
In J. Blanc-Talon, D. Helbert, W. Philips, D. Popescu, P. Scheunders (Eds.):
Advanced Concepts for Intelligent Vision Systems. Lecture Notes in Computer
Science, Vol. 11182, pp. 547–558, Springer, Cham, 2018. The final publication is

available at link.springer.com.

Optimising Data for Exemplar-based Inpainting

Lena Karos, Pinak Bheed, Pascal Peter, and Joachim Weickert

Mathematical Image Analysis Group,
Faculty of Mathematics and Computer Science,

Campus E1.7, Saarland University, 66041 Saarbrücken, Germany.
{karos, bheed, peter, weickert} @ mia.uni-saarland.de

Abstract. Optimisation of inpainting data plays an important role in
inpainting-based codecs. For diffusion-based inpainting, it is well-known
that a careful data selection has a substantial impact on the reconstruc-
tion quality. However, for exemplar-based inpainting, which is advanta-
geous for highly textured images, no data optimisation strategies have
been explored yet. In our paper, we propose the first data optimisation
approach for exemplar-based inpainting. It densifies the known data iter-
atively: New data points are added by dithering the current error map.
Afterwards, the data mask is further improved by nonlocal pixel ex-
changes. Experiments demonstrate that our method yields significant
improvements for exemplar-based inpainting with sparse data.
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1 Introduction

Inpainting fills in missing parts of an image from available data [11, 17]. Origi-
nating from the field of texture synthesis [7, 12, 15], the class of exemplar-based
inpainting techniques developed during the last few decades. These methods
are of a non-local nature in the sense that unknown image regions are recon-
structed based on known data from different locations in the image domain [2, 6,
8]. During the inpainting process, information is exchanged between known and
unknown image patches, which are usually disk- or rectangle-shaped regions.
Moving away from the classical concept of completely known patches, Facciolo
et al. [8] introduced a framework that acts upon patches that can contain un-
known pixels. This allows the method to inpaint images with sparse known data,
which makes it interesting for applications such as compression [19].

Most inpainting methods that are well-known to work with sparse image
data rely on partial differential equations (PDEs) [4, 17, 22]. Numerous publi-
cations have shown that a careful selection of the known data is crucial for



the reconstruction quality [3, 5, 10, 13, 16, 21]. Despite the success of these data
optimisation techniques for PDE-based inpainting, this idea has not yet been
studied for exemplar-based inpainting. The latter is far more challenging, be-
cause exemplar-based techniques are nonlocal and thus computationally much
more expensive than PDE-based approaches. However, since they offer advan-
tages for strongly textured images, it would be desirable to have suitable data
optimisation strategies.

Our Contribution. In this paper, we introduce data optimisation to
exemplar-based inpainting. To this end, we use the sparse inpainting method
of Facciolo et al. [8]. Building upon the idea of iterative data selection [14, 16],
we come up with a densification approach that picks the most important pixels
in a bottom-up fashion. In order to adapt our technique to the specific setting
of exemplar-based inpainting in an efficient manner, we propose the concept of
error maps. They measure the spatial distribution of the reconstruction error.
We apply a modified form of the Floyd-Steinberg dithering technique [9] to con-
vert error maps into binary images that specify the location of important known
data. An evaluation of our experimental results shows that our new approach is
well-suited for exemplar-based inpainting.

Related Work. Working in a patch-based setting, exemplar-based methods
pursue different strategies for the search of patches and consolidation of informa-
tion for the purpose of inpainting. Criminisi et al. [6] proposed a direct extension
of the idea by Efros and Leung [7], where the priority order for patches to be
inpainted depends on the local structural information. The encouraging results
of both methods led to a popularisation of exemplar-based inpainting. Contrary
to these methods, the approach of Facciolo et al. [8] relies on the idea of partial
patches: Regardless of whether a patch contains unknown pixels, information is
exchanged between a pair of known and unknown pixels in the compared patches.
The resulting ability to inpaint from sparse known data makes the approach of
Facciolo et al. particularly useful for our purpose.

Compression applications based on image inpainting are a classic motivation
for data optimisation, since they need to select a sparse set of representative
image points. Galić et al. [10], Schmaltz et al. [21], and Peter et al. [18] validated
the potential of diffusion-based codecs with subdivision strategies for sparsifying
data. These techniques restrict known locations to an adaptive regular grid that
is easy to store. Their results are competitive to the quasi-standards JPEG
and JPEG 2000. In particular, a proof-of-concept by Peter and Weickert [19]
combined diffusion-based inpainting with exemplar-based methods to address
textured images. However, they did not optimise the known data w.r.t. the
exemplar-based inpainting operator due to runtime issues. The impact of this
omission remains unknown.

The success of early PDE-based compression codecs [10] also sparked research
on optimising inpainting data without constrained locations. For homogeneous
diffusion inpainting, Belhachmi et al. [3] showed that optimal known data should
be chosen according to the Laplacian magnitude. For practical purposes, they
propose a dithering of this magnitude. An iterative strategy by Mainberger et



al. [16] called probabilistic sparsification gradually removes pixels that are least
significant for the image reconstruction. Thus, it selects the known data in a top-
down manner. In contrast, the probabilistic densification method by Hoffmann
et al. [14] adds significant pixels iteratively. As a postprocessing step to the spar-
sification approach, Mainberger et al. [16] introduced another iterative method
called nonlocal pixel exchange in which known and unknown pixels pairs are
swapped if the error of reconstruction from such an exchange improves. While
the previous approaches rely strictly on local per-pixel errors, the densification
method by Adam et al. [1] computes the global error in every iteration.

Since the probabilistic data optimisation methods [1, 13, 16] are least re-
stricted to a specific inpainting operator such as homogeneous diffusion inpaint-
ing, our densification approach builds upon some of their core ideas. However,
our adaptation to the computationally expensive setting of exemplar-based in-
painting leads to key differences in judging the importance of known data: We
capture the nonlocal nature of exemplar-based inpainting through global inter-
actions by dithering of error maps.

Concerning dithering, a wide variety of image halftoning techniques are avail-
able. The method Floyd and Steinberg [9] is popular due to its simplicity: Based
on the concept of error diffusion, it achieves dithering by distributing pixel er-
rors in their respective neighbourhood. For alternative and more sophisticated
dithering approaches, we refer to the monograph of Ulichney [23] and more recent
papers such as that by Schmaltz et al. [20].

Structure of the Paper. First the essentials of the sparse exemplar-based
inpainting method of Facciolo et al. [8] are presented in Section 2. Section 3
reviews spatial data optimisation for inpainting-based image compression. We
introduce our novel approach in Section 4. Experiments and their results are
presented in Section 5. Finally, we conclude the paper with a summary and give
an outlook on future work in Section 6.

2 Exemplar-based Inpainting of Sparse Data

Let us consider a greyscale image as a function f : Ω → R, where Ω denotes some
rectangular image domain in R2. Given the set of sparse known data K ⊂ Ω,
the so-called inpainting mask, the intent of inpainting is to find an image u that
is a reconstruction of the image f in the inpainting domain Ω \K.

Exemplar-based inpainting methods exchange information between patches
according to their similarity. In the case of sparse data, the idea of using complete
patches fails. To this end, Facciolo et al. [8] introduced a similarity measure V
for partial patches, that only relies on the known pixels within a patch. This
similarity measure between two patches that are centred at x and x′ is given by
the weighted squared difference function

V (x,x′) =

∫
D

g (x,x′,y) (u (x+ y)− u (x′ + y))
2
dy. (1)



Here D denotes the domain of a patch centred at the origin, usually taken as a
disk or a rectangle. The vector y indicates the displacement w.r.t. to this centre.
The weighting function g is defined as

g (x,x′,y) =
gσ (y)

ρ (x,x′)
(αXK (x+ y) + βXK (x′ + y)) . (2)

Its normalisation parameter ρ (x,x′) allows for a similarity measure that
does not depend on the amount of known data contained in the patches. The
Gaussian function gσ(y) with a standard deviation σ provides a spatial weighting
which depends on the distance from the patch centre. The various combinations
of the constants α and β for the characteristic function XK result in different
schemes, called A, B and AB as described in the original paper [8].

Following this definition of similarity, inpainting corresponds to the minimi-
sation of the data coherence term

F (u,w) =

∫
Ω

∫
K

w (x,x′) V (x,x′) dx′dx, (3)

where w (x,x′) is called the non-local weight function. Such a weighting allows
for a pixel x to be reconstructed from several different patches in the image.
As w is unknown, the framework introduces a second term, namely the weight
entropy term

H (x, w) = −
∫
K

w (x,x′) logw (x,x′) dx′. (4)

This term is maximised following the principle of maximum entropy from
information theory which states that the maximum entropy distribution is the
least biased estimate under the constraint of known information. Together these
two terms form the energy functional

E (u,w) =
1

h
F (u,w)−

∫
Ω

H (x, w) dx, (5)

where h is a constant used to balance the influence of the two terms in the energy
functional. The following constrained optimisation problem is then solved to find
the solution u∗ to the inpainting problem:

(u∗, w∗) = argmin
u,w

E (u,w) , (6)

s.t. :

∫
K

w (x,x′) dx′ =1 ∀x ∈ Ω, (7)

u (x) =f (x) ∀x ∈ K. (8)

Implementation. The minimisation of this energy functional is done by an
alternate coordinate descent of two steps: the weight update and a step that
updates the image u. Moving slightly away from the variational framework,



Facciolo et al. [8] proposed the scheme O: Here they compute the patch distance
V differently for different steps. The weight update step uses the scheme A,
whereas the image update step uses the scheme AB.

In our experiments, we use the reference implementation and the default
parameter settings provided by Facciolo et al. [8] for the scheme O.

3 Spatial Data Optimisation

In the following, we discuss the core ideas of iterative data selection that are
useful to understand our method: a bottom-up [16] and a top-down [14] approach
for probabilistic optimisation, and an important postprocessing strategy [16].
In the remainder of this paper we need discrete concepts. We use the symbol Ω
for the discretised image domain, and K for its set of mask pixels. The notion
f = (fi,j) describes a discrete version of the image f , where the index (i, j)
denotes the pixel. We represent the set K also by its binary mask function
c = (ci,j) with ci,j = 1 for (i, j) ∈K and ci,j = 0 elsewhere.

Probabilistic Sparsification by Mainberger et al. [16] is an iterative greedy
algorithm that follows the natural idea of removing unimportant pixels. It starts
with a full inpainting mask and removes a set of pixels in every iteration. After
randomly removing a fraction p of all pixels, the so-called candidate set, an
inpainting yields per-pixel errors for each candidate. Then a fraction q of the
candidate pixels with the least error is permanently removed. This corresponds
to removing p · q · |K| pixels that are easily reconstructed in every iteration,
where |K| represents the total number of known pixels in the inpainting mask.
The algorithm terminates when the desired density of pixels is achieved.

Probabilistic Densification. In contrast to probabilistic sparsification, the
probabilistic densification method of Hoffmann et al. [14] starts with an empty
mask. In every iteration, the algorithm first computes the inpainted image and
then randomly selects a candidate set containing a fraction p of all non-mask
pixels. A fraction q of pixels from the candidate set, which have the largest local
error, are permanently added to the mask. This is repeated until the required
density is reached. In our approach, we modify probabilistic densification.

Nonlocal Pixel Exchange. One key shortcoming of sparsification is that
when a pixel is removed it never gets added back into the mask. As the algorithm
relies on selecting pixels randomly for the candidate set, there exists a possibility
of removing significant pixels. Therefore, Mainberger et al. [16] introduced the
nonlocal pixel exchange to compensate for this disadvantage and to avoid get-
ting trapped in a suboptimal local minimum. This iterative method exchanges a
set of randomly selected known pixels with a set of unknown pixels that exhibit
a large local error. The exchange is accepted if the global mean squared error
(MSE) obtained by inpainting the new mask is reduced. Otherwise, the exchange
is discarded and a new one is made. The inherent nature of the algorithm guar-
antees that any change in the mask yields a better mask. We use nonlocal pixel
exchange as a postprocessing step to our method.



Fig. 1. Error map of Barbara image. Left: Original image. Middle: Random mask
with a density of 3%. Right: Error map computed after exemplar-based inpainting.
Note: For better visualisation, the error map is logarithmically rescaled such that the
maximum error is denoted by black and the minimum error by white.

4 Our Approach: Densification by Dithering

While the probabilistic methods from Section 3 can be combined with any in-
painting operator, they have a specific weakness with regard to exemplar-based
inpainting: The error computation in classic sparsification and densification
methods is highly localised due to the use of per-pixel errors, while patch-based
inpainting is nonlocal. For PDE-based methods, Adam et al. [1] provide evidence
that this local error computation can have a negative impact on the results of
probabilistic optimisation. Instead, they propose to compute the global error
associated with each candidate pixel. However, such a strategy is not feasible
for exemplar-based inpainting because the non-locality of these methods leads
to significantly larger runtimes than for PDE-based methods. In order to find a
remedy for this issue, we consider the concepts of error maps and dithering.

Error Maps. As the two previously mentioned densification methods are
iterative, they require to add mask pixels given a set of already known data in
every step. In such a situation, a natural way to identify regions of importance for
data selection is through error maps. Since we are interested in minimising the
mean squared error of the inpainted image, we compute our error map e = (ei,j)
pixelwise as the squared difference between the original image f = (fi,j) and
the inpainted image u = (ui,j).

The error map depends directly on the inpainting mask and its density, be-
cause it is computed from the inpainting result. In particular, it gives a global
overview of the spatial error distribution within the entire image domain. Fig-
ure 1 shows an example. As we shall see next, the error map becomes particularly
useful when we combine it with dithering concepts.

Modified Floyd-Steinberg Dithering. The established probabilistic spar-
sification and densification methods suffer from two drawbacks: 1. They select
only a small subset of the error map as candidate pixels. 2. They only consider
local per-pixel errors, which might result from noise or small-scale features, such
that choosing them would lead to a bad global approximation.



Interestingly, binary dithering can solve both problems: 1. Dithering replaces
a random sampling by a deterministic, global strategy that takes into account
all error values. 2. Classical binary dithering methods such as Floyd-Steinberg
dithering place a data point at a certain location if the accumulated values from
a neighbourhood are sufficiently large. Thus, they overcome the drawback of
purely local per-pixel errors. This motivates us to perform binary dithering on
error maps. To this end, we regard the error map as a greyscale image, such that
its dithering provides us with the inpainting mask.

Of the many dithering methods, the classical Floyd-Steinberg dithering [9]
is popular due to its simplicity. In order to adapt it to our setting, we have
to take into account that the locations of mask pixels from previous iterations
are already set and should remain unaltered. The dithering should only create
additional mask points at different locations.

The original Floyd-Steinberg algorithm sequentially scans the image from
left to right and top to bottom. Each pixel is binarised to 0 or 255, and the
binarisation error is distributed to its unvisited neighbours. The stencil weights
used for distribution sum up to 1, thereby preserving the average grey value.
This allows us to determine how many new mask pixels are added by rescaling
the average grey value of the error map accordingly (see Belhachmi et al. [3]).

In order to preserve existing mask points, we always binarise them to 0. The
accumulated error at these pixels is then transferred over to the next pixel in the
scan order. Overall, this corresponds to skipping known pixels for the purpose
of dithering. An additional modification is the use of serpentine scan order i.e.,
left to right for odd numbered rows, right to left for even numbered rows and
top to bottom, since this improves the results [23]. See Algorithm 1 for details.

Densification by Dithering. Since error maps depend on the mask, adding
new mask pixels will change the error map. Therefore, it has to be recomputed,
which requires an inpainting. As exemplar-based inpaintings are computationally
expensive, we insert multiple points at the same time and recompute the error
map afterwards. In practise, we partition the desired number of mask pixels into
n equally sized batches. This leads to the following iterative densification by
dithering (DbD) approach (Algorithm 2). In each iteration, DbD performs three
straightforward steps:

1. Inpaint with the current inpainting mask.
2. Compute the error map.
3. Apply modified Floyd-Steinberg dithering and update the mask.

We repeat the process until we reach the required density d. Note that in the
first iteration, the inpainting mask is still empty and therefore, no error map can
be computed. Instead of relying on error map dithering, we choose the initial set
of known pixels randomly.

Nonlocal Pixel Exchange. Since DbD is a greedy algorithm that may get
trapped in a bad local optimum, we can expect to improve the reconstruction
quality by postprocessing the mask with a nonlocal pixel exchange (NLPE). For
a random mask pixel, we consider a set of 10 randomly chosen non-mask pixels



Algorithm 1: Modified Floyd-Steinberg Dithering of the Error Map
Input: rescaled error map e : Ω → [0, 255],

binary inpainting mask c : Ω → {0, 1}
Output: modified inpainting mask c

1 for all pixels (i,j) scanned in serpentine order do

2 {Binarise and set new mask pixel}
3 old← ei,j
4 if ci,j = 0 and ei,j > 127.5 then
5 ei,j ← 255.0
6 ci,j ← 1

7 end
8 else
9 ei,j ← 0

10 end

11 {Compute binarisation error}
12 ε← old− ei,j

13 {Diffuse binarisation error to unvisited neighbours}
14 if scanning from left to right then
15 ei+1,j ← ei+1,j +

7
16
ε

16 ei−1,j+1 ← ei−1,j+1 +
3
16
ε

17 ei,j+1 ← ei,j+1 +
5
16
ε

18 ei+1,j+1 ← ei+1,j+1 +
1
16
ε

19 end
20 else scanning from right to left
21 ei−1,j ← ei−1,j +

7
16
ε

22 ei+1,j+1 ← ei+1,j+1 +
3
16
ε

23 ei,j+1 ← ei,j+1 +
5
16
ε

24 ei−1,j+1 ← ei−1,j+1 +
1
16
ε

25 end
26 end

as candidates. As an acceleration strategy, we use the local error to identify the
most promising candidate. Following Adam et al. [1] we then compute the global
MSE that would result from a swap of the mask pixel with this non-mask pixel.
To speed up the process further, we compute eight NLPE steps in parallel on the
different threads of a multicore CPU and take the one with the smallest error.
This pixel exchange attempt is accepted if it leads to an MSE improvement.
It appears natural to measure the amount of exchange attempts in terms of
cycles: One cycle denotes as many exchange attempts as mask pixels |K|. This
ensures that on average each mask pixel is given a chance to be exchanged. As
we consider eight parallel NLPE steps, this counts as eight exchange attempts.



Algorithm 2: Densification by Dithering
Input: original image f : Ω → [0, 255],

desired pixel density d,
number of iterations n

Output: final inpainting mask c : Ω → {0, 1}

1 Choose a random inpainting mask c with pixel density d
n
.

2 for i = 1 to n− 1 do
3 Reconstruct with exemplar-based inpainting: u := inpaint(c,f).
4 Compute the error map e = (ei,j) via ei,j ← |fi,j − ui,j |2.
5 Rescale the error map to 255·d

mean(e)·n · e.
6 Apply modified Floyd-Steinberg dithering on the error map e.
7 Update the current inpainting mask c by adding the dithered mask.
8 end

Fig. 2. Original images. From left to right: Synthetic (256× 256), Trui (256× 256),
Barbara (512× 512), and Baboon (256× 256).

5 Experiments

In this section, we evaluate the performance of DbD for the four test images
shown in Figure 2: Synthetic and Barbara with a mask pixel density of 5%, and
Trui and Baboon with 10% density. For each of these test settings, we perform
exemplar-based inpainting with random masks, DbD-optimised ones, and DbD
masks with NLPE. For DbD, we present results for n = 10 iterations, which was
found empirically to give the best quality for modified Floyd-Steinberg dithering.
NLPE is run for four cycles. The largest improvements by NLPE are achieved in
the first cycle, while allowing for more cycles reduces the error only incrementally.

Figure 3 displays the reconstructed images and their MSE. It shows that both
visually and quantitatively, DbD leads to substantially better inpainting results
than random masks, and NLPE gives significant further quality improvements.
The corresponding optimised masks are depicted in Figure 4. For the Synthetic
image, we observe that our algorithm correctly identifies that the pixels near tex-
ture boundaries are important to the exemplar-based inpainting operator. Thus,
in contrast to random masks, many incorrect inpaintings at texture boundaries
are avoided. For the Trui and the Barbara images, the recovery of highly tex-
tured regions is more faithful, since our data optimisation leads to higher pixel



Random DbD DbD + NLPE

Sy
nt
he

ti
c
(5
%
)

MSE = 109.01 MSE = 10.60 MSE = 3.25

T
ru
i(

1
0
%
)

MSE = 101.02 MSE = 26.87 MSE = 12.99

B
ar
ba

ra
(5
%
)

MSE = 260.18 MSE = 141.27 MSE = 72.77

B
ab

oo
n
(1
0
%
)

MSE = 700.83 MSE = 627.44 MSE = 518.52

Fig. 3. Comparison of different data selection approaches. The densification
by dithering (DbD) algorithm is run for n = 10 iterations, and we perform 4 cycles of
nonlocal pixel exchange (NLPE).



Fig. 4. Optimised inpainting masks. From left to right: Masks after DbD + NLPE
optimisation for Synthetic, Trui, Barbara, and Baboon. The black pixels represent the
known mask points.

densities in these areas. Small-scale details such as the semantically important
eye regions are not oversmoothed. The Baboon image requires a high, almost
equal mask density everywhere, such that the MSE is fairly high at 10% density,
and improvements by DbD and NLPE are more moderate.

6 Conclusions and Outlook

We have presented the first paper that optimises data for exemplar-based in-
painting. We achieve this with a novel approach called densification by dither-
ing. It relies on iterative dithering of error maps for selection of important pixels.
Further improvements are obtained with nonlocal pixel exchange. Our method
shows that even for images which are heavily dominated by textures, a smart
selection of the inpainting mask improves the quality substantially.

In our ongoing work, we explore the concept of error maps further and study
more sophisticated dithering methods. Since we did not analyse the entropy
of the resulting sparse data, the potential for compression applications is still
unknown. Therefore, in the future we will also address this aspect and embed
our method into a full image compression framework.
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