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Domain Decomposition for Variational
Optical-Flow Computation

Timo Kohlberger, Christoph Schnörr, Andrés Bruhn, and Joachim Weickert

Abstract—We present an approach to parallel variational op-
tical-flow computation by using an arbitrary partition of the image
plane and iteratively solving related local variational problems as-
sociated with each subdomain. The approach is particularly suited
for implementations on PC clusters because interprocess commu-
nication is minimized by restricting the exchange of data to a lower
dimensional interface. Our mathematical formulation supports
various generalizations to linear/nonlinear convex variational
approaches, three-dimensional image sequences, spatiotemporal
regularization, and unstructured geometries and triangulations.
Results concerning the effects of interface preconditioning, as well
as runtime and communication volume measurements on a PC
cluster, are presented. Our approach provides a major step toward
real-time two-dimensional image processing using off-the-shelf
PC hardware and facilitates the efficient application of variational
approaches to large-scale image processing problems.

Index Terms—Domain decomposition, image processing, optical
flow, parallel computation, partial differential equations, substruc-
turing, variational techniques.

I. INTRODUCTION

TWO decades after the work of Horn and Schunck [19],
both the mathematical understanding and algorithmic im-

plementations of variational approaches to optical-flow compu-
tation have reached a stage where they outperform alternative
approaches in many respects. Beginning with the work of Nagel
[26], [27], more and more advanced versions of the prototypical
approach of Horn and Schunck within the rich class of convex
functionals have been developed including anisotropic and non-
linear regularization preserving motion boundaries [36]. Con-
cerning benchmark experiments [21], they compute accurate
optical flow everywhere in the image plane [36]. More robust
local evaluation schemes, as well as spatiotemporal coherency,
can be exploited within the same mathematical framework [4],
[37].

A recurring argument against this class of approaches refers
to the computational costs introduced by variational regulariza-
tion. In our opinion, this argument is strongly misleading since
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it neglects the costs of alternative approaches related to heuristic
post processing of locally computed motion data (interpolation
and segmentation). Moreover, besides computer vision, in many
fields of application, like medical imaging or remote sensing,
variational regularization is the only mathematically sound way
for taking into account prior knowledge about the structure of
motion fields. This motivates our work on fast algorithms for
variational optical-flow computation.

In this context, the most common approach to accelerate
computations is multigrid iteration [29], [38]. Again, beginning
with early work by Terzopoulos and Enkelmann, much progress
has been made during the last years [9], [13], [18], [20], [34],
and current advanced implementations run in real-time for
200 200 pixel sized image sequences on standard PC hard-
ware [4]. Nevertheless, since the number of pixels per frame
steadily increase in applications—e.g., 1500 700 pixels/frame
in fluid mechanics [22], and even more in three-dimensional
(3-D) medical image sequences—parallelization of computa-
tions is inevitable. Due to the nonlocal nature of variational
models, however, this is not a trivial task.

To illustrate the main difficulty of parallelizing variational
optic flow approaches, Fig. 1(b) depicts the result of an ad hoc
parallelization where the variational problem was independently
solved in each subregion. Due to the above-mentioned global
nature of variational motion estimation, strong artefacts arise
at the boundaries of the subregions. In contrast, our approach
below solves the original variational problem by iteratively ex-
changing data on the one-dimensional (1-D) boundaries of ad-
jacent subregions.

A. Contribution and Organization

We present an approach to the parallelization of variational
optical-flow computation which fulfills the following require-
ments:

1) suitability for the implementation on PC clusters through
the minimization of interprocess communication;

2) availability of a mathematical framework as basis for gen-
eralizations to the whole class of linear and nonlinear
variational models characterized in [36].

Our approach draws upon the general mathematical literature
on domain decomposition, and especially upon substructuring
methods in connection with the solution of partial differential
equations [5], [30], [33]. After introducing some necessary
mathematical prerequisites in Section II, we specifically derive
in Section III an approach for computing the global variational
solution in terms of an arbitrary number of local variational
solutions, each of which can be computed in parallel on the
partitioned image domain (Fig. 2).

1057-7149/$20.00 © 2005 IEEE
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Fig. 1. (a) True solution of an optic flow problem with global smoothness assumption. (b) Result of an ad hoc problem decomposition.

Fig. 2. Example of a squared 3� 3 partitioning of the image plane 
 into
subdomains 
 with shared boundaries � .

Concerning PC clusters as the target architecture for imple-
mentations, an important feature of our approach is that in-
terprocess communication is minimized by restricting the ex-
change of data to a lower dimensional interface . This requires
a careful treatment of the variational models within each subdo-
main (boundary conditions and discretization).

The results of Section III are then generalized to optical-flow
computation by applying the common abstract variational for-
mulation (see, e.g., [31]) in Section IV. Subsequently, a proper
discretization with finite elements is described.

Furthermore, this formulation ensures the applicability of our
approach 1) to the whole class of quadratic variational models as
characterized in [36] and 2) to nonquadratic discontinuity-pre-
serving convex functionals [36] which can be minimized by
means of suitable sequences of quadratic functional approxima-
tions [35], [16].

In Section V, we report experimental results of a parallel im-
plementation on a PC cluster for image sequences of (spatial)

sizes 512 512 and 2000 2000, and discuss the main charac-
teristics of our approach: preconditioning the system of inter-
face variables, including a coarse grid correction step, depen-
dency of the convergence rate on the granularity of the domain
partition, and the scalability behavior for four to up to 144 pro-
cessors. The results show that our approach provides a basis
for the computation of two-dimensional (2-D) optical flow in
real-time as well as for large-scale applications in other fields in-
cluding 3-D medical imaging, remote sensing and experimental
fluid mechanics.

II. PRELIMINARIES AND MODEL PROBLEM

A. Mathematical Preliminaries and Notation

In this section, we introduce some notation and concepts nec-
essary for the following. All details can be found in standard
textbooks like, e.g., [1] and [6].

Let denote opened and bounded domains
with “sufficiently smooth” (e.g., Lipschitz continuous) bound-
aries and exterior unit normals .
Furthermore, is a nonoverlapping partition
of the image plane , i.e., , , , and
the set of shared boundaries is defined by ,
see Fig. 2 for an example.

We need the usual Sobolev space for second-order elliptic
boundary value problems

The corresponding scalar product is defined as
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with the scalar product of denoted with

We do not need the notion of “traces” and “trace spaces” in the
following. Hence, we loosely speak of functions with vanishing
boundary values

Likewise, we use the symbolic notation

for the duality pairing with respect to the trace space
and its dual, and call a function, as well.

Furthermore, we need any extension
of boundary values on to a function such that

.
For and , the following version

of Green’s formula holds:

(1)

Throughout this paper, all functions are discretized with stan-
dard conforming piecewise linear finite elements. To simplify
notation, we use the same symbols for some function
and the coefficient vector representing the approxima-
tion of in the subspace spanned by the piecewise linear
basis functions

(2)

Furthermore, we use the same symbol for the vector obtained
by discretizing the action of some linear functional on some
function . For example, we simply write and for the
discretized versions of the linear functionals and
[with being a bilinear form and fixed].

Again, we refer to standard textbooks like, e.g., [6], [32], for
the discretization of boundary value problems with finite ele-
ments.

B. Model Problem: The Definite Helmholtz Equation

For the reader’s convenience, we introduce in this section all
relevant concepts first for a model problem closely related to the
prototypical variational problem (34) for optical-flow computa-
tion. The generalization of the results in Section IV then will be
straightforward.

Let . We consider the following problem:

(3)

Vanishing of the first variation yields

with the bilinear form

Since

is strictly convex, and the global minimum is the unique so-
lution to the variational equation:

(4)

By applying (1), partial integration yields the Euler–Lagrange
equation along with the natural boundary condition [14]

in on (5)

The solution to (4) is the so-called weak solution to (5).
Discretization yields a linear system as the algebraic counter-

part of (4)

(6)

with a symmetric, sparse, and positive definite matrix .

C. Nonhomogeneous Boundary Conditions

The decomposition of problem (5) into a set of parallel solv-
able problems (Section III) requires boundary conditions dif-
ferent from the natural boundary condition in (5). We will col-
lect necessary details in the following section.

1) Dirichlet Conditions: Suppose we wish to have
on , with some given function

in on on (7)

To obtain the corresponding variational formulation as basis of
a proper finite element discretization, we define the subspace

The variational formulation of (7) then reads: Find
such that

(8)

The desired solution is , with an arbitrary
extension .

2) Neumann Conditions: Alternatively, suppose we wish to
have on , with a given function

in on on
(9)
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The corresponding variational formulation reads: Find
such that

(10)

III. PROBLEM DECOMPOSITION AND PARALLELIZATION

A. Two Domains

1) Approach: Let be a partition of with a common
boundary , as detailed in Section II-A. We
denote the corresponding function spaces with , . In the
following, superscripts refer to subdomains.

We wish to represent from (5) by two functions ,
which are computed by solving two related problems

in , , respectively. The relation

(11)

obviously holds if the following is true:

in on (12)

in on (13)

on (14)

on (15)

We observe that (5) cannot simply be solved by separately
computing and in each domain , because the natural
boundary conditions have to be changed on , due to (14) and
(15).

As a consequence, in order to solve the system of (12)–(15),
we equate the restriction to the interface of the two solutions

, to (12) and (13), due to (14), , and
substitute into (15). This will be achieved by means of the
Steklov–Poincaré operator introduced in the following. Once
the resulting equation has been solved for , the functions
and then follow from the substitution of back into (12)
and (13) with boundary condition (14). This approach is known
as substructuring, cf., e.g., [33].

2) Steklov–Poincaré Operator : In the previous section,
we have shown that in order to solve system (12)–(15), we have
to make explicit the dependency between and of the
solution to a boundary value problem.

Let be the solution to problem (7). We decompose into
two functions

which are the unique solutions to the following problems:

in on on (16)

in on on (17)

Clearly, we have and

(18)

(19)

The definition of the Steklov–Poincaré operator is (cf. e.g.,
[30])

(20)

Applying this mapping to the solutions , of (12) and (13)
in the domains and , respectively, (15) becomes

(21)

with due to (14). Equation (21) is denoted
as the interface equation. It remains to solve this equation for

. Since is known to be a symmetric, and positive definite
operator, preconditioned conjugate gradient (PCG) methods can
be applied for solving (21), which will be detailed later on. To
this end, we have to make explicit how the action of and ,
respectively, can be computed. In the following two sections we
show that this amounts to solving two associated boundary value
problems.

3) Action of : By (8), the variational formulation of
problem (16) reads

(22)

Discretization yields a linear system for (cf. the convention
stated after (1) regarding notation)

(23)

where index refers to all nodal variables excluding those on
. The extension operator supplements the boundary values

with zeros as values of interior nodal variables, and, thus,
defines, by using (2), a function .

Let us compare the systems (23) and (6), the latter corre-
sponding to the boundary value problem (5). To this end, we
decompose the linear system (6) according to

Note that the dimension of this linear system is larger because
runs through in (4), whereas in (22), only varies in .
Now, consider , with from (22) and

(23), respectively, and let vary in . Note that for
, ,

due to (22). For and taking into consideration
from (16), we obtain by (1)

(24)

Since due to (16), discretization of this variational
equation yields the linear system

(25)

from which we conclude by algebraically eliminating [cf.
definition (20)]

(26)
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which is also known as the Schur complement of . Hence, the
action of on some boundary data involves the solution of
problems (22) and (23).

4) Action of : In order to make the action of ex-
plicit, as well, we may formally invert (26). Since is dense, this
is not advisable, however. Therefore, in practice, one solves the
Neumann problem (24) for with and given boundary
data (compare with (10)) and obtains by restriction to the
interface . Alternatively, this can also be alge-
braically derived from (25) by the following factorization:

Inverting this matrix yields

Hence

(27)

5) Interface Equation: Using the results of the previous sec-
tions, we return now to (21) in connection with solving the
system of (12)–(15).

Suppose the boundary values on the
interface separating and were known. Then, and

within and , respectively, can be exactly computed as
discussed for problem (7). Here, is given by

Thus, it remains to compute the unknown boundary function
. This will be done by solving (15) using the

formulation (21).
To set up (21), we have to compute , , 2. This can

be reached by the same procedure used to compute (24). Since
, , 2, we obtain

Discretization yields the linear systems

(28)
Due to the system (12)–(15), we have to solve these two linear
systems simultaneously, along with the system (25) applied to
either domain , , 2. Since , summation
of the two systems (25) and (28) for each domain, respectively,
gives

We combine these equations into a single system

(29)

where

By solving the first two equations for , and substitution
into the third equation of (29), we conclude that (15) holds if

By applying (26), we finally obtain

(30)

which is also known as the Schur complement problem of (6).
Recall that (30) was derived by substituting (12)–(14) into (15).
Accordingly, imposing the solution to (30) as boundary con-
ditions as required in (14), the functions and can be com-
puted from (12) and (13) such that (11) holds! In addition, the
computation of , needed during
CG iteration, can be carried out in parallel.

B. Multiple Domains

In this section, we generalize the results to the case of multiple
subdomains (see Fig. 2). Furthermore, we discuss
preconditioners for the interface equation, a critical issue for an
efficient parallel implementation of the overall approach.

1) Interface Equation: Let denote the restriction of the
vector of nodal variables on the interface to those on

. Analogously to the case of two domains detailed above, the
interface equation for multiple domains reads

(31)

Once the values on in the interface are known, the inner nodal
variables can be determined by

(32)

2) Interface Preconditioners: While a fine partition of
into a large number of subdomains leads to small-sized and
“computationally cheap” local problems in each subdomain, the
condition number of the Steklov–Poincaré operator more and
more deteriorates [30]. As a consequence, preconditioning of
the interface equation becomes crucial for an efficient parallel
implementation.

Among different but provably optimal (“spectrally equiva-
lent”) families of preconditioners (cf. [5], [33]), we examined
the Neumann–Neumann preconditioner (NN) [2], [7], [23] and
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the balancing-Neumann–Neumann preconditioner (BNN) [8],
[24], [25]. These preconditioners applied in connection with
conjugate gradient iteration [15] preserve the symmetry of
and have natural extensions to more general problems related
to 3-D image sequences or unstructured geometries and/or
triangulations.

The NN preconditioner reads

(33)

where denotes a diagonal scaling matrix whose entries
are the reciprocals of the number of subdomains shared by nodes

on . Note that the computation of leads to a local
problem in subdomain [see Section III-A, 4)] which can be
solved in parallel for all subdomains.

The BNN preconditioner reads

In comparison with (33), this preconditioner additionally car-
ries out a correction step (denoted as “balancing” in literature)
before and after the application of the NN preconditioner on a
coarse grid given by the partition of the domain into subdo-
mains (see Fig. 2).

The restriction operator sums up the weighted values on
the boundary of each subdomain, where the weights are given
by the inverse of the number of subdomains sharing a particular
node, i.e.

if node is on an edge of
if node is on a vertex of
else.

Then, is defined by .
Note that is a dense matrix of small dimension (related to

the number of subdomains) which can be efficiently inverted by
a standard direct method.

IV. VARIATIONAL OPTICAL FLOW COMPUTATION

We generalize the results obtained so far to optical-flow com-
putation. To this end, we replace model problem (3) by the vari-
ational approach (34). As explained in Section I, this approach
represents a large class of alternative approaches to which our
decomposition approach can be applied.

A. Variational Problem

In order to point out the common problem structure with the
model problem discussed in Section II-B, we denote in this sec-
tion the image function with , and keep the symbol for the
linear functional induced by the image data which in connection
with optical-flow computation differs from in Section II-B
[see (37)].

Throughout this section, denotes the gra-
dient with respect to spatial variables, the partial derivative
with respect to time, and , denote
vector fields in the linear space [see [31]].

With this notational convention, the variational problem to be
solved reads [19]

(34)
Analogously to the derivation in Section II-B, vanishing of

the first variation of the functional in (34) yields the varia-
tional equation

(35)

where

(36)

(37)

Under weak conditions with respect to the image data , the
existence of a constant was proven in [31] such that

As a consequence, in (34) is strictly convex and its global
minimum is the unique solution to the variational (35). Par-
tially integrating in (35) by means of (1), we derive the system
of Euler–Lagrange equations

in on (38)

where

We emphasize that the prototypical problem (34) can be
easily generalized to other convex functionals as characterized
in [36]. In the experiments presented in the following, we have
utilized the CLG approach [4], which replaces the first term
in (34) by the spatiotemporal structure tensor [28], [37], with
smoothness parameter . Modifying (36) and (37) accord-
ingly, their discrete representations (39) can be automatically
computed by discretization with finite elements, and our de-
composition approach for parallelization can be immediately
applied.

B. Discretization

To approximate the vector field numerically, (35) is dis-
cretized by piecewise linear finite elements over the triangu-
lated section of the image plane. We arrange the vectors of
nodal variables , corresponding to the finite element dis-
cretizations of , as follows: (cf.
Section II-A). Taking into consideration the symmetry of the
bilinear form (36), this induces the following block structure of
the discretized version of (35)

(39)



KOHLBERGER et al.: DOMAIN DECOMPOSITION FOR VARIATIONAL OPTICAL-FLOW COMPUTATION 1131

where ,

Here, denotes the linear basis function corresponding to
the nodal variable or , respectively. Apart from the
block structure of this linear system , all results of
Sections III-A and III-B carry over verbatim.

V. PARALLEL IMPLEMENTATION AND EXPERIMENTS

A. Parallel Implementation

As already mentioned, the great advantage of domain decom-
position methods, and especially of substructuring methods in
our case, is their inherent coarse-grain parallelism. In partic-
ular, since the Steklov–Poincaré operator can be written as

, its application in a PCG iteration for solving
(30) or (31), respectively, can be seperated into simultaneous
applications of the local operators on . This mainly
amounts to solving local Dirichlet systems as detailed in Sec-
tion III-A, 3). Analogously, the computation of preconditioner

can be parallelized in solving the local Neumann problems
associated with each occurence of , as described in Sec-
tion III-A, 4), in parallel.

In a parallel framework, those local problems are usually
solved in slave processes which exchange their local data with
a dedicated master process carrying out the PCG iteration. In
such a setting, the restriction operators , as introduced in Sec-
tion III-B 1), correspond to a scatter operation, and it transposes

to a reduce operation between the master process and
the slave processes. In particular, a scatter operation consists of
sending to each slave process, associated with subdomain ,
the subset of nodal variables. Conversely, the transposed
operator amounts to a reduce operation, i.e., receiving
and adding the nodal values of all local shared boundaries.

Additionally, the coarse operator has to
be inverted in connection with the BNN preconditioner .
Since is global, as is , parallelization is not applicable here.
Therefore, is computed explicitly during initialization. Then,
the associated system is solved serially during PCG
iteration. Since is much smaller than , the nonparallel com-
putational effort for doing so is negligible.

It remains to find an efficient scheme for calculating the en-
tries of . We use a column-wise initialization by

th unit vector

which has the inherent disadvantage of the number of appli-
cations being equal the number of subdomains. Taking a closer

Fig. 3. Initialization scheme for the coarse grid operator S on 10� 10
subdomains. Each gray cross at a particular 
 depicts the area of nodes where
R S(R ) e is nonzero.

TABLE I
CG VERSUS PCG ITERATION OF THE INTERFACE PROBLEM

look at shows that its th column affects only the shared
boundaries of the subdomain , as well as its left, right, upper,
and lower neighboring subdomains, if any, as well as the nodal
variables at the vertices of the diagonal neighbors. Since the
latter ones have turned out to be negligible in practice, the initial-
ization of can be partially parallelized by computing every
fourth column of in a group of columns corresponding to
every second row of the subdomain partition; see Fig. 3 for il-
lustration. With this optimized initialization scheme, the number
of initial applications of is always eight, independent of the
total number of subdomains.

It remains the calculation of the right-hand sides of (30) or
(31), respectively, as well as the final calculation of the inner
nodal variables by (12)–(15) or (32). Both provide inherent par-
allelism by solving the corresponding Dirichlet system simulta-
neously on every subdomain.

B. Experimental Setting and Input Data

We conducted different experiments in order to investigate
the following aspects of the described domain decomposition
method:

1) effect of interface preconditioning on the convergence
rate;

2) comparison of the convergence rates utilizing the NN
or BNN preconditioner for different numbers of subdo-
mains;

3) the total runtime and the interprocess communication
volume depending on the number of subdomains for
each preconditioner in comparison to fast nonparallel
multigrid solving.

For ease of implementation, the image plane was parti-
tioned into equally sized, quadratic subdomains in all ex-
periments. The parameter values of the CLG motion estimation
were , , and , while the intensity
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Fig. 4. Experimental convergence rates and theoretical upper limits using (a) the NN preconditioner or (b) the BNN preconditioner.

values were in the range [0,255]. The implementation was real-
ized in C/C++ using the Intel compiler 7.0, with O3 optimiza-
tion option, and MPI-conform [11], [10] interprocess communi-

cation libraries on the Linux OS on standard PC hardware. Vec-
torization operations [SSE(2) or 3dnow-commands] were not
used.



KOHLBERGER et al.: DOMAIN DECOMPOSITION FOR VARIATIONAL OPTICAL-FLOW COMPUTATION 1133

Fig. 5. Number of iterations for an error threshold of 10 using NN or BNN preconditioning on frame 16 and 17 of the marble sequence (512� 512).

C. Effect of Interface Preconditioning

In order to investigate the influence of an interface precon-
ditioner in general, (31) was solved for without precondi-
tioning and also by applying the NN preconditioner. As input
images frame 16 and 17 of the marble sequence.1 As a local
solver, PCG iteration was also used, iterating until the relative
residual error was below . Table I depicts the number of
necessary outer (P)CG iterations to reach an residual error of

, i.e., , with denoting the
r.h.s. of (31). It clearly shows that, in agreement with theory
[30], the system becomes more and more ill conditioned if the
number of subdomains increases. Using the NN preconditioner
(33), however, largely compensates this effect and enables
shorter computation times through parallelization.

D. Convergence Rate Studies

In this experiment, we compared the linear convergence rate
based on the original problem (38) using NN or BNN precon-

ditioning for varying numbers of subdomains . PCG iteration
was also used as local solver here. The convergence rates where
determined by , with
being the error after iterations and . The examined
rates are depicted in Fig. 4 for each preconditioner (solid lines).
They clearly show that the convergence rate using the nonbal-
ancing preconditioner grows with the number of subdomains
whereas they remain nearly constant for the preconditioner in-
volving a coarse grid correction step.

1Created in 1993 by Michael Otte, Institut für Algorithmen und Kognitive
Systeme, University of Karlsruhe, Germany, available at http://i21www.ira.uka.
de/image_sequences.

Furthermore, these results are consistent with theoretical
upper limits which can be derived from approximations of the
condition numbers of the preconditioned operators
and , namely [7], [23] , [25]

(40)

and

(41)

with denoting the mesh sizes of the coarse grid, which cor-
responds to the subdomain partition, and denoting the fine
discretization grid, as well as some constants , . It is
well known, cf. e.g., [15, p. 272], that the convergence rate of
PCG iteration depends on the condition number by

with (42)

The observations are in agreement with the theory and espe-
cially the presence of the term in the bound of the NN pre-
conditioner, leading to a worse convergence for an increasing
number of subdomains (which is of order ) whereas
with the two-level preconditioner it remains nearly constant due
to the influence of the coarse grid couplings.

In a further experiment, we compared the number of iterations
necessary for the residual error to fall below using

the NN and BNN preconditioner. Results are shown in Fig. 5.
Thus, the BNN preconditioner is much closer to an optimal pre-
conditioner making the convergence rate independent w.r.t. both
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Fig. 6. (a) First frame of the synthetic particle image pair (2000� 2000) used as input data in the runtime and communication measurements. (b) Applied synthetic
motion field (ground truth).

the pixel meshsize and the coarse meshsize by the number
of subdomains. However, one iteration using the BNN precon-
ditioner involves two times the application of and in
addition to the computational effort of the NN preconditioner.

Finally, the experiments have also shown that the proposed
algorithm using either preconditioner converges to the global
solution of the original problem (up to machine precision) if the
local solvers are sufficiently precise.

E. Runtime and Communication Measurements

In order to examine the advantage of substructuring methods
compared to nonparallel methods in practice, we conducted
experiments on a dedicated PC cluster,2 i.e., a hybrid distributed
memory/shared memory parallel computer, by applying the
described parallel implementation on a synthetic 2000 2000
image pair. The outer iteration was stopped when a given error
threshold3 of relative to a high-precision nonparallel solu-
tion was reached . The total runtime, the communication time,
as well as the total communication volume, were measured for
2 2 to 12 12 decompositions. As input data, a synthetic
particle image pair and a synthetic motion field were used
(Fig. 6), as they occur in current particle image velocimetry
(PIV) experiments. The runtime measurements were compared
to those of an cache-optimized, nonparallel implementation
of a multigrid solver [3], being run on the same hardware, the
same error threshold, and the same compiler options.

The same multigrid solver was also used for solving the local
Dirichlet and the Neumann problems during the outer PCG it-

2HELICS-Cluster, 256 Dual AMD Athlon MP 1.4 GHz processors,
Myrinet2000 network, Interdisciplinary Center for Scientific Computing,
University of Heidelberg, Germany.

3For example, kw �ŵk =kŵk < 10 ,w : solution after k iterations,
ŵ ground truth solution.

eration of the parallel algorithm, as well as for the initial cal-
culation of the right-hand side of interface (31) and for the final
calculation of the inner nodal variables (32). Due to the artificial
Dirichlet boundary conditions in (22), the corresponding linear
systems (23) have shown to be conditioned worse than those
of the Neumann problems (27), which leads to a significantly
higher number of necessary smoothing iterations and V-cycles
in the multigrid solving. To be precise, one V-cycle with two
smoothing iterations per resolution level were used in connec-
tion with the Neumann problems, whereas four W-cycles for
each full multigrid level and two W-cycles else, together with
six to eight Gauss–Seidel relaxations were carried out to solve
the Dirichlet problems. During the experiments, it turned out
to be sufficient to solve the Dirichlet systems for unknowns
in a neighborhood of 5–7 nodes to the shared boundaries
for the second and subsequent (outer) PCG iteration, since the
right-hand sides change on those boundaries only. Finally, the
coarse systems occurring in the BNN preconditioner
were solved by PCG iteration.

Fig. 7 depicts the measured run and communication times
for NN and BNN preconditioning, respectively, in comparison
to the nonparallel optimized multigrid solver. All values shown
are averages of eight consecutive runs using the same input
image pair. The diagram shows that the parallel implementation
with NN preconditioning is faster than the multigrid iteration
on a single machine for 5 5 subdomains and above, i.e., 26
processors and above. The speed-up factors for 5 5 to 12 12
decompositions are 1.23, 1.77, 1.91, 2.66, 3.17, 2.82, 3.75, and
3.67. Interestingly, the simpler NN preconditioner performs best,
in this case, and cannot be improved by BNN preconditioning,
in contrast to the experiments discussed above (Figs. 4 and 5).
The reason is that for larger image sizes as in Fig. 6, and for a
domain decomposition with a reasonable number of processors
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Fig. 7. Runtime measurements using NN preconditioning or BNN preconditioning in comparison to nonparallel multigrid solving on a 2000� 2000 image
sequence.

(cf. Fig. 7), the corresponding meshsize is large as well (rela-
tive to the discretization parameter ). Consequently, the overall
problem is still well-conditioned, and it does not pay to choose
the computationally expensive BNN preconditioner.

In addition, considering the communication time measure-
ments in Fig. 7 shows that the communication effort with NN
preconditioning increases only moderately with the number of
processors. With BNN preconditioning, it even decreases for
less then 64 processors. As reason for this behavior we found
that, although the total amount of communicated data increases
with the number of subdomains, it decreases for each subdomain
since the number of shared variables diminishes. In other words,
the amount of data exchanged with each processor sequentially
decreases with a growing number of subdomains. Of course, this
is only an advantage if the scatter and reduce operations are suf-
ficiently parallelized. This effect seems to be stronger for BNN
preconditioning since those operations occur a multiple times
per outer iteration there.

Besides measuring the communication time we also studied
the communication volume, i.e., the total number of bytes sent
from the master to the slave processes, and vice versa. The com-
munication volume mainly consists of three parts: a) initial dis-
tribution of input data, i.e., the image pair, b) exchange of values
on shared boundaries nodes, and c) collection of the final vector
field from the slave processes. Whereas the communication vol-
umes for a) and c) are nearly fixed, i.e., are nearly independent
of the number of subdomains,4 they grow for b) linearly with the
square root of the number of subdomains, which can be nicely

4In fact, in our implementation, it increases slightly with the number of sub-
domains for a), since there the distributed regions must have a small overlap in
order to obtain the same convolution results on the shared boundary nodes of
neighboring local systems.

observed in Fig. 8. The higher volume using BNN precondi-
tioning results from multiple occurrences of the restriction oper-
ators and , and their transposes. The linear dependence on
the square root of the number of subdomains is coherent with the
fact that the overlap between subdomains is only 1-D whereas
the subdomains itself are 2-D.

This observation, and also real communication time measure-
ments, clearly show the advantage of applying the substruc-
turing approach with respect to high scalability, in contrast to
other parallelization strategies like, e.g., Schwarz methods with
2-D overlapping subregions.

VI. CONCLUSION AND FURTHER WORK

We presented an approach to parallel optical-flow com-
putation by a decomposition of the original problem into
independent local subproblems, according to a partition of
the underlying domain . We have shown, both in contin-
uous and discretized formulation, the dependency between
the Steklov–Poincaré operator and the associated Dirichlet
problem, as well as the dependency between the inverse oper-
ator and the associated Neumann problem.

We have demonstrated the general advantage of precondi-
tioning the interface problem, and studied the convergence be-
havior in utilizing NN and BNN preconditioners for different
numbers of subdomains. Finally, we have presented runtime and
communication volume measurements of a real-world experi-
ment on a PC cluster, which show that substructuring leads to a
significant initial computational effort, in comparison to nonpar-
allel multigrid solving, but provides very good scaling proper-
ties due to restricting the interprocess communication to a lower
dimensional interface between the subdomains.
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Fig. 8. Measured communication volume (between master and slave processes) using NN or BNN preconditioning.

Due to the components chosen for our approach and the use of
conforming finite element discretization, our approach is appli-
cable, in principle, to the whole class of quadratic variational ap-
proaches for optical-flow computation and less-structured prob-
lems involving irregularly shaped domains and nonuniform tri-
angulations (i.e., experimental fluid dynamics).

By applying our approach to a higher number of processors
and by exploiting vectorization and local parallelization in each
processing node, real-time 2-D optic-flow estimation on large
image sequences will come into reach on standard PC hardware.
Furthermore, we will extend our work to nonquadratic varia-
tional approaches, like total variation-based regularization, for
example, where sequences of quadratic variational approxima-
tions are used to compute minimizers.

Finally, it might be worthwile to use multigrid iteration not
only as subdomain solver, but to consider parallelization at
coarse grid levels [12], [17].
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