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Abstract. The efficient compression of depth maps is becoming more
and more important. We present a novel codec specifically suited for this
task. In the encoding step we segment the image and extract between-
pixel contours. Subsequently we optimise the grey values at carefully
selected mask points, including both hexagonal grid locations as well as
freely chosen points. We use a chain code to store the contours. For the
decoding we apply a segment-based homogeneous diffusion inpainting.
The segmentation allows parallel processing of the individual segments.
Experiments show that our compression algorithm outperforms compa-
rable methods such as JPEG or JPEG2000, while being competitive with
HEVC (High Efficiency Video Coding).
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1 Introduction

In recent years, 3D cinema technology has become increasingly popular. In the
corresponding so called multi-view video + depth (MVD) format, multiple im-
ages are captured from different perspectives along with their respective depth
images. To cope with the huge amount of data, an efficient compression is in-
dispensable. Combined compression methods have been presented (see e.g. [1]),
where the correlated information between the colour images and the correspond-
ing depth maps is exploited. It is also possible to incorporate a temporal compo-
nent into the compression framework. In this paper, however, we focus exclusively
on the problem of depth map compression.
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Besides well-established methods like JPEG or JPEG2000, compression algo-
rithms based on partial differential equations (PDEs) recently gained attention.
While in the encoding step, only a small subset of all pixels is selected and
stored, the missing information is reconstructed by means of PDE-based inter-
polation when decoding. This idea was introduced by Galić et al. in 2005 [2]
and extended in 2008 [3]. A further developed version of Schmaltz et al. [4] was
able to beat JPEG2000. In the special case of cartoon-like images, which are in
their nature very similar to depth maps, a much simpler and computationally
favourable PDE-based codec has been proposed: In [5] the authors encode the
grey or colour values on both sides of image edges. In contrast to the nonlinear
anisotropic diffusion processes used in the aforementioned methods, a basic ho-
mogeneous diffusion inpainting is then sufficient to reconstruct missing pixels.
For cartoon-like images the method could outperform JPEG2000. Indeed, for
depth map compression, extracting and storing edges is actually a natural idea
as they are crucial to obtain a good visual perception of the geometry. However,
due to the fact that the above codec cannot handle homogeneous variations, it
turns out that its application to depth maps leads to unsatisfactory results.

In [6, 7] modified versions of this edge-based approach have been suggested.
The main changes consist of adding grey values at regular mask points, exploiting
different edge detectors, and encoding parts of the extracted data with other
methods. Similarly homogeneous diffusion can be incorporated in existing block-
based approaches where additional edge information is used to attain sharp
edges [8]. However, all these methods are either data intensive or lead to a fairly
complex overall codec.

Other approaches try to split the depth image recursively into smaller parts,
resulting in a tree structure, and recover the depth map on the lowest tree level
by means of linear interpolation [9, 10]. In [11], the depth map is approximated
by linear functions within segments. A similar method, also working on seg-
ments, has been introduced in [12] where mainly bilinear interpolation of data
on a regular grid has been used to reconstruct the depth information. All these
methods have the drawback that a lot of information has to be stored to be
sufficiently flexible.

The goal of the present paper is to address the aforementioned problems. We
present a conceptually simple codec for depth maps. While it is also based on ho-
mogeneous diffusion inpainting, it differs from [5–7] by the fact that it replaces
edges by closed contours that result from a segmentation. This creates a de-
coupling into sub-problems and allows to benefit from parallel implementations.
More importantly, by assuming homogeneous Neumann boundary conditions be-
tween segments, we show that it is unnecessary to store grey values at contours.
Instead, we select hexagonal grid points as well as points at some specific loca-
tions. The corresponding grey values to be stored are optimised. In the end we
do not only achieve a codec for depth maps that outperforms JPEG [13] and
JPEG2000 [14], but even has the potential to compete with the substantially
more complex HEVC (High Efficiency Video Coding), which is one of the most
favorable methods to encode this type of images [15].
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Our paper is organised as follows. First we introduce segment-based homo-
geneous inpainting in Section 2. Based on this concept we describe our encoding
process in Section 3 and discuss the corresponding decoding steps in Section 4.
Experimental results will be presented in Section 5, and a summary in Section 6
concludes the paper.

2 Segment-based Homogeneous Diffusion

One key element of our compression codec is the segment-based homogeneous
diffusion (SBHD) that is used to reconstruct an image from a small amount of
stored data. Given a greyscale image f(x, y), SBHD relies on a segmentation of
the image domain into several sub-domains. For each of the segments, we assume
the grey values at specific points - the so called mask points - to be given. This
information is used to inpaint the rest of the respective segment.

The inpainting can be described as computing the steady state solution of
the homogeneous diffusion equation [16]

∂tu = ∆u (1)

subject to the following mixed boundary conditions:{
u = f at mask points (Dirichlet boundary conditions)

∂nu = 0 at segment boundaries (homogeneous Neumann boundary cond.)

Thereby, n is the unit normal vector to the respective segment boundary, and
∂nu denotes the partial derivative of u in normal direction. The discretisation of
this partial differential equation can be done in a straightforward way by using
finite differences [17]. Then, as long as we have at least one mask pixel in each
segment, there exists an unique solution of the discrete problem (cf. [18]).

As a result of SBHD we obtain an image containing (i) sharp edges at segment
boundaries and (ii) smooth transitions within segments steered by the values at
the mask points. These transitions can also represent unsharp edges. SBHD is
therefore well suited for the representation of depth images.

An important advantage of this SBHD is the fact that, by construction, each
mask point does not have a global influence: Its impact is limited by the respec-
tive segment boundaries. This allows a segment-wise parallel processing as we
will see later. In order to get a solution of the diffusion equation we make use of
the fast explicit diffusion (FED) scheme [19] together with a CUDA implementa-
tion on the GPU. Compared to a CPU version we achieve a substantial speedup
due to the parallelism. Another speedup is gained by reducing the number of
required iterations to reach a steady state. To this end, we initialise all unknown
values at non-mask points with the mean value of the known grey values within
each individual segment.

3 Data Extraction and Encoding

Our encoding algorithm consists of several parts that are described next.
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Fig. 1. Contours extraction example. Left: Original depth image breakdancers (1024×
768). Middle: Extracted closed contours between pixels gained by the segmentation
(T1 = 1, T2 = 5, σ = 0.5). Right: Zoom at the contour of one head. Gray values are
given at specific mask points (black dots).

Type i Type ii Type iii Type iv Type v Type vi

Fig. 2. Different types of edge crossings along with their respective reference point (red
dot).

3.1 Part 1 - Segmentation

The first step is to find a segmentation fulfilling two properties. On the one hand
there should be a large contrast at the boundary between adjacent segments,
such that it pays off to save information at these locations. Since we store the
contour information it is possible to precisely recover these sharp edges. On the
other hand we want to have smooth transitions within each of the segments such
that they can be reconstructed well by our SBHD inpainting from the existing
information at mask points.

Our segmentation algorithm consists of two steps. First a region growing
algorithm is applied to get four-connected segments. A threshold T1 thereby
determines whether or not a neighboring pixel belongs to the same segment.
Small values of T1 usually lead to a slight over-segmentation. Therefore, in a
second step, we consider a Gaussian smoothed version of the original image
with a standard deviation of σ. In this image we compute the mean contrast
between adjacent pixels along a contour separating two neighboring segments.
Successively we remove the boundary with the lowest average contrast. We repeat
this as long as the lowest contrast is smaller than some threshold T2. This method
yields very precise contours between adjacent segments while allowing smooth
transitions not to be split.
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As already mentioned the segmentation immediately yields closed contours
at between-pixel locations. An example depth image along with the extracted
contours is depicted in Figure 1. As desired, there is no contour around the two
people on the right hand side of the image because of the smooth transition to
the background. It is the task of data points within the segments to restore such
smooth flows in the reconstruction.

If we want to use an existing codec like the JBIG (Joint Bi-level Image
Experts Group) standard [20] to encode the contour information we would have
to store two binary images, i.e., the edges in x- and y-direction, respectively.
Alternatively we store this information more efficiently with a chain code. The
advantage of between-pixel edges is that there are only three possible directions,
whereas we would have seven directions when considering pixel chains. Thus,
the chain code is highly efficient.

In the beginning we extract all T-junctions in the edge map (see Fig. 2, types
i -iv). To store them, we have to save the respective reference point coordinates
along with the type number. Starting at these crossings we can build a chain code
and stop whenever we reach an edge that has already been visited. Not needed
starting elements can be removed afterwards. The only thing which remains are
contours without any crossing. Therefore, we add two more starting element
types representing only one edge, either in x- or in y-direction, respectively
(see Fig. 2, types v and vi). The corresponding chain code has to be stored as
well. Afterwards we employ a sophisticated lossless context-based entropy coder
to encode the obtained edge information, namely the PAQ compression [21],
version PAQ8o6.

3.2 Part 2 - Mask Points

So far we only focused on the location of segment boundaries in the image.
However, we also have to encode some data for being able to reconstruct the
grey values within each of the segments. Therefore, we use a mixture of regu-
larly sampled mask points and points at freely chosen positions as described in
the following subsections. The overall amount of selected mask pixels is a free
parameter which allows us to steer the compression ratio.

(a) Hexagonal Mask

To reduce the coding costs for the location of prescribed grey values we initially
choose points according to a specific pattern or algorithm to limit the coding
overhead. One possibility would be to uniformly sample random points over the
whole domain given a specific seed. A drawback of this method is that there are
specific areas where points are clustered, i.e., the distance between neighboring
points is not equal. Another approach would be to use mask points at a regular
grid as done in [6]. However, since we want a good covering of the whole domain
this is still not optimal. What we want is a mask where the minimum distance
between two distinct points is maximised. To get a good approximation one
could assume that no boundaries are present. In this context it is known that
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Input: Original image f , initial mask m,
percentage p, percentage q, desired mask density r

Output: Mask m with density r

While density of m smaller than r do

1. Apply SBHD using the mask m and save result in u.

2. Choose randomly p percent of all non-mask points as a candidate set C.

3. At all locations in C, compute the squared difference between f and u

4. Let T ⊂ C be the set containing the q percent of all locations from C where
the error computed in Step 3 is largest.

5. Set all locations from T as mask points in m.

6. Clear T and C.

Fig. 3. Probabilistic densification algorithm

the hexagonal packing is the optimal one in the two-dimensional Euclidean plane
[22]. This is why we make use of such an hexagonal grid pattern. In order to
make sure that there is at least one mask point in each segment, we compute the
hexagonal mask separately for each individual segment. Thereby a given density
value determines the number of points.

(b) Probabilistic Densificaton and Nonlocal Pixel Exchange

In addition to the hexagonal mask we want to store some more mask points for
a further quality gain. We accept the larger coding costs of these free points and
place them at locations where the quality can be improved most. Therefore, we
perform in a first step a so-called probabilistic densification, which is similar to
the probabilistic sparsification process described in [18]. We consecutively select
points as additional mask points, starting with the ones from the hexagonal
mask as an initialisation. The decision where we insert new points in each step
depends on where the difference of the respective reconstruction to the original
image is largest. This process is repeated until we reach a desired density. The
exact algorithm is depicted in Figure 3. Experiments have shown that a good
choice for the parameters is p = 10% and q = 0.1%.

Moreover, it has been demonstrated that it pays off to apply a so called non-
local pixel exchange [18], which tries to find better combinations for the mask
points not lying on the hexagonal grid. Thereby a small number k of non-mask
points is randomly selected, and the local error is computed. Then one mask
point is chosen, exchanging its position with the position of the largest computed
error. If this improves the reconstruction we use the new mask, otherwise the
exchange is reverted. Thus, we can only improve our result. For more details
we refer to [18]. We use the parameter k = 10, as this choice turns out to yield
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Fig. 4. File structure of our proposed codec.

good results. After only 1000 iterations, the reconstruction quality can already
be improved tremendously. The pixel exchange step can also be left out if one is
interested in a faster encoding method with lower quality.

While only having to store one density parameter for the hexagonal mask,
the location of the additional free mask points is encoded using the JBIG en-
coder [20].

3.3 Part 3 - Grey Values

After the determination of the mask pixel locations it also pays off to optimise
the grey values that are stored at these positions. Usually the respective grey
values of the original image are adopted. However, this is not always the best
solution with respect to the global reconstruction error. Instead of being fully
exact at the selected pixels, it makes sense to allow for some deviation at these
locations to achieve an overall smaller global error. In order to find optimal
values we make use of a least squares approach as suggested in [18]. Note that,
as we are using SBHD, the computations can be speeded up by computing the
optimal grey values for the individual segments in parallel.

The resulting values at mask locations are then quantised to d different values
and afterwards stored in a list. The order of the mask points is chosen such that
we go from segment to segment, which has the advantage that subsequent values
in the list are more likely to be similar due to the design of our segmentation.
To obtain a compact representation, we use the PAQ encoder mentioned in
Section 3.1.

3.4 Overview of File Structure

We are now able to write all the gathered information into one file having the
structure as depicted in Figure 4. Note that we do not have to store the image
dimensions in the header since they are already contained in the JBIG mask
data.
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4 Decoding

In the decoding phase we can follow a straightforward process chain. First of all
we scan the stored header information and split the main data into the edge data,
the irregular mask, and the grey value information. Edges can be restored by
placing the starting points and following the single contour chains. Afterwards
we compute the hexagonal mask and add the irregular mask points to it. The
grey values are placed at the corresponding locations, and we finally obtain the
reconstruction via SBHD.

5 Experiments

In this section, the potential of the proposed codec is presented by considering
three different existing methods. Besides the well-established standard JPEG
and its successor JPEG2000, we will also compare our method with the desig-
nated future standard HEVC (High Efficiency Video Coding), version HM-8.2.
Although this codec is designed for the purpose of video coding, it also provides
an intra-coding mode for the efficient compression of still images [15].

As test images we use the so-called breakdancers and ballet depth maps, both
taken from the MVD sequence in [23] (respective image size: 1024 × 768). We
determine that 80% of all mask points lie at hexagonal grid locations and set the
quantisation parameter to d = 64. This choice has experimentally shown to yield
a good trade-off between coding costs and quality gain. We keep these parameters
fixed for all experiments. Figure 5 depicts the results for a compression rate of
0.045 bits per pixel (bpp), which roughly corresponds to a compression ratio of
180 : 1. The overall mask density in this case is 0.3% and 0.45% for the images
breakdancers and ballet, respectively.

The transform-based methods JPEG and JPEG2000 often perform well when
it comes to the compression of standard natural images. However, both meth-
ods suffer from artifacts around edges. When it comes to depth images, these
block or ringing artifacts around object boundaries are visually perceived much
more unpleasant than in smooth image regions. HEVC seems to overcome these
problems, but tends to smooth out some of the edges, which can lead also to a
distorted geometric perception. With our SBHD method it is hard to notice any
difference between the original image and the reconstruction.

In a quantitative comparison we measure the error between the original im-
age and the respective reconstruction by means of the peak-signal-to-noise ratio
(PSNR). The resulting measurements can be seen in Figure 6. Note that for
JPEG it is not possible to reach very high compression rates. As a larger PSNR
value corresponds to a higher similarity between two images, one can see that
our method clearly outperforms JPEG and JPEG2000. Our codec is even able
to exceed the quality of HEVC for some compression rates.

Furthermore, we can also evaluate the results considering a more perceptual
error measure like the structural similarity index (SSIM) [24]. We use the avail-
able MatLab version with standard parameters from [24]. Figure 7 depicts the
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results. Note that a SSIM closer to 1 denotes a better visual similarity. Com-
pared to JPEG or JPEG2000, it is visible that our proposed method reaches
better results for almost all tested compression rates. HEVC and SBHD give
reconstructions of comparable quality. This result is remarkable since, in con-
trast to HEVC, our algorithm makes use of relatively simple and straightforward
concepts. We thus believe that it has potential for further improvement.

In our current proof-of-concept implementation, it takes several minutes for
an image to be encoded, depending on its size and the number of mask points.
The decoding of a depth image of size 1024×768 can be done within a second on
a modern PC. It is important to mention that there is a lot of potential for ac-
celerating this process. For example, one can incorporate bidirectional multigrid
methods into SBHD [5]. In this way, we expect that real-time decoding becomes
feasible for practical applications.

6 Summary

We have shown that a combination of two relatively elementary concepts can
lead to a remarkable compression quality of depth maps: a region-growing seg-
mentation method as well as a homogeneous diffusion inpainting with carefully
selected data points. In our evaluation, this segment-based homogeneous dif-
fusion (SBHD) codec clearly outperforms JPEG and JPEG2000. Moreover, it
performs competitively with HEVC, especially in terms of perceptual quality.

In our ongoing work we are extending our framework to colour-valued data
such as cartoon-like images. Moreover, we are going to incorporate additional
information such as multiple views, combined colour / depth images, and their
temporal extensions. We are optimistic that this will help to demonstrate the
widely unexplored strength of diffusion ideas for data compression.
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Fig. 5. Comparison of different compression methods for two depth images using a
compression rate of 0.045 bpp. The boxes denote the area of the respective close-ups.
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