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Abstract. The increasing computing power of modern smartphones opens the
door for interesting mobile image analysis applications. In this paper, we explore
the arising possibilities but also discuss remaining challenges by implementing
linear and nonlinear diffusion filters as well as basic variational optic flow ap-
proaches on a modern Android smartphone. To achieve low runtimes, we present
a fast method for acquiring images from the built-in camera and focus on effi-
cient solution strategies for the arising partial differential equations (PDEs): Lin-
ear diffusion is realised by approximating a Gaussian convolution by means of an
iterated box filter. For nonlinear diffusion and optic flow estimation we use the
recent fast explicit diffusion (FED) solver. Our experiments on a recent smart-
phone show that linear/nonlinear diffusion filters can be applied in realtime/near-
realtime to images of size 176×144. Computing optic flow fields of a similar
resolution requires some seconds, while achieving a reasonable quality.

1 Introduction

The prevailing problems in image analysis – such as solving partial differential equa-
tions (PDEs)– have widely been considered to be a challenging and computationally in-
tensive task. If favourable results had to be computed in a reasonable time, researchers
were forced to port their algorithms from desktop architectures to super-computers,
which are difficult to work on, not to mention their immense costs.

In the near future, however, this trend could go in the completely opposite direc-
tion: On the algorithmic side, researchers spend more and more efforts on simple, yet
efficient solution strategies. On the hardware side, the computing power of modern
embedded systems such as smartphones is steadily increasing. Furthermore, powerful
application development frameworks for standard programming languages ease the im-
plementation on such platforms. Joining the ongoing work from the two mentioned
research directions could thus allow to perform challenging image analysis tasks on
small handheld devices that are already today in almost everybody’s trouser pocket.

In order to prove the basic feasibility of this ambitious goal, the present paper shows
some prototypical examples by implementing linear and nonlinear diffusion filters [1],
as well as two variational optic flow approaches [2, 3] on a recent smartphone (HTC
Desire, 1 GHz) running the Android operating system. As users expect mobile image
analysis applications to achieve interactive runtimes, we put an emphasis on efficient,
but still simple to implement solvers for the occurring partial differential equations
(PDEs). In the linear diffusion case, we analytically solve the PDE. This comes down to



a Gaussian convolution of the image, which is approximated by an iterated box filter [4]
that achieves a realtime performance for camera images of size 240×160 pixels. In the
nonlinear case where an analytical solution is not possible, we opt for an explicit solver
that is speeded up by the recently proposed fast explicit diffusion scheme [5], resulting in
a near-realtime performance. A similar explicit solver, however operating in a coarse-
to-fine manner is used for optic flow estimation. Here, our implementation allows to
compute flow fields on standard test sequences in the order of some seconds, while
achieving a reasonable quality in terms of error measures.

Related Work. Several earlier works applied image analysis on smartphones for tasks
like image enhancement and image-based applications. To our surprise there is no dif-
fusion framework with interactive runtimes on smartphones, yet.

A general image processing framework for the Android platform including basic
operations such as a box filter has been proposed by Wells [6]. A closed-source non-
linear diffusion filter is available for the iPhone [7], but it does not allow to tune any
parameters and is rather slow (20 seconds for an image with 320×320 pixels). Another
algorithm that shares principle properties with diffusion schemes is the coherence en-
hancing shock filter for the iPhone [8] that only needs about 3 seconds on a similar
resolution. Recently, the OpenCV framework has been ported to Android devices [9]. It
includes many filters and also computer vision methods, e.g. linear diffusion as well as
a pyramidal Lucas and Kanade [10] and a Horn and Schunck optic flow algorithm [3].
Based on this framework, there is also an implementation of the combined local-global
(CLG) optic flow method [2, 11]. However, these approaches cannot provide the optimal
runtime possible on mobile devices since OpenCV introduces an additional abstraction
layer which was not optimised for particular platforms like Android. Furthermore, stan-
dard numerical solvers are used that additionally decrease the performance. Also sparse
feature matching approaches based on SIFT or SURF features [12] have been consid-
ered on mobile platforms. While SIFT is too slow for interactive applications, SURF
only takes about 3 ms per match [13], but does not give dense matches.

Image analysis techniques are also used in more complex applications. Before mo-
bile phones were equipped with gyroscopic sensors, simple optic flow approaches al-
lowed to detect the ego-motion of the phone [14], turning them into wireless pointing
devices. Today, similar techniques are still of interest when a highly accurate estimation
of the velocity or viewing direction is needed: Recently, a sparse feature matching al-
gorithm was used to create freehand cylindrical panoramas on an Android phone [15].
Related techniques are also used in augmented reality applications [16] where a prede-
fined pattern is recognised and tracked in a live stream from the camera. However, all
these techniques are strongly restricted by the computational power of the device. Ad-
vanced algorithms are thus usually computed in the cloud, i.e. on remote servers [13].

Paper Organisation. In Sec. 2 we present the models and the solvers for diffusion
filtering and optic flow estimation. Apart from basic Android development concepts,
Sec. 3 discusses the image acquisition and further optimisations. Screenshots and a
performance analysis of our application are presented in Sec. 4. We conclude in Sec. 5
by a summary and an outlook on future work.



2 Models and Solvers

2.1 Diffusion Filtering

We assume to be given a greyscale image f(x, y) : Ω → R, where (x, y)> ∈ Ω denotes
the location within the rectangular image domain Ω ⊂ R2. Our goal is then to compute
a gradually smoothed result u(x, y, t) : Ω × [0, T ] → R, where t ∈ [0, T ] represents
the evolution time of the filter, i.e. a larger evolution time leads to a stronger smoothing,
and u(x, y, 0) = f(x, y).

Homogeneous Diffusion. The most basic diffusion filter is a linear, homogeneous dif-
fusion process [17] that computes the unknown u as the solution of the parabolic partial
differential equation (PDE)

ut = div (∇u) = 4u := uxx + uyy , (1)

with reflecting boundary conditions. Colour images are treated channel-wise.
It is well-known that an analytical solution to (1) can be computed as u(x, y, t) =

(K√2t ∗ f)(x, y), where Kσ denotes a Gaussian of standard deviation σ, and ∗ is the
convolution operator. Homogeneous diffusion filtering thus comes down to a Gaussian
convolution of the given image. A straightforward way to implement this for discrete,
digital images is to perform a discrete convolution with a sampled and truncated Gaus-
sian. However, there are more efficient implementations, e.g. by a d-fold iterated box
filter (IBF). This filter approximates the 2-D Gaussian kernel Kσ by a convolution

Kσ = BL ∗BL ∗ . . . ∗BL︸ ︷︷ ︸
d-times

with BL(x, y) :=

{
1
L2 , x, y ∈ [−L2 ,

L
2 ]

0, else
, (2)

withL=2 l+1, and l ∈ N [4]. EachBL can be applied consecutively and is separable in
space. Moreover, its implementation requires only two additions per pixel and direction
using a sliding-window algorithm: The solution ṽk at position k of a 1-D signal v is
given by ṽk = ṽk−1−vk−l−1+vk+l. Thus, box filters are independent from the standard
deviation of the kernel. However, their runtime depends on the number of iterations d,
resulting in a trade-off between the approximation error and the runtime.

Nonlinear Isotropic Diffusion. The major problem of homogeneous diffusion is the
blurring of semantically important image edges as the filter performs the same smooth-
ing at each location. To overcome this problem, Perona and Malik [1] introduced a
nonlinear diffusion process

ut = div
(
g
(
|∇u|2

)
∇u
)
= ∂x

(
g
(
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)
ux
)
+ ∂y

(
g
(
|∇u|2

)
uy
)
, (3)

where the decreasing diffusivity function g(|∇u|2) := (1 + |∇u|2/λ2)−1 reduces the
smoothing at evolving edges that are indicated by large values of |∇u|2. The parameter
λ serves as a contrast parameter. Catté et al. [18] later proposed a regularised version
where the result u (that occurs in the argument of g) is presmoothed by a Gaussian



convolution with standard deviation σp. This has several advantages, like reducing the
staircasing artefacts and the sensitivity to noise. To process colour images, we apply the
filter to each channel, but use a joint diffusivity function where we sum up the gradient
magnitudes of each channel in the argument of g.

In the nonlinear case, no analytical solution exists which leaves us with computing
an approximate solution by discretising the PDE. The simplest solution scheme is given
by an explicit finite difference discretisation of (3) that reads as

uk+1
i,j − uki,j

τ
=

1

hx

(
gi+1,j + gi,j

2

uki+1,j − uki,j
hx

− gi,j + gi−1,j
2

uki,j − uki−1,j
hx

)

+
1

hy

(
gi,j+1 + gi,j

2

uki,j+1 − uki,j
hy

− gi,j + gi,j−1
2

uki,j − uki,j−1
hy

)
, (4)

where uki,j ≈ u(i hx, j hy, k τ) with hx and hy denoting the grid size in x- and y-
direction, τ is the time step size and gi,j approximates the value of the diffusivity at grid
point (i, j). Occurring derivatives have been discretised using standard finite difference
approximations. Solving (4) for the update uk+1

i,j then gives the actual iterative scheme.
Explicit schemes are simple to implement, but stability can only be guaranteed for

small time step sizes ((τ/h2x + τ/h2y) ≤ 0.5). Thus, a lot of iterations are needed to
reach a reasonably large evolution time. This restriction has recently been eased in the
fast explicit diffusion (FED) scheme [5]. Here, some extremely large (unstable) time
steps are used in combination with some small (stable) steps. As could be shown, the
combination of variable step sizes within one cycle guarantees unconditional stability of
the whole scheme. This allows FED to advance faster than any other explicit scheme:
While classical explicit schemes with n fixed time steps achieve a stopping time in
O(n), FED lifts this to O(n2). However, as the result is only guaranteed to be stable
after a whole cycle, it is important to update the diffusivities g after the completion of
a cycle, and not in between. For computing the varying FED step sizes τk, we use the
available open source library 1.

Note that we do not discuss anisotropic diffusion filters [19] in this paper. However,
they can be implemented in a similar way as the presented nonlinear isotropic filters.

2.2 Variational Optic Flow

For optic flow estimation we are given an image sequence f(x, y, z), where z denotes
the temporal dimension of the sequence. We further assume that the sequence has been
presmoothed by a Gaussian convolution of standard deviation σf . We then aim at com-
puting the flow field w := (u, v, 1)> that describes the displacements from time z to
z+1. Using a variational approach, the flow field is found by minimising an energy func-
tional consisting of a data term that models constancy assumptions on image features,
and a smoothness term that enforces the flow field to be smoothly varying in space.

1 available at http://www.mia.uni-saarland.de/Research/SC FED.shtml



The energy proposed in the seminal variational optic flow approach of Horn and
Schunck [3] can be written as

E(u, v) =

∫
Ω

(
w>J w + α

(
|∇u|2 + |∇v|2

) )
dx dy , (5)

using the motion tensor notation J := (fx, fy, fz)
> (fx, fy, fz) and where the param-

eter α steers the influence of the smoothness term. To minimise the above energy, we
solve the corresponding elliptic Euler-Lagrange equations, which give a necessary con-
dition for a minimiser. For the energy (5), the Euler-Lagrange equations are given by

0 = J11u+ J12v + J13 − α4u , (6)
0 = J12u+ J22v + J23 − α4v , (7)

where Jmn denotes the entry in row m and column n of the matrix J .
Similar to the solution of the diffusion PDEs, we solve the Euler-Lagrange equations

by a stabilised, explicit gradient descent scheme which reads as
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where the stabilisation is achieved by using the new value at time level k + 1 for u
and v in the first and second equation, respectively. The derivatives occurring in the
expressions [Jmn]ki,j are discretised by central finite differences. Solving the equations
(8) and (9) for the unknown increments uk+1

i,j and vk+1
i,j then gives the iterative solution

scheme, which we again speed up by using variable FED time step sizes. Additionally,
we embed the solution in a multiscale coarse-to-fine strategy (CFED) that computes
solutions on small image resolutions and uses them (after upsampling) as initialisation
on the next finer scale. This results in a further speed-up as the number of required
solver iterations at each level is reduced and because iterations on coarse scales are fast
to compute.

If we are given colour image sequences, we sum up the data terms for all channels.
This comes down to summing up the motion tensors of each channel in a joint tensor.
Furthermore, to increase the robustness of our approach, we follow Bruhn et al. [2] and
convolve the entries of the motion tensor J with a Gaussian of standard deviation ρ.
This results in a combined local-global (CLG) optic flow approach.

3 Implementation on an Android Phone

3.1 Android Basics

Android is an open software platform, i.e. an operating system and software stack for
different sorts of devices which has been presented by Google in 2007. It is based on
a Linux Kernel and allows to build own applications through the Android Application
Framework by using large parts of Java SE and Android-specific classes.



The building blocks of applications are Activity objects. They are attached to
a certain View representing the graphical user interface (GUI). With the help of an
Intent one can specify a certain task and trigger an activity that implements the
task. In this way, one can for example capture an image from the camera within a few
lines of code. The visual content of an application is organized in a hierarchy of views.
Examples for views are different layouts, but also widgets such as scroll bars or check
boxes. A view hierarchy is specified in an external XML layout file that assigns an ID
to each view. By referring to the ID, a view can be loaded within the application as
a programmable object that can be configured and attached to event listeners for user
input, e.g. gestures on the touch screen.

For implementing performance-critical application parts like our diffusion filters,
we use the Native Development Kit (NDK). It allows to implement routines in native
languages such as C/C++, resulting in a significant speedup compared to Java imple-
mentations; see our experiments in Sec. 4. The NDK also supports a set of commonly
used system headers for native APIs like the math library. The incorporation of native
code in the application uses a provided build system that lists the native source files
and integrates the shared libraries into the application project. These can then be easily
accessed in terms of the Java Native Interface (JNI) [20]. Finally, the NDK allows for
optimisations to the underlying hardware by targeting specific instruction sets for the
ARM platform, such as the instruction-level parallelism (NEON).

For more information on Android application development, we refer the interested
reader to the excellent textbook of Meier [21].

3.2 Image Processing with Android

Instead of capturing images from the camera via a predefined intent, we use a realtime
camera stream by directly accessing the camera hardware. This is achieved by using
the Camera class and applying three steps: (i) Image Acquisition: Obtain the camera
frames as raw byte data in YUV format and convert them into the more convenient
RGB format for further processing. (ii) Image Processing: Apply algorithms to the
RGB image (or to a greyscale version). (iii) Visualisation: Build a bitmap structure
from the processed data and set it as content of an image overlay.

Retrieval of Camera Data. Fortunately, accessing the camera hardware in Android
is rather simple and can be achieved within a few lines of code; see [21], pp. 377–
381. One starts by adding a CAMERA permission to the application manifest, which
enables to retrieve a Camera object by calling Camera.open(). A SurfaceView
providing a dedicated drawing Surface can then be attached to the camera. Inter-
nal camera parameters such as the preview size and the frame rate can be retrieved
and modified by a Camera.Parameters object. On creation and destruction of the
underlying surface, the camera starts and stops its preview, respectively. Implement-
ing the PreviewCallback interface, raw frame data can be obtained by calling
PreviewCallback.onPreviewFrame().



YUV Conversion. Each camera frame is represented in a raw byte array which stores
the image row-wise and encodes color information using the YCbCr colour space.
Specifically, a planar YUV format (YUV 4:2:0 (NV21)) is used where a plane of 8
bit luma (Y) samples is followed by an interleaved V/U plane containing 8 bit of 2× 2
subsampled chroma samples.

For image processing applications, it is most convenient to represent the images
in a planar RGB format where all colour channels are orthogonal and represented in
the same resolution. Thus, the obtained raw YUV data first has to be converted before
applying the respective filters. Unfortunately, the Android framework still lacks such
a conversion functionality which leaves us with writing our own conversion routine.
Using ARM’s built-in Vector Floating Point Architecture (VFP) that provides hardware
support for half-, single- and double-precision floating point arithmetics, we extract in
our conversion routine separated, two dimensional float channels, which are aggregated
into a packed 32-bit integer format (ARGB) after processing. Whereas the luminance
channel alone provides data for a greyscale format, the conversion into RGB compo-
nents requires computationally more expensive steps, as can be seen in the the following
YUV to RGB conversion formula:RG

B

 =

1.164 0.000 1.596
1.164 −0.391 −0.813
1.164 2.018 0.000

YU
V

−
 16
128
128

 . (10)

For an efficient implementation of the above conversion, we follow [22] and use fixpoint
arithmetics and process four pixels simultaneously by moving pointers on two scan
lines. However, instead of using SIMD (Single Instruction, Multiple Data) instructions
for an efficient access to precomputed lookup tables, we directly optimise the RGB
calculations. Details on these optimisations will be presented in Sec. 3.4.

3.3 Software Design

To save as much system resources as possible, we only created one Activity that in-
corporates our two main classes: A FilterCamera and a Filter base class. A
FilterCamera object specifies a FrameLayout that is set as the main content view
of the application. It subsumes all components necessary for a camera preview that are
discussed in Sec. 3.2. The preview can then be overlaid by at most one Filter object.

We designed the diffusion filters as “cartridges” that can be plugged into the cam-
era object and unplugged again. The base class represents a general filter object that
provides a filtered image overlay, a user interface that may also be hidden, as well as
a resizing option. The filter functionality itself comes with the implementation of the
PreviewCallback interface and is specified by subclasses which represent objects
for the different filters. The actual filtering routines are externalised and encapsulated
within a global code library that uses native C libraries via the JNI.

3.4 Optimisations

Since the Android platform is based on a Linux kernel, it constitutes a good basis
for image processing applications. Many concepts known from traditional desktop ar-
chitectures carry over immediately. Moreover, the JNI allows to execute time-critical



algorithms as low-level operations. To this end, algorithms can be developed device-
independently in C or C++, where the compilers provide strategies for automatic code
optimisation. However, interactions with special devices such as the camera, display, or
user interface still require special care and must be optimised manually.

An example for such a critical point is the visualisation of images on the display.
Android supports many pixel formats including 32-bit RGBA, but it is very time con-
suming to transfer buffers encoded in this format to the GPU. Furthermore, our algo-
rithms must rely on floating point accuracy to ensure the best possible approximation
of the continuous model. On the other hand, the display of our smartphone can only
visualise a rather small range of colour values. We thus encode and compress our re-
sults in the RGB565 format. Because this format uses only 16 bits per pixel it can be
uploaded to the GPU much faster, without sacrificing visual quality. Additionally, we
tried to optimise our diffusion and optic flow algorithms that take the major part of the
total runtime. Common strategies like loop unrolling or reduction of reads and writes
to RAM accelerated the process significantly. However, experiments indicated that no
improvement can be achieved by exploiting hardware-specific extensions such as the
NEON SIMD unit, probably because many operations are based on stencil operations
which cause offset memory fetches. We were surprised that even purely data-parallel
operations such as the YUV to RGB conversion could not be accelerated. This might
be caused by the high costs for memory reads, or because the compiler by default auto-
vectorises such operations already in the scalar case.

4 Experiments

4.1 Our Interactive Camera Applications

We first show screenshots of our interactive diffusion filtering application in Fig. 1.
As test device we used an HTC Desire smartphone, with a Snapdragon ARMv7 CPU
(1 GHz), 576 MB RAM running Android 2.2 (Froyo). The top left picture shows the
application in its idle state. Besides a live preview, the GUI shows two buttons for
toggling the selected filter as well as a filter user interface (FUI). The latter shows
several statistics like the frame rate and is displayed in the upper left corner of the GUI;
see the upcoming screenshots. Furthermore, the user can save an image to the phones
image gallery and can toggle the autofocus of the camera. The two following pictures
show the context menus for filter and resolution selection. The second row of Fig. 1
shows filter results with linear diffusion on RGB colour images. As one can see, the
filter interface offers a slider for tuning the standard deviation of the Gaussian kernel.
In the settings dialog, the user can change the type of approximation by means of an
iterated box filter or a discrete Gaussian convolution. The accuracy factor determines
the number of iterations or length of the sampling interval as a multiple of the standard
deviation, respectively. Moreover, a split mode can be activated, which leaves the left
half of the preview unfiltered. Analogously, the third row shows results for nonlinear
isotropic diffusion filtering. Here, the user can tune the contrast parameter λ and noise
scale σp and the stopping time T . The settings dialog allows to choose among various
diffusivity functions and the number of outer FED cycles M .



Fig. 1. Our interactive camera application. First row: (a) GUI with camera preview and controls
(image gallery (G), autofocus (A) and image capture). (b) Filter selection. (c) Resolution selec-
tion. Second row: (d) Linear diffusion for RGB colour images. (e) Same in split-screen mode (left
half remains unfiltered). (f) Settings dialog. Third row: (g)–(i) Same as above, but for nonlinear
isotropic diffusion with the Perona Malik diffusivity [1]

Despite the efficient algorithms and the powerful computing platform, we could not
achieve an optic flow estimation of reasonable quality in realtime. We thus implemented
another simple application where the optic flow computation is performed in an offline
process; see Fig. 2. Here, the user can pick two subsequent images of the same size from
the gallery, specify the parametric settings and invoke the flow calculation. Besides the
seminal approach of Horn and Schunck [3], our application also encompasses the CLG
method of Bruhn et al. [2] where it achieves runtimes of about 10 seconds for images
of size 316× 252 pixels.

4.2 Performance Analysis

We now turn to a detailed performance analysis of the linear and nonlinear diffusion
routines. To this end, we used simple time stamps that are placed before and after the
invocation of a procedure. Resulting runtimes have been averaged over 100 frames to
reduce the influence of distorting factors like background processes.

Linear Diffusion. For linear diffusion, we compare two solution strategies: (i) a dis-
crete convolution with a sampled Gaussian and (ii) an approximation via an iterated box
filter (IBF). For both strategies, we exploit separability and symmetry of the two dimen-
sional filter masks. Additionally, we compare implementations of the two strategies in
Java and native C (using the JNI). Considering the achieved runtimes shown in Tab. 1,



Fig. 2. Offline optic flow application. First row: (a) First image of the Yosemite without clouds
sequence. (b) Second image. (c) Progress dialog. Second row: (d) Result with the Horn and
Schunck model (CFED solver) (α = 394, σf = 1.0, T = 300,M = 1 ⇒ AAE = 5.49◦).
Flow field visualised by colour code shown in bottom left corner. (e) Result with the CLG model
(ρ = 3.03, other parameters as before⇒ AAE = 5.12◦). (f) Parameter adjustment dialog

two observations can be made: The IBF solver is significantly faster than the Gaussian
solver, and the native C implementation outperforms its Java counterpart. Furthermore,
using greyscale instead of RGB images will give a speedup of a factor 3.

Table 1. Benchmark of linear diffusion on RGB images data with varying resolution and fixed
stopping time (T = 10). We compare implementations based on a discrete Gaussian convolution
with σ =

√
2T ≈ 4.47 (Gauss) and an approximation via an iterated box filter (IBF). Addition-

ally, we compare a Java to a native C implementation (using the JNI). We wish to note that using
the full camera resolution of 5 MP seems infeasible for interactive/realtime applications

Java C
Resolution [px] Gauss IBF Gauss IBF
176× 144 370 ms 91 ms 361 ms 49 ms
240× 160 571 ms 168 ms 564 ms 88 ms
320× 240 1174 ms 444 ms 1141 ms 241 ms

Nonlinear Isotropic Diffusion. In the nonlinear diffusion case, we spent some efforts
to analyse the runtime fractions of the different processing steps; see Fig. 3. As one can
see, the major part of the computation time (98%) is spent for the FED scheme. This
is good news as it shows that the runtime of the pre- and post-processing steps (image
acquisition, YUV conversion, visualisation, etc.) can be neglected and no further opti-
misations are required in this respect. It is thus more interesting to further analyse the
runtime fractions in the FED scheme itself. Interestingly, the update of the nonlinear
operator which comes down to computing the diffusivities after each FED cycle con-
sumes 18% of the time. The rest is spent for the actual iteration steps. As the nonlinear



update consumes a considerable amount of time, we also analysed its building blocks,
which are a presmoothing that takes 68% of the time and the computation of the diffu-
sivity. Note that the presmoothing is already efficiently realised by two IBF iterations.
With a naive implementation, the fraction of the presmoothing would be even higher.

Steps
81.77%

(80.16%)

Update
18.23% (17.87%)

FED
98.03%

Presmooth
67.64%

(12.09%)

Coefficients
32.36%
(5.78%)

YUV ▸ RGB
0.91%

Visualisation
1.05%

Rest
< 0.01%

Fig. 3. Runtime analysis for nonlinear Perona-Malik diffusion on RGB images (176×144 pixels,
M = 2, λ = 4, σp = 1.0, T = 10, resulting in 2 inner FED steps). Brackets give fraction w.r.t.
overall running time of 588.1 ms

5 Conclusions and Outlook

Our paper showed that recent smartphones offer a promising platform for the devel-
opment of challenging mobile image analysis applications. As a proof-of-concept, we
presented efficient implementations of linear and nonlinear diffusion as well as basic
variational optic flow methods on an Android smartphone (HTC Desire). A main ob-
servation is that a careful choice of the solver for the arising PDEs is a key to good
performance. For linear diffusion, we used a classical iterated box filter, whereas we
opted for the recent FED solver and its coarse-to-fine variant in the context of nonlinear
diffusion and optic flow, respectively. These solvers allow for small runtimes and are
simple enough to be easily implemented as well as optimised on a mobile platform.

We hope that our work sparks the development of further interesting image analysis
applications on mobile devices like smartphones. Here, efficient denoising methods are
interesting because the small image sensors and the simple camera optics are prone to
noise, especially in low light conditions. Moreover, using optic flow algorithms allows
to port challenging computational photography applications like panorama stitching or
high dynamic range imaging to mobile platforms.
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