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Abstract

We investigate the feasibility of a recent control-theoretic approach to domain decom-
position for a class of nonlinear variational image processing problems. Like substructuring
methods for solving in parallel linear (systems of) partial differential equations, the approach
utilizes non-overlapping subdomains. Processor communication is therefore restricted to
lower-dimensional interfaces. The approach is particularly suited for implementations on
PC clusters, but also for on-chip parallelization on multi-core processors.

1 Introduction

Domain decomposition methods for the parallelized solving of nonlinear problems have been
studied for the case of overlapping subdomains in, e.g., [11], [3], [5] and [24]. In these works,
the well known Schwarz alternating methods for linear problems are applied to the nonlinear
in a straightforward manner. In contrast, the direct application of non-overlapping domain
decomposition methods, substructuring methods, has, to our knowledge, not been conducted
successfully so far. However, recent approaches restating the decomposed problem by means
of optimal control theory [22], [13], [16], [14], have shown to be feasible in application to the
(nonlinear) Navier-Stokes equations. In order to study the practicability of those methods for
nonlinear image processing problems, and thereby extending the studies made for the linear case
at the example of motion estimation [19], [20], [21], the main focus of this article is the application
to image denoising with Total Variation regularization, being a prominent representative for the
class of nonlinear problems. In addition to the algorithmic details for the cases of two or more
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subdomains, the mathematical and algorithmic structure of common solving techniques are
explained.

The organization of the paper is as follows. After some preliminary definitions and the pre-
sentation of the model problem, the two-subdomains case is examined in Section 2. Besides the
description of classical iterative solving techniques for optimal control problems, also numeri-
cal results for a significant example are reported. In Section 3, details for the application to
multiple subdomains are elaborated, the followed by experimental results on four subdomains.
The algorithmic and experimental results are then summarized in Section 4, and an outlook for
future work is given.

1.1 Mathematic Preliminaries and Notations

Let Ω,Ω1,Ω2, . . . ⊂ R
2 denote opened and bounded domains with “sufficiently smooth” (e.g.,

Lipschitz continuous) boundaries ∂Ω, ∂Ω1, ∂Ω2 . . . and exterior unit normals n, n1, n2, . . . . Fur-
thermore, {Ωi|i = 1, . . . , N} is a non-overlapping partition of the image plane Ω, i.e. Ω =

⋃

i Ωi,
Ωi ∩ Ωj = ∅, ∀j 6= i—where Ωi will be referred to as subdomains in the following—and the
set of shared boundaries is defined by Γ :=

⋃

i ∂Ωi \ ∂Ω. Additionally, we consider only those
partitions for which a black-and-white coloring can be applied, i.e. adjoint subdomains always
have differing colors there, see Figure 1 for two examples. Then, let IB denote the indices of
the black subdomains and IW those of the white ones, i.e. IB := {1 ≤ i ≤ N | Ωi is black},
IW := {1 ≤ i ≤ N | Ωi is white}.

In cases with more than two subdomains, the common boundary set Γ is split further into
parts Γij, whose points are shared by boundaries of only two adjoint subdomains, i.e. Γij :=
∂Ωi∩∂Ωj,∀j ∈ N(i)∩IW ,∀i ∈ IB , where N(i) := {j|∂Ωj∩∂Ωi 6= ∅, j 6= i} denotes the indices of
all subdomains being adjoint to Ωi; and those points being the intersection of boundaries of more
than two adjoint subdomains, which are collectively denoted as ΓΠ. Furthermore, all points on
the boundary of a subdomain Ωi which are also elements of adjoint subdomain’s boundaries are
denoted Γi. See Figure 1 for two examples.

In addition, we need the usual Sobolev space for second order elliptic boundary value prob-
lems

V = H1(Ω) = {v ∈ L2(Ω) : ∂αv ∈ L2(Ω) , 0 ≤ |α| ≤ 1} ,

with the scalar product of L2(Ω) denoted by

(u, v) =

∫

Ω
u(x)v(x) dx.

Moreover, we will make use of the notation ζi for the restriction of any function ζ ∈ V (Ω) to
Ωi, i.e. ζi := ζ|Ωi

∈ V (Ωi). Analogically, we will abbreviate V (Ωi) by Vi. Scalar products, being
restricted to any subset Λ ⊂ Ω are denoted by

(

u, v
)

Λ
:=

∫

Λ
u(x)v(x) dx, for Λ ⊂ Ω.

Finally, the following extension operators will be used: Pi : Γi → Ωi, PΓij
: Γij → Ωi, PΓΠ :

ΓΠ → Γ, which all are the identity on their definition set and zero else.
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Throughout this paper, all functions are discretized with standard conforming piecewise
linear finite elements. To simplify notation, we use the same symbols for some function v = v(x)
and the coefficient vector v ∈ R

N representing the approximation of v(x) in the subspace spanned
by the piecewise linear basis functions {φ(x)}i=1,...,N :

v(x) ∈ H1(Ω) ↔ v ∈ R
N ↔

N
∑

i=1

viφi(x) .

Furthermore, we use the same symbol for the vector obtained by discretizing the action of some
linear functional on some function v(x). For example, we simply write f and w for the discretized
versions of the linear functionals (f, v) and a(w, v) (with a(·, ·) being a bilinear form and w(x)
fixed). We refer to standard textbooks like, e.g. [2], [9], [28], for the discretization of boundary
value problems with finite elements.

(a) 1 × 2-partition (b) 2 × 2-partition

Figure 1: Exemplary partitions of the image plane Ω. (a) Γ = ∂Ω1 ∩ ∂Ω2. (b) ΓΠ =
⋂

i
∂Ωi, Γ1i =

∂Ω1 ∩ ∂Ωi \ ΓΠ, i = 2, 3; Γ4i = ∂Ω4 ∩ ∂Ωi \ ΓΠ, i = 2, 3.

1.2 The Model Problem

As a representative for the class of nonlinear elliptic boundary-value problems we consider the
Total Variation-based denoising problem in the sequel [27], [26], which is defined by the opti-
mization problem

min
u∈V

J(u) :=
1

2

∫

Ω

(u− f)2 dx + αJTV (u). (1)

Here, f ∈ V represents the degradated input image, α the regularization strength parameter
and JTV is the Total Variation norm

JTV (u) := sup
w∈(C∞

0
)2







∫

Ω

−u∇ · w dx : ‖w‖∞ ≤ 1







(2)

4



with u ∈ V ⊂ BV , see e.g. [31], denoting the image to be reconstructed, which plays the role of
an edge-preserving regularization here. Finding a solution to this problem amounts to solving
the nonlinear equation

∫

Ω

u v + α
∇u>∇v

|∇u|β
dx := a(u, v) =

∫

Ω

fv dx := b(v), ∀v ∈ V (Ω), (3)

where the approximation
|z|β :=

√

z · z + β

of the Euclidean norm is used1, for a small perturbation parameter β, in order to prevent
problems if |∇u| → 0. Partial integration in (3) shows that u leads to the differential formulation:

u− α∇ ·
( ∇u

|∇u|β

)

:= A(u) = f (4)

with the homogeneous Neumann boundary conditions

∂u

∂n
= 0 on ∂Ω. (5)

Due to nonlinearity of the TV-regularized problem, non-standard, iterative solving methods
have emerged in the past 15 years. Starting with the slowly-converging steepest descent method
proposed by Rudin and Osher [27], Vogel et al. [29], [30], [10], later on suggested a fixed
point iteration with an improved convergence behavior, of which Heers et al. [17] noted to
belong to the family of so-called Kačanov methods [18], [12], being already proposed at the end
1960s. Although quadratic convergence was then reached by employing Newton’s method, [8], its
domain of convergence has shown to be very small. In order to overcome this hindrance, Chan,
Golub and Mulet proposed the primal-dual Newton’s method [6], [7], having a large domain of
convergence and a quadratic convergence rate. The latter method was used to solve Eq. (3), or
its restrictions to subdomains, in the experiments whose results are presented below. As error
measure the nonlinear relative residual error was chosen.

2 The Two-Subdomains Case

2.1 Problem Statement

Let us start with the spatial decomposition of the nonlinear problem (4) onto to two subdomains.
Let us consider the two subproblems

A(u1) = f1 and
∂u1

∂n1
= g on Γ,

∂u1

∂n
= 0 on ∂Ω1 \ Γ

A(u2) = f2 and
∂u2

∂n2
= −g on Γ,

∂u2

∂n
= 0 on ∂Ω2 \ Γ

(6)

1In fact, by utilizing this approximation, one can give an non-weak approximation of the TV norm by JTV (u) ≈
R

Ω
|u|β dx, for u ∈ H1.
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where g is a given function in L2(Γ), and

u =

{

u1(x) x ∈ Ω1

u2(x) x ∈ Ω2

. (7)

That is, by Eq. (6) a splitting of the original problem A(u) = f into two subproblems is given,
whose Neumann boundary conditions have been modified in such, that the normal derivatives
of the local solutions u1 and u2 are equal to g and −g, respectively. Since g is given, we can
thus write u1(g) and u2(g).

Furthermore, Eqs. (6) shall now serve as the constraints of the constrained optimization
problem

min
u1,u2,g

1

2

∫

Γ

(u1 − u2)
2 dχ +

γ

2

∫

Γ

g2 dχ := JΓ

(

u1, u2, g
)

(8)

subject to (6),

cf. [22], whereas for the time being we assume γ = 0, i.e. neglect the second integral. Then, for a
global minimum (û1, û2, ĝ) of JΓ it obviously holds that û1(g) = û2(g) on Γ, due to the definition
of JΓ; as well as ∂nû1 = g = −∂nu2, due to the construction of the constraint equations. That
is, a solution to problem (8) does, in negligence of the second integral, also satisfy











































A1(u1) = f1 and
∂u1

∂n1
= 0 on ∂Ω1 \ Γ

∂u1

∂n1
= g = −∂u2

∂n2
on Γ

u1 = u2 on Γ

A2(u2) = f2 and
∂u2

∂n2
= 0 on ∂Ω2 \ Γ

(9)

which is the so-called multi-domain formulation of the original problem A(u) = f . Interestingly,
if A would be a linear operator, the optimization problem (8) could therefore be associated
with the well known class of non-overlapping domain decomposition methods, substructuring
methods, since the multi-domain formulation serves as basis of the Steklov-Poincaré interface
equation there, cf. [25]. Although, since one assumption for the latter is linearity of the operator,
it is not applicable here and hence classical substructuring methods are not feasible in this case.
On the other hand, by following the constrained optimization-based approach Eq. (8), we are
also able to exploit parallelization for nonlinear problems.

Concerning the second integral in Eq. (8), its reason is to prevent from getting arbitrarily
large solutions for g, since its magnitude is not involved in the first integral. However, ex-
periments with the chosen model problem on two and four subdomains showed convergence
for γ = 0, see details below.

Independent from that, the problem in Eq. (8) belongs to the well known class of optimal
control problems, cf., e.g., [23], where g here is a boundary control ; JΓ is the objective functional ;
Eqs. (6) are the state equations and

(

u1(g), u2(g)
)

are denoted as the state.
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2.2 Lagrange Relaxation and the Optimality System

A direct approach to the optimal control problem (8) could be to solve the optimality system
which belongs to the Lagrange relaxation of the constrained optimization problem, see, e.g., [14].

In order to simplify the Lagrange multiplier function to be defined below, we will make use
of the weak formulation of the constraint equation system (6):

a1(u1, v1) = b1(v1) +
(

u1, v1

)

Γ
, ∀v1 ∈ V1, u1 ∈ V1

a2(u2, v2) = b2(v2)−
(

u2, v2

)

Γ
, ∀v2 ∈ V2, u2 ∈ V2,

(10)

cf., e.g., [1], which can be written in more compact form

(

F1(u1, g), v1

)

Ω1
= 0, ∀v1 ∈ V1, u1 ∈ V1 (11)

(

F2(u2, g), v2

)

Ω2
= 0, ∀v2 ∈ V2, u2 ∈ V2 (12)

by the introduction of the nonlinear operators Fi(·, ·),
(

Fi(ui, g), vi

)

Ωi
:= ai(ui, vi)− bi(vi) + (−1)i−1(g, vi)Γ, ∀vi ∈ Vi, i = 1, 2. (13)

Now, we are ready to give a compact definition of the Lagrange functional by

L(u1, u2, g, λ1, λ2) := JΓ(u1, u2, g) −
(

F1(u1, g), λ1

)

Ω1
−
(

F2(u2, g), λ2

)

Ω2
, (14)

where λ1 ∈ V1, λ2 ∈ V2 are the Lagrange multiplier functions.
First-order necessary conditions for finding a solution (û1, û2, ĝ) to the original problem (8)

is to find a stationary point (û1, û2, ĝ, λ̂1, λ̂2) of the Lagrange functional L. That is, one has to
solve the system

∇5L(û1, û2, ĝ, λ̂1, λ̂2) = 0,

where ∇5 := (∂/∂u1, ∂/∂u2, ∂/g, ∂/∂λ1 , ∂/∂λ2), which gives the optimality system to the La-
grange relaxation and is derived in detail in the following.

Partially deriving L(u1, u2, g, λ1, λ2) for the Lagrange functions λ1 and λ2, respectively, yield
the so-called state equations

〈

∂L

∂λi
, vi

〉

Ωi

= 0, ∀vi ∈ Vi, i = 1, 2 (15)

⇔
(

Fi(ui, g), vi

)

Ωi
= 0, ∀vi (16)

⇔ ai(ui, vi) = bi(vi) + (−1)i−1(g, vi)Γ, ∀vi (17)

which are just the constraint equations of the original problem. On the other hand, deriving
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with respect to u1 and u2, respectively, results in the adjoint or co-state equations
〈

∂L

∂ui
, vi

〉

Ωi

= 0, ∀vi ∈ Vi, i = 1, 2 (18)

⇔
〈

∂JΓ

∂ui
, vi

〉

Ωi

−
(

〈

∂Fi

∂ui
, vi

〉

Ωi

, λi

)

Ωi

= 0, ∀vi (19)

⇔ a′i(ui, vi, λi) =
(

u1|Γ − u2|Γ, (−1)i−1vi|Γ
)

Γ
, ∀vi (20)

where a′i(ui, vi, λi) is defined as follows:

a′i(ui, vi, λi) :=

(

〈

∂Fi(ui, g)

∂ui
, vi

〉

Ωi

, λi

)

Ωi

(21)

=

∫

Ωi

vi λi + α

(

1

(∇u>
i ∇ui + β)1/2

∇v>i −
1

(∇u>
i ∇ui + β)3/2

∇u>
i ∇vi∇u>

i

)

∇λi dx (22)

=

∫

Ωi

viλi +
α

|∇ui|β
∇v>i

(

I − ∇ui∇u>
i

|∇ui|2β

)

∇λi dx. (23)

Additionally, solutions to u1 and u2 to Eq. (20) are denoted as co-states. Finally, by partially
deriving for the control g we obtain the optimality condition

〈

∂L

∂g
, g̃

〉

Γ

= 0, ∀g̃ ∈ L2(Γ), i = 1, 2 (24)

⇔
〈

∂JΓ

∂g
, g̃

〉

Γ

−
(〈

∂F1

∂g
, g̃

〉

Γ

, λ1

)

Γ

−
(〈

∂F2

∂g
, g̃

〉

Γ

, λ2

)

Γ

= 0, ∀g̃ (25)

⇔ γ
(

g, g̃
)

Γ
+
(

λ1|Γ − λ2|Γ, g̃
)

Γ
= 0, ∀g̃. (26)

To summarize, in order to find a solution for the Lagrange relaxation with the model problem
one has to solve the following coupled system of five equations







































∫

Ωi

ui vi + α
∇u>

i ∇vi

|∇ui|β
dx =

∫

Ωi

fivi dx + (−1)i−1
(

g, vi

)

Γ
, ∀vi ∈ Vi,

∫

Ωi

viλi +
α

|∇ui|β
∇v>i

(

I − ∇ui∇u>
i

|∇ui|2β

)

∇λi dx =
(

u1|Γ − u2|Γ, viΓ

)

Γ
, ∀vi ∈ Vi,

γ
(

g, g̃
)

Γ
= −

(

λ1|Γ − λ2|Γ, g̃
)

Γ
, ∀g̃ ∈ L2(Γ)

. (27)

for i = 1, 2.
Although it would be feasible to discretize and solve this system directly, which is de-

noted one-shot method in literature, cf. [14], it is generally an ineffective solving approach,
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since it yields large nonlinear equations systems, which are usually solved by slow, iterative
methods, as it is the case with TV-based denoising considered here. Additionally, such a solving
approach provides no direct clues for parallel computation, since u1 and λ1 as well as u2 and λ2

are coupled on the whole of Ω1 and Ω2, respectively, and these two groups among each other
via their dependencies on g at the common boundary Γ.

In contrast to solving solving the optimality system directly, an iterative procedure provides
an alternative, where, starting with some initial guess for the control g, first the state equations
are solved for u1 and u2; second in using the results of the first step, the adjoint equations are
solved for the co-state functions λ1 and λ2; and third the control g is updated by solving the
optimality condition. These three steps are repeated until convergence is reached due to some
appropriate error threshold. Although this procedure provides the advantages of parallelizability
of the first and second step, as well as having to solve only small nonlinear systems for u1 and u2

within the first step, convergence is not guaranteed, or may happen with a bad convergence rate,
since it has been shown [15], that this procedure is equivalent to a steepest descent algorithm
for g using a fixed step size.

2.3 Gradient-Based Solving

In contrast to methods solving the optimality system directly, iterative gradient-based methods
are usually the methods of choice in practice. Starting with an initial guess for the control g,
the repetitive part of these algorithms is outlined by the following four steps:

(i) solve the state equations to obtain the current state
(

u1(g
k), u2(g

k)
)

(ii) compute the gradient of JΓ w.r.t. to g: d
dgJΓ

(

u1(g
k), u2(g

k), g
)

(iii) use the results of the first two steps to compute an update δg

(iv) update g: g ← g + δg ,

where k is the iteration count, see also [14]. Whereas step (i) just corresponds to solving the local
problems in the constraint equations, step (ii) needs further considerations, which are detailed
in the following. Once the gradient has been computed, an update of the control is determined
in step (iii), the details of which depend on the optimization method used, e.g. the gradient
method, the conjugate gradient or quasi-Newton method.

2.3.1 Gradient Calculation by Sensitivities versus by Co-States

Before presenting the computation of the gradient in step (ii) for our model example explicitly,
the general mathematical structure for the two-subdomains case is outlined next.

We start with the formal structure of the total derivate of JΓ with respect to g at (u1, u2, g)
in an arbitrary direction g̃ ∈ L2(Γ):

〈

dJΓ

dg
, g̃

〉

Γ

=

〈

∂JΓ

∂u1
,
〈∂u1

∂g
, g̃
〉

Γ

〉

Γ

+

〈

∂JΓ

∂u2
,
〈∂u2

∂g
, g̃
〉

Γ

〉

Γ

+

〈

∂JΓ

∂g
, g̃

〉

Γ

. (28)
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Defining ũi(g) :=
〈

∂ui

∂g , g̃
〉

Γ
, i = 1, 2, this can be rewritten as

〈

dJΓ

dg
, g̃

〉

Γ

=

〈

∂JΓ

∂u1
, ũ1

〉

Γ

+

〈

∂JΓ

∂u2
, ũ2

〉

Γ

+

〈

∂JΓ

∂g
, g̃

〉

Γ

. (29)

Here, ũ1(g) and ũ2(g) are the directions of infinitesimal change of the state functions u1 and u2,
respectively, in dependence of the direction of infinitesimal change g̃. Or, in other words, ũ1 and
ũ2 represent the variation directions in the state in dependence of a variation direction in the
control g. Therefore, ũ1(g) and ũ2(g) are commonly referred to as sensitivity in literature [14].

In general, two ways of calculating ũ1(g) and ũ2(g) exist. The first one follows from consid-
ering the total derivative of the state equations with respect to g, which is given by

(

Pi

〈

d

dg
Fi(ui, g), g̃

〉

Γ

, vi

)

Ωi

= 0, ∀vi ∈ Vi, i = 1, 2 (30)

where, due to u1 and u2 depending on the control g, the chain rule applies again, yielding

⇔
(

〈

∂Fi

∂ui
, Pi

〈∂ui

∂g
, g̃
〉

Γ

〉

Ωi

+ Pi

〈

∂Fi

∂g
, g̃

〉

Γ

, vi

)

Ωi

= 0, ∀vi. (31)

By substitution of
〈

∂ui

∂g , g̃
〉

Γ
, i = 1, 2 through ũ1 and ũ2, respectively, we obtain

⇔
(

〈

∂Fi

∂ui
, ũi

〉

Ωi

+ Pi

〈

∂Fi

∂g
, g̃

〉

Γ

, vi

)

Ωi

= 0, ∀vi (32)

⇔
(

〈

∂Fi

∂ui
, ũi

〉

Ωi

, vi

)

Ωi

= −
(

Pi

〈

∂Fi

∂g
, g̃

〉

Γ

, vi

)

Ωi

, ∀vi . (33)

Hence, with equation (33), denoted as sensitivity equation, we have given the dependency be-
tween ũ1, ũ2 and g̃. Unfortunately, it is clear that, since equation (33) is not formally inverted, ũ1,
ũ2 can be determined only for particular g̃, through solving Eq. (33). In recapitulation of the
gradient formulation in Eq. (29) it becomes obvious, that by Eq. (33) we are not able to com-
pute 〈dJ/dg, g̃〉 for arbitrary directions g̃, and therefore only projections of the gradient onto
fixed directions g̃.

However, in most continuous cases g̃ need to be arbitrary, therefore we are interested in
a formulation without the incorporation of the sensitivities ũ1 and ũ2, which is referred to as
’calculation of the gradient through adjoint equations’ in literature [14]. Such a formulation can
be reached by considering the adjoint equations (20),

(

〈

∂Fi

∂ui
, vi

〉

Ωi

, λi

)

Ωi

=

〈

∂JΓ

∂ui
, vi

〉

Γ

, ∀vi ∈ Vi, i = 1, 2, (34)

of the previous section again. Since this holds for any vi, it is in particular true for setting
vi = ũi. Analogical, Eq. (33) is true for an arbitrary vi and thus for an particular vi = λi.
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In applying these substitutions to Eqs. (34) and Eqs. (33), respectively, and comparing the
outcomes, one can deduce that

〈

∂JΓ

∂ui
, ũi

〉

Γ

= −
(

Pi

〈

∂Fi

∂g
, g̃

〉

Γ

, λi

)

Ωi

. (35)

Thus, terms in the gradient formulation (29) involving the sensitivities ũ1 and ũ2 can now be
substituted due to (35), which yields the gradient formulation

〈

dJΓ

dg
, g̃

〉

Γ

= −
(

P1

〈

∂F1

∂g
, g̃

〉

Γ

, λ1

)

Ω1

−
(

P2

〈

∂F2

∂g
, g̃

〉

Γ

, λ2

)

Ω2

+

〈

∂JΓ

∂g
, g̃

〉

Γ

(36)

⇔
〈

dJΓ

dg
, g̃

〉

Γ

=

〈

∂JΓ

∂g
, g̃

〉

Γ

−
(

P1

〈

∂F1

∂g
, g̃

〉

Γ

, λ1

)

Ω1

−
(

P2

〈

∂F2

∂g
, g̃

〉

Γ

, λ2

)

Ω2

. (37)

Obviously, we have now given a closed-form of the gradient for arbitrary g̃ and not for particular
ones only, since there is no need to solve the sensitivity equations in an intermediate step any
longer. Instead, one has to solve the adjoint equations (34) for λ1 and λ2, respectively. Since
the latter only involves the state functions u1, u2 and the control g, but not the change direction
g̃, this solving has to be done only once for any g̃.

2.3.2 Application to the Model Problem

After the general description of the gradient-based approach, the concrete application to the
model problem is explained in the following.

Obviously, in considering the definition of JΓ as given in Eq. (8), the gradient formulation
in Eq. (29) for the model problems here reads

〈

dJΓ

dg
, g̃

〉

Γ

=
(

u1|Γ − u2|Γ, ũ2|Γ − ũ2|Γ
)

Γ
+ γ
(

g, g̃
)

Γ
. (38)

Furthermore, the sensitivity equations corresponding to (33) is of the form

a′1(u1, ũ1, ξ1) = (g̃, ξ1)Γ, ∀ξ1 ∈ V1

a′2(u2, ũ2, ξ2) = −(g̃, ξ2)Γ, ∀ξ2 ∈ V2,
(39)

with a′i(·, ·, ·) as defined in (21) in connection with the adjoint equations.
Alternatively, in following the adjoint equations approach, the gradient formulation in Eq. (37)

here reads
〈

dJΓ

dg
, g̃

〉

Γ

=
(

g̃, λ1

)

Γ
−
(

g̃, λ2

)

Γ
+ γ(g, g̃)Γ (40)

=
(

g̃, λ1|Γ − λ2|Γ
)

Γ
+ γ
(

g, g̃
)

Γ
(41)

or, in explicit formulation

dJΓ

dg
=
(

λ1|Γ − λ2|Γ
)

+ γg, (42)

11



where the co-states λ1, λ2 are to be determined by solving the adjoint equations

a′1(u1, v1, λ1) =
(

u1|Γ − u2|Γ, v1|Γ
)

Γ
, ∀v1 ∈ V1

a′2(u2, v2, λ2) =
(

u1|Γ − u2|Γ,−v2|Γ
)

Γ
, ∀v2 ∈ V2

(43)

which have been already introduced with the Lagrange multiplier approach, Eq. (20).
The relation between the sensitivity and the co-state functions, as shown generally in Eq. (35),

can be reproduced here by setting ξ1 = λ1, ξ2 = λ2 in (39), and v1 = ũ1, v2 = ũ2 in (43), resulting
in

(g̃, λ1)Γ =
(

u1|Γ − u2|Γ, v1|Γ
)

Γ

(g̃, λ2)Γ =
(

u1|Γ − u2|Γ,−v2|Γ
)

Γ

(44)

and thus

(

g̃, λ1|Γ − λ2|Γ
)

Γ
=
(

u1|Γ − u2|Γ, ũ2|Γ − ũ2|Γ
)

Γ
, (45)

which, utilized to substitute the first term at the right-hand side of the first gradient formula-
tion (38), just leads to the formulation in (40).

To summarize, Step (ii) of the algorithm outline in the beginning of this section, consists of
the following sub-steps:

(a) solve the state equations (10)

(b) solve the co-state equations (43)

(c) calculate the gradient by Eq. (40) or Eq. (42) .

2.3.3 Outer CG Iteration

After having explained Step (ii) in detail, a complete gradient-based solving algorithm for two
subdomains can be constructed. In utilizing conjugate gradient iteration for nonlinear problems,
see, e.g., [4], the algorithm then reads as given in Algorithm 1. There, (a) corresponds to step (i)
in the algorithm outline above; (b) and (c) to step (ii), (d) to step (iii), and (f) to step (iv).
Moreover, the line search along the update direction δg in (e), implemented by ten nested
iterations starting with an interval of [0, 5], was employed to guarantee global convergence.

With respect to coarse-grained parallelization, the solvings in step (a) and (b) are obviously
for parallelization, since both system are not coupled. In contrast, the steps (c)–(d) and (f)–
(g) provide no clues and must be carried out sequentially, but comprise much less operations
than steps (a) and (b). Since the many-subdomains case will be explained later on, details on
communication patterns and considerations about scalability will be given there.

In terms of discretization, state and adjoint equations were discretized by conformal first-
order finite elements, whereas the steps (c)–(f) were applied to the nodal weights directly. Since
the adjoint equations are linear in λ1 and λ2, respectively, their corresponding linear systems
were solved by LU decomposition; whereas the primal-dual Newton method, also in connection
with LU decomposition, was utilized to solve the state equations up to a final (nonlinear) relative

12



residual error of less then 10−10 for all experiments. The regularization strength α was set to the
relatively high value 1.0, in order to show the regularization preservation across the subdomain
boundaries. Furthermore, we set β = 10−6 in all experiments. Figure 2(b) served as input image,
which was generated by adding Gaussian noise to the synthetic image depicted in Fig. 2(a). All
error measurements refer to the solution of the original problem (4) computed without domain
decomposition the same parameter values.

2.3.4 Experimental Results

The goal of the experiments, whose results are shown in Figure 3, were to study the general
feasibility of the proposed domain decomposition approach, i.e. convergence, convergence rate
as well as the distribution of the error in comparison of a sequential reference solution with the
same parameters and accuracy (in terms of error thresholds of the local solvers).

The results in diagram 3(a) reveal that the relative L2 error linearly drops to 10−4 with a
relatively good rate of ≈ 0.89 until iteration 50, but then deteriorates to ≈ 0.99. Furthermore,
setting γ = 0, i.e. switching off the regularization of g, does not lead to divergence here.
In contrast, experiments show that the convergence behavior does not change significantly for
setting γ to values smaller than 10−4 or equal to zero. Despite the worsening convergence
rate, the density plots of the resulting image in Fig. 3(b) show that the remaining error after
50 iterations is acceptable for most image processing applications. To sum up, the experiments
have shown, that the domain decomposition approach is practically feasible, but convergence
rate can be improved further. Most promising in this respect is the use of preconditioned
conjugate gradient iteration, which will be the subject of future work.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a)

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(b) β = 10−6

Figure 2: Ground truth and noised input image. 128 × 128 pixels, signal-to-noise ratio: -4.2 dB.
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g0 ← 0

k ← 0

do

(a) solve the state equations for uk
1, u

k
2 (in parallel):

a1(u
k
1 , v1) = b1(v1) + (gk, v1)Γ, ∀v1 ∈ V (Ω1)

a2(u
k
2 , v2) = b2(v2)− (gk, v2)Γ, ∀v2 ∈ V (Ω2)

(46)

(b) solve the adjoint equations for λk
1 , λ

k
2 (in parallel):

a′1(u
k
1 , v1, λ

k
1) = (uk

1 − uk
2 , v1)Γ, ∀v1 ∈ V (Ω1)

a′2(u
k
2 , v2, λ

k
2) = (uk

1 − uk
2 , v2)Γ, ∀v2 ∈ V (Ω2)

(47)

(c) calculate the gradient:

∇Jk
Γ ← (λk

1|Γ − λk
2|Γ) + γgk (48)

(d) calculate a new update direction δdk:

βk ← ∇Jk
Γ ·
(

∇Jk
Γ −∇Jk−1

Γ

)

∇Jk−1
Γ · ∇Jk−1

Γ

, where ∇Jk
Γ := Jk

Γ(uk
1 , u

k
2 , g

k) (49)

δgk ← −∇Jk
Γ + βkδgk−1 (50)

(e) do a line search along δdk for determining a step size τ k:

τk ← min
0<τ≤τmax

JΓ

(

u1(g
k + τδgk), u2(g

k + τδgk), gk + τδgk
)

(51)

(f) update the control:

gk+1 ← gk + τkδgk (52)

(g) k ← k + 1

while ‖∇Jk−1
Γ ‖/‖∇J0

Γ‖ > ε

merge the local solutions:

u|Ω1
← uk−1

1

u|Ω2
← uk−1

2

(53)

Algorithm 1: Two-subdomains control-theoretic domain decomposition with CG iteration.
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3 The Multiple-Subdomains Case

We may extend our approach to the case of multiple subdomains. The main difference is
the presence of points ΓΠ which are shared by more than two subdomain boundaries, and
hence unknowns at those places occur in more than two subproblems. See Figure (1)(b) for an
illustration of a four-subdomains example. Once the special characteristics of unknowns at ΓΠ

for a 2×2 decomposition is understood, it can be directly extended to cases of more subdomains.
Therefore, we will restrict our further considerations, to the 2× 2 case here.

3.1 Problem Statement

Induced by the four-subdomains partition of Ω, as defined in Section 1.1, we decompose the
original problem A(u) = f on Ω into the subproblems

A(u1) = f1 and
∂u1

∂n1
= g on Γ,

∂u1

∂n
= 0 on ∂Ω1 \ Γ

A(u2) = f2 and
∂u2

∂n2
= −g on Γ,

∂u2

∂n
= 0 on ∂Ω2 \ Γ

A(u3) = f3 and
∂u3

∂n3
= −g on Γ,

∂u3

∂n
= 0 on ∂Ω3 \ Γ

A(u4) = f4 and
∂u4

∂n4
= g on Γ,

∂u4

∂n
= 0 on ∂Ω4 \ Γ

(54)

for g ∈ L2(Γ), where Γ = Γ12 ∪Γ13 ∪Γ42 ∪Γ43 ∪ΓΠ here. As with the two-subdomains case, the
natural Neumann boundary conditions have been modified. In order to reach a more compact
formulation of the Lagrange functional later on, we will make again use of the weak formulation
of Eqs. (54),

a1(u1, v1) = b1(v1) +
(

g, v1

)

Γ
, ∀v1 ∈ V1, u1 ∈ V (Ω1)

a2(u2, v2) = b2(v2)−
(

g, v2

)

Γ
, ∀v2 ∈ V2, u2 ∈ V (Ω2)

a3(u3, v3) = b3(v3)−
(

g, v3

)

Γ
, ∀v3 ∈ V3, u3 ∈ V (Ω3)

a4(u4, v4) = b4(v4) +
(

g, v4

)

Γ
, ∀v4 ∈ V4, u4 ∈ V (Ω4)

(55)

in the sequel. Furthermore, the objective functional reads

JΓ(u1, u2, u3, u4, g) :=
1

2

{

∑

i=2,3

∫

Γ1i

(u1|Γ1i
− ui|Γ1i

)2 dx + (u1|ΓΠ
− ui|ΓΠ

)2 +

∑

i=2,3

∫

Γ4i

(u4|Γ4i
− u4|Γ4i

)2 dx + (u4|ΓΠ
− ui|ΓΠ

)2 + γ

∫

Γ
g2 dx

}

. (56)

In contrast to the two-subdomains case, four constraints for the unknowns at ΓΓΠ are implicitly
applied here: u1|Γ = u2|Γ, u1|Γ = u3|Γ, u4|Γ = u2|Γ, and u4|Γ = u3|Γ, which turned out to have an
impact on the step size selection of gradient-based methods in experiments, as will be described
later on.

15



Finally, the problem of optimal control is stated as

min
u1,...,u4,g

JΓ(u1, u2, u3, u4, g) (57)

subject to (54).

3.2 The Optimality System

Although an iterative, gradient-based method shall be used for the solving of Eq. (57), the
Lagrange functional

L(u1, . . . , u4, g, λ1, . . . , λ4) := JΓ(u1, u2, u3, u4, g) − (58)

4
∑

i=1

ai(ui, λi) + bi(λi) + (−1)i−1
(

g, λi

)

Γ
(59)

and its optimality system are first elaborated here, since the involved adjoint equations do also
appear with the gradient-based algorithm. Again, partially deriving for the Lagrange multiplier
functions λ1, . . . , λ4 yields the constraint or state equations

〈

∂L

∂λi
, vi

〉

= 0 ⇔ ai(ui, vi) = bi(vi) + (−1)i−1
(

g, vi

)

Γ
, i = 1, . . . , 4 , (60)

whereas deriving for the control function g results in the optimality condition

〈

∂L

∂g
, g̃

〉

= 0, ∀g̃ ⇒ γ(g, g̃)Γ +
4
∑

i=1

(−1)i−1
(

g̃, λi

)

Γ
= 0 . (61)

The adjoint equations here read as follows:

a′1(u1, v1, λ1) =
∑

i=2,3

(

u1|Γ1i
− u2|Γ1i

, v1|Γ1i

)

Γ1i
+
(

u1|ΓΠ
− ui|ΓΠ

)

v1|ΓΠ

a′2(u2, v2, λ2) =
∑

i=1,4

(

ui|Γi2
− u2|Γi2

,−v2|Γi2

)

Γi2
−
(

ui|ΓΠ
− u2|ΓΠ

)

v2|ΓΠ

a′3(u3, v3, λ3) =
∑

i=1,4

(

ui|Γi3
− u3|Γi3

,−v3|Γi3

)

Γi3
−
(

ui|ΓΠ
− u3|ΓΠ

)

v3|ΓΠ

a′4(u4, v4, λ4) =
∑

i=2,3

(

u4|Γ4i
− ui|Γ4i

, v4|Γ4i

)

Γ4i
+
(

u4|ΓΠ
− ui|ΓΠ

)

v4|ΓΠ

(62)

with a′(·, ·, ·) as defined in Eq. (21).

3.3 Calculation of the Gradient

Since the general mathematical structure for computation of the gradient
〈

dJΓ

dg , g̃
〉

, is described

in Section 2.3.1, we immediately proceed to the explicit calculation for the model problem.

16



The gradient formulation involving the sensitivities, i.e. variation directions, ũ1, . . . , ũ4, here
reads

〈

dJΓ

dg
, g̃

〉

=
∑

i=2,3

(

u1|Γ1i
− ui|Γ1i

, ũ1|Γ1i
− ũi|Γ1i

)

Γ1i
+
∑

i=2,3

(

u1|ΓΠ
− ui|ΓΠ

, ũ1|ΓΠ
− ũi|ΓΠ

)

ΓΠ

+
∑

i=2,3

(

u4|Γ4i
− ui|Γ4i

, ũ4|Γ4i
− ũi|Γ4i

)

Γ4i
+
∑

i=2,3

(

u4|ΓΠ
− ui|ΓΠ

, ũ4|ΓΠ
− ũi|ΓΠ

)

ΓΠ

+ γ(g, g̃)Γ. (63)

The associated sensitivity equations are of the form

a′1(u1, ũ1, v1) =
∑

i=2,3

(g̃1|Γ1i
, v1|Γ1i

)Γ1i
+ g̃|ΓΠ

v1|ΓΠ

a′2(u2, ũ2, v2) = −
∑

i=1,i4

(g̃|Γi2
, v2|Γi2

)Γi2
− g̃|ΓΠ

v2|ΓΠ

a′3(u3, ũ3, v3) = −
∑

i=1,4

(g̃|Γi3
, v3|Γi3

)Γi3
− g̃|ΓΠ

v3|ΓΠ

a′4(u4, ũ4, v4) =
∑

i=2,3

(g̃|Γ4i
, v4|Γ4i

)Γ4i
+ g̃|ΓΠ

v4|ΓΠ

(64)

corresponding to Equations (33), for i = 1, . . . , 4, in the generic formulation.
Again, by setting vi = ũi in Eq. (62), and vi = λi in Eq. (64) we gain relations

∑

i=2,3

(

u1|Γ1i
− u2|Γ1i

, ũ1|Γ1i

)

Γ1i
+
(

u1|ΓΠ
− ui|ΓΠ

)

ũ1|ΓΠ
=
∑

i=2,3

(g̃1|Γ1i
, λ1|Γ1i

)Γ1i
+ g̃|ΓΠ

λ1|ΓΠ

∑

i=1,4

(

ui|Γi2
− u2|Γi2

,−ũ2|Γi2

)

Γi2
−
(

ui|ΓΠ
− u2|ΓΠ

)

ũ2|ΓΠ
= −

∑

i=1,4

(g̃|Γi2
, λ2|Γi2

)Γi2
− g̃|ΓΠ

λ2|ΓΠ

∑

i=1,4

(

ui|Γi3
− u3|Γi3

,−ũ3|Γi3

)

Γi3
−
(

ui|ΓΠ
− u3|ΓΠ

)

ũ3|ΓΠ
= −

∑

i=1,4

(g̃|Γi3
, λ3|Γi3

)Γi3
− g̃|ΓΠ

λ3|ΓΠ

∑

i=2,3

(

u4|Γ4i
− ui|Γ4i

, ũ4|Γ4i

)

Γ4i
+
(

u4|ΓΠ
− ui|ΓΠ

)

ũ4|ΓΠ
=
∑

i=2,3

(g̃|Γ4i
, λ4|Γ4i

)Γ4i
+ g̃|ΓΠ

λ4|ΓΠ

.

(65)

between the sensitivities ũi and the co-states λi. Applying these relations to replace the sensi-
tivities in Eq. (63) by the co-states, we obtain

〈

dJ

dg
, g̃

〉

=
∑

i=2,3

(

g̃|Γ1i
, λ1|Γ1i

− λi|Γ1i

)

Γ1i
+ g̃|ΓΠ

(

λ1|ΓΠ
− λi|ΓΠ

)

+
∑

i=2,3

(

g̃|Γi4
, λ4|Γi4

− λi|Γi4

)

Γi4
+ g̃|ΓΠ

(

λ4|ΓΠ
− λi|ΓΠ

)

+ γ(g, g̃)Γ, (66)
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i.e. the gradient formulation independent of g̃, which is analogical to Eq. (40) for the two-
subdomains case. The explicit formulation reads

dJ

dg
=
∑

i=2,3

PΓ1i

(

λ1|Γ1i
− λi|Γ1i

)

+ PΓΠ

(

λ1|ΓΠ
− λi|ΓΠ

)

+
∑

i=2,3

PΓ4i

(

λ4|Γi4
− λi|Γi4

)

Γi4
+ PΓΠ

(

λ4|ΓΠ
− λi|ΓΠ

)

+ γg. (67)

Note that the gradient at ΓΠ is the sum of four differences, in contrast to the other points Γ \
ΓΠ. I.e. the magnitude of dJ

dg at this corner point is in average four times larger as it is for
the remaining locations. Since the step size in step (e) of Alg. (1) is selected for the whole
gradient, experiments have shown that it is systematically chosen too large at ΓΠ, which leads
to divergence even when employing line search. As a remedy, an additional scaling factor ν
for dJ

dg at ΓΠ is introduced, where a value of 1
4 has shown to be, at least empirically.

3.4 Outer CG Iteration

To sum up, for the four-subdomains case, steps (a)–(c) of Algorithm 1 have to be replaced by:

(a) solve the state equations for uk
1 , u

k
2 (in parallel):

a1(u1, v1) = b1(v1) +
(

g, v1

)

Γ
, ∀v1 ∈ V (Ω1),

a2(u2, v2) = b2(v2)−
(

g, v2

)

Γ
, ∀v2 ∈ V (Ω2),

a3(u3, v3) = b3(v3)−
(

g, v3

)

Γ
, ∀v3 ∈ V (Ω3),

a4(u4, v4) = b4(v4) +
(

g, v4

)

Γ
, ∀v4 ∈ V (Ω4),

(68)

(b) solve the adjoint equations for λk
1 , λ

k
2 (in parallel):

a′1(u1, v1, λ1) =
∑

i=2,3

(

u1|Γ1i
− u2|Γ1i

, v1|Γ1i

)

Γ1i
+
(

u1|ΓΠ
− ui|ΓΠ

)

v1|ΓΠ
, ∀v1 ∈ V (Ω1),

a′2(u2, v2, λ2) =
∑

i=1,4

(

ui|Γi2
− u2|Γi2

,−v2|Γi2

)

Γi2
−
(

ui|ΓΠ
− u2|ΓΠ

)

v2|ΓΠ
, ∀v2 ∈ V (Ω2),

a′3(u3, v3, λ3) =
∑

i=1,4

(

ui|Γi3
− u3|Γi3

,−v3|Γi3

)

Γi3
−
(

ui|ΓΠ
− u3|ΓΠ

)

v3|ΓΠ
, ∀v3 ∈ V (Ω3),

a′4(u4, v4, λ4) =
∑

i=2,3

(

u4|Γ4i
− ui|Γ4i

, v4|Γ4i

)

Γ4i
+
(

ui|ΓΠ
− u4|ΓΠ

)

v4|ΓΠ
, ∀v4 ∈ V (Ω4)

(69)

(c) calculate the gradient:

∇Jk
Γ ←

∑

i=2,3

PΓ1i

(

λ1|Γ1i
− λi|Γ1i

)

+ νPΓΠ

(

λ1|ΓΠ
− λi|ΓΠ

)

+
∑

i=2,3

PΓ4i

(

λ4|Γi4
− λi|Γi4

)

Γi4
+ νPΓΠ

(

λ4|ΓΠ
− λi|ΓΠ

)

+ γg. (70)
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3.5 Experimental Results

Although having given a theoretical approximation of the scalability characteristics of the pro-
posed method, the focus of the experimental studies was restricted to the feasibility for the
2× 2 case and the influence of the parameters ν and γ.

The algorithm was run on the same input image, Fig. 2(b), as with the two-subdomains case,
where the common boundary Γ here included the 64th row and 64th column of the discretized
image plane. The discretization, the local solving method as well as all the parameter values,
except the starting interval of the step size selection which was [0, 10], have been the same as
with the previous experiments. Results are depicted in Fig. 4.

Besides the influence of the control regularization strength γ, also the impact of the step size
reduction ν at ΓΠ were studied, see the diagrams in Fig. 4(a) and (b), respectively. Figure 4(a)
shows that the convergence behavior for the 2×2 case has not changed significantly in comparison
to the two-subdomains case, despite the fact that the rate has deteriorated to ≈ 0.93 after
50 iterations. Leaving out the control regularization has no significant impact on the L2 error in
comparison to setting γ to values small than 10−4. Moreover, studies for the step size reduction
factor ν revealed that only values less or equal to 1

2 led to convergence, whereas greater values
always led to divergence at ΓΠ.

Again, the result after 50 iterations in Fig. 4(c), as well as the per-pixel relative L2 error
shown in Fig. 4(d), are satisfactory for denoising purposes.

3.6 Complexity

As in the two-subdomains case, step (a) and (b) can be obviously carried out on different
processors, which holds also for the case of Mx ×My subdomains (Mx > 2,My > 2).

With respect to inter-process communication for the Mx×My case, note that only variables
lying on the interface Γ have to be exchanged within the main loop. To be explicit, the control
vector gk has to be distributed by a central process, carrying out the steps (c)–(g), to the sub-

domain processes before step (a), which amounts to sending approximately 4
√

N√
M

unknowns per

subdomain, where M := Mx ·My and N is the total number of unknowns, i.e. M 4
√

N√
M

= 4
√

MN

in total. Before step (b), again only variables on Γ have to be communicated in order to set-up
the right-hand sides, but this time only mutually among processes which have adjacent subdo-
mains; i.e. a distributed communication step can be applied, which amounts to interchanging

only approx. 4
√

N√
M

variables sequentially. Furthermore, before step (c), the local co-states vec-

tors λk
i , being restricted to their local interfaces Γi, are gathered by the central process, again

resulting in a sequential communication volume of 4
√

MN variables. Finally, the total amount
of bytes to be communicated sequentially is given by the expression

V (M,k) = k

(

8
√

MN + 4

√
N√
M

)

vv + Vc

where k denotes the total number of iterations, vv denotes the size of one variable in bytes and
Vc the constant amount of bytes for the initial distribution of the input vector f as well as
the final collection of the local solutions ui. Obviously, as it is with standard non-overlapping
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domain decomposition methods, the communication volume scales only with the square root of
the number of subdomains here, which is due to exchanging only the interface variables and
indicates very good scalability properties.

With respect to the total computation time, we have the approximation

T (M) = TNL(N/M) + TL(N/M) + tbyteV (M,k(M)) + Tc

where TNL(n) and TL(n) denote the average computation time for solving the nonlinear and
linear state systems, respectively, in parallel, Tc the computation time for the steps (c)–(g),
which are independent from M , and with tbyte denoting the communication time per byte. Note
that communication latency times as well as synchronization times have been neglected here.
Furthermore, although the outer iteration number k(M) naturally increases with the number
of subdomains M , the processing time of the computationally demanding steps (a) and (b) is
supposed to decrease strongly, depending on the complexity of the inner solving methods.

Finally, note that depending on the applied line search procedure, coarse-grained paralleliza-
tion can be employed also there. In the case of nested iteration for example, the two necessary
evaluations of JΓ within each iteration can be carried out simultaneously.

4 Conclusion and Further Work

We investigated the parallel solution of a class of nonlinear variational approaches to image pro-
cessing on non-overlapping domains. The basic idea was to incorporate a control variable into the
overall problem to enforce the compatibility of locally computed solutions at boundaries of the
subdomains. The approach is similar to substructuring methods that are established for linear
(systems of) partial differential equations. It can, however, applied to nonlinear problems with-
out modification. Inter-processor communication is minimized by restricting data interchange to
lower-dimensional subdomain boundaries. The theoretical derivation was experimentally illus-
trated by solving in parallel a nonlinear variational model problem (TV-based image denoising)
on 2× 2 subdomains, implying validity of the approach for an arbitrary number of subdomains.

Further work will focus on preconditioners for improving the convergence rate of the outer
iteration loop, and on nonlinear variational problems in various application areas of image
processing.
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(a) Relative L2 errors for varying control regularization strengths γ
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Figure 3: L2 errors and result for the two-subdomains decomposition. TV regularization strength α = 1.0,
perturbation β = 10−6.
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(c) Result after 50 iterations (γ = 10−5)
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(d) Per-pixel L2 error after 300 iterations (γ =
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Figure 4: L2 errors and result for the 2× 2-decomposition. TV regularization strength α = 1.0, pertur-
bation β = 10−6, step size reduction factor ν = 1

4
for (b)–(d).
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