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Abstract. We present an approach to parallel variational optical flow
computation by using an arbitrary partition of the image plane and itera-
tively solving related local variational problems associated with each sub-
domain. The approach is particularly suited for implementations on PC-
clusters because inter-process communication is minimized by restricting
the exchange of data to a lower-dimensional interface. Our mathematical
formulation supports various generalizations to linear/non-linear convex
variational approaches, 3D image sequences, spatio-temporal regulariza-
tion, and unstructured geometries and triangulations. Results concern-
ing the effects of interface preconditioning, inexact subdomain solvers,
and the number of subdomains are presented. Our approach provides
a major step towards real-time 2D image processing using off-the-shelf
PC-hardware and facilitates the efficient application of variational ap-
proaches to large-scale image processing problems.

1 Introduction

Overview and Motivation. Two decades after the work of Horn and Schunck
[1] both the mathematical understanding and algorithmic implementations of
variational approaches to optical flow computation have reached a stage where
they outperform alternative approaches in many respects. Starting with the work
of Nagel [2], more and more advanced versions of the prototypical approach of
Horn and Schunck within the rich class of convex functionals have been developed
including anisotropic and non-linear regularization preserving motion boundaries
[3]. Concerning benchmark experiments [4], they compute accurate optical flow
everywhere in the image plane [3]. More robust local evaluation schemes can be
exploited within the same mathematical framework [5].
A recurring argument against this class of approaches refers to the com-

putational costs introduced by variational regularization. In our opinion, this
argument is strongly misleading since it neglects the costs of alternative ap-
proaches related to heuristic post-processing of locally computed motion data
(interpolation, segmentation). Moreover, besides computer vision, in many fields
of application like medical imaging or remote sensing, variational regularization
is the only mathematically sound way for taking into account prior knowledge
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about the structure of motion fields. This motivates our work on fast algorithms
for variational optical flow computation.

In this context, the most common approach to accelerate computations is
multigrid iteration. Again, starting with early work by Terzopoulos and Enkel-
mann, much progress has been made during the last years [6,7], and current
advanced implementions run in real-time for 200 × 200 pixel sized image se-
quences on standard PC-hardware [8]. Nevertheless, since the number of pixels
per frame steadily increase in applications – e.g. 1500×700 pixels/frame in fluid
mechanics, and even more in 3D medical image sequences – parallelization of
computations is inevitable. Due to the non-local nature of variational models,
however, this is not a trivial task.

Contribution and Organization. We present an approach to the paralleliza-
tion of variational optical flow computation which fulfils the following require-
ments: Firstly, suitability for the implementation on PC-clusters through the
minimization of inter-process communication. Secondly, availability of a mathe-
matical framework as basis for generalizations to the whole class of linear and
non-linear variational models characterized in [3].
Starting points of our work are (i) the variational formulation developed in

[9] of the prototypical approach of Horn and Schunck (section 2), and (ii) the
general mathematical literature on domain decomposition in connection with
the solution of partial differential equations [10,11].
Based on this theory, we derive in section 3 an approach for computing the
global variational solution in terms of an arbitrary number of local variational
solutions, each of which can be computed in parallel on the partitioned image
plane. An important feature of this approach is that inter-process communica-
tion is minimized by restricting the exchange of data to a lower-dimensional
interface Γ . This requires a careful treatment of the variational models within
each subdomain (boundary conditions, discretization). In section 4, we confirm
the theoretical properties of our approach by numerical experiments and study
the effect of its components on the speed of convergence. The results show that
our approach provides a basis for the computation of 2D optical flow in real-
time as well as for large-scale applications in other fields including 3D medical
imaging, remote sensing and experimental fluid mechanics.

2 Variational Approach and Discretization

Following [9], we summarize the variational formulation of the approach of Horn
and Schunck [1] and its discretization. This approach serves as a prototype for
a large class of approaches to optical flow computation studied in [3].
Throughout this paper, x = (x1, x2)� ∈ Ω denotes some point in the im-

age plane, g(x) the image function, ∇ = (∂x1 , ∂x2)
� the gradient with re-

spect to spatial variables, ∂t the partial derivative with respect to time, and
u = (u1, u2)�, v = (v1, v2)� denote vector fields in some linear space V (see [9]).

The variational problem to be solved reads:

J(u) = inf
v∈V

∫
Ω

{
(∇g · v + ∂tg)2 + λ

(|∇v1|2 + |∇v2|2
)}

dx (1)
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Vanishing of the first variation yields the variational equation:

a(u, v) = f(v) , ∀v ∈ V , where (2)

a(u, v) =
∫

Ω

{
(∇g · u)(∇g · v) + λ(∇u1 · ∇v1 +∇u2 · ∇v2)

}
dx (3)

f(v) = −
∫

Ω

∂tg∇g · vdx (4)

Under weak conditions with respect to the image data g, the existence of
a constant c > 0 was proven in [9] such that a(v, v) ≥ c‖v‖2V , ∀v ∈ V . As a
consequence, J in (1) is strictly convex and its global minimum u is the unique
solution to the variational equation (2). Partially integrating in (2) by means of
Green’s formula, we derive the system of Euler-Lagrange equations:

Lu = f in Ω , ∂nu = 0 on ∂Ω , where (5)

Lu = −λ∆u+ (∇g · u)∇g, (6)

and n denoting the exterior unit normal.
To approximate the vector field u numerically, equation (2) is discretized

by piecewise linear finite elements over the triangulated section Ω of the image
plane. To minimize notation, we denote the column vectors of nodal variables
corresponding to the finite element discretizations of u1(x), u2(x) again with
u1, u2 and arrange them as follows: u = (u�

1 , u�
2 )

�. Taking into consideration
the symmetry of the bilinear form (3), this induces the following block structure
of the discretized version of (2):

Au =
(

A11 A12
A21 A22

)(
u1
u2

)
=
(

f1
f2

)
= f , (7)

where for all pixel positions i, j = 1, . . . , N and corresponding basis functions
φi, φj :

(A11)ij = a
(
(φi, 0)�, (φj , 0)�

)
(A12)ij = a

(
(φi, 0)�, (0, φj)�

)
(A21)ij = (A12)ji (A22)ij = a

(
(0, φi)�, (0, φj)�

)
(f1)i = f

(
(φi, 0)�

)
(f2)i = f

(
(0, φi)�

)
We point out that in connection with the decomposition into subproblems (sec-
tion 3) and parallel implementations, a proper discretization and treatment of
boundary conditions is essential to obtain convergence and numerical stability.

3 Problem Decomposition

This section summarizes the representation and parallel solution of the varia-
tional approach (1) using a partition of the image section Ω into a number of
subdomains. For a detailed exposition we refer to [12]. Our formulation supports
the application to more general variational approaches and inherits the flexibil-
ity of finite element discretizations with respect to unstructured geometries and
triangulations.
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Two Subdomains and Interface Equation. Let Ω1 ∪ Ω2 be a partition of
Ω with a common boundary Γ = Ω1 ∩ Ω2. We denote the corresponding spaces
of vector fields with V 1, V 2. In the following, superscripts refer to subdomains.
We wish to represent u from (5) by two vector fields u1 ∈ V 1, u2 ∈ V 2 by

solving two related problems in Ω1, Ω2, respectively. The relation:

u(x) =

{
u1(x) x ∈ Ω1

u2(x) x ∈ Ω2 (8)

obviously holds iff the following is true (cf. (5)):

Lu1 = f1 in Ω1 ∂n1u1 = 0 on ∂Ω1 ∩ ∂Ω (9)

Lu2 = f2 in Ω2 ∂n2u2 = 0 on ∂Ω2 ∩ ∂Ω (10)

u1 = u2 on Γ ∂n1u1 = −∂n2u2 on Γ (11)

In order to solve this system of equations, we equate the restriction to the inter-
face Γ of the two solutions u1, u2 to (9) and (10) according to the first equation
in (11), uΓ := u1|Γ = u2|Γ , and substitute uΓ into the second equation in (11).
This is accomplished by means of the decomposition ui = ui

0 + ui
f , i = 1, 2,

where ui
0 and ui

f are the unique solutions of the equations:

Lui
0 = 0 in Ωi , ∂niui

0 = 0 on ∂Ωi \ Γ , ui
0 = uΓ on Γ , i = 1, 2 (12)

Lui
f = f i in Ωi , ∂niui

f = 0 on ∂Ωi \ Γ , ui
f = 0 on Γ , i = 1, 2 (13)

Defining the Steklov-Poincaré operators [11]: Si : uΓ → ∂niui
0|Γ , the second

equation in (11) becomes:

(S1 + S2)uΓ + ∂n1u1f |Γ + ∂n2u2f |Γ = 0 (14)

It remains to solve this equation for uΓ . This will be discussed in the remainder
of this section. Once this is done, u in (8) can be computed using (9) and (10)
with the boundary conditions replaced by the first equation in (11).

Steklov-Poincaré operator. In order to make explicit the action of the oper-
ators Si on some given boundary data uΓ , we distinguish in (7) between nodal
variables being on and off the interface by indices Γ and I, respectively. Rear-
ranging (7) accordingly for domain Ωi, i = 1, 2 reads:

Aiui = f i →
(

Ai
II Ai

IΓ

Ai
ΓI Ai

ΓΓ

)(
ui

I

ui
Γ

)
=
(

f i
I

f i
Γ

)

Using this representation, the action of Si in (14) is given by [12]:

SiuΓ = (Ai
ΓΓ − Ai

ΓI(A
i
II)

−1Ai
IΓ )uΓ = ∂niui

0|Γ (15)

The implementation of this equation involves – besides matrix-vector multiplica-
tions – the computation of (Ai

II)
−1 which amounts to solve a Dirichlet problem
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for the operator L in (6) with the right hand side given by the extension of
boundary values uΓ to Ωi.

The action of (Si)−1, on the other hand, is given by [12]:

(Si)−1∂niui
0|Γ =

(
0 I
)(Ai

II Ai
IΓ

Ai
ΓI Ai

ΓΓ

)−1(0
I

)
∂niui

0|Γ = ui
0|Γ = uΓ (16)

The implementation of this equation involves (i) to solve a Neumann problem
for the operator L in (6) with boundary data ∂niui

0|Γ , and (ii) to extract the
values of the solution on the interface Γ afterwards.
Finally, it can be shown [12] that the discretized counterpart of equation (14)

reads:

(S1 + S2)uΓ = fΓ − A1
ΓI(A

1
II)

−1f1
I − A2

ΓI(A
2
II)

−1f2
I (17)

It is important to note that in order to solve equation (14) or (17), respec-
tively, neither Si nor (Si)−1 are explicitely computed (which would be expen-
sive). Rather, the action of these operators involves the boundary value problems
as explained above which can be separately solved for each domain Ωi by fast
standard methods (e.g., multigrid iteration, see [8]).

Interface preconditioner. Since the operators Si can shown to be symmet-
ric and coercive [11], preconditioned conjugate gradient iteration is the first
choice for solving (17). Among various provably optimal (“spectrally equiva-
lent”) possibilities, we have chosen the so-called Neumann-Neumann precondi-
tioner 1/4[(S1)−1 + (S2)−1] [13] because it preserves symmetry and has natural
extensions to multiple domains, three-dimensional problems, and problems in-
volving unstructured geometries and/or triangulations.

Multiple domains. LetRi denote the restriction of the vector of nodal variables
uΓ on the interface Γ to those onΩi ∩ Γ . Analogously to the case of two domains,
the operator on the left side of eqn. (17) for multiple domains reads:(∑

i

(Ri)�SiRi

)
uΓ = fΓ −

∑
i

(Ri)�Ai
ΓI(A

i
II)

−1f i
I (18)

The corresponding Neumann-Neumann preconditioner[14,15] is:

P −1
NN := D

(∑
i

(Ri)�(Si)−1Ri

)
D , (19)

whereD−1
jj of the diagonal scaling matrixD is the number of subdomains sharing

the nodal variable uj on Γ . Since it is well known that the convergence becomes
worser for an increasing number of subdomains, also the Balancing Neumann-
Neumann[16,17] preconditioner is considered:

P −1
BNN := (I − (R0)�(S0)−1R0S)P −1

NN (I − S(R0)�(S0)−1R0) + (R0)�(S0)−1R0,
(20)

introducing a so-called “balancing” step before and after the Neumann-Neumann
preconditioning by solving coarse-grid discretization of the Steklov-Poincaré
equation, whereas the coarse-grid is identical with the partition into subdo-
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mains. The action of the restriction operator R0 is to calculate the weighted
sum of values lying on the shared border of each subdomain. The weights are
given by the reciprocal of the number of subdomains sharing each particular
node.

4 Parallel Processing, Computational Results, and
Discussion

We conducted a number of experiments on regular n × n partitions in order
to investigate (i) the effect of interface preconditioning vs. non-preconditioning,
and (ii) the influence of the number of subdomains on the convergence rate both
for the non-balancing and the balancing preconditioner.
All results refer to the solution of the interface equation (18) using Conjugate-

Gradient Iteration with the preconditioners (19) or (20). (19) involves in each
iteration step the solving of local boundary value problems in parallel for each
subdomain, as explained in connection with equations (15) and (16). (20) addi-
tionally introduces the non-parallel calculation of (S0)−1, which is implemented
by solving the (small) system S0x = b explicitly, using a standard method (see
[12] for details). The associated systems to Si and (Si)−1 were derived from the
Finite Element discretization explained in connection with equation (7). The
implementation was realized with C/C++ using a MPI-conform inter-process
communication library for the parallel parts of the overall algorithm. The reg-
ularization parameter λ in (1) was set to 10 in all experiments leading to an
amount of smoothing which is adequate for most real applications. As input
data an image pair of size 252× 252 pixel was used inducing an artifical optical
flow field. The overall process started with the zero vector field (0, 0)�.

Effect of interface preconditioning.
The image plane was partitioned horizontally into two subdomains of size

126× 252 and (17) was solved to a relative residual error of 10−3 both without
and with preconditioning using (19). In the first case 27 PCG-iterations were nec-
essary to reach the given error threshold, whereas using the Neumann-Neumann
preconditioner it was only one iteration. A similar experiment was conducted
on 4 × 4 subdomains this time using (20) as preconditioner. Here we obtained
similar results: 44 PCG-iterations without and 6 iterations with preconditioning.
These and further experiments clearly show that, in agreement with theory [11],
the system to be solved for the interface variables uΓ becomes more and more
ill-conditioned if the number of subdomains increases. Using the precondition-
ers (19) and (20), however, largely compensates this effect and enables shorter
computation times through parallelization.

Number of subdomains, effect of parallelization.
In a second experiment the dependence of the convergence rate on the number

of subdomains both for non-balancing and the balancing preconditioner were
investigated. In addition, considerations about the overall computation time were
made.
In table 1 the necessary number of PCG-iterations to reach a residual er-

ror of 10−3 are depicted for both preconditioner types. It shows that with the
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Table 1. Number of subdomains, effect of parallelization. Columns 3 and 6
depict the number of outer iterations to reach a relative residual error of 10−3, both
for both preconditioner types. Columns 4 and 7 depict the average number of local
iterations for an given error threshold of 10−5. Columns 5 and 8 show the total number
of sequentially processed pixels as a measure for the total computation time (see text).

Partition Sub- Neumann-Neumann Balancing Neumann-Neumann
(h./v.) domain Outer Av. inner Ns ∗ 106 Outer Av. inner Ns ∗ 106

size iter. iter. iter. iter.
2 × 2 126 3 370 35 3 332 63
4 × 4 63 7 238 13 6 197 19
6 × 6 42 10 179 6.3 7 141 6.9
9 × 9 28 14 127 2.8 6 92 1.7
14 × 14 18 21 86 1.2 6 70 0.5
21 × 21 12 30 57 0.5 5 42 0.1

non-balancing case the convergence rate depends on the number of subdomains
whereas with the balancing case it is nearly independent, due to the coarse-grid
correction steps. Furthmore, the average number of inner PCG-iterations for
solving the local systems to a residual error of 10−5 are shown. Since the compu-
tation time for one inner PCG-iteration depends linearly on the number of pixels
in one subdomain, the product Ns of the number of pixels in one subdomain,
the aver. number of inner iterations, the number of local-system-solvings per
one outer iteration (2 with (19) and 4 with (20)) and the total number of outer
iteration gives a measure for the overall computation time, if communication
time and the time for solving the coarse system in (20) is neglected.
It shows that the non-balancing type needs less time for small number of

subdomains (until 6×6), whereas the balancing preconditioner is faster for 9×9
subdomains and above. In comparision to solving the original system (5) non-
parallelly in 404 iterations on the whole image plane (252 × 252), i.e. Ns ≈
26 · 106, parallelization significantly improves the total computation time for
4× 4 subdomains and more (if communication time is neglected). Especially for
the case of 21× 21 subdomains it can be improved by two orders of magnitude.
This factor, of course, becomes even larger for more subdomains, larger image
sizes, and 3d image sequences.

5 Conclusion and Further Work

We presented an approach to parallel optical flow computation by decompos-
ing the underlying domain Ω and iteratively solving related local variational
problems in each subdomain. Inter-process communication is minimized by re-
stricting the exchange of data to a lower-dimensional interface.
By combining our approach with advanced multigrid iteration as subdomain
solvers, real-time 2d image processing will come into reach. This will be con-
firmed by implementations on dedicated high-speed PC-clusters. Furthermore,
we will investigate how coarse-grid corrections can be incorporated into our ar-
chitecture without compromising efficiency of inter-process communication.
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