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Abstract. We demonstrate that one can adapt recent diffusion-based
image compression techniques such that they become ideally suited for
steganographic applications. Thus, the goal is to embed secret images
within arbitrary cover images. We hide only a small number of charac-
teristic points of the secret in the cover image, while the remainder is
reconstructed with edge-enhancing anisotropic diffusion inpainting. Even
when using significantly less than 1% of all pixels as characteristic points,
sophisticated shapes of the secret can be clearly identified. Selecting more
characteristic points results in improved image quality. In contrast to
most existing approaches, this even allows to embed large colour images
into small grayscale images. Moreover, our approach is well-suited for un-
censoring applications. Our evaluation and a web demonstrator confirm
these claims and show advantages over JPEG and JPEG 2000.

1 Introduction

In a time that is characterized by devices that allow anyone at anytime to take
and share high resolution digital images, the need for image compression codecs
with high compression rates is more important than ever. A promising recent
class of image compression codecs relies on inpainting techniques based on partial
differential equations (PDEs); see e.g. [1]. In contrast to conventional methods
such as JPEG, PDE-based image compression does not require transformations
to the frequency domain: It simply stores a small fraction of characteristic pixels.
In the decoding step, the missing pixels are reconstructed by the inpainting
effect of the PDE. PDE-based approaches can outperform JPEG and even its
sophisticated successor JPEG 2000 [2,3]. This oberservation holds all the more
for perceptual quality metrics as shown in [4]. However, they have not been
adapted to specific application scenarios outside classical image compression so
far.
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In this paper, we consider one of those scenarios, namely steganography.
Steganography is the art of hiding the presence of an embedded message (called
secret) within a seemingly harmless message (called cover). It can be seen as
the complement of cryptography, whose goal is to hide the content of a mes-
sage. Media data such as images currently constitute the most widely used cover
types for practical steganographic systems, mainly because they contain much
redundant data. However, most existing approaches only embed single words or
a short text within a cover image. We show that, by exploiting the potential of
PDE-based image compression codecs, our approach can hide complete images.

Apart from steganography, embedding messages within other messages is also
useful in applications such as digital content protection and copyright manage-
ment: A content provider can distribute redacted media data already containing
the missing information. Afterwards the missing information can be selectively
disclosed to paying customers by simply supplying the password.

Example algorithms to embed data in images are Jsteg [5], F5 [6], and
YASS [7]. Jsteg replaces least significant bits with those to embed, which is
vulnerable to histogram attacks [8]. F5 implements matrix encoding to improve
the embedding efficiency and a permutation to spread the changes over the whole
steganogram. YASS employs error correcting codes to be robust against JPEG
compression. Often, steganographic methods also focus on hiding information
inside specific file formats such as JPEG [7,9] or JPEG 2000 [10,11].

Our Contribution. In this article, we show how PDE-based image compres-
sion must be adapted such that it meets the requirements occurring in steganog-
raphy. We call the resulting novel method Steganograhy with Diffusion Inpainting
(SDI). First we select a very small number of characteristic points of the given
secret image. Thereby, we carefully combine insights from several recent papers
to obtain a fast compression codec which yields high quality results and small
file sizes at the same time. Then, we encode the obtained bitstream by employing
a state of the art entropy coder. Before embedding this data, we encrypt it to
avoid detectable patterns that might be a result of the compression.

Note that, for steganographic purposes, it is desirable to keep the number of
characteristic points – and thus the amount of data that must be hidden – as
small as possible. Since experiments have demonstrated that diffusion inpaint-
ing is well-suited to extremely high compression rates [2], it fits perfectly to
steganography. Even with less than 1% of all pixels as characteristic points, the
shapes of the secret image can be clearly identified.

Interestingly, our SDI approach even allows to black out a region of an image
and embed its former content in the remainder of the image. Using the correct
password, the censored part can be uncovered at any time. Diffusion-based in-
painting is particularly well-suited for this application, as the boundary of the
censored region provides additional information which facilitates the reconstruc-
tion process. A web demonstrator for hiding and censoring is available at http://
stego.mia.uni-saarland.de.

Related Work. To the best of our knowledge, inpainting methods have not
been used for steganographic purposes before. In [12] techniques are developed

http://stego.mia.uni-saarland.de
http://stego.mia.uni-saarland.de
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Fig. 1. Schematic overview of the main steps of our steganographymethod: Steps
1 and 2 illustrate the encoding of the PDE-based image compression codec. Steps
3 and 4 depict the steganographic preparation and embedding phases.

to prevent an unexpected user from eliminating objects in videos by inpainting.
This is achieved by segmenting the objects, followed by a steganographic embed-
ding. However, this has nothing to do with our approach, which tailors diffusion
inpainting for compact data representation in steganography.

Paper Structure. Section 2 illustrates our diffusion-based compression al-
gorithm. Based on this algorithm, we explain how to embed secret images within
arbitrary cover images in Section 3. In Section 4, we describe our performance
measurements before concluding the paper in Section 5.

2 PDE-based Image Compression

2.1 Basic Concept

While anisotropic diffusion processes have been popular for denoising images for
many years, their use in image compression is relatively new and a topic of on-
going research. Compared to conventional compression methods such as JPEG
or JPEG 2000, diffusion-based image compression offers a number of advantages:
It has a very intuitive physical interpretation, it is well-suited for extremely high
compression rates, where it can outperform JPEG and even JPEG 2000 [2,3],
and it can be used in a generic way for various types of data – including 2-D
images, 3-D data sets, surface data and videos.

For simplicity, we consider a greyscale image, i.e. a function f : Ω → R,
where Ω ⊂ R

2 denotes a rectangular image domain. The extension to colour
images does not create specific problems. The idea behind diffusion-based image
compression is to store only the grey-values of a small subset K ⊂ Ω [1]. Using
the pixels in K as Dirichlet boundary data, we reconstruct f in the unspecified
domain Ω \K as steady state (t → ∞) of the partial differential equation (PDE)

∂tu = div(D(∇uσ)∇u) , (1)



4 Mainberger et al.

where ∇ = (∂x, ∂y)
⊤ is the spatial nabla operator, and div the corresponding

divergence operator. This PDE is known as edge-enhancing anisotropic diffusion
(EED) [13]. The diffusion process is steered by the positive definite 2×2 diffusion
matrix D. It depends on the gradient of the Gaussian-smoothed version uσ of the
image u, where σ is the standard deviation of the Gaussian. The direction of∇uσ

is along the steepest ascent, i.e. perpendicular to image edges, and its magnitude
|∇uσ| measures the strength of the edge (contrast). The two eigenvectors of D
are orthogonal resp. parallel to ∇uσ, and their eigenvalues are given by µ1 = 1
and µ2 = 1√

1+|∇uσ |2/λ2
. Thus, along image edges, µ1 = 1 ensures that full

diffusion is performed, while the decreasing behaviour of µ2 w.r.t. |∇uσ| reduces
diffusion across edges with high contrast. The parameter λ > 0 allows to steer
this contrast dependence.

2.2 Step 1: Finding Characteristic Pixels

Since steganographic methods are often applied in situations with limited re-
sources, the compression algorithm has to be fast. Compared to methods such
as [2], which are tuned to yield optimal quality, we thus give greater priority
to the running time. However, real-time capable methods are often designed for
more restricted application areas, e.g. to cartoon-like images [3]. Since our codec
aims at combining interactive running times with suitability for a large class of
images, we have to modify ideas from [2] and [3] and combine them with results
from [14]. Moreover, our compression codec should work particularly well for
high compression rates such that we are also able to hide a large colour image
within a much smaller greyscale image. This also allows not to exploit the maxi-
mal available space such that the secret information is only stored in a fraction of
all pixels, in order to prevent an observer from detecting the secret information.

To fulfil these requirements, we first extract a set of characteristic pixels
which will be used for inpainting in the recovering step (Figure 1, Step 1), fol-
lowed by saving these points in a compact representation, see next section (Figure
1, Step 2). We rely on an adaptive subdivision method similar to the one chosen
in [2], but refrain from time-consuming optimisation steps. Instead, we exploit
the theoretical results obtained in [14] to speed up the method.

As in [2], our subdivision method starts with the rectangle defined by the
whole image domain, or the censored image part, respectively. The rectangle
is recursively split into smaller rectangles until a predefined stopping criterion
is fulfilled. The final inpainting mask K, i.e., the pixel locations used in the
reconstruction, is given by the four corner points and the centre of each rectangle.
This allows to efficiently encode pixel positions; see Section 2.3. Moreover, the
algorithm can adaptively store more pixels in significant structures by using a
finer subdivision instead of investing many points in unimportant image areas.

In [2], splitting a rectangle is stopped as soon as the interpolation error within
the rectangle is smaller than a threshold. Thus, a rectangle is split whenever
decoding would lead to an inadequate reconstruction in this area. The drawback
of this natural stopping criterion is that its evaluation requires to inpaint image
parts while compressing. Thus, this method is too slow for our purpose.



Lecture Notes in Computer Science 5

Therefore, we exploit the analytical result obtained in [14] for homogeneous
diffusion inpainting to speed up the subdivision. In this paper, it is proven that
the pixel positions should be chosen depending on |∆f |, the magnitude of the
Laplacian of the original image f . Even though we prefer EED over homogeneous
diffusion due to its superior inpainting quality, experiments indicate that this
choice still yields good results. Our new subdivision scheme exploits this idea
and works as follows: During the subdivision process, we assign each rectangle the
sum over the Laplace magnitudes |∆fσ|i of all pixels i within the rectangle. We
denote these sums, which can be computed efficiently using the idea of integral
images [15], by D(R). Starting with the rectangle defined by the whole image
domain, the rectangle that corresponds to the largest sum is subdivided in the
middle of the x or y direction, whichever is larger. This rectangle can be found
efficiently by utilising a priority queue, where the rectangle R has the priority
−D(R). After each subdivision step, the two new rectangles are included into
the queue.

Obviously, the number of subdivisions s is related to the size of the encoded
image. Therefore, we can adapt s to the desired compression ratio. We perform
a binary search for s to approximate this compression rate.

2.3 Step 2: Compact Representation

To store the inpainting mask K obtained in the last section, it is sufficient to
represent the splitting decisions with a binary tree structure. We encode this
tree in the image header: First the depth range of the tree is stored, followed by
single bits indicating the splitting decisions. The file header also contains a few
bytes for properties such as image size and number of channels.

The grey or colour values of the selected points are quantised regularly into
q possible values. In contrast to [2], where a time-consuming optimisation of
q is advocated to achieve best quality, we use the constant value q = 32. To
further speed up the algorithm, we employ the LPAQ [16] coder to compress the
brightness data instead of the slower PAQ [16] coder proposed in [2]. Finally,
the binary strings containing the compressed pixel values and the file header are
concatenated to obtain a bit stream representation of the secret.

To restore the image, the saved grey values are placed at the locations in-
dicated by the stored splitting decisions, and the remainder of the image is
inpainted using EED. For uncensoring, we can exploit additional information in
the reconstruction step, namely the fact that (a part of) the boundary of the
censored image is known. This has two consequences: First of all, characteristic
points lying on known boundaries do not have to be saved, which reduces the
size of the compressed file. Secondly, the known boundary pixels can be used as
known points in the inpainting step, which improves the reconstruction quality.

3 Steganographic Preparation and Embedding

In this section we present the steganographic part our SDI algorithm, depicted
as Step 3 and 4 in Figure 1. It allows to hide a bitstream of a restricted size, as
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obtained at the end of the previous section, in a set of cover image pixels. An
observer cannot detect whether the resulting image contains a hidden secret or
not. Moreover, the secret bitstream can only be extracted with a password p.

3.1 Step 3: Steganographic Preparation

As a first steganographic step we need to add the size of the bitstream (in
bytes) to its beginning to be able to separate secret data from cover data when
extracting the bitstream again. Then we encrypt this concatenation using the
Advanced Encryption Standard (AES ) in Cipher-block Chaining (CBC ) mode.
This step further ensures the confidentiality of the secret data. The key used for
this encryption is derived from password p by using the hash function SHA-256
as a random oracle [17]. Following the approach proposed in [18], we split the
encrypted binary stream into blocks of 11 bits. Each block is transformed to
7 ternary bits (note that 211 < 37). This conversion is necessary to use mod-3
matching later on, which embeds a ternary bit in a cover pixel.

3.2 Step 4: Embedding

Next, we need to select the cover image pixels in which we want to hide the secret
data. The simplest way would be to start at the beginning of the cover’s data and
to sequentially embed the ternary bits into the pixels of the cover. However, this
approach simplifies the detection of the secret image since all modifications of the
cover occur at its beginning, except the ternary stream is large enough to exhaust
the cover’s capacity. Therefore, we use a pseudo-random permutation ρ, inferable
by anybody who knows the password p, to spread the ternary bits homogeneously
over the cover’s data. This ensures that each pixel of the cover image carries
secret information with the same probability. Our embedding of secret data into
an image relies on the assumption that the distribution of the least significant
bits for each byte representing a cover pixel essentially corresponds to random
noise. Hence, changing the pixel values by ±1 does not change an image in a
manner that is noticeable by the user. However, LSB replacement, i.e. overwriting
the least significant bits with those that should be embedded, is vulnerable to
statistical detection methods, as even values are never decreased and odd values
are never increased [8]. LSB matching [19] instead randomly decides whether to
increase or decrease a value, which bypasses these statistical tests. We use mod-3
matching which embeds a ternary bit t by modifying a pixel value v, such that
v mod 3 = t. More precisely, if v−t mod 3 = 1, we set v := v−1; if v−t mod 3 =
2, we set v := v+1; otherwise we leave v unchanged. In the special cases where v
already is 0 or 255, we skip over v as modifying completely saturated values might
be noticeable in some scenarios. Furthermore, an embedding of t in a value v ∈
{1, 254} might result in shrinkage with a completely saturated byte ∈ {0, 255};
see [6]. The extraction cannot distinguish such saturated stegobytes from skipped
saturated image bytes. Therefore, we re-embed the respective ternary bit in the
subsequent cover byte, until the result is not a saturated byte.
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Neglecting those two restrictions, we can approximately embed one ternary
bit per cover image pixel. That means if the cover image’s data consist of n pixels,
we can embed up to t = 11 · ⌊n

7
⌋ bits, which amounts to up to b = ⌊ t

128
⌋ AES

blocks. Assuming 4 bytes of length information at the beginning of the stream,
we can embed secret data of size up to 128·b

8
− 4 bytes in the cover image.

To extract the secret image from the cover, we simply invert the operations
explained above: Given the password p, we can infer the pseudo-random permu-
tation ρ. This allows us to extract the bits of the ternary representation in the
correct order by calculating mod-3 for each value and skipping over completely
saturated values as explained above. To determine how many pixels need to be
processed, we decrypt the first 128 extracted bits with the key derived from pass-
word p. Then, by using the obtained length information we extract the remaining
bits of the secret bitstream and decrypt it. Finally we apply the decompression
algorithm from Section 2.3 to reconstruct the secret image.

3.3 Uncensoring Images

SDI as described above can immediately be applied to hide an image into another
one. However, there are various modifications and extensions that allow the usage
of SDI in other interesting fields of application.

For instance, SDI can be used for uncensoring applications where censored
parts of an image are still contained in the same image and accessible by a pass-
word. However, it should not be detectable that there is any other information
available than the visible one. In this scenario, only some minor adjustments are
necessary. First of all, we store the location of the part of the image that is to
be censored using a few additional bits in the header of the compressed image.
Moreover, as explained in Section 2.3, we can exploit the fact that the boundary
of the censored region is known. Additionally, the file header of our approach is
much smaller than those of JPEG and JPEG 2000, which is an additional advan-
tage over these approaches. This makes our diffusion-based image compression
algorithm particularly well-suited for such uncensoring scenarios.

Even in cases where a significant part of the image is censored and only a
small surrounding frame of the censored region is available for embedding, we
still achieve good reconstruction results. We encourage the reader to verify this
claim with our web demonstrator (see http://stego.mia.uni-saarland.de).

4 Experiments

For a quantitative evaluation of SDI, we consider the mean squared error (MSE),
which is defined as

MSE :=
1

M ·N

M∑

m=1

N∑

i=1

(fm,i − um,i)
2 , (2)

where N is the number of image pixels, M is the number of channels, and
(fm,i)i=1..N and (um,i)i=1..N are the pixel values of the original secret image in
channel m, pixel i and its reconstructed version, respectively.

http://stego.mia.uni-saarland.de
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Fig. 2. Colour test images:
(a) Left: Cover image cake,
256 × 256 pixels. (b) Right:
Secret image knife, 512× 512
pixels.
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Fig. 3. Compression ratio versus mean
squared error when our compression codec is
applied to the test image knife (see Figure 2).
The green rectangles mark the automatically
computed ratios corresponding to the quality
settings ”high“, “medium”, and “low” of our
web-based prototype.
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Fig. 4. Reconstructed images and corresponding inpainting masks for increasing
compression ratios of the test image knife (see Figure 2). The first row depicts
the results obtained with different quality settings offered by our web-based
prototype.

Original 50 bytes 99 bytes

Original Censored Our method JPEG JPEG 2000
250 bytes 263 bytes 256 bytes

Fig. 5. The information removed from the original image was hidden in the
censored image. The magnifications on the top of the right side illustrate the
reconstruction quality with different amounts of data. The images in the bottom
row compare the performance of our codec with JPEG and JPEG 2000.
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In Figure 2, we apply our method to two test images. Note that the secret
image is four times larger than the cover image. Figures 3 and 4 reflect the
respective results of the recovered secret depending on the number of stored
secret pixels. As expected, the higher the compression ratio, the lower the quality.
However, it is typically only necessary to recognise what was originally depicted.
With SDI this is possible: Even for compression ratios as high as 800 : 1, we can
clearly identify the secret to be a knife. This means we could hide this secret in
the given cover roughly 40 times.

For the colour images from Figure 2, the embedding and extracting time on
a standard PC lies in the order of seconds. If the speed of the hiding process is
negligible, it is also possible to replace the suggested compression codec by the
more sophisticated one from [2], which yields results of even higher quality at
the same compression ratio.

The benefit of our codec over JPEG and JPEG 2000 can be seen in Figure 5:
Storing the censored image part with JPEG or JPEG 2000 yields a much worse
quality, even though our compression algorithm additionally stored the position
of the censored image part, while the saved JPEG and JPEG 2000 image parts
were manually pasted onto the right position.

5 Conclusions and Future Work

We have established a novel application field for recent PDE-based image com-
pression techniques by adapting them to the needs of steganographic problems.
In order to compress the image data in short time, high quality, and with small
file sizes, it was necessary to combine a number of concepts and insights. This
was integrated with carefully engineered steganographic preparation and embed-
ding processes to end up with SDI, a novel technique for hiding secret image data
in a cover image in a secure manner. Moreover, we have shown the usefulness of
the SDI approach for uncensoring applications.

The success of these applications benefits heavily from the fact that diffusion-
based image compression offers several properties that makes it preferable over
classical codecs such as JPEG or JPEG 2000. This includes for instance its
excellent performance for very high compression ratios, and its ability to exploit
known boundary data in uncensoring applications. It appears that PDE-based
compression and steganography constitute an ideal, hitherto unexplored match.

We are convinced that our work is not the end of the road: Due to the generic
concept of diffusion-based inpainting, the SDI approach can be extended to a
variety of different secret and cover formats, including 2-D images, 3-D data sets,
surface data and videos. Even hiding small videos within a single image seems
within range given our experiments. This is part of our ongoing research.
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