f))i,j = 0 if j ∈ J \K. Thus the inpainting derivative
for the j-th pixel vanishes if j ∈ J \K, similar as in the case of the inpaint-
ing echo (see Equation (4.4)). Indeed, it is easy to verify that inpainting
derivative and inpainting echo are equal in the linear case. For the equation
system (4.25) this means that αj can be chosen arbitrarily if j ∈ J \ K.
The remaining αi with i ∈ K can be obtained by considering the simplified
equation system (cf. Equation (4.6))

Ds
K
>Ds

Kα
s
K = Ds

K
>(f − r (C, gs)) . (4.28)

whereαsK = (αsi )i∈K is a vector of size |K|, andDs
K is a |J |×|K|matrix that

contains the vectors rfi(C, g
s), i ∈ K, as columns. Similar to the system

(4.7) we can solve this linear system of equations by using the Gauss-Seidel
method. We denote the i-th value of αs in the k-th iteration by αs,ki and
initialise with 0, i.e., αs,0i := 0 for all indices i. The corresponding Gauss-
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Seidel iteration step is then given by (cf. Equations 4.9-4.12))

αs,k+1
i =

1(
Ds

K
>Ds

K

)
i,i

·

((
Ds

K
> (f − r (C, gs))

)
i

−
∑
j∈K
j<i

(
Ds

K
>Ds

K

)
i,j
αs,k+1
j −

∑
j∈K
j>i

(
Ds

K
>Ds

K

)
i,j
αs,kj

)
(4.29)

= αs,ki +
rfi(C, g

s)>

|rfi(C, gs)|2
·

(
f − r (C, gs)

−
∑
j∈K
j<i

rfj(C, g
s)αs,k+1

j −
∑
j∈K
j≥i

rfj(C, g
s)αs,kj

)
. (4.30)

To simplify this equation further, we define in each Gauss-Newton step
a vector βs which is recomputed whenever a new αs,k+1

i is available:

βs := r (C, gs) +
∑
j∈K
j<i

rfj(C, g
s)αs,k+1

j +
∑
j∈K
j≥i

rfj(C, g
s)αs,kj .

(4.31)

Note that βs can be considered to be a linearised version of the reconstruc-
tion using the most up-to-date grey values based on the latest gs and the
currently newest values of α:

r

C, gs +
∑
j∈K
j<i

ejα
s,k+1
j +

∑
j∈K
j≥i

ejα
s,k
j

 . (4.32)

With this vector, Equation (4.30) becomes

αs,k+1
i = αs,ki +

rfi(C, g
s)>(f − βs)

|rfi(C, gs)|2
. (4.33)

Instead of computing βs everytime completely, it can also be obtained by
updating its previous value using the old and the newly obtained α-value,
i.e. αs,ki and αs,k+1

i , respectively:

βs;new := βs;old + αs,k+1
i · rfi(C, gs)− α

s,k
i · rfi(C, gs) (4.34)

= βs;old + (αs,k+1
i − αs,ki ) · rfi(C, gs) , (4.35)
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where βold is initially set to r (C, gs) since αs,0 = 0. Moreover, by bringing
αs,ki in Equation (4.33) to the left-hand-side, we can replace (αs,k+1

i − αs,ki )
in Equation (4.35) and obtain (cf. Equation (4.20)):

βs;new := βs;old +
rfi(C, g

s)>(f − βs;old)

|rfi(C, gs)|2
· rfi(C, gs) . (4.36)

Eventually, we obtain a solutionαs which can be used to perform the Gauss-
Newton step given in Equation (4.24). However, instead of computing αs

explicitly, and adding it to gs we can also simply update the grey value vec-
tor g immediately whenever a new value αs,k+1

i is obtained. That means we
simply subtract the old α-value and add the new one in the corresponding
pixel i:

gnew := gold − αs,ki · ei + αs,k+1
i · ei (4.37)

= gold + (αs,k+1
i − αs,ki ) · ei . (4.38)

In the same way how we did it for βs (see Equations (4.35) and (4.36)), we
can then replace (αs,k+1

i − αs,ki ). This yields (cf. Equation (4.16))

gnew := gold +
rfi(C, g

s)>(f − βs;old)

|rfi(C, gs)|2
· ei . (4.39)

Regarding the inpainting derivative rfi(C, g
s), it is important to differenti-

ate between the up-to-date grey value vector g and the vector gs. Whereas
g is already updated during the Gauss-Seidel iterations, gs contains the grey
values as they are given in the s-th Gauss-Newton iteration right before the
first Gauss-Seidel step is even performed.

Unfortunately, with the Gauss-Newton method the sum of squares may
not decrease at every iteration. Indeed, it turns out that our nonlinear
least squares problem is highly ill-posed such that the method easily starts
oscillating around the steady state. A common remedy to this problem
is to introduce a damping parameter ω ∈ [0, 1] which is multiplied with
αs in every step. As a result, the oscillations are reduced at the cost of
fast convergence. Since there is still no guarantee of convergence, the MSE
between the current and the previous reconstruction, as done in the linear
case, is not a reliable stopping criterion. Instead, we specify the number of
Gauss-Newton and Gauss-Seidel iterations manually. One might argue that
in the case of the Gauss-Seidel iterations, we should not limit the number
of iterations, but instead solve the underlying linear system of equations
(4.28) as exactly as possible. However, its system matrix depends on the
inpainting derivatives, which in turn depend on the the optimised grey
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values that we aim to compute. Thus, it can even be beneficial not to solve
this system of equations exactly such that the nonlinear terms, i.e. the
inpainting derivatives are updated more frequently.

In addition, we do not return the very last result at the end of the
algorithm but instead the best one we obtained during the process up to
this point. Summarising, the grey value optimisation in the non-linear case
is given by the following algorithm:

Algorithm: Greyvalue optimisation (nonlinear)

Input:

Original image f , inpainting mask C, damping factor ω, parameter
δ to approximate inpainting derivative, maximal number of Gauss-
Seidel iterations nGS, maximal number of Gauss-Newton iterations
nGN.

Initialisation:

g := f , gbest := f and ubest := r (C,f).

Compute:

For nGN iterations do

1. Initialise β := r (C, g).

2. If MSE(β,f) < MSE(ubest,f)

ubest := β and gbest := g

3. For all i ∈ K:
Compute the inpainting derivatives

di := rfi(C, g) ≈ r(C, g + δei)− β
δ

.

4. For nGS iterations do

For all i ∈ K:

a. Compute the correction term γ :=
d>i (f−β)

|di|2
.

b. Update the grey value gi := gi + ω γ
and β := β + ω γ · di.

Output:

Optimised grey values gbest.
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Results with EED

In total our algorithm offers four degrees of freedom: the number of outer
Gauss-Newton iterations nGN, the number of inner Gauss-Seidel iterations
nGS, the derivative parameter δ and the damping parameter ω. We expect
more stable solutions by choosing the damping parameter ω to be small.
To approximate the inpainting derivative accurately, the derivative para-
meter δ should be small as well. A reasonable choice for the number of
Gauss-Seidel iterations nGS would be to choose as many as necessary to
solve the underlying linear system with a sufficient accuracy. The num-
ber of of Gauss-Newton iterations should be chosen large enough to ensure
convergence.

However, such a parameter choice is not feasible in terms of run time:
The smaller ω, the more Gauss-Newton iterations nGN are necessary to
ensure convergence. Moreover, with very small ω the method can easily
get trapped in local minimal. In addition, due to numerical issues a small
value for δ can lead to unstable results, such that the method might even
not decrease, but instead increase the error. Last but not least, as already
mentioned earlier, it can be advantageous to choose the number of Gauss-
Seidel iterations nGS small such that the nonlinear terms are updated more
frequently.

To get a more determined feeling about suitable parameters, we run sev-
eral experiments using different settings. We analyse the results given after
only 20 and then after 1000 Gauss-Newton iterations to see the algorithm’s
behaviour at an early and an later stage. Even on modern architectures,
the runtime for the latter on some parameter combinations lies already in
the order of weeks. This is why we refrain from testing higher numbers.
For the number of Gauss-Seidel iterations nGS, we tested the values 1, 10,
20, 100, for the derivative parameter δ the values 0.01, 0.1, 1, 10, 100, and
for the damping parameter ω the values 0.001, 0.01, 0.1 and 1.

Tables 4.5 and 4.8 show the best results for all our masks with respect to
each considered value of the number of Gauss-Seidel iterations. Tables 4.6
and 4.9 and Tables 4.7 and 4.10 state the analogous results for the derivative
parameter δ and the damping parameter ω.

A first general observation is that with the right parameters, only 20
Gauss-Newton iterations suffice to already obtain results that are almost as
good as the ones obtained after 1000 iterations. We also see that at both
stages, the other optimal parameters differ slightly.

A closer look at the tables for the Gauss-Seidel iterations and the damp-
ing parameter shows that after 1000 Gauss-Newton iterations there is no
clear tendency to favour specific parameter values over others. For any ω
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and any number of Gauss-Seidel iterations we can find a suitable setting
and get results of similar quality.

However, there seems to be a dependency between both parameters:
The higher the ω the lower nGS should be chosen and vice versa. This holds
all the more at the early stages of the algorithm, as we can see from the
results after 20 Gauss-Newton iterations. This is mainly due to the fact
that both parameters influence the speed of convergence.

At the early stages of the algorithm we can also observe that the ap-
propriate choice of ω matters more. There it is advisable not to choose
it too small, because such values slow the convergence strongly down. A
damping parameter of 0.01 again is already fine. Choosing ω = 0.1 usually
gives the best results at such an early stage. Also with ω = 1 good results
can be obtained. However, especially for spatially suboptimal data as in
the case of the random mask, ω = 0.1 is still preferable. This is even the
case when only one Gauss-Newton iteration is performed. At later stages
(see nGN = 1000) smaller values like 0.01 or 0.1 should be favoured. They
restrict the latitude of the swings and can thus lead to better results. For
higher numbers of Gauss-Newton iterations even a stronger damping might
be considered.

For the number of Gauss-Seidel iterations even at early stages of the
algorithms the quality of the shown results is quite similar. On one hand
this shows that solving the linear system exactly is not necessary, or that
frequent updates of the non-linearities can be neglected, provided the re-
maining parameters especially ω, are appropriately adapted. On the other
hand, it means that since the choice of omega matters at early stages, we
should adapt the Gauss-Seidel iterations in dependence of ω and not vice
versa. In combination with the suggested values for ω, i.e. ω = 0.1 or
ω = 0.01, usually nGS = 30 gives good results.

In contrast to ω and nGS, the derivative parameter δ shows a clear
tendency: It should neither be chosen to large nor too small. At early
stages, δ = 10 usually gives the best results, whereas at later stages most
often δ = 1 leads to better results. Even for much higher numbers of Gauss-
Newton iterations, the latter value seems to be an appropriate choice. Note
that these values are unexpected high considering the fact that the grey
values in an image usually range from 0 to 255. However, with smaller
values the method often already gets stuck at early stages of the algorithm.
This behaviour can be attributed to the EED-inpainting operator: When
the grey value of a pixel is changed within a specific range the reconstruction
result does not change, or changes only marginally. At least this is the
case with a common inpainting parameter setting, as the one we are using
here. Then suddenly, when a certain value is exceeded, the changes in
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the reconstruction are extensive, since the grey value change can cause the
creation of new edges. For our algorithm this means that if δ is too small,
the inpainting derivative is close to 0, and therefore the current grey value
is already considered to be optimal. In contrast, with too large values for
δ, for instance δ = 100, the estimation of the inpainting derivative becomes
too inaccurate. As a consequence the found optimal grey values will be
inaccurate as well, and thus the quality of the reconstructions is suboptimal.

Summarised, a reasonable combination of parameters seems to be nGS =
30, δ = 10 and ω = 0.1. With this setting one can obtain results of good
quality already after only a few Gauss-Newton iterations. Table 4.4 allows
a comparison to the reconstructions obtained with unoptimised grey values
as well as the ones obtained with the other operators. Here, we choose
the parameters with which we obtained the best results after 1000 Gauss-
Newton iterations (see bold printed lines in the Tables 4.8, 4.9, and 4.10).
As we can see, the results outperform the previous once for any mask. This
also holds for the visual comparison given in the Figures 4.14 and 4.15 as
well as Figure 4.16. The overall best result was obtained with the mask
of the non-local pixel exchange and depicts an MSE of 10.84. The quality
of the corresponding reconstruction is quiet impressive, especially since it
was obtained by only 4% of all pixels. Even in the zoom-in depicted in
Figure 4.16(k) one can identify only minor differences compared to the
original.
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Table 4.4: Quantitative comparison of the reconstruction error (MSE) with 4%
of all pixels for different inpainting operators and different inpainting data. The
parameters for the grey value optimisation in the case of EED have been chosen
as given by the bold printed lines in Table 4.10. Note that in the case of EED
the tonal data has been optimised but is not necessarily optimal.

operator homogeneous biharmonic
EED

(λ = 0.8, σ = 0.7)

optimal
no yes no yes no (yes)tonal data

randomly
276.25 156.95 193.86 93.49 181.81 90.83selected

rectangular
181.72 101.62 107.96 74.01 102.85 62.34grid

hexagonal
187.08 102.74 109.01 72.06 102.83 61.21grid

probabilistic
66.11 36.04 79.26 23.50 24.20 14.53sparsification
(pcand =0.3 ,
prm =0.000001)

(pcand =0.005 ,
prm =0.000001)

(pcand =0.05 ,
prm =0.000001)

non-local
41.92 27.24 20.89 16.73 12.62 10.84pixel exchange
(m=20 ,
5·105 iterations)

(m=10 ,
5·105 iterations)

(m=30 ,
5·105 iterations)
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Figure 4.12: Evaluation of the biharmonic operator with different inpainting
data for the test image trui (see Figure 4.2(a)) using 4% of all pixels. Left
column: Different masks obtained by (a) random selection, (d) rectangular
grid, (g) hexagonal grid. Middle column: Reconstructions with biharmonic
inpainting using the masks (a,d,g). Right column: Similar to middle column,
but using optimal tonal data.
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Figure 4.13: Evaluation of the biharmonic operator with different inpainting
data for the test image trui (see Figure 4.2(a)) using 4% of all pixels. Left
column: Different masks obtained by (a) probabilistic sparsification (pcand =
0.005, prm = 0.000001), (d) non-local pixel exchange (m = 10, 500,000 iterations)
applied to (a). Middle column: Reconstructions with biharmonic inpainting
using the masks (a,d). Right column: Similar to middle column, but using
optimal tonal data.
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Figure 4.14: Evaluation of EED with different inpainting data for the test
image trui (see Figure 4.2(a)) using 4% of all pixels. Left column: Different
masks obtained by (a) random selection, (d) rectangular grid, (g) hexagonal
grid. Middle column: Reconstructions with EED-inpainting using the masks
(a,d,g). Right column: Similar to middle column, but using optimal tonal
data.
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Figure 4.15: Evaluation of EED with different inpainting data for the test image
trui (see Figure 4.2(a)) using 4% of all pixels. Left column: Different masks
obtained by (a) probabilistic sparsification (pcand = 0.05, prm = 0.000001), (d)
non-local pixel exchange (m = 30, 500,000 iterations) applied to (a). Middle
column: Reconstructions with EED-inpainting using the masks (a,d). Right
column: Similar to middle column, but using optimal tonal data.
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Figure 4.16: Comparison of the best results (i.e. the ones obtained by prob-
abilistic sparsification combined with non-local pixel exchange and additional
grey value optimisation) for each operator for the test image trui with 4% of all
pixels. Left column: Different masks obtained with (c) homogeneous diffusion
inpainting, (f) biharmonic operator, (i) EED. Middle column: (a) Original
and (d,g,j) reconstructions using the masks (c,f,i) and optimised tonal data.
Right column: Zoom into (a,d,g,j).
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Table 4.5: Parameter analysis for the number of Gauss-Seidel iterations nGS

after nGN = 20 Gauss-Newton iterations using the masks from the Figures 4.14
and 4.15: For each of the tested values 1, 10, 20, and 100, we list the best result
and the corresponding values for the other parameters. The column nbest

GN denotes
the Gauss-Newton iteration at which the result was obtained. The best result
regarding each mask is printed in bold face.

parameter nbest
GN nGS δ ω MSE

randomly 17 1 10.00 1.000 93.99
selected 20 10 10.00 0.100 92.35

20 30 10.00 0.010 93.03
20 100 10.00 0.010 92.50

rectangular 16 1 10.00 1.000 62.90
grid 18 10 10.00 0.100 62.75

19 30 10.00 0.100 62.75
16 100 10.00 0.100 62.72

hexagonal 20 1 10.00 1.000 61.45
grid 19 10 10.00 0.100 61.45

18 30 10.00 0.100 61.43
19 100 10.00 0.100 61.46

probabilistic 14 1 10.00 1.000 14.85
sparsification 19 10 10.00 0.100 14.61

15 30 10.00 0.100 14.67
18 100 10.00 0.100 14.62

non-local 20 1 10.00 1.000 10.88
pixel exchange 19 10 10.00 0.100 10.87

20 30 10.00 0.100 10.86
20 100 10.00 0.100 10.86
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Table 4.6: Parameter analysis for the derivative parameter δ after nGN = 20
Gauss-Newton iterations using the masks from the Figures 4.14 and 4.15: For
each of the tested values 0.01, 0.1, 1, 10, and 100, we list the best result and
the corresponding values for the other parameters. The column nbest

GN denotes
the Gauss-Newton iteration at which the result was obtained. The best result
regarding each mask is printed in bold face.

parameter nbest
GN nGS δ ω MSE

randomly 20 30 0.01 1.000 102.09
selected 19 10 0.10 0.100 98.74

20 100 1.00 0.010 95.33
20 10 10.00 0.100 92.35
10 100 100.00 0.010 106.11

rectangular 19 10 0.01 0.100 64.74
grid 20 100 0.10 0.010 63.01

14 10 1.00 0.100 62.78
16 100 10.00 0.100 62.72

4 1 100.00 1.000 68.27

hexagonal 20 10 0.01 1.000 63.77
grid 20 30 0.10 0.100 62.19

20 10 1.00 0.100 61.58
18 30 10.00 0.100 61.43

5 100 100.00 1.000 66.61

probabilistic 20 30 0.01 1.000 23.85
sparsification 20 100 0.10 1.000 17.73

19 30 1.00 1.000 15.14
19 10 10.00 0.100 14.61
20 1 100.00 0.100 15.94

non-local 0 100 0.01 0.001 12.62
pixel exchange 19 100 0.10 1.000 12.10

19 30 1.00 1.000 10.90
20 100 10.00 0.100 10.86

5 10 100.00 0.100 11.31
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Table 4.7: Parameter analysis for the damping parameter ω after nGN = 20
Gauss-Newton iterations using the masks from the Figures 4.14 and 4.15: For
each of the tested values 0.001, 0.01, 0.1, and 1, we list the best result and
the corresponding values for the other parameters. The column nbest

GN denotes
the Gauss-Newton iteration at which the result was obtained. The best result
regarding each mask is printed in bold face.

parameter nbest
GN nGS δ ω MSE

randomly 20 100 10.00 0.001 100.16
selected 20 100 10.00 0.010 92.50

20 10 10.00 0.100 92.35
17 1 10.00 1.000 93.99

rectangular 20 100 1.00 0.001 69.58
grid 20 30 1.00 0.010 62.99

16 100 10.00 0.100 62.72
16 1 10.00 1.000 62.90

hexagonal 20 100 1.00 0.001 66.87
grid 20 100 1.00 0.010 61.79

18 30 10.00 0.100 61.43
20 1 10.00 1.000 61.45

probabilistic 19 100 10.00 0.001 18.22
sparsification 19 100 10.00 0.010 14.98

19 10 10.00 0.100 14.61
3 100 10.00 1.000 14.78

non-local 20 100 100.00 0.001 12.56
pixel exchange 19 30 10.00 0.010 11.35

20 100 10.00 0.100 10.86
9 100 10.00 1.000 10.87
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Table 4.8: Parameter analysis for the number of Gauss-Seidel iterations nGS

after nGN = 1000 Gauss-Newton iterations using the masks from the Figures 4.14
and 4.15: For each of the tested values 1, 10, 20, and 100, we list the best result
and the corresponding values for the other parameters. The column nbest

GN denotes
the Gauss-Newton iteration at which the result was obtained. The best result
regarding each mask is printed in bold face.

parameter nbest
GN nGS δ ω MSE

randomly 439 1 10.00 0.100 91.09
selected 688 10 10.00 0.100 91.09

816 30 10.00 0.010 90.83
883 100 10.00 0.010 90.83

rectangular 840 1 1.00 0.100 62.34
grid 669 10 1.00 0.010 62.39

722 30 1.00 0.010 62.43
613 100 1.00 0.010 62.39

hexagonal 985 1 1.00 0.100 61.23
grid 650 10 1.00 0.010 61.22

573 30 1.00 0.010 61.21
340 100 1.00 0.010 61.23

probabilistic 150 1 10.00 0.100 14.57
sparsification 1000 10 1.00 0.100 14.57

493 30 1.00 0.100 14.55
320 100 1.00 0.100 14.53

non-local 518 1 1.00 1.000 10.86
pixel exchange 293 10 1.00 1.000 10.86

172 30 1.00 1.000 10.84
24 100 10.00 0.100 10.85
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Table 4.9: Parameter analysis for the derivative parameter δ after nGN =
1000 Gauss-Newton iterations using the masks from the Figures 4.14 and 4.15:
For each of the tested values 0.01, 0.1, 1, 10, and 100, we list the best result and
the corresponding values for the other parameters. The column nbest

GN denotes
the Gauss-Newton iteration at which the result was obtained. The best result
regarding each mask is printed in bold face.

parameter nbest
GN nGS δ ω MSE

randomly 995 100 0.01 1.000 97.17
selected 778 30 0.10 0.100 95.26

929 10 1.00 0.100 91.71
816 30 10.00 0.010 90.83
522 1 100.00 0.100 105.35

rectangular 555 10 0.01 0.100 63.01
grid 938 100 0.10 0.010 62.53

840 1 1.00 0.100 62.34
712 1 10.00 0.100 62.56

4 1 100.00 1.000 68.27

hexagonal 880 10 0.01 0.100 62.09
grid 995 100 0.10 0.010 61.40

573 30 1.00 0.010 61.21
472 1 10.00 1.000 61.35
94 100 100.00 1.000 66.57

probabilistic 991 100 0.01 1.000 18.88
sparsification 955 10 0.10 1.000 15.01

320 100 1.00 0.100 14.53
35 100 10.00 0.100 14.56
36 1 100.00 0.100 15.83

non-local 995 100 0.01 1.000 12.46
pixel exchange 971 100 0.10 1.000 11.00

172 30 1.00 1.000 10.84
24 100 10.00 0.100 10.85
5 10 100.00 0.100 11.31
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Table 4.10: Parameter analysis for the damping parameter ω after nGN =
1000 Gauss-Newton iterations using the masks from the Figures 4.14 and 4.15:
For each of the tested values 0.001, 0.01, 0.1, and 1, we list the best result and
the corresponding values for the other parameters. The column nbest

GN denotes
the Gauss-Newton iteration at which the result was obtained. The best result
regarding each mask is printed in bold face.

parameter nbest
GN nGS δ ω MSE

randomly 947 100 1.00 0.001 92.24
selected 816 30 10.00 0.010 90.83

439 1 10.00 0.100 91.09
817 1 10.00 1.000 92.06

rectangular 1000 10 0.10 0.001 64.47
grid 613 100 1.00 0.010 62.39

840 1 1.00 0.100 62.34
179 1 10.00 1.000 62.74

hexagonal 997 100 0.10 0.001 62.57
grid 573 30 1.00 0.010 61.21

985 1 1.00 0.100 61.23
472 1 10.00 1.000 61.35

probabilistic 997 100 10.00 0.001 15.40
sparsification 133 100 10.00 0.010 14.59

320 100 1.00 0.100 14.53
567 1 10.00 1.000 14.66

non-local 997 1 100.00 0.001 11.45
pixel exchange 159 100 10.00 0.010 11.04

24 100 10.00 0.100 10.85
172 30 1.00 1.000 10.84
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4.5 Compression Result

At the end of this chapter, we briefly want to get a feeling about the poten-
tial of the presented optimisation techniques from a compression point of
view. To this end we simply take the qualitatively best results with respect
to each interpolation operator and try to compress them with standard
techniques. In Chapter 3 we have seen that JBIG is a suitable codec to
encode binary images, whereas LPAQ2 was our codec of choice to encode
the colour values. Thus, we will rely again on those two to encode the
optimised mask and the colour values, respectively. Moreover, we will not
store the grey values in float precision but instead include a uniform quant-
isation step. This also means the stored grey values will actually not be
optimal anymore, and thus the quality decreases. In reverse it allows for
higher compression rates.

It also holds in general that the following results are actually not optimal
from a compression point of view yet. All data have been optimised with
respect to the number of pixels assuming that this number correlates with
the compression ratio. However, the compression ratio also depends on the
way the data is then stored. For example, let us consider a compression
method for binary masks that stores the distances along the y-axis between
neighbouring mask pixels whenever this distance changes. Knowing those
distances, it would be possible to reconstruct the mask. For a rectangu-
lar grid we would then need to store only the distance whereas for a grid
with randomly chosen locations it is likely that we would need to store the
distance for every mask pixel again and again.

Thus, from a compression point of view, we would actually not be in-
terested in the optimal data using a specific amount of mask pixels rather
than the optimal data giving a specific compression rate. In this thesis we
will not tackle this problem. Instead, the aim of this section is solely to
elicit the general potential behind an optimal data selection for PDE-based
image compression.

Figure 4.17 shows the compression results in comparison to JPEG and
JPEG2000 for the three operators, respectively. In addition to the com-
pression rate that is depicted at the bottom x-axis, the top x-axis shows the
corresponding number of grey values yielded by quantisation. As standard
image formats anyway represent a grey value with only one byte, i.e. it
can take only 256 different grey values, we choose this to be the highest
number. The lowest is 2, since for only one grey value we would obtain a
flat image.

As a first general observation we want to remark that the results ob-
tained with a quantisation to 256 grey values is almost as good as the results
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Figure 4.17: Comparison between JPEG, JPEG2000 and the result based on
the best spatial and tonal data (4% of all pixels) for inpainting with (a) homo-
geneous diffusion, (b) biharmonic interpolation and (c) EED (see also Table 4.4,
bold print). The optimised spatial data has been compressed with JBIG, the op-
timal tonal data by a quantisation step followed by a compression with LPAQ2.
The top x-axis depicts the number of grey values yielded by the quantisation
whereas the bottom x-axis shows the corresponding compression ratio.
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with original optimised tonal data: For homogeneous diffusion, the quality
decreased from a PSNR of 33.78 to 33.76, for the biharmonic operator from
35.90 to 35.86 and for EED from 37.78 to 37.70.

Considering the whole range of quantisation levels, with homogeneous
diffusion inpainting, we cannot get better results than with JPEG, even
though we can come already close to it, when using only 20 different grey
values. Using the biharmonic operator, we are able to outperform JPEG
for compression ratios in the range 16:1 to 19:1. With EED, we are even
able to compete with JPEG2000. For a compression ratio from 14:1 up to
20:1, the PDE-based approach is better. Best results are obtained when we
use between 40 (PSNR 37.19) and 60 (PSNR 37.50) different grey values.

We also observe that the quality drastically decreases towards small
numbers of different grey values. This is not really surprising, as the full
range of colours of the original cannot be represented properly anymore.
Thus, in order to reach higher compression rates and to maintain the quality,
we should rather adapt the amount of mask pixels, i.e. using less than the
4%. The same holds if we would like to reach lower compression ratios.
Here, one should increase the amount of mask pixels.

The knee at the right end of the graph in the case of EED and the
biharmonic operator is related to the values being connected in the order of
the quantisation values. It shows, that the reconstruction quality obtained
with 2 different grey values is in this case actually better than the one with
3. The reason is that the colours are chosen by uniform quantisation. For
the corresponding results, the colours obtained with two quantisation levels
simply fit better than those with three.

As in Chapter 3, we could use a non-uniform quantisation to adapt the
colours when the number of quantisation levels surpasses a specific value.
Taking a more general perspective, this would mean we try to adapt our
compression method to suit the data to be compressed better. Alternatively,
one could also try to chose the data from the beginning, such that it suits
the compression method better. This means we want to know what is the
optimal data if only specific grey values can be chosen. As a fact, for the
spatial data selection we already restrict the possible location to the one
given by the pixel grid. The same could be done for the tonal data.

Carrying this further, one could restrict the locations of the mask pixels
such that they can be compressed more efficiently. In a more fuzzy ap-
proach, one could favour specific locations over others with a certain prob-
ability depending on how well the location can be compressed. One of the
most simple ideas would be to weight the pixel locations according to a tree
structure, since such a structure can be stored very efficiently [SPM+14].
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4.6 Conclusion

The optimality of our results in this framework refers solely to the recon-
struction quality, but only indirectly includes coding costs via the amount
of pixels. However, it is well known that specific pixels distributions can
be encoded more efficiently than others. Examples are the tree based co-
decs that have been mentioned in Chapter 1 and our edge-based codec from
Chapter 3.

In contrast to the previous chapter, we did not present a fully developed
compression codec here. Instead, our focus was on the question of how
to find the optimal interpolation data for reconstructing an image with
a given PDE. To this end, we first developed two algorithms to get the
optimal spatial data: The probabilistic sparsification and the non-local pixel
exchange. Whereas the former creates an inpainting mask by iteratively
removing insignificant pixels, the latter improves a mask that has already
the desired amount of mask pixels. To obtain best results, both methods
are applied consecutively. Afterwards, we compute the optimal tonal data
by a least squares fit.

The results of this chapter are manifold. On one hand, we saw that even
with the simplest inpainting PDE, namely homogeneous diffusion, one can
obtain reconstructions of astonishing quality using only 4% of all pixels. On
the other hand, we saw that the concepts and algorithms can be carried over
to more sophisticated PDEs such as the biharmonic interpolation and EED.
Even though the optimisation has the less influence the more sophisticated
the PDE, it is still possible to improve the quality in all cases remarkably.

Furthermore, we got an impression on the potentials of optimal data
selection for image compression. By applying our default compression
schemes on the data obtained for EED, we are able to outperform
JPEG2000 for a specific range of compression ratios without any addi-
tional efforts. The obtained compression rates are in the rather low range,
i.e. between 15:1 and 20:1. Since they have been obtained for a fixed
amount of pixels, we expect that one could easily reach other ranges by
choosing the amount of pixels accordingly. Since so far, PDE-based com-
pression methods could mainly compete with JPEG2000 on medium and
high compression ratios, our results show that a method based on optimally
selected data can close this gap.

Moreover, we indicated that the presented results are likely to be im-
proved when the subsequent coding of the selected data is included into
the optimisation approaches. Also a coupled optimisation approach that
considers spatial and tonal data at the same time could lead to improve-
ments. Last but not least, as we will see in the next section, the results are
of interest for already existing PDE-based compression methods.



Chapter 5
Edge-based Image Compression

revisited

5.1 Motivation

In the previous chapter, we have seen the potential of optimal data selection
for PDE-based image compression. Besides storing the raw optimised data
as done at the end of the previous chapter, we can also exploit the gained
knowledge to improve already existing PDE-based compression methods.
For example, by optimising the colour values, we can instantly increase the
quality of the results of the presented edge-based codec (see Chapter 3). Of
course, this will slow down the encoding time. However, in many applica-
tions like video compression, encoding time is not heavily restricted, while
decoding should be possible in realtime.

The aim of this chapter is to evaluate how optimal data can be included
into our edge-based image compression codec and to evaluate its impact.

5.2 Integrating Optimal Tonal Data

5.2.1 Simplified Algorithm

To apply the grey value optimisation to the cartoon-like colour image from
Chapter 3, we consider each channel separately. Note that with respect
to the stored data, the underlying interpolation operator of the edge-based
codec is not necessarily a linear one. This is due to the fact that it is
composed of two subsequent interpolation steps. First, the data is linearly

109



110 CHAPTER 5. EDGE-BASED IMAGE COMPR. REVISITED

interpolated along the edges. In a second step, the data is then spread into
the 2D space by using homogeneous diffusion inpainting. Thus, we should
actually use the grey value optimisation for nonlinear operators as presen-
ted for EED in Section 4.4.2. However, it turns out that the interpolation
behaves in this case almost linearly. This is why it is here sufficient to per-
form only one Gauss-Newton iteration and solve the Gauss-Seidel equation
system up to a specified precision (i.e. until the residual is small enough).
The damping parameter ω can be set to one as well as the derivative para-
meter δ. The simplified algorithm, where β has been replaced by u, reads
as follows

Algorithm: Grey value optimisation for edge-based compression

Input:

Original image f , inpainting mask C.

Initialisation:

u := r (C,f) and g := f .

Compute:

For all i ∈ K:

Compute the inpainting derivatives

di := rfi(C,f) ≈ r(C,f + ei)− u .

Do

1. Set uold := u.

2. For all i ∈ K:
a. Compute the correction term γ :=

d>i (f−u)

d>i di
.

b. Update the pixel value gi := gi + γ and
the reconstruction u := u+ γ · di.

while |MSE(u,f)−MSE(uold,f)| > ε .

Output:

Optimised pixel values g.

Note that this algorithm is almost identical to the one presented for the
linear case in Section 4.3.2). The only difference is that we are using the
inpainting derivative instead of the inpainting echo.
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5.2.2 Results

To evaluate the effects of optimised tonal data for the edge-based codec, we
apply it to the same test images as in Chapter 3, Figure 3.5. All parameters
have been unaltered. The results are depicted in Figure 5.1 and Table 5.1.
Whilst the reconstruction quality improved for all images, we also observe
that the tonal optimisation has a larger impact on the non-synthetic images
coppit and svalbard. For them, the PSNR changed from 30.31 dB to 33.26
dB and 30.14 dB to 32.02 dB, respectively. For the test image comic it only
increased from 30.20 dB to 30.91 dB.

This observation is emphasised by the fact that the bit rate for coppit
and svalbard increases only slightly for the optimised colour signal, i.e. by
0.01 bpp, whereas in the case of comic it raises from 0.19 to 0.23 bpp.

As a consequence, the gap to JPEG and JPEG2000 (see Table 5.1) to
our method increases for svalbard and coppit . This is not so much the case
for comic. Still, in all cases our method is superior to JPEG and JPEG2000.

The main reason for the big improvement in the case of svalbard and
coppit can be explained with Figure 5.2. It depicts a cropped detail for
each result. Here one sees that choosing the colour next to the edges can
lead to colour bleeding artefacts in the reconstruction (see Figure 5.2(e)
and (h)). This happens because the colours next to the edges do not reflect
the main colour of the whole region next to it. This can happen due to a
delocalised edge, slightly unsharp edges, or artefacts in the original image.
By optimising the colour values, we can overcome this problem and improve
the visual reconstruction quality notably.

In Section 3.4.1 and Figure 3.7 we have seen an example with extreme
compression rates. By removing low contrast edges and adapting quantisa-
tion, sampling and edge tracing parameter, we have reached a compression
ratio of 315:1. Of course the quality of the reconstruction decreased to a
PSNR of 28.18. Considering the visual result (see Figure 5.3(c) and (f)), its
obvious that the main reason for this reduced quality is the colour bleed-
ing. Therefore, it is not surprising that by using optimised tonal vales the
quantitative and visual quality improves significantly. Quantitatively, the
PSNR of 30.36 dB is even slightly better than the result from Chapter 3,
Figure 3.5. There, the PSNR has been 30.14, at a rate of 0.16 bpp (ratio
of approximately 145:1) instead of 0.07 bpp, (ratio of 320:1) here.
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PSNR 33.26 dB 32.02 dB 30.91 dB

Figure 5.1: Comparison of the edge-based codec with and without tonal op-
timisation for different test images. First row: Original images. Second row:
Resembles the results of the last row of Figure 3.5, i.e. using our codec with
default parameters and edge images as depicted in Figure 3.4; Bitrates from left
to right: 0.37 bpp, 0.16 bpp and 0.19 bpp. Third row: Has been obtained with
the same parameter settings except that the stored tonal data was optimised
additionally; Bitrates from left to right: 0.38 bpp, 0.17 bpp and 0.23 bpp.
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Figure 5.2: Cropped detail (64× 64) for each image depicted in Figure 5.1.
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a b c

original with tonal without tonal
optimisation ∼ 320:1 optimisation ∼ 315:1

d e f

zoom into (a) zoom into (b) zoom into (c)

Figure 5.3: Comparison of the edge-based codec with and without tonal op-
timisation for extreme compression ratios: (a) Original image; (b, c) Our codec
using the edge image as depicted in Figure 3.7 (c) and the same settings as in
Figure 3.7 (b), i.e. default settings except for q∗ = 15, d∗ = 45 (∗ ∈ {R,G,B})
and dtr = 10. For (b) the colour values have been optimised whereas for (c) not
i.e. it shows Figure 3.7 (b). Both results have a compression rate of 0.07–0.08
bpp (i.e. approx. 315:1–320:1). While (b) has a PSNR of 30.36 dB, the one of
(c) is 28.18 dB; (d-f) Zoom into (a-c).
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Table 5.1: Comparison of quantitative results (error measure PSNR in dB) to
demonstrate the capabilities of tonal optimisation in the context of edge-based
image compression: The first part of this table resembles the results stated in
Table 3.3, i.e. the results of our codec with default parameters and edge images
as depicted in Figure 3.4 in comparison to JPEG and JPEG2000 at the same
compression rates. The second part of the table shows the analogous results
when using the same parameter settings for our codec except that the stored
tonal data was optimised additionally.

image coppit svalbard comic

without optimised tonal data:

compression
0.37 0.16 0.19

rate (bpp)

our method 30.31 30.14 30.20

JPEG 26.61 23.38 24.25
JPEG2000 28.13 27.68 26.77

with optimised tonal data:

compression
0.38 0.17 0.23

rate (bpp)

our method 33.26 32.02 30.91

JPEG 26.87 23.38 25.87
JPEG2000 28.29 27.90 28.03

5.3 Integrating Optimised Spatial Data

Let us now have a look on how the edge-based compression codec could
benefit from the spatial optimisation approach. In contrast to tonal op-
timisation, it cannot be applied instantly as the spatial data is actually
already prescribed by the edges. Anyway the question is why not to replace
the edges and select the data solely by our optimisation approach.

For most cartoon-like images the resulting inpainting mask would actu-
ally not differ much from the mask derived by the edge image. Figure 5.4
shows two masks with different densities for the test image svalbard ob-
tained with the probabilistic sparsification and the non-local pixel exchange.
For comparison, the mask based on the edge image which was used to com-
press svalbard in Chapter 3 is depicted as well. For all masks, the data is
mainly chosen next to the edges. However, the spatially optimised mask



116 CHAPTER 5. EDGE-BASED IMAGE COMPR. REVISITED

a b c

Figure 5.4: (a) Inpainting mask derived from edge image as given in Fig-
ure 3.4(b). It can be encoded with JBIG with 1416 byte. (b,c) Applying the
probabilistic sparsification (pcand = 0.02, prm = 0.000001) and the non-local pixel
exchange (400, 000 iterations, m = 50) to the cartoon-like image svalbard with a
density of (a) approx. 4% and (b) approx. 10%. Those images can be encoded
with JBIG with 3373 and 4456 bytes, respectively. Parameters for (b) and (c)
have been determined as in Chapter 4.

cannot be compressed as efficiently as the pure edge image. This is because
there is always a few scattered pixels in homogeneous regions and the data
at edges are often not connected and more fuzzy than in our edge-based
approach. Moreover, the spatial data is stored as it was obtained, whereas
in the edge-based approach not the locations next to the edges but only the
edges themselves need to be encoded. Last but not least, apart from a less
efficient mask encoding, one cannot exploit the advantage of data reduction
by subsampling the colours along the edges.

Using the mask from Figure 5.4(b) with optimal tonal data and requant-
ising to 17 different values per channel, we achieve the same quantitative
quality (PSNR 32.26) as with the edge-based codec, but need 0.43 bpp in-
stead of only 0.38 bpp. This means we would not be able to compete with
JPEG2000.

However, there are cases in which a hybrid method, i.e. a mixture of
edges supplemented by a few optimally chosen points can be advantageous.
Such cases are given by images that contain low contrast or blurry edges
as they are given within the cones of the test image coppit or in natural
images such as the test image trui. Those edges can be expected to be
represented sufficiently well with a few additional optimally chosen pixels.
A description with edges is in this case usually very costly or does not give
satisfactory results.
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5.3.1 Hybrid Method

As in the edge-based codec, we start by detecting the edges. However, this
time we are only interested in the high contrast ones. To this end, it is
usually sufficient to use the same edge parameters as before but increase T1

such that it is close to T2. In a second step, we add a specified amount of
spatially optimised pixels. This is done by first applying the probabilistic
sparsification (cf. Section 4.2.2) with only a small difference: We exclude
the pixels adjacent to the edges from the set K, i.e. they cannot be removed
by the sparsification process. Afterwards, we apply the non-local pixel ex-
change (cf. Section 4.2.3), again excluding the pixels adjacent to the edges.
Finally, we obtain a mask which contains the pixels adjacent to the edges
and the specified amount of spatially optimised pixels.

In order to encode the mask, we could simply store it using JBIG. How-
ever, since it explicitly contains the pixels next to edges its demand for
storage increases compared to the encoding of edges as done in the original
codec. Alternatively, we could store the edge image and the additional
points separately. However, ideally we would like to store edges and points
in the same image with JBIG. This demands that during decoding we can
distinguish between the points and edges.

To achieve this, we exploit that edges most often consist of more than
just a single pixel, whereas the additionally added pixels are likely to not
have neighbours. To guarantee this condition, we modify our codec slightly
as follows. After the edge detection has been completed, we apply a post-
processing step, which removes edges of length one, i.e. pixels that do not
have a neighbour. For probabilistic sparsification, not only do we remove
the pixels adjacent to edges, but also the edge pixels themselves from the
initial set K. The same edge pixels are also discarded from the initial mask
C. Moreover, the initial set K and mask C only contain pixels that lie
on a grid with grid distance 2. For the non-local pixel exchange, we simply
demand that during an exchange a mask pixel cannot be set next to another
mask pixel.

Of course, by introducing those restrictions, it might happen that we
prevent the pixels from being set to their true optimal location. However,
experiments have shown that the gain in compression justifies this approach.

5.3.2 Results

As a first experiment we apply the new approach to the test image cop-
pit. Except for the edge detection parameter T1, we keep all parameters
fixed as they were chosen for the results that are purely based on edges



118 CHAPTER 5. EDGE-BASED IMAGE COMPR. REVISITED

(see Chapter 3, Figure 3.5). In addition, we optimise the tonal data. By
increasing the threshold T1 for the edge detection from 4.3 to 20 we reduce
the amount of edges such that only the high contrast ones are left. Then, we
add 100 additional pixels as described in previous section (Section 5.3.1).
The resulting edge image, which is encoded by using JBIG, is depicted in
Figure 5.5(d). As expected, the majority of the points have been put at the
low contrast edges in the cones. Figure 5.5(e) shows the decoded colours
placed at their positions for inpainting. The final reconstruction is given by
Figure 5.5(f). For comparison, the top row of Figure 5.5 shows the results
which were obtained previously with the codec purely based on edges in-
cluding tonal optimisation (as Figure 5.1). In both cases, we obtain almost
the same reconstruction quality, i.e. a PSNR around 33.25 dB. However,
the hybrid method needs only 0.26 bpp instead of 0.38. This corresponds to
a compression ratio of approximately 90:1. At the same compression rate,
JPEG2000 would have a PSNR of 25.86 dB.

As a second experiment we want to see if this approach is more suitable
to encode natural images than the pure edges based one (cf. Section 3.4.2
and Figure 3.8). To this end, we first want to illustrate the effect of optim-
ised data on the reconstruction quality for the test image trui . Figure 5.6
shows an edge image for the test image trui containing only the high con-
trast edges. Figure 5.6 states the corresponding reconstruction using the
edge-based codec as it was defined in Chapter 3. By applying the tonal
optimisation, we can improve the quantitative result greatly from a PSNR
of 25.98 dB to a PSNR of 31.46 dB (see Figure 5.6(c)). However, the
visual result is not really convincing, as we obtain sharp edges which look
cartoon-like, and thus unnatural. On the other hand, Figure 5.6(e) depicts
the result if we do not use optimal tonal data, but only include spatially
optimised data, by adding 100 pixels using the hybrid method. In this case
the quality can also be increased considerably from 25.98 dB to 29.95 dB.
The best result is presented in Figure 5.6(f) where tonally and spatially
optimised data is included and we end up with a PSNR of 33.10 dB.

Finally, we want to see if the hybrid method is competitive to JPEG and
JPEG2000. Moreover, we are interested if it is better for this type of images
than the approach based solely on edges or solely on points. To this end,
Figure 5.7 compares the quality of all methods for the test image trui at
a compression rate of 0.34 bpp. All parameters have been tuned to deliver
optimal results. Quantitatively, JPEG2000 delivers the best result. Our
hybrid method is slightly better than JPEG. The point based approach
(cf. Section 4.5) is worse, but still better than the edge-based one (cf.
Chapter 3). Visually, JPEG, JPEG2000, and the hybrid method are quite
comparable. The approach which is purely based on edges looks unnatural,
cartoon-like, while the one purely based on points looks blurry.
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Figure 5.5: Comparison of the original edge-based codec with the version which
allows to add spatially optimised points. In both cases the colour values have
been optimised. From left to right: Underlying edge images, reconstructed
colours, decoded images. Top row: Results from Figure 5.1, i.e. with edges
only, having a PSNR of 33.26 dB and 0.38 bpp. Bottom row: Result with a
reduced amount of edges by setting T1 = 20, but including 100 spatially optimised
points. Has roughly the same quality (PSNR of 33.23 dB), but needs only 0.26
bpp. Parameters for spatially optimised points: probabilistic sparstification:
pcand = 0.1, prm = 0.1, non-local pixel exchange: 1, 000 iterations, m = 20.
Other parameters have been chosen identically in both approaches.
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Figure 5.6: Effect of adding spatially optimised points to a given edge image.
(a) Edge image obtained by zero-crossings-based edge detection (T1 = 3.5, T2 =
5, σ = 1.5). (b) Result of the edge-based codec using the edge image (a) and
default settings except for q∗ = 24, d∗ = 5. (c) As (b) but with optimal tonal
data. (d) Adding 100 points to (a) with probabilistic sparsification (pcand = 0.05,
prm = 0.000001) and non-local pixels exchange (100, 000 iterations, m = 20). (e)
Decoded image based on (d) and the same parameters as in (b). (f) As (e) but
with optimal tonal data.
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Figure 5.7: Comparison of compression methods at 0.34 bpp. For the PDE-
based methods colour values have been optimised. (a) Original image. (b)
JPEG. (c) JPEG2000. (d) Result of the edge-based codec using the edge image
(g) and default settings except for q∗ = 20. (e) Inpainting result using the mask
(h) and quantising to q∗ = 21 different grey values (cf. Section 4.5). (f) Similar
to Figure 5.6(f). (g) Edge image (T1 = 2, T2 = 5, σ = 1.2). (h) Mask with 2300
pixels obtained by probabilistic sparsification (pcand = 0.05, prm = 0.000001) and
non-local pixels exchange (500, 000 iterations, m = 20). (i) As in Figure 5.6(d).
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5.4 Conclusion

In this chapter, we have seen how optimal data can be integrated into our
edge based codec from Chapter 3. In the case of the tonal optimisation,
we could use a simplified version of the grey value optimisation for the
non-linear case, as introduced for EED in Chapter 4. The improved codec
allowed to improve the results drastically. This clearly indicates that any
kind of PDE-based compression codec should include optimised tonal data
as long as encoding time is not a limiting factor.

In the case of spatial data we supplemented the edge images by only
a few spatially optimised pixels. Therefore, we adapted the algorithms of
Chapter 4 and embedded them into the edge-based codec. As a result the
codec is able to represent smooth variations and blurry edges much more
appropriately. In cartoon-like images improvements can be achieved by
tuning the edge detection parameters such that low contrast edges are no
longer detected but replaced by additional optimised spatial data. Also non-
cartoon-like images can now be encoded in good quality. The result for the
test image trui is similar to the one obtained with JPEG and better than
the ones that are based on edges or optimal data only. Although we could
not outperform JPEG2000, this result shows, that even with homogeneous
diffusion inpainting results of good quality can be obtained by combining
different concepts of PDE-based image compression.



Chapter 6
Summary and Outlook

6.1 Summary

In this thesis we investigated PDE-based image compression based on edges
and optimal data. Starting with an introduction and motivation we first
established the basis of PDE-based compression by explaining PDE-based
inpainting in Chapter 2. We have analysed the numerical theory behind
inpainting with homogeneous diffusion and have provided a fast multigrid
algorithm for solving the inpainting problem. Moreover, we discussed the
extension to more sophisticated differential operators.

Based upon this knowledge, we developed in Chapter 3 a PDE-based
compression codec that is able to outperform JPEG and JPEG2000 for
cartoon-like images. By extracting edges and the adjacent pixel values,
by encoding them efficiently, and by using homogeneous diffusion for re-
construction, we have created a conceptually simple, yet not less efficient
compression method.

In the case of our edge-based codec, the decision about which data
should be stored was based upon perceptual relevant image features. How-
ever, the striving for perfection and the highest efficiency raises the more
fundamental question which data is actually optimal in terms of reconstruc-
tion quality. Therefore, we have explored in Chapter 4 how to find optimal
data for given PDEs. We have shown that even for the simplest inpaint-
ing PDE, namely homogeneous diffusion, one can obtain reconstructions
of astonishing quality using only 4% of all pixels. However, this requires
to optimise the data carefully in both the domain and the co-domain. For
this purpose, we have suggested two algorithms, the probabilistic sparsifica-
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tion and the non-local pixel exchange. Applying them consecutively allows
to outperform the quality of the approach of Belhachmi et al. [BBBW09].
Thus, it proves that Belhachmi’s optimality result only applies to the con-
tinuous setting, and that it cannot easily be transferred to the discrete
setting without admitting additional errors. Regarding the tonal optimisa-
tion, we have proposed a least squares approach that allows to compute the
exact optimal grey values for a given inpainting mask.

To evaluate the potential of an optimal data selection for PDE-based
image compression, we have encoded the obtained data by straightforward
methods as introduced for the edge-based codec. Even with this simple
approach, the result obtained with EED can already outperform the quality
of JPEG2000.

In Chapter 5 we have shown that an optimal data selection can also
be of interest for already existing compression codecs. By optimising the
tonal data in our edge-based codec, we could instantly achieve remarkable
improvements regarding the quality of the results. Furthermore, we have
shown that for images that contain blurry edges, it can be beneficial to add
spatially optimised data next to the edges. This hybrid method allowed us
to achieve also for non-cartoon-like images good qualities using the simplest
PDE, homogeneous diffusion. In fact, the results are better than the results
obtained with single pixels or edges only and are close to the quality of
JPEG2000.

6.2 Conclusion and Outlook

The results of this thesis are manifold. On one hand, we presented a com-
petitive codec that is tailored for the compression of carton-like images.
On the other hand, we introduced approaches how to select the optimal
data for reconstruction in the general case. Both topics teach us that ho-
mogeneous diffusion inpainting should not categorically be dismissed for
PDE-based image compression, albeit it has a bad reputation for inpaint-
ing tasks. We saw that depending on the selected data, it might lead to
high quality results. At the same time, we can benefit from its simplicity
and speed.

However, this fundamental insight does not contradict the favourable
position of EED for PDE-based image compression. After all, it has de-
livered the best quality for a fixed amount of data in Chapter 4. Also,
we could observe that EED is least sensitive to a good spatial data selec-
tion and is thus well-suited when the data selection is restricted to specific
positions.
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Furthermore, the results of our edge-based codec indicate that it is often
necessary to adapt to specific types of images. Cartoon-like images are one
type that clearly needs a specialised treatment and PDE-based methods
seem to be well suited to fulfil this task.

We also saw that there is a high potential of an optimal data selection for
PDE-based image compression. Using straightforward methods to encode
the obtained data, we could outperform JPEG2000 at low compression
rates. Since so far, PDE-based compression methods could mainly compete
with JPEG2000 on medium and high compression ratios, our results show
that a method based on optimally selected data can close this gap.

Moreover, even if optimal data alone might not always lead to compet-
itive results, it can improve existing codecs and help to overcome specific
problems. Our edge-based codec was improved substantially by simply op-
timising the tonal data. By including some spatial points, smooth edges
could be represented.

Finally, we consider our contributions to open the door for various fur-
ther interesting research topics. Regarding our edge-based image compres-
sion codec, the development of progressive modes could be one of those. The
main challenge would possibly lie in the progressive transmission of the edge
image. Since we are encoding the edge image with JBIG, its progressive
mode might offer a point of entry.

As already mentioned, there have been extensions based on our edge-
based codec in order to suit the compression of depth maps [LSJO12,
GMG12]. In [HMWP13], even optimal data was included, similar to our hy-
brid method. Thus, another interesting area of research would be to analyse
its adaptation to further image types that also share specific characteristics
with cartoon-like images. One of those types might be medical images.

Furthermore, real-time video compression for animated cartoon movies
as well as extensions to 3D image data seams to be a feasible research topic
(cf. [Lun11]).

Since diffusion curves [OBW+08] have not been optimised and used for
image compression, yet, one could also investigate how this can be achieved.
Besides the representation of edges with splines, an interesting aspect which
also appears in [Eld99] is the representation of smooth edges. In contrast
to our hybrid method, where additional spatial and tonal data is added to
represent the smoothness effect, his method creates it by storing additional
information explicitly at the edge. It is likely that this information can be
encoded more efficiently than extra pixels.

As we have seen in our hybrid method in Chapter 5, it is not hard to
include optimal data into existing methods (see also [HMWP13]). Espe-
cially the algorithms for spatial optimisation easily carry over to any kind
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of interpolant. Thus, we can imagine that various approaches might benefit
if a few additional data is added to improve the quality. In this context
it would also be interesting to combine the capabilities and advantages of
different differential operators. For instance, one could use homogeneous
diffusion inpainting as suggested for the edge codec. To improve the qual-
ity then further, the difference between original and current reconstruction
could be computed. This difference image again could be encoded using
optimal data and EED.

Regarding PDE-based image compression with optimal data, there
are several concerns that deserve attention for future work. As seen in
Chapter 4, we were already able to outperform the quality of JPEG2000
using EED and common encoding techniques. Thus, one could address the
problem how these data can be encoded more efficiently. This might allow
to obtain even with homogeneous diffusion results that are competitive with
JPEG2000. On the other side one could try to improve the optimisation
process with respect to compression. That means not only the reconstruc-
tion quality should determine the optimality of a pixel position or value
but also the resulting coding costs. Regarding the spatial component, an
easy approach to tackle this problem would be to weight locations accord-
ing to their coding cost. The weight of each pixel is then converted to a
probability which can be used for a biased candidate selection in the prob-
abilistic sparsification and non-local pixel exchange. Furthermore, appro-
priate adaptations of the grey value optimisation to quantised data should
be included.

Also, a coupled optimisation approach that considers spatial and tonal
data at the same time could lead to improvements.

Another issue is the fairly long running time of our algorithms. For
practical purposes one would not run our algorithm with the optimal para-
meters, but instead adapt them to obtain solutions of sufficient quality more
quickly. Still, they would probably take minutes or even hours. As a rem-
edy, methods as suggested in [HSW13] could increase the overall speed of
the method.

One of the most promising fields connected to our probabilistic sparsi-
fication process are progressive image compression modes. As probabilistic
sparsification naturally creates masks of different densities that are accord-
ing to the algorithm all optimal, it already allows some kind of scalability.
Even more suited is the probabilistic densification of [HMWP13] which is
based on the idea of probabilistic sparsification. Instead of sparsifying the
mask it fills it up instead. Thus, this method would even allow to transmit
a progressive version of the image while the encoding process is still going
on.
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Last but not least, we believe that ongoing research in PDE-based image
compression should not only prescribe specific grey or colour values at spe-
cific locations but include additional information that influence the PDE.
For instance, it is conceivable to prescribe a fixed diffusion tensor at specific
locations, which may encode diffusivities and directional information.

Considering the related work on PDE-based image compression stated
in Chapter 1, and the open research topics, it becomes clear that our contri-
butions represent only small pieces in the big picture of PDE-based image
compression research. Each work spotlights on different facets, allowing
superior results in its domain. This does not only show the flexibility and
wide range of fields of application for PDE-based image compression but
also gives hope that by combining all aspects, one day the outcome will be
a comprehensive PDE-based image compression codec.
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[KSFR07] H. Köstler, M. Stürmer, C. Freundl, and U. Rüde. PDE
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