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Abstract. We study an advanced method for supervised multi-label
image segmentation. To this end, we adopt a classic framework which
recently has been revitalised by Rhemann et al. (2011). Instead of the
usual global energy minimisation step, it relies on a mere evaluation of
a cost function for every solution label, which is followed by a spatial
smoothing step of these costs. While Rhemann et al. concentrate on ef-
ficiency, the goal of this paper is to equip the general framework with
sophisticated subcomponents in order to develop a high-quality method
for multi-label image segmentation: First, we present a substantially im-
proved cost computation scheme which incorporates texture descriptors,
as well as an automatic feature selection strategy. This leads to a high-
dimensional feature space, from which we extract the label costs using a
support vector machine. Second, we present a novel anisotropic diffusion
scheme for the filtering step. In this PDE-based process, the smoothing
of the cost volume is steered along the structures of the previously com-
puted feature space. Experiments on widely used image databases show
that our scheme produces segmentations of clearly superior quality.

1 Introduction

Segmentation is one of the classical problems in image analysis. For the last four
decades, researchers have been developing a wide variety of different approaches
to this problem. In this paper, we consider a special instance of the segmentation
problem, so-called supervised segmentation. In this setting, we assume for every
class to be given an exemplary and reliable region in the image. In the field of
supervised segmentation, energy-based methods are most common today, where
the sought segmentation is the minimiser of a suitable cost function. Such a
function usually consists of at least two terms: A fidelity term, which relates the
unknown to the image, and a regularity term that implements prior knowledge
about the solution. The computation of a minimiser often renders itself very
difficult: First, in most cases the fidelity term cannot be solved directly for the
unknown which makes linearisation or relaxation steps necessary. Second, the
regularisation term usually couples the solution globally and by that makes a
pointwise minimisation impossible.
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A framework which avoids the aforementioned difficulties was first introduced
by Scharstein and Szeliski [1] and recently revisited by Rhemann et al. [2]. This
so-called Cost Volume Filtering (CVF) framework describes a very versatile and
general three-step procedure to find a good, spatially smooth configuration in
a discrete solution space. In contrast to energy minimisation methods, the only
requirement is an evaluable cost function. However, for certain other computer
vision problems such as optic flow, the discreteness of the solution space consti-
tutes a problem. Nevertheless, the framework is perfectly suited for the multi-
class image segmentation problem. With this paper, we propose an advanced
method for this task using the CVF framework.

Our Contribution. Although the general applicability of CVF to (binary)
image segmentation has been shown in [2], this paper presents substantial im-
provements to this concept, yielding state-of-the-art results while sticking to the
general framework. In detail, our contributions are twofold:

1. We improve the elementary cost computation in [2] by incorporating colour
and texture information, leading to a high-dimensional feature space. In
order to make the final cost calculation feasible and efficient, we propose an
elaborate feature selection scheme which selects the most relevant features
automatically. In this comparatively low-dimensional input space, we finally
train a support vector machine with Gaussian kernels to compute the cost
value.

2. Regarding the filtering stage, we propose the usage of a novel anisotropic
diffusion filter which is steered by the feature space. Moreover, we embed
the anisotropic smoothing into an interpolation scheme as known in the
context of PDE-based image inpainting [3–5] and compression [6].

Right from the beginning, we want to stress that the main goal of our work
is highest segmentation quality instead of lowest computation time, where [2]
is focussed on. Nevertheless, also our method can be accelerated drastically by
porting it to the GPU if necessary.

Related Work. The field of energy-based segmentation methods can be sys-
tematically split into discrete and continuous methods. Among the latter, the
seminal model by Mumford and Shah [7] marked the starting point of many
successful segmentation methods, e.g. [8, 9]. In [10], Brox et al. have shown in an
unsupervised setting that incorporating motion information can improve the seg-
mentation performance. Concerning discrete segmentation methods, graph cut
methods [11–13] have become very popular in the last decade. In [14], Rother
et al. demonstrate an interactive segmentation method and introduce a large
image database with ground truth labelling data, which serves as a commonly
used benchmark today. The work by Lellmann et al. [15] is situated in a similar
setting as ours but focusses on a relaxation of the cost term, and is supplemented
by a regularity term. Martin et al. also utilise color and texture descriptors [16]
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for boundary detection. Concerning the filtering step, Scharstein and Szeliski [1]
propose so-called non-uniform diffusion to filter the costs. Yoon and Kweon [17]
employ locally adaptive support weights which show close relationship to the
bilateral filter [18]. In [2], Rhemann uses the guided image filter [19] as an ap-
proximation of the joint bilateral filter [20]. However, we advocate anisotropic
PDE-based diffusion processes [21] to smooth the cost slices. Different strategies
for PDE-based interpolation are studied in [3, 4, 6].

Paper Organisation. In the following section, we give an introductory ex-
planation of the cost volume filtering framework. In Section 3 we give detailed
explanations of our contributions: After discussing the cost computation scheme
in Section 3.1, we subsequently introduce an anisotropic and supervised cost
filtering strategy in Section 3.2. Our experiments in Section 4 show that the
proposed segmentation method performs well in practice and competes with the
state-of-the-art. We conclude the paper in Section 5.

2 Cost Volume Filtering

The Cost Volume Filtering (CVF) framework can be seen as a very general and
versatile procedure comprising the following steps:

1. Cost Computation. First, the cost volume f : Ω×L → [0, 1] is computed.
In practice, a fidelity term is evaluated for every pixel of the image domain
Ω and each possible label ` of the finite label space L. The choice of this
term depends on the application.

2. Cost Smoothing. In the second stage, the cost slices undergo a smoothing
step. The most important property of this filtering step is that there is no
direct coupling between the different label slices, i.e. a 2-D filter is applied to
each cost slice separately. However, usually the smoothing is guided by the
underlying image, which reflects the assumption that segment boundaries
and image edges coincide.

3. Minimisation. The final step is to compute the pixelwise minimum of the
cost volume and take this label as the result r:

r(x, y) = argmin`∈L fsmoothed(x, y, `). (1)

This simple stepwise structure of CVF offers several advantages and disadvan-
tages. In principle, any cost function can be used, because there are no require-
ments such as differentiability, convexity, linearity or even positivity. The filtering
stage also offers many degrees of freedom; almost any scalar-valued smoothing
method can be used, and the smoothing steps can be easily parallelised since
there is no coupling between different labels. Finally, the minimisation is an
efficient pointwise O(|L|) operation.

On the other hand, unfortunately no energy function is known for CVF up
to date, so almost no theoretical properties can be proven. Moreover, especially
for continuous problems such as optic flow, the need for a finite solution space
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Fig. 1. Example images. While the flower can be well described by its colour statistics,
obviously the fish exhibits very similar colours as the background. The second and last
images show the associated given trimaps. Source: [14].

constitutes a severe restriction. However, the image segmentation problem is
inherently finite and thus ideally suited for CVF.

3 Extensions for Supervised Segmentation

In the following sections, we consider the task of partitioning a colour image
such that each component of the partition is assigned to one of n ≥ 2 classes.
Moreover, we are in a supervised segmentation setting, i.e. for each label ` ∈ L=
{1, . . . , n} we are given an image region T` ⊂ Ω which definitely belongs to this
class label. Figure 1 shows two exemplary images along with given user input.
In these so-called trimaps, white and dark grey represent the user input for
foreground and background, respectively. The black regions are not considered.
Hence, the task is to classify each of the light grey pixels in the boundary region
between fore- and background.

3.1 Cost Computation

The application of CVF to image segmentation is already addressed in [2], where
the authors propose to compute the costs using colour statistics of the RGB
channels. Apparently, this is the first solution which comes to mind. However,
it exhibits several drawbacks in practice: The choice of the red, green and blue
values as feature is redundant and not invariant against e.g. shadows or shading.
In many cases, colour information is not a sufficiently relevant feature; see e.g.
Figure 1. Moreover, the computation of the trivariate RGB histogram poses
another problem: in order to cover all bins of the histogram fairly, a large number
of samples from the training region is needed. In an interactive segmentation
setting however, it can happen that size of the user input is very small. Hence,
an overfit to the colour statistics in the training region can be the result.

Our method circumvents these problems in the following way: In a first step,
we compute a large pool of features. Subsequently, we identify the most relevant
ones using filter and wrapper methods [22]. Finally, the actual costs are deter-
mined by a support vector machine (SVM) with Gaussian kernels. The following
paragraphs discuss these three steps in detail.
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Available Features. We propose a pool of features which comprises a variety of
colour and texture descriptors. Besides the red, green and blue channel, we also
consider the hue, saturation, and value (HSV) representation. In the category
of differential features, we compute the Gaussian smoothed gradient magnitude,
first order derivatives in horizontal and vertical direction as well as the Laplacian
magnitude averaged over 3 colour channels. Additionally, we incorporate the
variance, skewness, kurtosis and entropy of the local histogram of disk shaped
neighbourhood of different radii. Such multi-scale descriptors have also shown
their usefulness in [23, 24]. Additionally, we compute co-occurrence matrices for
16 different offset vectors in every pixel and include the quantities contrast and
homogeneity [25] in our feature vector. In total, the mentioned concepts amount
to a descriptor space of dimension 80.

Feature Selection. Although computationally very expensive, it would be pos-
sible to train an SVM directly in this high-dimensional feature space. However,
usually only a few features are relevant for one particular image. Thus, also in
terms of the classification performance it is a bad choice to always incorporate
all features in the SVM. The goal of this paragraph is to discuss how we select
the most relevant features in order to get a discriminative and at the same time
low-dimensional feature space that our SVM will be trained in.

To be able to estimate the relevance of a certain set of features, we randomly
divide the user input into a training and a validation set. This allows the ap-
plication of the so-called wrapper method [22], which learns the SVM using the
training set and assesses its classification performance on the validation set. This
heuristic allows us estimate the relevance of a set of features just from the user
input. Since the application of this strategy to all elements of the power set of the
pool of features is computationally intractable, we consider colour and texture
separately. The red, green and blue channels have the highest spatial resolution,
hence we avoid to discard these in practice. The remaining colour features are
selected by applying the wrapper method.

To find the most relevant texture features efficiently, we first compute the
Fisher score [26] of every feature. Next, we filter the top 5 features and apply the
wrapper method once more. A schematic overview of our strategy is depicted in
Figure 2.

Cost Evaluation. After having selected the relevant features, we train a sup-
port vector machine (SVM) [27] with Gaussian kernels in a regression setting [28]
in order to compute the costs. The final training can of course be performed in-
corporating all user input; a validation set is not necessary anymore. However,
we can speed up the training phase by just randomly selecting 50% of the pixels
without a significant impairment of accuracy. As for feature selection, we ran-
domly split the input into training and validation sets to test different kernel
and soft margin parameters in a grid search fashion [28].

A similar cost computation scheme also using colour and texture features can
be found in [29]. However, the authors only considered local patch-based statis-
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Fig. 2. Proposed feature selection strategy.

tics as features and omitted the important intermediate feature selection step.
In [29], the resulting segmentation was computed in a graph cut optimisation
scheme with a spatial regularity prior.

The extension to the multilabel case |L| > 2 is straightforward: For each
label `, we perform the entire feature selection procedure and train the SVM in
a one-vs-all strategy, i.e. during the computation for label `, the user input of
all other labels is included to describe the negative class.

3.2 Anisotropic Diffusion Filtering

Once the cost volume has been computed, the properties and the behaviour of
the filter are crucial for the final segmentation result. This filtering clearly stands
in a close relationship to the regularisation term of energy-based methods: By
choosing one particular regularisation term, the resulting smoothing process is
determined automatically via the associated minimality conditions of the en-
ergy. Thus, for purely energy-based methods the choice of filtering processes is
restricted. For CVF however, the cost smoothing filter can be chosen directly
and without any restrictions.

In [2], the authors advertise the guided image filter [19] and rely on its ef-
ficiency and parallelisability. We instead propose to use cross edge enhancing
diffusion (Cross-EED) as an extension of edge enhancing diffusion (EED) [21].
Both processes perform anisotropic diffusion and are described by the parabolic
evolution equation

∂t u` = div (D ∇u`) , u`(x, y, 0) = f(x, y, `), (2)

where D ∈ R2×2 is the symmetric positive definite diffusion tensor, and ∇ =
(∂x, ∂y)> denotes the spatial gradient operator. Each slice of the computed cost
volume f(x, y, `) is embedded into a pseudo-temporal evolution u`(x, y, t) as
its initial state at time t = 0. With progressing evolution time the amount of
smoothing increases, and the resulting filtered cost slice is finally extracted at
the stopping time tstop:

fsmoothed(x, y, `) = u`(x, y, tstop). (3)
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Alignment in Feature Space. The difference between EED and Cross-EED
is how the diffusion tensor is computed. For EED, the diffusion tensor is derived
from the evolving signal itself. In case of cost volume filtering, this signal would
coincide with the cost slices. More precisely, the eigenvalues of the tensor product
of the pre-smoothed signal gradient are reweighed:

D(∇u) := g(∇uσ∇u>σ ), (4)

where ∇uσ :=Kσ∗∇u, and Kσ denotes a two-dimensional Gaussian kernel with
standard deviation σ. The anisotropic behaviour of this scheme is due to the
positive, strictly monotonically decreasing function g : R → R+ that is applied
to the eigenvalues of its argument. With EED, the signal is subject to a highly
nonlinear evolution, which is known to smooth along edges in the cost volume
but not across them [21].

The motivation for Cross-EED is that if a feature is considered to be relevant
for the cost computation, then the spatial structures of this feature should also
contain relevant information to steer the smoothing process. Thus, we propose
to compute the diffusion tensor in the previously determined feature space. As-
suming that the feature selection stage finally selected k features, we align the
diffusion along the spatial structures in this feature descriptor h : Ω → Rk as
follows

D := g

(
Kρ ∗

k∑
j=1

∇hj,σ∇h>j,σ

)
. (5)

Additionally, we introduce an outer integration scale ρ in the latter equation,
which leads to a coherence enhancing effect. This effect is known to tend to
artistically and artificially-looking results for natural images. However, for cost
filtering it has shown to be quite beneficial, due to its ability to fill holes and
close small gaps in the cost slices [21].

Note that the resulting anisotropic evolution is linear, since the diffusion
tensor is constant in time t and does not depend on the evolving cost volume.

Supervised Smoothing. Up to now, the proposed cost smoothing takes as
input the computed costs as well as the selected features, but disregards the in-
formation contained in the user input. Assuming that this auxiliary information
is reliable, we alter the PDE from (2) into a scheme which interpolates the given
data as follows [5]: Each slice of the cost volume undergoes an evolution where
the user input serves as Dirichlet data and is kept fixed. In the other areas where
no pre-segmentation is given, the computed costs serve as initialisation and are
subject to the Cross-EED smoothing operator. This behaviour is realised by the
PDE

∂tu` = m · (c` − u`) + (1−m) · div (D ∇u`) , (6)

u`(x, y, 0) = m · c` + (1−m) · f(x, y, `).

Let us explain the expressions m and c`. The mask function m : Ω → [0, 1]
switches between the diffusion process (m=0) and the given information (m=1).
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It is realised as the indicator function 1 of the union of all training regions

m = 1T , T := T1 ∪ . . . ∪ Tn. (7)

The costs we prescribe in these areas are denoted by c` : Ω → {0, 1} and are
minimal (c` = 0) for pixels that belong to the training data and have the same
label, and maximal (c`=1) for pixels belonging to a different label:

c` = 1− 1T` . (8)

This scheme is closely related to so-called inpainting schemes, which are known
from the context of PDE-based image compression [6]. Note however, we are not
computing the steady state of equation (6). Instead, our evolution is initialised
with the computed costs and stopped at a certain time tstop.

3.3 Iterative Application

Of course, it is possible to iterate the described framework. In particular, such
an iterative minimisation constitutes an essential component of the GrabCut
method [14]. In our setting, we update the user input regions T` after each
filtering stage. To this end, for every label ` we compute the 10% and 90% cost
quantiles q0.1` and q0.9` , respectively. Then each unclassified pixel is assigned to
the user input of class `, if its filtered costs satisfy:

fsmoothed(x, y, `) < q0.1` and ∀`′ 6=` : fsmoothed(x, y, `′) > q0.9`′ .

Thus, we consider a pixel reliable, if it has low costs for one label, and high
costs for all other labels, and update T` accordingly. Subsequently, we retrain
the SVM using this new input and obtain refined costs. The following supervised
smoothing step profits of the update in two aspects: Besides the new costs to be
filtered, also the improved presegmentation is exploited for the mask m as well
as the prescribed costs c`, cf. Equations (7) and (8).

4 Experiments

In order to show the performance of our method, we use the publicly available
segmentation benchmark of Rother et al. [14]. Although the stages of our method
introduce several free parameters, most of them can either be determined au-
tomatically or kept fixed for all images. Moreover, we apply an affine rescaling
of the costs and features to the range [0, 1] before filtering, which also eases
the parameter choice. For the cost filtering stage, we choose the Charbonnier
diffusivity function g(s2) = 1/

√
1 + s2/λ2 and the constant set of parameters

(σ, tstop, ρ, λ) = (0.5, 5000, 0.5, 0.01) for all images.
Most of the running time of our sequential CPU implementation is spent

in the multiple training phases of the SVM. Depending on the class overlap in
feature space, the overall computation time varies between 10 seconds and a few
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Fig. 3. Importance of texture features for cost computation. From left to right:
(a) Input RGB image. (b) Gaussian smoothed Laplacian magnitude (σ=12). (c) Cost
slice for background only using RGB features. Dark values indicate low costs. (d) Costs
incorporating the feature from (b).

Fig. 4. Impact of reducing the user input. From left to right: (a) GrabCut input
used to compute the costs in Fig. 3 (c) and (d). (b) Manually drawn smaller user input.
(c) Cost slice using input (b) and only RGB features. (d) Costs computed from input
(b) with texture feature.

minutes. On average, our method takes one minute per image of size 480× 320
on a standard PC. Typically, a GPU implementation should be 40 times faster
since all components are well paralellisable.

In our first experiment, we illustrate the usefulness of texture information.
Figure 3 shows the image of a fish, which has almost the same colour distribu-
tion as its surrounding. In RGB space, the fish cannot be discriminated from the
background (cf. Fig. 3(c)). On the contrary, by incorporating texture informa-
tion, the fish can be distinguished: The raw number of misclassified pixels after
cost computation drops from 19% to 6% just by incorporating texture features.
In Figure 4, we examine the dependency of our method on the size of the user
input. While the given user input of the GrabCut benchmark covers relatively
large portions of the objects, we use a very sparse self-made trimap for compar-
ison. The costs in Figure 4 (c) and (d) show that our method works almost as
good with such more realistic user inputs and does not rely on a large number of
feature points. In this special case of very small user input, the usage of texture
information has shown to be extraordinarily beneficial.

The second experiment compares the proposed PDE-based smoothing against
the filters in literature. The results in Figure 5 show that our anisotropic cost
volume filtering clearly outperforms the guided image filter. Its anisotropic be-
haviour, especially in combination with the coherence enhancing effect, is per-
fectly suited to preserve small important details such as the feet, tail and wings,
which cannot be preserved using the other filters.

In Figure 6, we illustrate how iterating the framework improves the segmenta-
tion using the difficult kangaroo image. The given input regions expand towards
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Fig. 5. Results of different smoothing filters. From left to right: (a) Input back-
ground cost slice for the penguin image. (b) Guided image filter. (c) Cross-EED with-
out user input interpolation. (d) Cross-EED with interpolation.

Fig. 6. Iterating the framework. From left to right: (a) Input kangaroo image. (b)
Initial segmentation (error 7.2%). (c) User input. White depicts original user input,
red visualises the updated input after the first iteration. (d) Final segmentation after
second iteration (error 3.9%).

the true object boundaries and the resulting segmentation includes previously
undetectable parts of the kangaroo. Within 3 iterations, the average error on the
whole GrabCut benchmark decreases from 4.7% to 4.0%.

In our fourth experiment, we segment an image into three classes (Fig. 7). In
this example, the bright spots in the background make it impossible to discrim-
inate the leopard without texture information. However, our feature selection
strategy indentifies a suitable texture feature, and a highly accurate segmenta-
tion is possible.

Finally, Table 1 quantifies the performance of our segmentation method.
To this end, we compute the average percentage of misclassified pixels in the
unclassified region [13] over the whole set of 50 benchmark images from [14].
Note that we use a fixed set of parameters for all images. Compared to the
method of Rhemann et al., our iterated approach reduces the error by 35%.

5 Conclusion

We improve the segmentation framework of Rhemann et al. [2] in several aspects.
First, we incorporate texture information and present an elaborate cost compu-
tation and feature selection scheme. Additionally, we propose an anisotropic and

Table 1. Quantitative error comparison.

CVF [2] Grabcut [14] Ours just RGB Ours with texture Ours iterated

Error unfiltered - - 10.0 % 10.2 % 6.8 %

Average Error 6.2 % 5.3 % 4.8 % 4.7 % 4.0 %
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Fig. 7. Multi class segmentation example. From left to right: (a) Input image. (b)
User input. (c) Automatically selected texture feature. (d) Final segmentation.

supervised cost smoothing scheme that fully exploits the given user input. This
smoothing process is steered by structures in the feature space and alignes the
segmentation with them. By iterating the framework, we are able to outperform
the state-of-the-art on the GrabCut benchmark.

In our ongoing research, we focus on improving the texture descriptors fur-
ther. Besides Gabor or wavelet features, we are also interested in the potential
of preprocessing these features with e.g. our anisotropic diffusion.

Acknowledgements. Funding by the Cluster of Excellence Multimodal Com-
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