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Abstract. Estimating the fundamental matrix from a pair of stereo images is one
of the central problems in stereo vision. Typically, this estimation is based on a
sparse set of point correspondences that has been obtained by a matching of char-
acteristic image features. In this paper, however, we propose a completely differ-
ent strategy: Motivated by the high precision of recent variational methods for
computing the optic flow, we investigate the usefulness of their dense flow fields
for recovering the fundamental matrix. To this end, we consider the state-of-the-
art optic flow method of Brox et al. (ECCV 2004). Using non-robust and robust
estimation techniques for determining the fundamental matrix, we compare the
results computed from its dense flow fields to the ones estimated from a RANSAC
method that is based on a sparse set of SIFT-matches. Scenarios for both converg-
ing and ortho-parallel camera settings are considered. In all cases, the computed
results are significantly better than the ones obtained by the RANSAC method –
even without the explicit removal of outliers.

1 Introduction

The recovery of depth information from two different views of the same scene is an
essential task in computer vision. However, this task cannot be solved without addi-
tional information about the position, orientation and internal parameters of the camera
system. In this context, the estimation of the fundamental matrix plays a very important
role, since it describes the projective-geometric relation between both views in terms of
the so-called epipolar constraint [15, 5]. This information not only allows to establish
more reliable correspondences between both views, it is also essential to finally set up
a projective reconstruction of the original 3-D scene.

First approaches to estimate the fundamental matrix or its Euclidean equivalent –
the essential matrix – go back to Longuet-Higgins and his eight point algorithm [13].
This linear method and its variants compute the fundamental matrix from a set of given
correspondences via least squares or total least squares fits subject to the epipolar con-
straint [5]. Some years later, nonlinear methods followed that allowed to interpret de-
viations from the epipolar constraint in a geometrical sense [15] - e.g. as distances to
associated epipolar lines. However, apart from a few exceptions that suggest to esti-
mate the fundamental matrix directly without the explicit use of any point matches [12]
all these methods rely exclusively on the use of asparseset of point correspondences



that has been obtained by a previous matching of characteristic image features. Typical
features in this context are corners found by the Harris corner detector [8], or, more re-
cently, SIFT features [14] that offer certain invariances with respect to scale, viewpoint
and illumination. One main drawback of such feature-based matching approaches is the
relatively large number of false matches that are estimated - mainly due to the lack of
global contextual information. Thus it is not surprising that this well-known sensitiv-
ity of the previously mentioned linear and nonlinear techniques with respect to outliers
and noise [21] has triggered an extensive research in robust methods. They include M-
estimators [11], case deletion algorithms [4] or even more robust, random sampling
techniques such as RANSAC [6, 17, 22] and its improved variant for quasi-degenerated
cases QDEGSAC [7].

In view of this development, it is astonishing that mainly the issue of estimating
the fundamental matrix from feature-based point correspondences is addressed in the
literature [20, 5], but not the question which types of methods are actually most suitable
to provide these correspondences. In fact, recent progress in optic flow estimation due
to highly accurate variational methods [2, 16] has shown that there is a variety of precise
alternatives available for reliably computing correspondences from two images without
any prior knowledge - such as the epipolar geometry of the scene. Apart from their
high accuracy, variational methods offer at least two additional theoretical advantages
compared to traditional feature-based matching techniques: (i) They providedenseflow
fields with hundreds of thousands of correspondences. In particular with respect to the
robustness of the estimation this should be a very important issue. (ii) They do not
create strong outliers, since they combine statistically robust data terms with global
smoothness assumptions on the solution [1, 2, 16]. This in turn may make sophisticated
robust algorithms for estimating the fundamental matrix such as RANSAC obsolete.

The goal of the present paper is to analyse the potential of such dense optical flow
fields for estimating the fundamental matrix. To this end, we consider displacement
fields that are computed by the recent variational technique of Broxet al. [2]. Exper-
iments with respect to both quality and robustness of the estimation show the advan-
tages of such dense optic flow fields: Even if only simple linear methods are used to
estimate the fundamental matrix, the results are significantly better than the ones of
SIFT-matches using a robust RANSAC approach.

Our paper is organised as follows. In Section 2 we shortly review the required ba-
sics of the epipolar geometry and the fundamental matrix. The highly accurate varia-
tional method that provides us with a set of correspondences is explained in Section 3.
while non-robust and robust techniques to estimate the fundamental matrix from them
are discussed in Section 4. Finally, experiments with different camera settings and a
comparison to results based on SIFT-matches are presented in Section 5. The paper is
concluded with a summary in Section 6.

2 Problem Statement

Let us start by recalling the basic concept of the epipolar constraint [5]. To this end, we
consider a pair of stereo imagesfl(x) andfr(x), where subscripts stand for the left and
the right image, respectively, andx = (x, y)> denotes the location within a rectangular
image domainΩ. Given a pointx in the left image, the epipolar geometry tells us that its



corresponding pointx′ in the right image is constrained to lie on the associated epipolar
line. This relation between both views is known as the epipolar constraint [5]. It can be
written as

x̂′>F x̂ = 0 , (1)

wherex̂ = (x, y, 1)> andx̂′ = (x′, y′, 1)> are projective coordinates of corresponding
points, andF is the fundamental matrix [15] - a 3×3 matrix of rank two that is only de-
fined up to a scale. Due to the two additional constraints onF , the epipolar geometry of
the scene is described by 7 independent parameters. Therefore, excluding degenerated
configurations due to coplanar points, a minimal set of 7 correspondences is required to
estimate the fundamental matrix from the epipolar constraint.

In the following we are interested in investigating the usefulness of dense optic
flow for estimating these parameters from a given pair of stereo images. To this end,
we propose a simple two step strategy: In a first step, we use a recent variational optic
flow method to compute a dense displacement field between both views. Since such
methods provide exactly one match per pixel, this step will give us a huge set of point
correspondences. In a second step, we then make use of these displacements and esti-
mate the actual fundamental matrix from them. Due to the intrinsic robustness of the
large amount of correspondences, we only consider standard linear approaches for this
task. However, we will also discuss two alternative approaches based on SIFT-matches,
RANSAC and LMedS (least median of squares). These feature-based techniques shall
serve as references with respect to methods that are frequently used in practice.

3 Dense Variational Optic Flow

First approaches for computing the optic flow with variational methods go back to Horn
and Schunck [10] two decades ago. Since then the estimation quality of such techniques
improved significantly. Recent variational methods even belong to the most accurate
techniques in terms of error measure in the entire literature [2, 16].Such methods com-
pute the dense displacement fieldu = (u, v)> between two imagesfl andfr as min-
imiser of a suitable energy functional. In general, this energy functional has the form

E(u) = ED(u) + αES(u) , (2)

whereED(u) andES(u) denote the data and the smoothness term, respectively, and
α > 0 is a scalar weight that steers the degree of smoothness. While the data term
penalises deviations from constancy assumptions – e.g the constancy of the grey value
of objects – the smoothness term regularises the often non-unique local solution of the
data term by assuming a (piecewise) smoothness of the result.

3.1 The Method of Brox et al.

As our representative for the class of variational methods that provide accurate and
dense optic flow fields, let us consider the recent technique of Brox, Bruhn, Papenberg
and Weickert (BPPW) [2]. Formulated separately as data and smoothness term, the



energy functional corresponding to the 2-D variant of this technique is given by

ED(u) =
∫

Ω

ψD

(
|fr(x + u)−fl(x)|2 + γ |∇fr(x + u)−∇fl(x)|2

)
dx (3)

and

ES(u) =
∫

Ω

ψS

(
|∇u|2 + |∇v|2

)
dx . (4)

While the first expression in the data term models the assumption that the grey value
of objects is constant over time, the second one renders the approach more robust
against varying illumination. This is achieved by assuming constancy of the spatial
image gradient given by∇f = (fx, fy)>. The weighting between the two assump-
tions is realised with a positive scalarγ. In order to allow for a correct estimation of
large displacements, both assumptions are used in their original nonlinear form – all
linearisations are postponed to the numerical scheme where they do not compromise
the performance [2]. Finally, deviations from both the data and the smoothness term
are penalised in a non-quadratic way via a robust functionψ. This improves the perfor-
mance of the approach with respect to outliers and noise in the case of the data term and
preserves motion boundaries by modelling a piecewise smooth flow field in the case of
the smoothness term. For both purposes the regularised version of theL1-norm is used,
which, for the smoothness term, comes down to the total variation (TV) regulariser [18]
ψ(s2) =

√
s2 + ε2. The regularisation parameterε is set to10−3.

3.2 Optimisation

The energy functional of the BBPW method is minimised via a multiscale warping strat-
egy as described in [2]. This allows for an accurate estimation of large displacements
that are usually present in wide baseline stereo. Moreover, we followed the multigrid
framework suggested in [3] in order to speed up the computation of the resulting nonlin-
ear systems of equations. Thus, typical runtimes are in the order of two to three seconds
for images of size640× 480 which allow for a usage in practical applications.

4 Fundamental Matrix Estimation

4.1 Least Squares Fit

After we have explained how our sets of correspondences are obtained, let us now
discuss the methods we are using to determine the fundamental matrix. Due to the
expected robustness of our optic flow results, we restrict ourselves to a simple least
squares fit [5].This requires to rewrite the epipolar constraint as

0 = x̂′>F x̂ =
(
x′, y′, 1

)f11 f12 f13f21 f22 f23
f31 f32 f33

xy
1

 =: s>f (5)

where the vectors := (xx′, yx′, x′, xy′, yy′, y′, x, y, 1)> contains all information on
the point pair̂x′ andx̂, and the vectorf := (f11, f12, f13, f21, f22, f23, f31, f32, f33)>



represents the fundamental matrixF . Then, usingN ≥ 8 correspondences, the funda-
mental matrix can be computed by minimizing the least squares fit

E(f) =
N∑

i=1

(
s>i f

)2
, (6)

where one of the entries off is set to1 in order to exclude the trivial solutionf = 0.
Please note that this parameterisation of one of the entries also excludes all fundamental
matrices, where the selected entry is 0. Thus all nine possible least squares fits must be
considered – each one with a different entry off set to 1. Finally, from the results, the
normalised fundamental matrix with the smallest residual is selected. In this context,
one should note that this approach was chosen, since it gave slightly better results in
our experiments than the widely used total least square fit with the|f | = 1 constraint
[13]. Furthermore, experiments with convex M-estimators such as the regularizedL1

norm [11] indicated that hardly improvements in terms of accuracy are possible by such
types of statistically robust strategies.

4.2 Data Normalisation and Rank-2 Constraint

Since we are interested in using the complete set of correspondences provided by
the dense optic flow techniques, we cannot ensure the rank-2 constraint in terms of
det(F ) = 0 during the minimisation (as is done by many minimal-set-approaches). In-
stead it has to be enforced afterwards by means of projection, i.e. by zeroing the smallest
eigenvalue via a singular value decomposition. The resulting matrix is then given by the
closest solution to the estimated matrix with respect to the Frobenius norm. Finally, we
also normalised the input data as suggested in [9]. It is well-known that such a step is
essential, since it may improve the overall performance of linear methods drastically.

4.3 The SIFT Reference Techniques

In order to compare our method to traditional approaches that are based on a sparse
set of point correspondences, we have chosen two techniques that make use of matches
from the scale invariant feature transform (SIFT) [14]. The first method that we con-
sider applies the previously discussed least squares fit directly to SIFT-matches and thus
allows for a direct comparison to the BBPW method w.r.t. the quality of the underlying
correspondences. In the experiments this method will be denoted by SIFT. The sec-
ond approach additionally usees the robust RANSAC framework [6] in order to remove
outliers that occur during the estimation. For this purpose we have chosen a RANSAC
variant based on the least median of squares (LMedS) [17]. This technique relates the
quality of the fundamental matrix estimated for each drawn subset with the median of
its residuals for the remaining samples. It can be summarised in four steps:

1. Drawn subsets of 8 samples.
2. Compute for each subset the fundamental matrix as previously described.
3. Rate each matrix by the median of its residuals.
4. Chose the matrix with the smallest median.



As proposed in [5] the obtained result was only used to identify outliers in the SIFT-
correspondences. After these outliers had been removed, the fundamental matrix was
then recomputed according to our previous algorithm. In the experiments this method
will be referred to as RANSAC-SIFT.

5 Results

Let us now compare the results from our dense optic flow technique to the ones of the
two SIFT-reference-methods. To this end, we have considered both an ortho-parallel
and a converging camera setting. In order to assess the quality of the different meth-
ods, we have computed in all cases the distance∆Ftruth to the ground truth funda-
mental matrix according to distance measure presented in [5]. This measure uses one
matrix to create a large number of correspondences and the other matrix to establish the
corresponding epipolar lines. After the distances between points and lines have been
computed, the roles of the two matrices are reversed so that a symmetric measure is
obtained that describes an average deviation between the epipolar geometry of both
matrices in terms of pixels. Additionally, we evaluated for each method the distance
∆Fintra of its correspondences to itsown epipolar lines. Please note that this error
measure – in contrast to the first one – does not give information on the quality of the
estimated fundamental matrix. However, it gives information on the homogeneity of
the point matches, since large values reflect here correspondences that contradict them-
selves w.r.t. the epipolar geometry of the scene. With respect to the RANSAC approach,
we demanded a success probability of 99% and assumed an outlier rate of 40% resulting
in about 300 random subsets of samples. The SIFT matches itself have been obtained
by using the implementation by David Lowe that is publicly available at the internet
addresshttp://www.cs.ubc.ca/ ∼lowe/keypoints/ .

5.1 Ortho-Parallel Camera Setup

In our fist experiment we have evaluated the quality of our approach for theTeddyim-
age pair of the Middlebury stereo benchmark [19]. In Figure 1 the epipolar lines of
our approach and the two reference techniques are compared to the ones of the ground
truth for both the left and the right frame. As one can see, the lines of our approach
and the RANSAC-SIFT method are perfectly in accordance with the ground truth. The
pure SIFT method, however, performs quite badly due to outliers in the estimation.
These impressions are validated by the corresponding qualitative evaluation of the es-
timated fundamental matrices that is presented in in Table 1(a). Apart from the SIFT

Table 1.Comparison to the ground truth fundamental matrix for theTeddyand theJavierstereo
pair. Deviations are given in pixels. Parameters have been optimised for∆Ftruth.

(a) Ortho-Parallel Setup:Teddy (b) Converging Setup:Javier

SIFT RANSAC-SIFT BBPW SIFT RANSAC-SIFT BBPW
∆Ftruth 95.014 0.804 0.109 ∆Ftruth 151.915 10.202 1.441
∆Fintra 3.957 0.123 0.171 ∆Fintra 24.106 0.717 0.890



variant without RANSAC, all methods give reasonable results. However, the fundamen-
tal matrices obtained from dense optic flowwithoutany robust strategy are much more
accurate than the one by the SIFT approachwith RANSAC. This confirms our consider-
ations that estimation techniques based on dense flow fields may benefit strongly from
the large amount of correspondences. Additionally, the small values for∆Fintra show
that the estimated fundamental matrices from optic flow and RANSAC-SIFT hardly
suffer from outliers and thus that in their case a higher accuracy of the estimation is
directly related to a better quality of the matches.

5.2 Converging Camera Setup

Let us in our second experiment analyse the quality of the estimation for the case of
a converging camera setup. To this end, we have used theJavier stereo image pair

Fig. 1. Top Row:Left and right frame of theTeddystereo pair (size450 × 375) with epipolar
lines shown for the SIFT method (white) and the ground truth (black).Center Row:Ditto for the
RANSAC-SIFT method (white) and the ground truth (black).Bottom Row:Ditto for the BBPW
method (white) and the ground truth (black). Parameters have been optimised for∆Ftruth.



that is available together with the ground truth fundamental matrix at the internet ad-
dresshttp://serdis.dis.ulpgc.es/ ˜ jsanchez/research/ . The com-
puted results are shown in Figure 2. As in the previous case, the left and the right frame
of the stereo pair are presented and epipolar lines are shown that allow for a visual com-
parison of the estimated fundamental matrices to the ground truth. This time, one can
see, that only the epipolar geometry based on the BBPW method is very accurate. This
is also validated by the corresponding qualitative comparison in Table 1(b): While the
results from SIFT and RANSAC-SIFT are not convincing at all, the estimation from the
BBPW correspondences is still very precise. Also the small value for∆Fintra confirms
that the precision is directly related to the quality of the correspondences and not ob-
tained by a lucky averaging of false matches. Once again, the result for the dense optic
flow method has been obtainedwithoutany robust on-top-strategy.

Fig. 2. Top Row:Left and right frame of theJavier stereo pair (size640 × 480) with epipolar
lines shown for the SIFT method (white) and the ground truth (black).Center Row:Ditto for the
RANSAC-SIFT method (white) and the ground truth (black).Bottom Row:Ditto for the BBPW
method (white) and the ground truth (black). Parameters have been optimised for∆Ftruth.



Table 2.Comparison to the ground truth fundamental matrix for theJavierstereo pair for Gaus-
sian noise of standard deviationsσn = 0, 10, 20. Deviations w.r.t.∆Ftruth is given in pixels.

Sensitivity to Noise:Javier

Noise SIFT RANSAC-SIFT BBPW
σn = 0 151.915 9.948 1.441
σn = 10 92.389 6.913 2.540
σn = 20 140.366 7.125 4.322

5.3 Sensitivity to Noise

In our last experiment we have investigated the robustness of our approach with respect
to noise. To this end, we have added Gaussian noise of zero mean and standard devia-
tion σn = 0, 10 and20 to the originalJavierstereo pair with grey values in the range
[0, 255] and recomputed the fundamental matrices. The corresponding results are com-
pared in Table 2. Evidently, the optic flow technique is much more robust against noise
than the SIFT approach. In particular, the resultwith noise ofσn = 20 based on the
BBPW flow field is still four times more accurate then the result of the RANSAC-SIFT
approachwithoutnoise. This, however, is not surprising: On one hand, the estimation
based on global optic flow techniques benefits twice from an averaging process – (i)
via the smoothness term and (ii) via the least squares fit using a huge set of correspon-
dences. On the other hand, in the presence of noise the SIFT approach produces rather
delocalisation errors with respect to all matches than real outliers. Thus in most cases,
robust extensions such as RANSAC cannot overcome the poorer quality of the under-
lying correspondences. Even a presmoothing of the noisy images by convolution with
a Gaussian kernel did not give better results: This, in turn, can be explained by the fact
that SIFT-features are based on a scale-space approach anyway and thus cannot benefit
from additional smoothing procedures.

6 Summary and Conclusions

Traditional approaches for estimating the fundamental matrix use a sparse set of point
correspondences, and many efforts are spent to find clever strategies for selecting the
most reliable matches. Our paper shows that there is an interesting alternative: Modern
dense optic flow methods have reached such a high degree of accuracy and robust-
ness that one can incorporate “unscrupulously” the matches forall pixels. In this way,
even a simple linear estimation strategy outperforms fairly sophisticated methods such
as a robust LMedS-RANSAC method based on SIFT correspondences. Moreover, the
large number of correspondences renders the dense approach intrinsically insensitive to
noise. It is evident that the idea of using dense flow fields for computing the fundamen-
tal matrix is not limited to linear estimation techniques only: It can be extended in a
straightforward way to any other type of method that is originally based on a sparse set
of correspondences. Investigating this potential is a topic of our ongoing research.

It is our hope that this paper helps to reconsider some traditional preferences of
sparse over dense approaches: Incorporating dense variational methods into geometric
computer vision strategies is an area that is still widely unexplored. However, since it
combines two very advanced methodologies, great progress can be expected.
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Errata for the paper
Is Dense Optical Flow Useful to Compute The Fundamental Matrix?

On page 9, Table 2The entries of the RANSAC-SIFT reference technique in Table 2
are not correct. The updated table with the correct error values is presented below.

Table 2.Comparison to the ground truth fundamental matrix for theJavierstereo pair for Gaus-
sian noise of standard deviationsσn = 0, 10, 20. Deviations w.r.t.∆Ftruth is given in pixels.

Sensitivity to Noise:Javier

Noise SIFT RANSAC-SIFT BBPW
σn = 0 151.915 10.202 1.441
σn = 10 92.389 12.095 2.540
σn = 20 140.366 16.012 4.322


