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Short Abstract

In recent years, image compression methods with partial differential equations (PDEs)
have become a promising alternative to standard methods like JPEG or JPEG2000.
They exploit the ability of PDEs to recover an image from only a small amount of
stored pixels. To do so, this information is diffused into unknown image regions. Most
successful codecs rely on a sophisticated nonlinear diffusion process. In this thesis, we
investigate the potential of linear PDEs for image compression. This follows up recent
promising compression results with the Laplace and biharmonic operator. As a cen-
tral contribution, we thoroughly study the diffusion-based image reconstruction, and
establish a connection to the concept of sparsity with the help of discrete Green’s func-
tions. Apart from gaining novel theoretical insights, this offers algorithmic benefits:
We obtain a fast reconstruction procedure and improved data optimisation methods.
The power of linear PDEs is demonstrated by proposing three different compression
approaches. Besides a designated codec for depth maps we present an algorithm for
general images. The third approach aims at a fast decoding. Experiments show that
linear PDEs can compete with nonlinear PDEs in a compression context, and that
codecs with linear PDEs are even able to outperform standard approaches in terms
of both speed and quality.
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Kurzzusammenfassung

In den letzten Jahren sind Bildkompressionsmethoden basierend auf partiellen Dif-
ferentialgleichungen (PDEs) eine vielversprechende Alternative zu Standardmetho-
den wie JPEG oder JPEG2000 geworden. Diese nutzen die Fähigkeit von PDEs
aus, ein Bild von nur einer kleinen Menge an gespeicherten Pixeln rückgewinnen
zu können. Die meisten erfolgreichen Codecs verwenden einen aufwändigen nicht-
linearen Diffusionsprozess. In dieser Arbeit werden wir das Potential von linearen
PDEs zur Bildkompression untersuchen. Dies schließt an die kürzlichen vielver-
sprechenden Kompressionsergebnisse mit dem Laplace und biharmonischen Opera-
tor an. Als zentralen Beitrag studieren wir die PDE-basierte Bildrekonstruktion und
stellen mit Hilfe von diskreten Greenschen Funktionen eine Verbindung zum Sparsity-
Konzept her. Dies bietet neben neuen theoretischen Erkenntnissen auch algorith-
mische Vorteile: Wir erhalten ein schnelles Rekonstruktionsverfahren und verbesserte
Datenoptimierungsmethoden. Die Stärke von linearen PDEs wird gezeigt, indem
wir drei verschiedene Kompressionsmethoden vorschlagen. Neben eines designierten
Codecs für Tiefenkarten präsentieren wir einen Algorithmus für allgemeine Bilder. Der
dritte Ansatz zielt auf eine schnelle Dekodierung ab. Experimente zeigen, dass lineare
PDEs mit nichtlinearen PDEs in einem Kompressionskontext konkurrieren können
und dass Codecs mit linearen PDEs in Bezug auf Geschwindigkeit und Qualität sogar
Standardmethoden übertreffen können.
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Abstract

Image compression plays an important role in our nowadays lives. For instance,
the enormous growth of image data on the internet necessitates advanced codecs
which allow for an efficient storage and transmission. Besides the commonly used
standard JPEG codec [150] and its successor JPEG2000 [191], image compression
methods relying on partial differential equations (PDEs) have gained more and more
attention in recent years. Instead of storing the coefficients of the discrete cosine or
wavelet transform, the strategy of PDE-based methods is to encode the sparse image
information of a few cleverly selected pixels. The power of the PDEs lies in recovering
the image in the decoding phase. In this image inpainting step, the known information
is propagated into the missing regions with the help of a diffusion process. Clearly, the
reconstruction does not only depend on the selected pixels, but also on the employed
diffusion process.

In the context of PDE-based compression, the current state-of-the-art method [170]
relies on inpainting with the nonlinear edge-enhancing anisotropic diffusion (EED) [204].
Despite its remarkable reconstruction capability, this sophisticated process suffers
from several issues. First of all, the incorporated parameters need to be tuned to
obtain good results. Secondly, the inpainting process involves successive updates of
the nonlinearities and is thus rather time-consuming. Finally, the nonlinearity leads
to a nontrivial dependency of the prescribed data on the reconstruction. This tremen-
dously complicates the task of selecting optimal pixel data to be stored. Along with
the slow inpainting, a cumbersome optimisation procedure is required. Despite their
qualitatively good compression performance, PDE-based compression methods are
hence far from being as fast as standard codecs.

In this thesis, we evaluate the potential of linear PDEs for image compression.
In contrast to nonlinear ones, they benefit from a much faster computation and are
parameter-free. Moreover, we will see that the linearity tremendously facilitates data
optimisation tasks. Even though these conceptually simpler diffusion processes usually
do not achieve the same reconstruction quality as EED, promising compression results
have been achieved in the past with the Laplacian or biharmonic operator [125, 80,
118], at least for specific types of images. By going a step further, we investigate if
linear PDEs can even compete with EED for the compression of general images, and
if they are able to keep up with standard approaches in terms of both quality and
runtime aspects.

A central part is the thorough investigation of the inpainting process itself. As a
result, we find that there is a close connection to the concept of sparsity. In particular,
discrete Green’s functions turn out to represent atoms in a dictionary which can be
used to describe the inpainting solution. This does not only offer novel theoretical
insights, but also yields algorithmic benefits. For instance, the discrete Green’s func-
tions allow for a very fast image reconstruction process. To this end, we elaborate
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efficient ways to construct them and to perform dedicated operations.
The data optimisation plays a crucial role for the performance of the compres-

sion algorithm. Hence, it is indispensable to explore and compare potential ways to
perform this task. It does not only make sense to find the optimal locations of the
prescribed pixels, but also the corresponding tonal values. This enables to obtain
the globally best reconstruction by tolerating larger local errors. Discrete Green’s
functions allow for a very fast tonal optimisation for smaller amounts of prescribed
pixels, while methods relying on the standard inpainting formulation perform better
for higher pixel densities. From the latter approaches, we find that a proposed gra-
dient descent scheme can outperform the primal-dual approach in [93]. Inpainting
echoes are useful for incorporating a quantisation into the optimisation, and also for
extending the tonal optimisation for EED inpainting. Considering the spatial optimi-
sation, the best method usually depends on the specifications. The qualitative best
results are obtained with the optimal control framework [92]. However, this requires
to determine a parameter to obtain the desired number of pixels. Probabilistic ap-
proaches turn out to be a good alternative which can even be applied for arbitrary
inpainting processes. Good results for inpainting with the Laplacian are also obtained
by the theory of Belhachmi et al. [23] which has real-time capabilities. Beyond this,
discrete Green’s functions even enable a continuous optimisation of the locations.

The potential of linear PDEs for image compression is finally demonstrated by pre-
senting three different codecs. First, a designated codec for depth maps is proposed.
By incorporating segment boundaries into the inpainting process, remarkable com-
pression results can be achieved. Experiments show that this method is superior to
JPEG and JPEG2000, and can even compete with the designated future standard
HEVC. The second codec targets on the compression of general images. With the
help of highly optimised data, one can show that linear PDEs can yield a comparable
compression performance as EED for medium to low compression ratios. This ap-
proach is even able to outperform JPEG and JPEG2000 on general images. While
focusing on the quality in the first two codecs, the third one aims at being compet-
itive with JPEG in terms of both quality and speed. To this end, we adopt some
techniques from JPEG such as a block decomposition of the image domain. In the
end, experiments show that linear PDEs enable to compete with JPEG on general
colour images in both criteria.
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Zusammenfassung

Bildkompression spielt eine wichtige Rolle in unserem alltäglichen Leben. Das enorme
Wachstum an Bilddaten, beispielsweise im Internet, erfordert fortgeschrittene Codecs,
die ein effizientes Speichern und Übertragen erlauben. Neben dem gemeinhin genutzen
Standard JPEG Codec [150] und dessen Nachfolger JPEG2000 [191] haben in den
letzten Jahren Bildkompressionsverfahren, die auf partiellen Differentialgleichungen
(PDEs) beruhen, immer mehr Beachtung erlangt. Anstatt die Koeffizienten der
diskreten Kosinus- oder Wavelet-Transformation zu speichern, ist die Strategie der
PDE-basierten Verfahren, die Bildinformation von einigen wenigen klug gewählten
Pixeln zu kodieren. Die Stärke der PDEs liegt in der Wiedergewinnung des Bildes
in der Dekodierungsphase. In diesem Bildinterpolationsschritt wird die bekannte In-
formation mit Hilfe eines Diffusionsprozesses in die unbekannten Bereiche zerstreut.
Es ist klar, dass die Rekonstruktion nicht nur von den gewählten Pixeln abhängt,
sondern auch vom verwendeten Diffusionsprozess.

Im Zusammenhang von PDE-basierter Kompression beruht der aktuelle Stand der
Technik [170] auf Interpolation mit der nichtlinearen, kantenverstärkenden, anisotropen
Diffusion (EED) [204]. Trotz seines bemerkenswerten Rekonstruktionsvermögens lei-
det dieser komplexe Prozess unter einigen Nachteilen. Zunächst bedarf es einer Opti-
mierung der beinhalteten Parameter, um gute Ergebnisse zu erzielen. Zweitens bringt
der Interpolationsprozess fortlaufende Aktualisierungen der Nichtlinearitäten mit sich
und ist daher eher zeitaufändig. Schlussendlich führen die Nichtlinearitäten zu einem
nichttrivialen Zusammenhang zwischen den vorgeschriebenen Daten und der Rekon-
struktion. Das erschwert es ungemein, die zur Speicherung vorgesehenen optimalen
Pixeldaten auszuwählen. Zusammen mit der langsamen Interpolation bedingt dies
einen aufwändigen Optimierungsprozess. Trotz ihrer qualitativ guten Kompression-
sleistung sind diese PDE-basierte Verfahren weit entfernt von der Schnelligkeit von
Standardcodecs.

In dieser Arbeit evaluieren wir das Potential von linearen PDEs zur Bildkom-
pression. Im Gegensatz zu den Nichtlinearen profitieren diese von einer deutlich
schnelleren Berechnung und sind frei von Parametern. Außerdem werden wir se-
hen, dass die Linearität die Datenoptimierungsaufgaben deutlich erleichtert. Obwohl
diese konzeptuell einfachen Diffusionsprozesse gewöhnlich nicht die gleiche Rekon-
struktionsqualität wie EED erreichen, wurden in der Vergangenheit vielversprechende
Kompressionsergebnisse mit dem Laplace oder biharmonischen Operator zumindest
für spezielle Bildtypen erreicht [125, 80, 118]. Davon ausgehend untersuchen wir, ob
lineare PDEs sogar bei der Kompression von allgmeinen Bildern mit EED konkurri-
eren können und ob sie fähig sind, in Bezug auf Qualitäts- sowie Laufzeitaspekten mit
Standardansätzen mitzuhalten.

Ein zentraler Teil ist die umfassende Untersuchung des Interpolationsprozesses
selbst. Als ein Ergebnis finden wir heraus, dass es eine enge Verbindung zu dem
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Sparsity-Konzept gibt. Insbesondere stellen sich diskrete Greensche Funktionen als
Teile eines Lexikons heraus, mit deren Hilfe die Interpolationslösung beschrieben wer-
den kann. Dies bietet nicht nur neue theoretische Einsichten, sondern bringt auch
algorithmische Vorteile mit sich. Zum Beispiel erlauben die diskreten Greenschen
Funktionen einen sehr schnellen Bildrekonstruktionsprozess. Dazu erarbeiten wir ef-
fiziente Wege, um sie zu konstruieren und dazugehörige Operationen durchzuführen.

Die Datenoptimierung spielt eine entscheidende Rolle für die Performanz des Kom-
pressionsalgorithmus. Daher ist es unabdingbar, potentielle Ansätze für diese Aufgabe
zu erkunden und zu vergleichen. Es macht nicht nur Sinn, die optimalen Stellen der
Pixel zu optimieren, sondern auch die entsprechenden tonalen Werte. Dies erlaubt
es, die global beste Rekonstruktion zu erhalten, indem größere lokale Fehler toleriert
werden. Die diskreten Greenschen Funktionen erlauben eine sehr schnelle tonale Op-
timierung bei kleineren Mengen vorgegebenen Pixeln, während Methoden basierend
auf der Standard-Interpolationsformulierung bei höheren Pixeldichten besser sind.
Bei den letzteren Ansätzen finden wir heraus, dass ein Gradientenabstiegsschema
das Primal-Dual Verfahren [93] schlagen kann. Interpolationsechos sind nützlich, um
eine Quantisierung in die Optimierung einzubeziehen, also auch um die tonale Op-
timierung für EED zu erweitern. Was die örtliche Optimierung betrifft hängt die
beste Methode gewöhnlich von den Anforderungen ab. Die qualitativ besten Ergeb-
nisse werden mit dem Ansatz der optimalen Kontrolle [92] erzielt. Dieser erfordert
jedoch eine Parameterwahl um die gewünschte Anzahl an Pixel zu erhalten. Proba-
bilistische Ansätze erweisen sich als gute Alternative, die sogar für beliebige Interpo-
lationsverfahren angewendet werden können. Gute Ergebnisse für den Laplace erhält
man auch mit der Theorie von Belhachmi et al. [23], welche Echtzeitpotenzial hat.
Diskrete Greensche Funktionen erlauben darüber hinaus sogar eine kontinuierliche
Optimierung der Pixelorte.

Das Potential von linearen PDEs für Bildkompression wird schlussendlich nach-
gewiesen, indem drei verschiedene Codecs präsentiert werden. Zuerst schlagen wir
einen designierten Codec für Tiefenkarten vor. Durch das Einbinden von Segment-
grenzen in den Interpolationsprozess können erstaunliche Ergebnisse erzielt werden.
Experimente belegen, dass diese Methode JPEG und JPEG200 überlegen ist und sogar
mit dem vorgesehenen zukünftigen Standard HEVC mithalten kann. Der zweite Codec
zielt auf die Kompression allgemeiner Bilder ab. Mit Hilfe von hochoptimierten Daten
kann man zeigen, dass lineare PDEs für mittlere bis geringe Kompressionsverhältnisse
eine vergleichbare Kompressionsleistung wie EED erzielen können. Dieser Ansatz
kann sogar JPEG und JPEG2000 auf allgemeinen Bildern übertreffen. Während
sich die ersten beiden Codecs auf die Qualität konzentrieren, zielt der dritte darauf
ab, in Bezug auf Qualität und Laufzeit wettbewerbsfähig mit JPEG zu sein. Dazu
übernehmen wir einige Techniken von JPEG, wie zum Beispiel die Blockunterteilung
des Bildbereichs. Am Ende zeigen Experimente, dass lineare PDEs es ermöglichen,
mit JPEG auf allgemeinen Farbbildern in beiden Kriterien mitzuhalten.
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Chapter 1

Introduction

1.1 Image Compression

1.1.1 Motivation

In our nowadays times, modern technologies are becoming more and more popular.
It is obvious that this trend has already long since entered our everyday private
lives. People employ mobile phones, tablets, computers and other electronic devices
to communicate over the internet: they send e-mails, exchange images and videos over
social networks, do phone and video calls, watch movies on video on demand services
or browse the internet, just to mention a few examples. Besides the private sector,
modern software and hardware is also omnipresent in professional areas to facilitate
work. For instance, physicians acquire CT or MRT scans of their patients for an
improved treatment. In the future, it might even be possible to obtain a medical
diagnosis online by sending photographs to a doctor over the internet. This list can
steadily be continued.

It is clear that these developments go hand in hand with an enormous growth of
digital image data which immediately leads to the following issues. First of all, one
needs to be able to store this data on physical hardware. Although large memory
capacities are available on modern computers, the limits are reached very soon when
one does not pay attention to an efficient memory usage. Secondly, one should be
able to exchange images over the internet in a reasonable time. Unfortunately, the
limited bandwidth only allows for a certain amount of data to be transported within
a given amount of time.

As an example, for a typical high definition (HD) colour image of size 1920× 1200,
one needs around 6.59 Megabytes to store it in a näıve way. This sounds like a small
number, but this can quickly become a huge amount of data if one has to deal with
more than only one image. For instance, 1000 images already require around 6.44
Gigabytes. On a holiday trip, this amount of images can quickly be acquired with a
camera.
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The mentioned issues can be approached by two conceptually different ways. One
possibility is to improve the necessary hardware. This can include an increase of the
memory capacity, or an extension of the available bandwidth. However, this strategy
quickly reaches its limits. Another way to deal with the huge amount of data is to
reduce the space it is occupying with a software solution. To this end, one can design
specific algorithms to compress the data. Thereby, it is important that the essential
information can be recovered from the data. Naturally, a joint improvement on a
hardware and a software level is indispensable in the end.

In this thesis, we investigate methods for the compression of images on a software
level. Before going into more detail, we start by discussing general image compression
methods in the following, and consider existing approaches. Afterwards, we introduce
the alternative concept of image compression with partial differential equations. Be-
sides providing an overview of existing methods, the objectives and an overview of
this thesis will be discussed.

1.1.2 Encoding and Decoding

Typical image compression methods consist of two main parts. The first part, called
the encoder, converts the original image into a compact file representation. This file
should have a considerably smaller size compared to the size of the original image
file, and is thus perfectly suited for transmitting it over the internet or for storing it
on a hard disk for example. The second part of a compression method is given by a
so-called decoder. Its task is to retrieve an image only from the information provided
by the small encoded file. In general, one distinguishes two different cases. If the
compression method is lossless, the recovered image should be identical to the original
image. Otherwise, if the compression is lossy, the reconstructed image is allowed to
exhibit some degradations. In this case, the reconstruction should be as close as
possible to the original image. This work mainly focuses on lossy image compression.
An image compression algorithm is usually also denoted as codec, an abbreviation
obtained by appending the first letters of the two words coder and decoder.

It is clear that the encoding and decoding go hand in hand. The encoder is required
to extract and store data in such a way that the decoder is able to process this data
and recover a desired reconstruction. Due to this dependency, it makes sense to design
them in a joint way to obtain the best possible performance. An important aspect
is that the encoder is free to choose any data it wants as long as the decoder can
reconstruct an image of desired quality. In particular, it does not have to stick to the
data provided by the original image. In contrast, the data can be optimised in the
encoding part in order to improve the compression performance.

1.1.3 Compression Performance

Being able to assess the performance of an image compression algorithm is often
desired, especially when one wants to compare two different compression methods. In
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this context, the compression ratio is a standard measure that describes the amount
of file size reduction that can be achieved by a codec. It is computed as the ratio
between the file size of the original uncompressed image and the encoded smaller file.
Hence, a larger compression ratio means that the file size reduction by the encoder is
larger.

With the help of the compression ratio one can effectively compare the compres-
sion performance of two codecs: for the same reconstruction quality, the one with
the higher compression ratio has the better compression efficiency. Obviously, this
assessment involves the ability to judge the quality of the reconstructed image. While
this is not an issue for lossless codecs where the images are supposed to be identical
to the original image, one needs to have a meaningful quality measure in the case of
a lossy compression.

One possibility to evaluate the reconstruction quality is to make a qualitative judge-
ment based on the human visual perception. Although this visual inspection is the
decisive criterion in most practical scenarios, this is very cumbersome to be performed
in reality. As a remedy, one often employs a mathematical error measure which is
computed for a given reconstruction. This quantitative measure tries to reflect the
quality of the visual perception by ranking it on a certain scale. Some of these error
measures can either be motivated from mathematics, others from the human visual
perception.

1.1.4 Runtime Aspects

The primary aim of image compression algorithms is to have a high compression
performance. However, an important aspect which should not be neglected is that
they should also have a good runtime performance. The best image compression
algorithm is useless if it takes forever to compress or decompress the data. Thereby,
it is much more important to have a fast decoding than an efficient encoding in many
applications. For example, the encoding of a movie typically lasts a very long time.
This is not a big issue as this only has to be done once in the beginning before bringing
the compressed file to a DVD. More importantly, it is crucial to have a fast decoding
for being able to watch the movie in real-time.

Instead of using more advanced methods and algorithms to perform the compression
tasks, one can also rely on more sophisticated hardware to improve the runtime. For
instance, instead of performing computations on the central processing unit (CPU)
which is naturally available on a computer, some methods employ a so called graphics
processing unit (GPU). Besides the original purpose to process the output for the
display, the GPU can also be used for other purposes. Due to the fact that a GPU
contains many small processing units, it is possible to perform most computations in
parallel. As such a GPU is also very common on modern computers, it is reasonable
to employ this possibility, too. Nevertheless, as a GPU is not always available, our
primary goal is to design methods which are suited for the CPU.
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1.1.5 Standard Methods

In the field of image compression, there already exist some standard methods. The
most frequently used compression method - in particular for lossy image compression
- is the JPEG standard [150]. Its name is derived from its creator, namely the Joint
Photographic Experts Group. The core idea of JPEG is to decompose the image into
small blocks of size 8× 8. Within these blocks, a discrete cosine transform (DCT) is
applied. Then, the individual coefficients of the DCT basis are stored with different
degrees of precision. Thereby, a higher precision is used for the low frequent parts,
and vice versa. This mimics the human visual perception as high frequent components
are less crucial for having a good impression of the image. Instead of the usual RGB
colour space, the YCbCr colour space is employed for colour images. Due to the fact
that the a human can distinctly see more detail in the brightness channel Y than in
the hue and saturation channels Cb and Cr, the latter two channels are downsampled.
JPEG supports both lossy and lossless compression.

There also exists a successor of JPEG, namely JPEG2000 [191]. Its compression
performance clearly surpasses the one of JPEG and incorporates many more features
such as a higher dynamic range support, a progressive mode or a more flexible file
format adaptation. However, it has not been established as standard compression
routine so far. The main reasons for this are the higher demand on computational
power, patent issues as well as the missing support of the new format on many plat-
forms. In contrast to JPEG, JPEG2000 relies on biorthogonal wavelets instead of the
DCT. Thereby, it it does not divide the image into small blocks, but decomposes the
whole image into its individual frequency bands. This avoids unpleasant artefacts at
block boundaries.

Although JPEG and JPEG2000 are already highly sophisticated and perform very
well in most scenarios, this is not the end of the road. Besides a potential improvement
of their coding efficiency, they additionally reveal certain visual issues in the decoded
images. For example, images compressed with JPEG or JPEG2000 often show so-
called ringing artefacts which are visible especially around image edges. The reason
for this is that both are transform-based methods which rely on basis functions. An
error in the coefficients can thus lead to such unpleasant effects. Besides, colour shifts
can occur, leading to undesired new colours. Moreover, as already indicated, JPEG
is prone to suffer from blocking artefacts due to the individual treatment of the 8× 8
blocks. An example of the aforementioned artefacts is depicted in Figure 1.1. Thus,
there is an obvious need for improved image compression methods.

The High Efficiency Video Coding (HEVC), also known as H.265, is a designated
future standard for video compression [189]. Even though this codec is mainly devel-
oped for the purpose of video coding, it also provides an intra-coding mode for the
efficient compression of still images [145]. Similar to JPEG, it relies on the DCT and
the YCbCr colour space, but uses more advanced coding techniques which base on a
subdivision of the image into so-called coding tree units and coding tree blocks.
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Figure 1.1. Top left: Original image (size: 768 × 512, source: Kodak image
database [56]). Top centre and right: Compressed JPEG and JPEG 2000 image,
respectively, with a compression ratio of 60 : 1. Both methods show visible artefacts.
Bottom row: Zoom into images.

A promising alternative to these transform-based methods are image compression
approaches which base on partial differential equations. They are discussed thoroughly
in the following section.

1.2 PDE-based Image Compression

Image compression methods which base on partial differential equations (PDEs) are
becoming increasingly successful. Thus, it is not surprising that they gain more and
more popularity. The underlying core ingredient of PDE-based image compression
methods is the so called image inpainting which is a powerful tool to interpolate
sparse prescribed image data.

In the following the general concept of PDE-based inpainting methods is explained.
Moreover, related image interpolation methods as well as methods which aim at re-
covering an image from sparse data are presented. Afterwards, it is shown how the
PDE-based interpolation methods can be employed in the context of image compres-
sion. Existing methods in this area are presented, too.

1.2.1 PDE-based Image Inpainting

Initially, PDEs have widely been used for image denoising tasks [206, 15, 44]. Here,
they are employed as diffusion filters which act as smoothing operators. In the simplest
case of homogeneous diffusion, it can be shown that the filter is equivalent to a
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Figure 1.2. Example of PDE-based image denoising (source: [206]). Left: Original
noisy image. Centre: Denoised image with homogeneous diffusion. Right: Denoised
image with edge enhancing anisotropic diffusion (EED).

Gaussian smoothing. Another common choice is biharmonic diffusion, which relies
on a second order Laplacian instead of a first order one. In [204, 205, 206, 207], more
complex nonlinear and anisotropic diffusion processes are analysed in the context
of image processing. In particular, edge enhancing anisotropic diffusion (EED) or
coherence enhancing anisotropic diffusion (CED) have proven to be very powerful for
image denoising, as they are able to preserve important image features such as edges
or coherent structures.

An example of how such diffusion filters perform in the context of image denoising
is shown in Figure 1.2. As one can see, more sophisticated PDEs can have a better
denoising performance: While homogeneous diffusion reconstructs the image with
a simple isotropic smoothing of the noisy input image, edge enhancing anisotropic
diffusion additionally preserves and even enhances important image edges. This is
achieved by a cleverly designed PDE, which steers the diffusion along contours, while
reducing diffusion across them.

Besides the favourable performance in image denoising, it turned out that PDEs
are very powerful in the context of image inpainting, too. The underlying idea has
been originated in 1998 by Masnou and Morel [131], while the first major work in this
direction has been presented by Bertalmı́o et al. [25]. Over the past years, this concept
has been extended and modified in several different ways, see e.g. [43, 88, 196, 26].
The idea behind image inpainting is to recover some missing parts of an image with
the help of the surrounding known information. PDEs allow to fill these gaps by
diffusing the known tonal data into the unknown regions. Here, tonal values denote
the grey or colour values, respectively. The diffusion process can be seen as a filling-
in effect, and works follows: While known data is kept fixed by considering it as
Dirichlet boundary condition, one solves a suitable partial differential equation to
obtain an inpainting solution. Thereby, the used inpainting operator highly influences
the result. It is natural to assume homogeneous Neumann boundary conditions at
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Figure 1.3. Example of PDE-based image inpainting (source: [25]). Left: Original
corrupted image by some font. Centre: Inpainting mask: Black pixels denote fixed
prescribed data, while missing parts in white are inpainted. Right: Result of image
inpainting: Font is successfully removed.

the image boundaries. In total, the inpainting process can be considered as solving a
mixed boundary value problem.

An example is depicted in Figure 1.3. Here, image inpainting is employed to get
rid of some undesired image font. To this end, the known information from the
background image is diffused into the unknown region. A so-called inpainting mask
indicates missing regions in white. The image in the background denoted by black
mask pixels is kept fixed. As one can observe, the missing image is reconstructed very
well with the help of PDE-based inpainting.

Based on the promising performance of PDE-based inpainting, it is tempting to
carry this concept to an extreme: Instead of just filling in some missing holes, a
further step is to reconstruct an image from just a few prescribed tonal values at
sparsely sampled locations. As in image inpainting, the missing data is recovered
from the given data by solving an appropriate partial differential equation. The
known data again provides Dirichlet boundary conditions. This concept has been
analysed in detail in [41] for linear partial differential equations, while inpainting with
the nonlinear EED is proposed and investigated in [78, 79]. Interestingly, inpainting
using the biharmonic operator comes down to thin plate spline interpolation [63].

An example of the power of PDE-based inpainting in such a scenario is shown in
Figure 1.4. As we can see, the recovered images are very convincing. Even though it
is very hard to guess the image content only from the very sparse data, PDE-based
inpainting methods are able to reveal the underlying image. Among the three inpaint-
ing operators, EED gives the best reconstruction in terms of visual perception. This
is best visible at the contours within the inpainted images. However, this favourable
performance goes hand in hand with some drawbacks. More specifically, the more
complex nonlinear inpainting process usually leads to a higher computational effort,
and there is a need to specify some parameters to obtain good results. On the other
hand, homogeneous diffusion inpainting as well as the biharmonic inpainting also lead
to very convincing results, and are completely parameter-free and also simpler in spirit
due to the linearity.

7



Chapter 1. Introduction

Figure 1.4. Image inpainting from sparse data. Top left: Given colour values
at randomly sampled sparse mask points. Only 4% of all pixels are selected (image
size: 512× 512). Top middle left: Homogeneous diffusion inpainting. Top middle
right: Inpainting with biharmonic operator. Top right: Reconstruction with EED
inpainting. Bottom row: Zoom-in.

In general, the promising performance of PDE-based inpainting directly suggests
to employ such inpainting approaches for the purpose of image compression. This
seems to be a intuitive idea as very little data is necessary to store image informa-
tion. However, although the basic idea is relatively straightforward, we will see that
there are many issues which one has to address in order to get a good compression
performance.

Related Methods

The potential of PDEs for image inpainting can also be found within variational
approaches in the context of computer vision and image processing. Examples include
variational optic flow estimation [94, 142, 37], stereo reconstruction [130, 217] or
image registration [18, 137]. In all of these methods, a solution is found by mini-
mising an appropriate energy functional consisting of a data and a smoothness term.
The associated Euler-Lagrange equations, which represent a necessary condition for a
minimiser of the energy functional, are given as a PDE. The corresponding smoothness
part can be interpreted in terms of a filling-in effect by PDE-based image inpainting.
Thus, the regularisation given by the smoothness term is responsible to diffuse known
information into regions where the data term does not provide useful information. The
relation between the regularisation term and diffusion filters has also been extensively
studied in [167].
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Another prominent field of application of PDE-based inpainting methods is image
zooming [127, 106, 20, 22, 13, 209, 162, 34]. Here, the task is to increase the resolution
of a part of an image by interpolating the given data. In this task, the prescribed
data is typically lying on a regular grid. Hence, in this special case it possible to also
employ specifically tailored interpolation strategies. Examples comprise interpolation
with bi-linear, bi-cubic or bi-quintic splines, with radial basis functions, with wavelets
or sinc-based interpolation [114, 133].

In contrast to data lying on a regular grid, we focus on a more general case of in-
terpolation where the data can be prescribed at arbitrary positions within the image
domain. This is also known as scattered data interpolation [76, 146, 14, 71, 61]. In
this context, so-called radial basis functions are frequently employed [38, 198]. Some
specific instances of such radial basis functions can be interpreted in terms of mul-
tidimensional spline interpolations. A prominent example are thin plate splines [63]
which can be related to biharmonic inpainting as already noted before. Besides 2D
image interpolation, radial basis functions are also widely used in 3D applications, as
for example to reconstruct and represent surfaces [76, 40, 58].

Some radial basis functions can be seen as fundamental solutions of specific contin-
uous PDEs, which allows to relate scattered data interpolation using radial basis func-
tions with PDE-based inpainting solutions [38]. However, it is important to mention
that these fundamental solutions do not pay attention to any boundary condition by
definition. Additionally, such approaches usually do not consider the discrete setting.
For these reasons, one has to be careful when establishing a one-to-one connection to
solutions which are obtained by solving PDE-based image inpainting problems. As
we will see later in Chapter 3 we are able to represent an exact solution of discrete
inpainting problems with the help of so-called discrete Green’s functions.

Besides tonal information, also different image features can be used to reconstruct
an image. For instance, it is is demonstrated in [219] that zero-crossings of an image
contain a lot of information and allow to retrieve a very good approximation of the
underlying image. In [131], level lines are used to interpolate occluded parts of an
image. Considering surface reconstructions in 3D, it is shown that it is possible to
reconstruct surfaces only from a sparse set of oriented points [175]. Similar to other
methods mentioned before, a higher order variational approach is employed as basis
for a whole taxonomy.

Considering the inpainting process itself, the original approach of Masnou and Morel
has been modified in several ways. Chan and Shen for example used total variation
(TV) regularisation for image inpainting [178]. In [43], they proposed a closely re-
lated curvature-driven diffusion (CDD) which is designed to connect contours for
non-textured images. In contrast to the classical TV inpainting, CDD more likely
connects separate parts with larger distance. In [27], a complex Ginzburg-Landau
equation is used to reconstruct higher dimensional data from a sparse subset which
allows to reduce the amount of kinks that are visible in the approach of Masnou and
Morel.
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A common framework for PDE-based inpainting for vector valued data is presented
in [196]. A fast image inpainting method based on coherence transport is proposed
in [26]. Another anisotropic image inpainting scheme is introduced in [88].

Most of the aforementioned methods try to fill-in missing information by a suit-
able smoothing operator. Although important image features such as edges can be
restored, e.g. with anisotropy or nonlinearity, the reconstruction of textured image
regions often remains an issue for methods relying on partial differential equations.
In this context, Efros and Leung were the first to introduce exemplar-based inpaint-
ing which allows to propagate a small sample texture over a large image [66]. Later,
Facciolo et al. extended this idea for the purpose of texture synthesis from sparse
data [69]. Very recently, Peter et al. combined the advantages of such exemplar-
based inpainting methods and traditional PDE-based inpainting methods [155]. This
allows to reconstruct both smooth regions as well as textured regions at the same
time. Moreover, there are also first approaches for patch-based inpainting, which is
designed to reconstruct textures well [176]. Further investigations considering texture
inpainting are presented in [223].

PDE-based inpainting methods are also useful when it comes to the colourisation
of grey-scale images. Based on the work of Levin [116], it could be shown that only
a few sparsely sampled given colour strokes allow to fill a complete grey-value image
with colour [105, 152]. Thereby, the idea is to steer the diffusion process with the
help of the existing grey-valued image. This allows to interpolate the information
of the colour scribbles, while preserving important image edges within the colour
channels. Colourisation methods based on related variational methods also exist, see
for example [103].

A sparse set of significant points can also be employed for reconstructing an image
from so-called top points which represent feature points in a Gaussian scale space [100,
104]. Besides, the potential of other feature points and their derivatives - the local jet
- to reconstruct and describe images is presented in [120].

As one can see from all those various approaches, PDE-based image inpainting is a
very popular and flexible tool with very good reconstruction capabilities.

1.2.2 From Inpainting to Compression

As it has been demonstrated in Section 1.2.1, PDE-based inpainting methods also
offer a high potential of recovering an image from only a small amount of prescribed
data. This property directly suggests to exploit this potential for compression meth-
ods, leading to the following basic idea: In the encoding phase, the position of the
individual mask points as well as the corresponding tonal values have to be stored. At
the decoding side, the decompressed image is then obtained by inpainting the stored
data.

Although this seems to be a straightforward approach, it turns out that obtaining
an efficient image compression method that competes or even outperforms standard
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approaches is by far not trivial. In this context, an important point is that the
compression algorithm can be freely designed. This means that instead of facing a
predefined setting, there are many degrees of freedom in the design decision. The
most important aspects are discussed in the following.

Selection of inpainting operator

As one can observe from Section 1.2.1, the result of a PDE-based inpainting highly
depends on the differential operator. This leads to the question of which operator
is suited best for the purpose of image compression. In [78], it is demonstrated for
a randomly sampled mask that EED inpainting usually gives better reconstructions
compared to a harmonic and biharmonic inpainting. This is confirmed by experi-
ments in [30] and [170]. Even for optimised interpolation data, it turns out that EED
inpainting is the more favourable choice as we will also see in Chapter 5. The rea-
son for this is the ability of EED to reconstruct edges and texture in a better way.
However, one also has to keep in mind that the complexity of an operator also plays
an important role when it comes to the performance. Thus, one may not underesti-
mate the potential of linear inpainting operators. Moreover, when it comes to image
compression, a fair comparison of different operators is only possible when comparing
the final compression codec, i.e. when the maximum compression potential of the
operator is exhausted. This includes all inherent optimisations as well as the storage
of the sparse inpainting data. For the aforementioned reasons, it is not possible to
find an ad-hoc answer to the question, and we will see that also linear operators can
lead to comparable results as EED-based approaches.

Selection of inpainting data

Instead of prescribing tonal values at given locations that need to be filled in, it is
possible to select this data freely in a compression context. One can observe that the
quality of the reconstruction highly depends on the prescribed image information. For
instance, we will see that it makes sense to optimise the tonal data in the encoding
phase. This means that instead of the tonal values from the original image, modified
value are specified at the mask locations. Even though this introduces an error at
the respective mask locations themselves, the overall reconstruction error becomes
smaller. Already in 2008, this idea has been realised by a first greedy approach [79].
However, we will see that a nice theoretical framework can be established for finding
optimised values. Besides the tonal data itself, its locations also have a high influence
on the reconstruction. For example, a randomly sampled mask usually gives much
worse results compared to a cleverly selected set of points. As we will see later,
this optimisation task is far from being trivial as it comes down to a non-convex
optimisation problem. One can also consider it from a combinatorial point of view.
For example, selecting 5% of the pixels of an image of size 256 × 256 leads to the
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following number of possible combinations:(
65536
3277

)
≈ 1.72 · 105648.

Obviously, trying out all possible combinations is not feasible. For this reason, a clever
selection of the mask points has to be employed. For the continuous setting, Belhachmi
et al. [23] showed for homogeneous diffusion inpainting that the optimal position of
mask points has to be at locations where the magnitude of the image Laplacian is
large. In the paper, the authors proposed to employ a dithering to obtain a bridge
to the discrete setting. The resulting mask already yielded very promising results.
However, we will see that this is not the end of the road. It is apparent that in the
ideal case, the positional and tonal information is optimised in a joint fashion to find
the best possible combination. However, this requires to solve a complex optimisation
problem. In this context, an optimal control framework was proposed for finding an
optimised mask [92]. We will discuss the issue of selecting inpainting data in more
detail within this work.

Quantisation

If one does not restrict the tonal values, they are typically wide spread over a large
range. In particular after optimising them, one typically obtains real valued data. It
is clear that storing these values in a high precision would prevent from an efficient
compression algorithm due to the high memory requirement. Thus, in a compression
context, it makes sense to quantise the tonal values such that they are only allowed to
be within a small set of possible values. Although this reduces the precision of stored
tonal data and consequently leads to a slightly degraded inpainting result, the hope is
that the loss of quality is compensated by a much lower coding cost of the tonal values.
In particular, the human visual system is only capable of differentiating around 40
different grey scales. Thus, it seems natural to store even less than 256 different grey
values that fit in one byte. By reducing the storage costs of the tonal data, one can
even think of choosing more mask points in reverse. Usually, a quantisation parameter
is employed to steer the inherent trade-off between quality and coding efficiency.

An interesting aspect is that even if only very limited tonal values are stored,
the advantage of PDE-based inpainting is that the reconstructed values at non-mask
locations can take arbitrary real-valued numbers. Thus, especially when the encoded
quantised values are chosen cleverly, the reconstruction can be of a very good quality
without showing typical quantisation artefacts as it is the case in JPEG or JPEG2000.

The concept of quantisation has already been proposed in the beginning of 1960
by Max [132] and is a main ingredient of compression methods. Also JPEG and
JPEG2000 rely on a quantisation based on the following observation. Humans are
more sensitive to lower frequencies, while focusing less on higher frequencies. Thus,
the coefficients belonging to different frequencies are stored with varying precision:
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The coefficients belonging to higher frequencies are quantised higher and therefore
stored with a lower accuracy. This allows to give lower frequencies more importance
in the encoding phase. Obviously, incorporating quantisation in JPEG and JPEG2000
led to very successful compression algorithms.

Entropy coding

Clearly, the selected mask points and quantised tonal values have to be stored in a
compact file representation. A näıve way to achieve this would be to simply write
this data byte-wise into a file. Of course, this procedure is not the optimal choice.
One has to find a way to store the inpainting data more efficiently. This is where
entropy coders enter the game. They are frequently used to efficiently store data in a
lossless manner, and is achieved by reducing the redundancy in the data. Prominent
examples are Huffman coding [96], adaptive and static arithmetic coding [160, 161]
or PAQ [123]. As demonstrated in [170], such entropy coders can directly be applied
to the bit stream given by the mask point locations and the tonal data. The more
sophisticated PAQ consists of a context mixing model which employs a neural network
to subsequently predict the individual bits in the stream. This way, it achieves a
better compression performance compared to the conceptually simpler Huffman or
arithmetic coding [170].

As the mask alone can be considered as a binary image, where a 1 represents a
mask point, there are also other approaches to compress the mask. One possibility is
represented by block coding schemes, which decompose the image into small blocks
and thereby benefit from the localisation [112, 220, 77]. Another promising approach
is JBIG [102] which has been originally introduced for the purpose of fax transmis-
sion. By considering the context of a pixel given by the configuration of surrounding
points, it tries to predict the value at a respective image position. Subsequently, an
arithmetic coding is employed for encoding. The successor of JBIG, namely JBIG2,
additionally introduces a dictionary to capture more likely structures that typically
arise in halftoned images or images containing text [95]. Whenever the dictionary
does not help, it employs JBIG as a backup. Typically, the masks used for inpainting
purposes do not reveal such structures, which is why JBIG2 is not supposed to be
advantageous. Besides JBIG and JBIG2, there is also DjVu [28], which decomposes
the image into a binary foreground image and a background part. The background,
typically consisting of textured information, is then compressed with the help of a
wavelet transform, while the foreground is encoded with a variant of JBIG2.

Trade-off between data optimality and coding efficiency

On the one hand, one is interested in finding optimal data that allows the best possible
reconstruction. However, there is a good chance that the selected optimal data is
very hard to be stored efficiently due to its irregular structure. On the other hand,
one could think of selecting a fixed mask pattern, as for example a mask deduced
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from a regular grid structure. While such a mask can be stored with no overhead,
the resulting inpainting is far from being optimal. Of course, there are countless of
variants in between these extreme scenarios. To handle this trade-off, it might be
a good idea to choose the data while having in mind the associated coding costs at
the same time. One promising and thoroughly investigated strategy in this direction
is discussed in [78, 79, 172, 170]. Here, the mask points are selected with respect
to a recursive subdivision of the image, which is locally adapted to the image. The
advantage of specifying a mask in this way is that the it can be fully represented by
a binary tree. This tree structure is very efficient to store, especially in combination
with one of the before-mentioned entropy coders, and flexible enough to adapt to the
image structure. As it turns out, it is hard to find more efficient entropy coders for
the purpose of storing such binary trees [166].

Selecting the Optimal Features

Apparently, there are many degrees of freedom when designing a compression algo-
rithm based on PDE-based inpainting. This can be considered both as an advantage
and a drawback at the same time. On the positive side, this flexibility yields the
opportunity to improve and perfect the codec. On the negative side, the flexibility in-
herently comes with a big burden: Finding the optimal combination of the individual
ingredients and tuning them to the extreme can be very complex. Ideally one would
have to optimise all these features in a joint fashion to find the best possible recon-
struction in the end. However, this is very hard due to the large number of unknowns
which influence each other as well as the resulting reconstruction. For example, the
entropy coder highly depends on the chosen mask, while the mask and the tonal data
is dependent on the quantisation. Moreover, the inpainting depends on the chosen
mask and the tonal values.

To circumvent this issue, one often splits the problem into several sub-problems.
To this end, the individual components are separated into groups and then optimised
one after another. For instance, one typically first selects the inpainting data, and
tries to find a good quantisation parameter afterwards. Often, the task of finding the
inpainting data is split further into first finding a mask, and a subsequent optimisation
of the tonal data. The entropy coder is typically selected in the end. It is clear that
this strategy does not yield the globally best compression performance. However, by
doing so, the complexity of the optimisation problem can be reduced to a manageable
amount, while hopefully being close to the optimum.

1.2.3 Existing Methods in PDE-based Compression

In the following, an overview of existing methods in the context of PDE-based image
compression will be presented.
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PDEs as Pre- or Postprocessing of Existing Codecs

In the context of compression, PDE-based methods and related variational methods
have been widely used as a preprocessing step for coding images and videos [75, 74,
190, 45, 197, 109], or as a postprocessing to remove coding artifacts [74, 214, 215,
85, 141, 64, 12, 33]. In contrast to these approaches, our focus is on methods where
PDEs represent the core part of compression. In [158], PDE-based inpainting is used
to reconstruct missing blocks in JPEG due to erroneous wireless transmission.

PDEs within Existing Codecs

Some approaches integrate PDE-based inpainting ideas into standard transform-based
codecs [158, 202, 121, 213, 216, 49]. Here, the objective is to benefit from the ability
of PDE-based inpainting methods to reconstruct certain image features. For example,
EED inpainting is useful to reconstruct sharp edges, while exemplar-based inpaint-
ing such as the approach of Efros and Leung [66] or structure inpainting [158] can
be employed to reconstruct specific textured regions. Since transform-based meth-
ods usually only perform well in highly textured regions, the compression result can
be improved by incorporating inpainting approaches within the remaining regions.
However, due to a subsequent patching of the existing codecs, it is clear that the full
potential of the individual ingredients of the compression methods is not exploited.

Codecs based on EED Inpainting

In the context of PDE-based image compression, EED-based inpainting is employed
as key ingredient in many approaches. In particular for general purpose image com-
pression applications, this inpainting operator is usually the standard choice. The
reason for this choice is due to its advantageous performance: As mentioned in Sec-
tion 1.2.1, experiments have shown that EED-based inpainting has a higher potential
to reconstruct an image from scattered data compared to a harmonic and biharmonic
inpainting [78]. This can be explained by the potential of anisotropic diffusion to
reconstruct edges and contours. In the context of inpainting, more extensive compar-
isons to other operators are presented in [170]. Here, it is shown that EED inpainting
is the preferable method for reconstructing edges, contours and even shapes.

For these reasons, already the very first PDE-based image compression codec pro-
posed by Galić et al. in 2005 employs EED-based inpainting [78]. This approach was
able to beat the quality of the widely used JPEG standard. To do so, an inpainting
mask is selected as vertices of an adaptive triangular subdivision of the image domain.
This triangulation can be stored efficiently with the help of a binary tree structure.
The splitting decision is made on the local error, i.e. more points are recursively added
at regions where the difference between the linear interpolation within a triangle and
the original image is large. For decoding, the reconstruction is obtained with the help
of EED inpainting.
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An improved version of [78] has been presented in 2008 [79]. Here, the splitting
decision is based on the difference between the original image and the current recon-
struction obtained by EED inpainting. This improves the mask selection procedure
tremendously on the cost of an increased encoding time, because the complete in-
painting solution has to be computed after each point insertion. By additionally
incorporating a specific quantisation strategy and an error threshold adaption for the
splitting process, the final compression algorithm already comes close to the compres-
sion capability of JPEG2000.

An even more advanced version of this codec has been presented by Schmaltz et
al. in [172]. This so-called R-EED method uses an adaptive rectangular subdivision
instead of a triangular one. Also, an interleaved optimisation of the contrast parameter
of EED inpainting and the quantised grey values is applied. With the help of a so-
called interpolation swapping and another entropy coding for storing the data, it is
possible to further improve the compression performance. In the end, the R-EED
codec is able to outperform JPEG2000. More extensive experiments and comparisons
to other inpainting operators are presented in [170]. As a result, the authors showed
that EED turns is the most favourable one. Moreover, extensions of R-EED for
shape coding and 3D data compression are proposed in the paper, based upon the
work in [98] as well as [10, 151]. Further, adaptations of the R-EED codec to a
progressive mode as well as region of interest coding are proposed in [153], as an
extension to [169]. A probabilistic approach to subdivision trees in the context of
PDE-based image compression is presented in [143].

There also exist other applications which base on the R-EED method. For in-
stance, a video compression codec is presented in [171] in which concepts like 3D
pose tracking and electrostatic halftoning are successfully combined with PDE-based
compression methods. Another example is the application of R-EED in the context
of steganography and in hiding high resolution images in low resolution versions of
themselves [126, 147]. EED inpainting can also be a powerful tool for the purpose
of shape coding. This is demonstrated in [98, 183], where the shapes are encoded
with the help of quadrupoles and nonapoles, respectively. As an extension of bipoles,
such features are able to represent the directional information of edges which can be
propagated over the whole image by EED inpainting.

When it comes to colour images, all the aforementioned compression codecs relying
on EED inpainting treat the three RGB colour channels in a straightforward way.
However, it has been shown that it can pay off to perform the compression and
in particular the inpainting part in another colour space such as YCbCr [154]. This
allows to adapt the coding to the human visual system by privileging the luma channel:
First, the luma channel Y is encoded in a higher quality with R-EED. Afterwards,
for reconstructing the chroma channels Cb and Cr, the inpainting is performed by
steering the diffusion by the luma channel. A more detailed description and analysis
of this colourisation idea is presented in [152].

Despite the success of R-EED and its variants, the compression of highly textured
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images remains a challenge for PDE-based methods. To cope with this problem, a
hybrid image compression method has been proposed in [155]. Here, the R-EED codec
is successfully combined with the exemplar-based inpainting of Facciolo et al. [69].
This way, the benefits of EED inpainting to recover smooth regions along with sharp
edges are combined with the possibility to recover textured regions. In the end, the
new approach allows to compete even with transform-based methods for textured
images.

Besides the qualitative assessment of these PDE-based compression approaches, it
is also important to consider their potential run-time performance. In this context,
Köstler et al. have shown that it is possible to perform the compression method
presented in [78] in real-time on a Playstation 3 [110]. Further, it is demonstrated
in [21, 153] that the more advanced R-EED codec of Schmaltz et al. [170] can be
used for real-time video decoding on a modern computer with graphics card, too. To
obtain the inpainting solution in an efficient way, a so-called fast explicit diffusion
(FED) scheme [208] is employed as efficient numerical solver, along with speed-up
strategies such as a clever initialisation of the inpainting solution. More details on
the FED method will be given later.

As one can observe in all these approaches, EED inpainting is the natural choice for
general purpose coding due to its favourable reconstruction potential. However, all
these approaches that rely on EED suffer from the fact that the crucial optimisation
of the inpainting data in the encoding part is very time consuming. Besides the mask
locations and the tonal values, also the parameters of the inpainting operator have
to be selected in a good way. As the reconstruction quality highly depends on these
factors, this part is very important. However, due to the non-transparent dependency
of these parameters and the resulting inpainting solution, this procedure is highly
non-trivial as well as time-consuming.

Codecs based on Linear Inpainting Operators

Some compression codecs rely on linear inpainting processes like harmonic and bihar-
monic inpainting instead of EED inpainting. Even though they could not compete
with standard approaches on general images so far, very good results could be ob-
tained for some designated compression applications. Thereby, the images typically
exhibit certain properties that allow for a good reconstruction with a linear inpainting
procedure.

As an example of such a designated image compression algorithm, Mainberger et al.
have presented an edge-based compression codec which is very powerful for compress-
ing cartoon-like images [125]. The underlying idea of this work is that edges of such
images contain the most important information for the visual perception. Although
this assumption is not necessarily the optimal one for general images, it holds true for
cartoon-like images, since they are characterised by piecewise constant regions. An
example of such an image is depicted in Figure 1.5 on the left. The encoding pro-
cedure of the approach in [125] consists of two parts: After first extracting the edge
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Figure 1.5. Left: Example cartoon-like image comic (size: 512×512). Centre and
Right: Example depth maps breakdancers and ballet (size: 1024×768, source: [224])

locations, the tonal values are encoded along both sides of these contours in a second
step. To reconstruct the image from this data in the decoding part, homogeneous
diffusion inpainting is employed. The harmonic operator is sufficient to reconstruct
the constant regions within the image. It could be shown that this approach is able
to outperform standard codecs such as JPEG or even JPEG2000 for images of this
specific type.

Another example of designated image compression algorithms based on linear in-
painting methods is the compression of depth maps, see for example [80, 118]. Depth
maps become more and more important as they are part of the multi-view plus depth
(MVD) format which is used for 3D television. It is clear that one is also interested
in efficient compression methods designated for such depth images. Example depth
maps are shown in Figure 1.5. The grey values within such a depth map represent
the distance to the camera centre, i.e. bright pixels denote close objects, while far
away objects are depicted in darker grey tones. As one can observe, such depth maps
are characterised by piecewise smooth regions. The proposed methods [80, 118] base
on the work in [125], and adapt it to the needs of depth map compression. Due to
the fact that the edges in depth images are usually much sharper than in comic im-
ages, they use a smaller gap between the stored grey values along the edges. Besides,
they employ another edge extraction method, different entropy coders as well as an
additional regular mask to capture smooth variations withing the regions. Homoge-
neous diffusion inpainting yields the reconstructed depth map at the decoding stage.
The final compression methods are able to compete with JPEG2000. However, the
compression efficiency of the more advanced HEVC algorithm could not be attained.
As we will see in this work, PDE-based compression methods are capable to compete
even with HEVC by cleverly tuning the individual ingredients. First work in this
direction has been performed in [157].

Considering the compression of 3D data with the help of homogeneous diffusion
inpainting, there are also first results available [122].
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Variant Approaches

Besides the aforementioned methods, there exist many different variant approaches in
the literature. They mainly differ by different design decisions. The most important
ones are presented below.

Different inpainting operators Apart from EED-based inpainting or inpainting based
on linear operators, also other operators have been considered for image compression
tasks. In [41], an absolute minimal Lipschitz extension is considered. Total variation
(TV) inpainting is also employed in certain applications. For instance, in [46], coeffi-
cients of a wavelet decomposition are modified with the help of TV regularisation to
alleviate oscillatory artefacts. Moinard et al. [138] employed TV inpainting to predict
DCT coefficients within a codec which relies on JPEG. Image compression with the
help osmosis is investigated in [89].

Different features Instead of reconstructing an image from a prescribed set of points,
there are also other image compression approaches which try to recover an image from
specific features. These features are often perceptually motivated and try to reflect
important characteristics of the human visual system. The resulting methods belong
to the class of so-called second-generation coding [111].

One major class of such features are contours and edges which play an important role
for the human perception of arbitrary images. In this context, Werner has already
studied the significance of edges within images in 1935 [210]. Further, Elder has
demonstrated that edges comprise the most relevant information of an image and are
sufficient for a good visual impression [67]. For these reasons, it seems natural to focus
on these features for compressing images. There exist prominent examples where the
image is successfully encoded and reconstructed from the contour information [39,
97, 16, 60]. In [97] it is demonstrated that edges on multiple scales contain the most
important information of an image.

Despite these first results, it is not as straightforward as it seems on first glance
to obtain a state-of-the-art compression algorithm relying on edge information. As
already mentioned, there exist compression approaches which perform very well for
cartoon-like images or depth maps [125, 80, 118]. When it comes to general purpose
compression, there also exist some publications which rely on edges or contours [9,
60, 113, 121, 211, 19, 221, 49, 84, 36]. Yet, all these approaches still lack compression
efficiency, mainly because selecting only edges as inpainting data may not always be
sufficient. This hypothesis is supported by the findings in the paper of Belhachmi et
al. [23], which basically states that mask points should be more likely at positions
with a large magnitude of the Laplacian. Although edges locations count as such
locations, there might also be other important locations.

Another feature that has been used in a PDE-based compression context are cor-
ners [222]. Recently, a promising alternative to storing some tonal values is to encode
sparse derivative information instead. The reconstructed image is obtained by inpaint-
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ing the derivatives first and subsequently integrating the resulting derivatives. After
first attempts in [174] and theoretical considerations in [36], a compression framework
was recently established by Schneider et al. [8].

Localisation of inpainting A large number of compression approaches employ a local-
isation of the reconstruction procedure by subdividing the image domain into triangles
or rectangles [65, 187, 188, 62, 59, 107, 115, 108, 29, 182, 54, 117]. Often, the subdi-
vision is obtained with an adaptive triangulation or tree structures such as B-trees or
quadtrees. In most of the methods, the reconstruction within each region is obtained
with the help of a linear polynomial interpolation. The advantage of these approaches
is that the reconstruction can be computed efficiently by exploiting the small spatial
support as well as the independence of the individual regions. Interestingly, it could be
shown that these methods can be competitive with JPEG2000 for images containing
no texture [59]. By considering the tonal values at the region boundaries as Dirichlet
boundary data, one obtains a straightforward relationship between the reconstruc-
tion and a localised PDE-based inpainting. In Chapter 6, we will also employ such a
strategy for designing efficient codecs. Moreover, there is a close connection of these
localisation methods to finite element methods which aim at approximating solutions
to continuous PDEs by describing them within small regions [101, 53].

Different data Besides usual images, PDE-based compression methods are also ap-
plied to variant data. For instance, a compression algorithm for triangulated surfaces
is proposed in [17]. Here, the authors rely on a geometric diffusion equation for the
purpose of scattered data interpolation. Besides, PDEs are used for the compression
of digital elevation maps [181, 70, 212]. More recently, it is demonstrated that such
elevation maps can be encoded efficiently by storing the level lines and reconstructing
the map with the help of diffusion inpainting [173].

1.3 Objectives

In this thesis, we want to investigate the true potential of linear PDEs in an image
compression context. In particular, we mainly focus on the harmonic and biharmonic
inpainting operators, but also consider higher order or nonlinear operators whenever
it fits. By carefully examining all individual ingredients of the compression algorithm,
we try to tune the coding performance to an extreme. While linear PDEs are said to
be less powerful than nonlinear PDEs, one goal of this thesis is to show that they can
also play a major role in practical applications, even when it comes to the compression
of general images.

Compared to its nonlinear counterpart, linear inpainting has several advantages.
First of all, linear inpainting operators are completely parameter-free which naturally
avoids any need to choose or optimise these parameters. Additionally, the correspond-
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ing conceptually simpler PDEs typically require less computational and implementa-
tion effort. Moreover, we will see that specific theoretical concepts and the resulting
algorithmic advantages are only valid for linear operators. All these aspects show that
it is worth to have a closer look at compression with linear PDEs. As we will see, a
few methods for the linear operators can be transferred to the nonlinear case as well.

On the way of designing the compression codecs, a fundamental and vital part of
this work will be to thoroughly analyse and investigate the inpainting process itself.
Besides obtaining a much better understanding, this will furthermore enable us to
derive efficient and well-performing strategies for different parts of the compression
algorithm. For example, we will see that discrete Green’s functions allow for a reinter-
pretation of the inpainting problem in terms of sparsity, which in turn offers advanced
spatial and tonal optimisation strategies.

By combining these sophisticated data optimisation strategies with efficient encod-
ing and decoding strategies, the final hope is to come up with powerful compression
codecs which can compete with standard approaches like JPEG, JPEG2000 or even
HEVC. Besides the qualitative performance, this also means that we aim at fast
methods with comparable decoding times as the standard algorithms.

1.4 Outline

After this introductory chapter, we will have a close look at the standard PDE-based
image inpainting problem in Chapter 2. Besides giving a general overview, different
properties of the inpainting solution and the inpainting problem itself are presented
and analysed. Afterwards in Chapter 3, the theory of discrete Green’s functions
is presented in detail. In this context, fast computation techniques including the
efficient generation of discrete Green’s functions are shown. Then, it is demonstrated
that these concepts play a major role in the context of PDE-based image inpainting.
In particular, we will see that it is possible to reformulate the inpainting solution
in terms of the discrete Green’s functions. This in turn will offer novel theoretical
insights as well as efficient alternative computation strategies.

With these fundamental concepts of the inpainting process, we will address the
issue of finding optimal data. First, we focus on optimising tonal data at prescribed
mask locations in Chapter 4, while seeking optimal mask locations afterwards in
Chapter 5. For both tasks, different strategies are presented, discussed and compared.
In particular, we will also investigate the benefit of the new inpainting formulation
with discrete Green’s functions to accelerate or improve the optimisation procedure.

Based on the gained insights, three different compression frameworks are then pre-
sented and discussed in Chapter 6. First, we will consider a designated compression
approach for depth images. Subsequently, a compression method for general images
is presented which relies on the best possible data optimisation techniques. While the
first two methods mainly focus on the qualitative performance, the third compression
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algorithm will be tuned with respect to both quality and decoding runtime. For all
three proposed compression methods, experiments will be performed and comparisons
with standard approaches will be presented.

Finally, a summary and a conclusion is given in Chapter 7, along with an outlook
on future work. A bibliography can be found in the end.
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Chapter 2

PDE-based Inpainting

As mentioned in Chapter 1, inpainting with partial differential equations is a very
powerful tool to interpolate sparse data, and is hence employed in many image com-
pression applications. Also in this thesis, PDE-based inpainting plays a central role.
Thus, it is important to study it in more detail. To this end, we will first introduce
the continuous formulation of the inpainting problems. As we will see, they originate
from the continuous theory of diffusion processes which can be described by partial
differential equations. More in-depth information on diffusion processes in the con-
text of image processing is presented in [206]. Moreover, we also focus on the discrete
formulations of the inpainting problem. They are very important as images typically
reveal a sampling on an equispaced rectangular grid structure. Hence, will present
and analyse the discrete problem in more detail to obtain a foundation for all further
considerations within this thesis.

The outline of this chapter is as follows. We start by recapitulating the physical
background of diffusion processes in Section 2.1, and consider the continuous inpaint-
ing formulation afterwards in Section 2.2. The discrete inpainting problem is then
presented in Section 2.3. Example results are shown in Section 2.4. After analysing
the inpainting problem in Section 2.5, we consider an extension of the inpainting to
non-binary masks in Section 2.6.

2.1 Physical Background of Diffusion Processes

Diffusion is a physical process that equilibrates concentration differences within some
medium. In the context of image processing, the concentration is usually given by the
grey or colour values, respectively. The diffusion process can be formulated mathe-
matically as follows. Assume there exists a concentration gradient ∇u, then it creates
a flux j to compensate for this disequilibrium according to Fick’s law:

j = −D∇u. (2.1)
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Here, D is the diffusion tensor, a positive definite symmetric matrix that describes the
relation between the flux and the gradient. The diffusion tensor controls the direction
of the diffusion process. In an isotropic setting for example, j is parallel to ∇u. In
an anisotropic case, the flux does not necessarily point in the same direction as ∇u.

During the diffusion process, no existing mass is supposed to be destroyed nor should
there be any newly introduced mass. This property is expressed by the continuity
equation:

∂tu = − div j (2.2)

The partial derivative ∂tu denotes the derivative of u with respect to the time t.
Combining Fick’s law and the continuity equation leads to the diffusion equation:

∂tu = div (D∇u) . (2.3)

Naturally, there are also extensions and variants of this diffusion equation, such as
higher order diffusion schemes. Most of them can be cast into the following general
formulation of a parabolic partial differential equation:

∂tu = Lu. (2.4)

In this PDE, the differential operator L describes how the diffusion behaves: Besides
isotropic and anisotropic diffusion processes, there is also a distinction between linear
and nonlinear processes. In the nonlinear case, the operator depends on the evolving
image, i.e. L can change over time. On the other hand, the differential operator is
fixed when one talks about linear diffusion.

For most applications, one also needs to impose some suited boundary conditions
and to specify an initial state u at time t = 0. In image processing for instance,
one usually selects the original image as initial condition and selects homogeneous
Neumann boundary conditions.

2.2 Continuous Inpainting Formulation

The aforementioned diffusion schemes are very powerful for performing an inpainting.
Given some prescribed tonal values at specified mask regions, the idea is to smoothly
fill-in unknown parts of the image by diffusing the given data into the unknown areas.
Thereby, one is seeking the steady-state solution of the diffusion process by letting
t→∞. Usually, such a steady-state solution of an ordinary diffusion process is rather
unspectacular. For example, a constant flat image is often the result when imposing
homogeneous Neumann boundary conditions on the image boundaries. However, by
performing the diffusion process only in the unknown image parts while keeping the
remaining pixels fixed, the resulting inpainting solution is by far not trivial. Here,
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Figure 2.1. Sketch of the inpainting problem setup with mixed boundary conditions:
Within the domain Ω ⊂ R2, the tonal values are prescribed at the mask regions ΩK .
The inpainting solution is sought in the unknown region Ω\ΩK , while assuming some
boundary conditions at the domain boundaries ∂Ω.

the prescribed tonal values are typically given at some mask locations, which can be
interpreted as Dirichlet boundary conditions.

To obtain a more formal description of PDE-based image inpainting, let f : Ω→ R
be a grey-scale image within some bounded domain Ω ⊂ R2. For a location x ∈ Ω,
the grey-value of the image is given by f(x). Assume that the image is only known at
a specified closed and non-empty set ΩK ⊂ Ω denoting the mask regions. A sample
sketch of such a scenario is depicted in Figure 2.1. The inpainting u is then given as
the solution of the following mixed boundary problem:

Lu =0 on Ω \ ΩK , (2.5)

u =f on ΩK , (2.6)

∂nu =0 on ∂Ω. (2.7)

Thereby, ∂n denotes the derivative normal to the image boundaries. The elliptic dif-
ferential equation (2.5) gives the steady-state solution of the diffusion process (2.4).
The interpolation condition is obtained by enforcing Dirichlet boundary conditions
in Equation (2.6). Additionally, homogeneous Neumann (reflecting) boundary condi-
tions at the image domain boundaries are enforced by (2.7).

In this thesis, we mainly focus on the following linear inpainting operators L. First
of all, we consider L = −∆, the Laplace operator, i.e. Equation (2.5) becomes the
well-known Laplace equation. With this choice, one obtains the so-called homoge-
neous diffusion inpainting or harmonic inpainting. Despite its conceptual simplicity,
harmonic inpainting has proven to be very powerful and to have nice properties such
as obeying the maximum-minimum-principle. Its inpainting result is characterised
by its smoothness within the interpolated regions. However, at the mask locations,
harmonic inpainting suffers from its characteristic peaks or singularities. We will see
in Chapter 3 that this behaviour can easily be explained with the help of discrete
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Green’s functions. Another choice of the inpainting operator will be the biharmonic
operator, i.e. L = ∆2. This higher order operator gives smoother interpolations on
the expense of yielding over- and under-shoots, see Section 2.5. It has a close relation
to thin plate spline interpolation [63].

Clearly, one can also think of using any degree n of smoothness with an arbitrary
power p of the Laplace operator, i.e. L = (−∆)p. The advantage of these linear
operators is that they are completely parameter-free and lead to a linear system of
equations which makes them easier to handle compared to nonlinear ones. Moreover,
they are isotropic and thus propagate the information equally in all directions. In
particular, they do not depend on the evolving image.

Besides the linear inpainting operators, also nonlinear inpainting with edge-enhancing
anisotropic diffusion (EED) [204] will be a topic in this thesis. Here, the differential op-
erator is given by Lu = div(D∇u). The anisotropic diffusion tensor D := µ1v1v

>
1 +

µ2v2v
>
2 is designed to adapt to the local image structure of the evolving image u

in the following way. The first eigenvector v1 of D is defined to be parallel to the
gradient of u, while the second eigenvector v2 is perpendicular to it. This means that
v1 points across image edges, and v2 along edges. The corresponding eigenvalues are
chosen such that the diffusion process does not only inhibit diffusion across edges, but
even enhances edges by smoothing along them. Thus, the second eigenvalue is set to
µ2 := 1, and the first eigenvalue µ1 steers the amount of diffusion with the help of a
fuzzy edge detector given by the Charbonnier diffusivity [48]:

µ1 :=

(
1 +
|∇uσ|2

λ2

)− 1
2

. (2.8)

Here, uσ := Kσ ∗ u denotes a smoothed version of u by convolving it with a Gaussian
kernel kσ of standard deviation σ, and λ is a contrast parameter.

By design, EED inpainting is a nonlinear process due to the inherit dependency of
the differential operator on the evolving image. Furthermore, there are two parameters
σ and λ which influence the final inpainting result and thus have to be determined.
Those two main issues slightly complicate some tasks such as finding the inpainting
solution, performing a tonal optimisation or analytically describing the inpainting
result. Nevertheless, one usually obtains visually more pleasant reconstructions con-
taining sharp edges and without singularities at the mask locations in contrast to
homogeneous diffusion inpainting [170]. Note that both the harmonic as well as the
biharmonic diffusion inpainting involve linear self-adjoint differential operators. This
fact will become important in Chapter 3.

When it comes to colour images, the tonal data of an image f : Ω→ R3 is given at
the mask locations in the form of vector-valued data. Typically, the three channels
represent the RGB colour information. One straightforward strategy to obtain the
inpainting solution is to apply the inpainting independently for each channel. This
yields the individual channels of the inpainting solution. For EED inpainting, the
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structure tensor is usually adapted such that it relies on the edges of the combined
colour channels.

In the past, other inpainting strategies for colour valued data have been proposed.
For instance, in [152], the colour information is considered in the YCbCr colour space.
Here, it has been shown that it makes sense to first reconstruct the Y channel, and to
inpaint the two chroma channels Cb and Cr afterwards by relying on the luma channel
Y. More precisely, the diffusion tensor is adapted such the inpainting is steered by
the luma channel. This helps to preserve the edges from the luma channel also in the
chroma channels. For our analysis of the inpainting problem and the optimisation
strategies, we mainly focus on grey valued images first for the sake of simplicity.

2.3 Discrete Inpainting Formulation

Digital images reveal a discretisation on an equispaced rectangular grid. Thus, it is
natural to formulate the inpainting processes in the discrete setting. To this end, we
consider a regular two-dimensional grid Γ = {0, . . . ,M − 1} × {0, . . . , N − 1} with
grid size h and the number |Γ| = MN of grid locations. A discrete image f ∈ RM×N

consists of the values fi,j at the grid points (i, j) ∈ Γ which typically range from 0
to 255. Further, let K ⊂ Γ be the grid points where the image information of f is
given, i.e. K denotes the mask points where the Dirichlet boundary conditions are
assumed. Often, a binary mask image c ∈ RM×N is utilised to denote known and
unknown pixels:

ci,j :=

{
1 if (i, j) ∈ K,
0 if (i, j) ∈ Γ\K. (2.9)

With this notation, the inpainting solution u ∈ RM×N can be described as the solution
of the discrete problem of the form

(Lu)i,j = 0 for (i, j) ∈ Γ\K, (2.10)

ui,j = fi,j for (i, j) ∈ K. (2.11)

We define r (c,f) as the function that yields the inpainting solution for a given mask
and prescribed grey values. The inpainting solution u highly depends on the discrete
symmetric inpainting operator L : RM×N → RM×N which yields a 2D image after
applying it to a 2D image. As in the continuous setting, a natural choice for L is the
discrete Laplace operator AN fulfilling homogeneous Neumann boundary conditions
at the image boundaries. Its stencil notation for the inner grid points reads:

0 0

0 0

1
1

1
1-41

h2 .

27



Chapter 2. PDE-based Inpainting

It is obtained by means of standard finite differences [139]. The homogeneous Neu-
mann boundary conditions are incorporated by mirroring the image at the boundaries
and by using the above stencil also for the boundary grid points. The Laplacian leads
to homogeneous diffusion inpainting respectively harmonic inpainting. Similar to the
Laplacian, the biharmonic operator BN := −A2

N leads to biharmonic inpainting. Of
course, one can even consider higher powers of the Laplacian such as the triharmonic
operator L = A3

N or the quadharmonic operator L = −A4
N . Similarly, the EED

inpainting operator can be discretised by standard means of finite differences. For
more details, see [206].

Instead of homogeneous Neumann boundary conditions, one can impose different
conditions at the image boundaries, too. As an example, periodic boundary condi-
tions are sometimes desired. Even though we will not consider inpainting with periodic
boundary conditions directly, we will encounter that these boundary conditions are
very useful when it comes to improved strategies to find Green’s functions. Analo-
gous to the Neumann case, we denote the Laplacian operator incorporating periodic
boundary conditions by AP , and the biharmonic counterpart by BP . Also here, is
important to mention that all operators AN , BN , AP and BP are linear self-adjoint
differential operators.

In the literature, it is also common to reorder the 2D images into 1D vectors by
collecting the image entries row by row. In this notation, the image values can be
addressed by uk at a pixel index k. Accordingly, the discrete operators are adapted
and written in a matrix form. It is straightforward to convert one representation
into another, which is why similar notations are utilised within this thesis. From the
context and the number of indices, it will be clear whether a 2D or a 1D representation
is meant. As a result, one obtains expressions in matrix-vector-notations which makes
it possible to employ standard theory from linear algebra. For instance, the discrete
Laplacian with homogeneous Neumann boundary conditions leads to a matrix AN of
size |Γ| × |Γ| with entries

ak,` =


1
h2
d

if ` ∈ N`,

−
∑

d∈{x,y}

∑
`∈Nd(k)

1
h2
d

if ` = k,

0 otherwise.

(2.12)

Here, Nd(k) denotes the neighbours of pixel k in direction d, and hx, hy denote the
individual grid sizes. This alternative notation allows to write the discrete inpainting
problem in (2.10) and (2.11) in an elegant way:

Let C := diag(c) ∈ R|Γ|×|Γ| be a matrix by writing all values of the mask image c
as diagonal entries, and I ∈ R|Γ|×|Γ| the identity matrix. Then, we can express the
inpainting problem as finding the solution u ∈ R|Γ| of the following linear system of
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equations.

C(u− f)− (I −C)Lu = 0. (2.13)

Obviously, this equation enforces the interpolation condition at all mask locations,
while the smoothness term is active at all other locations. Due to the binary nature
of the mask, only one of the two assumptions is active. Reordering Equation (2.13)
yields:

(C − (I −C)L)︸ ︷︷ ︸
=:M

u = Cf . (2.14)

The matrix M is called the inpainting matrix. Note that for the nonlinear EED
inpainting, L = L(u) and consequently M = M (u) depends on the unknown image
u. Knowing the inverse of M gives direct access to the inpainting solution as u =
M−1Cf . Unfortunately, the inpainting matrix is not as easy to invert, as we will see
in Section 2.5. In practice, the inpainting solution is typically found by employing
iterative solvers such as a fast explicit diffusion (FED) scheme [87] or bidirectional
multigrid approaches [125]. In the present thesis we will see that it is also possible to
obtain the solution directly in a non-iterative way with the help of discrete Green’s
functions.

2.4 Examples

Before the inpainting problem is analysed in more detail, let us consider some exam-
ples. For the experiment, we consider the standard test image trui which is shown
in Figure 2.2. The common task of the inpainting is to reconstruct an image which
approximates the original image as good as possible. It is clear that the inpainting
depends on several factors such as the location of mask points, the prescribed tonal
values at those locations as well as the inpainting operator. For a prescribed number
of mask points, the typical goal is to find the best possible combination of those in-
gredients. For the moment, however, we only want to get an intuition of the influence
of the mask and the inpainting operator on the inpainting result.

We consider harmonic and biharmonic inpainting, and compute the inpainting for
fixed masks of varying densities and different configurations. In all cases, the original
grey values of the image trui are prescribed at the mask locations. First of all, we
consider masks with randomly sampled points, and different densities of 1%, 2%,
4% and 16%. These masks are depicted in Figure 2.3 along with the corresponding
inpainting results. Besides the random masks, we also consider optimised masks
for harmonic inpainting which lead to better reconstructions in general. They are
obtained with the continuous theory of Belhachmi et al. [23], and contain the same
mask densities as the random masks. More details on how to obtain the masks will
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Figure 2.2. Original image trui of size 256× 256.

be discussed in Chapter 5. Again, the masks along with the corresponding inpainting
results for different densities are shown in Figure 2.4.

To judge the quality of a given reconstruction it has to be compared to the original
image. There are several possibilities to do so. A qualitative comparison can be done
by a visual comparison of the reconstructed image to the original image. Alternatively,
one can use a quantitative error measure, as for example the commonly used mean
squared error (MSE). For grey-valued images, it is computed between the original
image f and the reconstruction u as follows:

MSE(f ,u) :=
1

|Γ|
∑

(i,j)∈Γ

(fi,j − ui,j)2. (2.15)

An extension to colour images is straightforward by computing the mean over all
channels. A smaller MSE means less differences between the two images and conse-
quently indicates a better reconstruction. Alternatively, the peak-signal-to-noise ratio
(PSNR) is frequently used as error measure, and is computed based on the MSE:

PSNR(f ,u) := 10 log10

(
2552

MSE(f ,u)

)
, (2.16)

assuming that the maximum grey-value is 255. The PSNR is given in dB, and a larger
value means a better quality of the reconstruction. Since the MSE and the PSNR lead
to the same rating order, it suffices to only consider one error measure. The results
show that the error measure is a very good indicator for the visual quality.

It is clear that a higher mask density also leads to better reconstructions due to the
increased availability of information. This is both visible from the qualitative as well
as from the quantitative judgement. Moreover, one can state that the optimised masks
give much better results than the random masks except for the very sparse mask. The
reconstructions with the random masks are much more blurry. Another observation
from the random masks is that biharmonic inpainting gives better reconstructions
than its harmonic counterpart. It is clear that this is not the case for the optimised
masks, as they are tuned for homogeneous diffusion inpainting.
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Density: 1% MSE: 689.36 MSE: 612.82

Density: 2% MSE: 432.43 MSE: 307.13

Density: 4% MSE: 275.19 MSE: 178.81

Density: 16% MSE: 75.67 MSE: 42.29

Figure 2.3. Examples of random masks with different densities. Left column:
Given masks. Centre column: Harmonic inpainting results. Right column: Bi-
harmonic inpainting results.
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Density: 1% MSE: 711.26 MSE: 499.93

Density: 2% MSE: 312.65 MSE: 312.31

Density: 4% MSE: 101.49 MSE: 133.67

Density: 16% MSE: 11.51 MSE: 10.99

Figure 2.4. Examples of optimised masks for the image trui with different densi-
ties obtained by electrostatic halftoning, see Chapter 5. Left column: Given masks.
Centre column: Harmonic inpainting results. Right column: Biharmonic inpaint-
ing results.
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In total, the main message of this experiment is that it pays off to optimise the
individual ingredients of the inpainting process. In particular, the experiments indi-
cate an improved reconstruction quality with an optimised mask. It seems that the
biharmonic inpainting leads to better results. However, the final statement on the re-
construction ability of the operators requires a fair comparison with optimised mask
and tonal values for the respective operators.

2.5 Analysis of the Discrete Inpainting Problem

Both the complexity of finding the inpainting solution as well as the properties of the
inpainting mainly depend on the inpainting matrix M . In the following, these aspects
will be investigated further by also gaining a deeper understanding of the inpainting
matrix. Thereby, we focus on inpainting with linear inpainting operators along with
homogeneous Neumann boundary conditions, as they will be within the main focus
throughout this thesis. Moreover, we assume the mask to be non-empty, i.e. there
should be at least one mask point. This obviously makes sense and leads to a well-
posed problem. Note that the general properties have already been derived in previous
publications. Nevertheless, we recapitulate them because they are important for later
investigations. Additionally, given these existing results, it is easier to integrate the
novel findings into a global context. After the general properties, we analyse the
inpainting matrix further by considering its condition number as well as an extension
to non-binary masks.

2.5.1 General Properties

The inpainting solution reveals some interesting properties. Most importantly, it has
been shown that the solution of the discrete inpainting problem with homogeneous
diffusion inpainting exists and is unique [125]. Moreover, it could be proven that
the inpainting solution fulfils the maximum-minimum principle, i.e. all values of
the inpainting solution lie between the minimum and maximum of the prescribed
values [125]:

min
(k,l)∈K

fk,l ≤ ui,j ≤ min
(k,l)∈K

fk,l for all (i, j) ∈ Γ. (2.17)

When it comes to biharmonic inpainting, the maximum-minimum principle is not
guaranteed anymore. Over- and undershoots typically lead to values in the recon-
struction that exceed the range of the prescribed values by far [41]. Further proper-
ties of the inpainting are elaborated later in this thesis. To this end, discrete Green’s
functions will play a key role for obtaining a better understanding.
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2.5.2 Condition Numbers

Given a general linear system of equations of the formAx = b, the condition number is
a standard measure to rate the complexity of finding a solution [165, 134]. Intuitively,
a larger condition number means that changes in b have a higher impact on the
solution x, and vice versa. Thus, the higher the condition number is, the less accurate
an approximation of the solution will be. In other words, if the condition number
is small, the matrix A is well conditioned and so computing its inverse is possible
with high accuracy. In contrast, if the condition number becomes larger, the system
matrix becomes more and more ill-conditioned and harder to invert. When it comes to
iterative numerical solvers for linear system of equations, the condition number gives
a good hint about the convergence rate of the scheme. More formally, the condition
number κ(A) in the `2 norm is specified as

κ(A) = ‖A‖2 · ‖A−1‖2

=
σmax(A)

σmin(A)
. (2.18)

The matrix norm ‖A−1‖2 might be hard to estimate due to the need to invert the
matrix. Instead, it is easier to compute the condition number based on the maximal
and minimal singular values σmax and σmin ofA. They in turn are given by considering
the maximum and minimum eigenvalues λmax and λmin of A>A (cf. [136]):

σmax =
√
λmax , σmin =

√
λmin . (2.19)

Note that λmax is the spectral radius of the matrix A>A. One possibility to estimate
this spectral radius is to use Gershgorin’s circle theorem. However, this may give a
too inaccurate estimate. Instead, one can employ the power method to determine
the maximum eigenvalue of A>A. For more details, please refer to [11]. Moreover,
the minimum eigenvalue λmin of A>A can be found with the help of the power
method, too. To this end, we define a new matrix B := A>A − λmaxI, and obtain
the eigenvalue µmax of B with the largest magnitude by the power method. Then,
Theorem 2.1 allows get direct access to λmin:

Theorem 2.1. The minimum eigenvalue of A>A is given by λmin = µmax + λmax.

Proof. Let λ be an eigenvalue of A>A with corresponding eigenvector v. Then, we
compute

Bv = (A>A− λmaxI)v

= A>Av − λmax v
= λv − λmax v
= (λ− λmax)v (2.20)
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This shows that µ := λ − λmax is an eigenvalue of B. Since the matrix A>A is
positive semi-definite, its eigenvalues are all larger or equal zero, and range from λmin
to λmax. Consequently, the eigenvalues of B range from λmin − λmax to zero, with
µmax = λmin − λmax being the eigenvalue of largest magnitude. Thus, the power
method can be employed to find µmax, which in turn yields λmin = µmax + λmax.

In total, we can evaluate the condition number of the the inpainting matrix M with-
out the need of inverting it. Note that the condition number only depends on the mask
and the inpainting operator. In an experiment, the condition number is computed
for random masks as well as optimised masks obtained by the theory of Belhachmi
et al. [23], with densities ranging from 0.01% to 16%. For some densities the masks
have already been shown in Figures 2.3 and 2.4. An overview of the resulting condi-
tion numbers of the inpainting operators for harmonic and biharmonic inpainting is
presented in Table 2.1.

Table 2.1. Condition numbers of inpainting matrix M for harmonic and biharmonic
inpainting and for different masks with varying densities.

random mask optimised mask

harmonic biharmonic harmonic biharmonic

mask density inpainting inpainting inpainting inpainting

0.01 % 142999 1878688037 126149 1331213279

0.50 % 3258 1009367 8678 11034983

1.00 % 1741 249021 4133 1979904

2.00 % 895 53707 2163 574572

4.00 % 578 31141 1049 79383

8.00 % 286 8618 625 21656

16.00 % 147 2169 389 6416

As we can see, the condition numbers increase tremendously the sparser the mask
becomes: While the inpainting problem is easy to handle for masks with a density
around 16%, the problem becomes very complex for masks containing less than 1%
of prescribed points. Additionally, it is obvious that the biharmonic inpainting prob-
lem is much worse than the corresponding harmonic inpainting problem, which is not
surprising as the power of the differential operator is squared. One has to keep this
in mind when talking about which operator is better suited for inpainting and com-
pression tasks. Although the biharmonic operator might lead to qualitatively better
results, the harmonic one is probably easier to handle by numerical solvers. This
could in turn lead to reduced runtimes.
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d

Figure 2.5. Sketch of mask with only two points with varying distance d between
the two mask points.

Another observation is that the condition number for the optimised masks is usually
higher than for the corresponding random mask with the same density. The reason for
this fact is that the mask points do not capture all regions of the image anymore. The
resulting holes make it necessary for the inpainting to diffuse the known information
over longer distances. Although theoretically each mask point has a global influence
on the inpainting result, the impact is limited by the surrounding mask points. A
detailed analysis on this topic will be done in Section 4.2.3. Consequently, whenever
there is a larger gap between neighbouring mask points, the condition number in-
creases. Obviously, filling in such large unknown areas is rather expensive. This also
explains the success of bidirectional multigrid methods: On coarse scales, they reduce
the distance between the mask points, which makes solving the problem at those lev-
els much easier. Although the difference of the condition number for different mask
configurations is by far not as severe as the complexity difference between the har-
monic and biharmonic inpainting, one also has to keep this in mind when solving the
inpainting problem. Besides an increased runtime, stopping criteria potentially have
to be adapted accordingly.

From the analysis above, one can jump to the conclusion that the worst case con-
dition number is obtained with a mask containing only two points. We do not want
to discuss the case with only one mask point as the solution is trivially given by a
constant image with the prescribed grey-value everywhere. Instead, let us consider a
family of masks as sketched in Figure 2.5. For an image domain of size 256× 256, the
two mask points are vertically centred and have a varying distance d between. For
these masks, the corresponding condition numbers of the inpainting operator with
both the harmonic and biharmonic inpainting operator are presented in Table 2.2.

As expected, the condition numbers in this scenario are very large, and also larger
than all condition numbers for the random or optimised masks before. Normally, from
the reasoning above, one would expect that the largest condition number occurs with
the largest tested distance of 240. However, the homogeneous Neumann boundary
conditions also play a major role in this extreme example. A larger d leads to the
mask points being closer to the boundary. Here, the mask points influence themselves.
Thus, for the bipole mask with d = 0, the distance between the points is minimal, but
the distance to the mirrored points is maximised, and so is the condition number.
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Table 2.2. Condition numbers of inpainting matrices for two point masks with
varying distance.

harmonic biharmonic

distance d [pixel] inpainting inpainting

0 448238 3880942165

40 295447 3594948006

80 269002 3545260973

120 260355 3527687198

160 262638 3531151910

200 280965 3550184839

240 331336 3579171982

2.6 Extension to Non-Binary Masks

So far, the inpainting mask has always assumed to be binary. However, as it is
proposed in [92], it is also possible to use non-binary mask values. This is possible by
reconsidering the inpainting formulation in (2.13):

C(u− f) + (I −C)(−Lu) = 0. (2.21)

By choosing the mask values to be one or zero, one can select between the two as-
sumptions: Either the Dirichlet boundary condition is imposed, or the smoothness of
the inpainting solution is enforced. The left hand side of the equation can also be un-
derstood as a convex combination of these two assumptions. By choosing continuous
values of c in [0, 1], a mixture between the two extremes can be obtained. For exam-
ple, this makes sense if one does not fully trust the data, and also wants to smooth the
inpainting result at the mask points. This comes down to a forward diffusion at those
mask points. Besides a pure interpolation between the two assumptions, it is also
possible to extrapolate by selection mask values outside the range [0, 1]. Whenever
the mask value is larger than one, the interpolation condition is more than enforced.
In other words, one obtains a backward diffusion at those locations.

In [92], this idea of using continuous mask values is employed to find an optimal (bi-
nary) mask for the inpainting problem with the Laplacian AN as inpainting operator.
To this end, Equation (2.21) is used as a side constraint of an energy functional. The
final mask is found with the help of a primal-dual approach [156]. For more details,
please see [92]. However, the important question is: Given a fixed continuous mask
c, is it always possible to obtain a corresponding inpainting solution by solving the
inpainting equation (2.21)? In the original paper, this is required in each iteration
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step to obtain the up-to-date inpainting solution for an fixed intermediate mask (cf.
Algorithm 2 in [92]), and also in the end to obtain a final inpainting with the con-
tinuous mask. Unfortunately, the answer to the question is no. In fact, the resulting
inpainting matrix M = C − (I − C)AN can be singular for certain masks. This is
shown in Theorem 2.2.

Theorem 2.2 (Singular Inpainting matrix for Continuous Mask Values). The matrix
M is not invertible for arbitrary C = diag(c), even for c 6= 0.

Proof. The case with c = 0 is trivial as the inpainting operator L has a zero eigenvalue
with a constant image as corresponding eigenvector. Let us therefore consider the case
c 6= 0. As a counter example, consider an image with 6 pixels and a grid size of h = 1:

u4

u1

u5

u2

u6

u3

Here, the matrix for the discrete Laplace operator AN has the following form:

AN =


−2 1 0 1 0 0
1 −3 1 0 1 0
0 1 −2 0 0 1
1 0 0 −2 1 0
0 1 0 1 −3 1
0 0 1 0 1 −2

 . (2.22)

Now, we define a mask with the following values:

C = diag
(

(1.5, 1, 1, 0, 4, 5)>
)
. (2.23)

The matrix M has as the eigenvalue 0, since the vector u = (1, 0, 0,−1,−3,−4)>

is in the kernel of M , i.e., Mu = 0 for a non-trivial u. It follows that M is not
singular.

This shows that it is not possible to obtain an inpainting for arbitrary continuous
mask values. In practice, it is not unlikely that this happens during the process
of finding an optimised mask with the algorithm in [92]. One remedy would be to
compute the Moore-Penrose pseudo-inverse ofM instead the real inverse. However, it
is not clear if this leads to a desired solution. Luckily, there is another remedy to this
issue: It is possible to avoid a singular inpainting matrix for continuous mask values
by restricting the possible range. Theorem 2.3 gives a proof for common images with
a grid size of h = 1. The corresponding considerations for general grid sizes can be
found in [91], Section 2.2.
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Theorem 2.3. For grid sizes of h = 1, the matrix M = C− (I−C)AN is invertible
with C = diag(c), if 0 ≤ ci ≤ 8

7
for all mask values ci and c is not equal to the zero

everywhere.

Proof. It is sufficient to show that 0 is not an eigenvalue in those cases. We first
consider a mask location i which is not at the boundary. Considering the Gerschgorin
disks of M , we know that an eigenvalue λ lies within a disk that is given by

|λ− (ci + 4(1− ci))| ≤ 4|1− ci|. (2.24)

In order for 0 not lying in one of the disks and thus not being an eigenvalue, the
following has to hold true.

|ci + 4(1− ci)| > 4|1− ci|. (2.25)

We can distinguish the following three cases.

Case 1: ci + 4(1− ci) < 0 ⇔ ci >
4
3
. It follows ci > 1 and thus:

−(4− 3ci) > −4(1− ci) ⇔ ci < 0.

This is a contradiction and therefore, this case cannot occur.

Case 2: ci + 4(1− ci) > 0 ⇔ ci <
4
3
. This leads to the following cases

ci > 1 : 4− 3 ci > −4(1− ci) ⇔ ci<
8

7
,

ci < 1 : 4− 3 ci > 4(1− ci) ⇔ ci > 0,

ci = 1 : 4− 3 ci > 4(1− ci) ⇔ 1 > 0.

Case 3: ci + 4(1− ci) = 0 ⇔ ci = 4
3
. It follows 0 > 4

3
, which again is a contradiction.

It follows that 0 < ci <
8
7

must hold. Analogously, the same computations can be
done for boundary pixels, leading to the same result. In order to include ci = 0 and
ci = 8

7
as well, one can argue in the same way as in Mainberger et al. [125] in the proof

of Theorem 1: Since M is block irreducible, the theorem of Feingold and Varga [72]
implies that an eigenvalue lying on the boundary of the union of all Gerschgorin circles
must lie in all individual Gerschgorin circles. As we assume that there is at least one
mask point, i.e. there exists one i with ci > 0, there is at least one Gerschgorin circle
that does not contain zero. Similarly, it can be shown that there exists one circle that
does not contain 8

7
. Hence, these two border cases can be included and the M is still

invertible.

As a consequence of this theorem, one has to adapt the algorithm in [92] to enforce
the mask values to lie within the range of [0, 8

7
]. Otherwise, the inpainting result may
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not be well-defined. This can be achieved by a back projection of the mask values into
this range after each update. This means that all values are mapped to the closest
value within the range. Interestingly, a binary mask is just a special case where all
mask values are within the admissible range. Thus, the problem does not occur after
thresholding, and confirms the existence result of the inpainting from [125].
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Chapter 3

Discrete Green’s Functions for
PDE-based Inpainting

3.1 Motivation

In the present Section, we want to gain more theoretical insights on inpainting meth-
ods with linear self-adjoint differential operators such as the harmonic or biharmonic
operator. In particular, we analyse their relation to a very popular idea in modern
signal and image analysis, namely sparsity. To this end, we make use of the concept
of discrete Green’s functions [24, 52]. Green’s functions are mainly known from the
continuous theory of partial differential equations (PDEs) as a tool to describe the
solution of boundary value problems [135]. Most publications on Green’s functions
focus on continuous differential operators. In [178], continuous Green’s functions have
already been used to perform image inpainting. However, the authors did not pay
any attention to the boundary conditions.

Digital images, on the other hand, reveal a natural discretisation on a regular grid.
Moreover, they are given on a rectangular image domain, and it is fairly common to
extend image processing operators at the boundaries by mirroring. This motivates
us to investigate discrete Green’s functions for linear differential operators on a rect-
angular image domain with homogeneous Neumann boundary conditions. Moreover,
we will give an interpretation of the obtained discrete Green’s functions in terms of
linear algebra. More precisely, we will elaborate the connection to the Moore–Penrose
inverse of the discretised differential operator.

Besides gaining novel theoretical insights with the help of the discrete Green’s
functions, we will also investigate potential algorithmic benefits. As we will see, a
fast way to generate the discrete Green’s functions and to compute inner products
is indispensable to obtain efficient alternative algorithms for solving the inpainting
problem.

The structure of the present chapter is as follows. First, we consider the eigenvalues
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and eigenvectors of the inpainting operators in Section 3.2. They are crucial for later
tasks. In the subsequent Section 3.3 we introduce the theory of discrete Green’s
functions and propose efficient algorithms. Section 3.4 discusses how the discrete
Green’s functions allow to find the solution of the inpainting problem. Numerical
advantages of our Green’s function framework are discussed in Section 3.5. This
chapter is concluded with a summary in Section 3.6. Note that most of the presented
contents are published in [3].

3.2 Eigenvalues and Eigenvectors of the Inpainting
Operators

For our later analysis it is useful to represent the discrete inpainting operators, the
discrete Laplacian AN and the biharmonic operator BN , in terms of their eigenvalues
and eigenvectors. The following theorem provides the required information. It extends
1D results that can be found for example in [165, 186] to the two-dimensional setting.

Theorem 3.1 (Eigenvalues and Eigenvectors of the Discrete Operators with Homo-
geneous Neumann Boundary Conditions). The orthonormal set of eigenvectors of AN

as well as of BN is given for all (m,n) ∈ Γ by

(vNm,n)i,j =



√
1

MN
if m = n = 0,√

2
MN

cos
(
mπ(i+ 1

2)
M

)
cos
(
nπ(j+ 1

2)
N

)
if either m = 0 or n = 0,√

4
MN

cos
(
mπ(i+ 1

2)
M

)
cos
(
nπ(j+ 1

2)
N

)
if m > 0 and n > 0.

(3.1)

The corresponding eigenvalues for the discrete Laplace operator AN are

λAN
m,n = − 4

h2

(
sin2

(mπ
2M

)
+ sin2

( nπ
2N

))
. (3.2)

The eigenvalues of the discrete biharmonic operator BN read as

λBN
m,n = −

(
λAN
m,n

)2
. (3.3)

Proof. While this eigenstructure may not appear obvious, proving its correctness is
fairly straightforward: One has to check that ANvm,n = λAN

m,nv
N
m,n and BNvm,n =

λBN
m,nv

N
m,n hold true for all (m,n) ∈ Γ and that the discrete homogeneous Neumann

boundary conditions are fulfilled. Additionally, one has to show the orthonormality
of the set of eigenvectors.
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Note that both operators are singular, since the eigenvalues λAN
0,0 and λBN

0,0 vanish.
This will complicate some of our discussions on discrete Green’s functions in the next
section. An important observation is that these eigenvectors exactly represent the
basis vectors of the discrete cosine transform, more precisely of type II (cf. [159, 165]).
They are widely used, also in JPEG for example. We will come back to this fact in
Section 3.3.4 where an efficient way to compute inner products with discrete Green’s
functions is presented.

Besides the Neumann boundary conditions, we also want to have a look at the
eigenvectors and eigenvalues of the operators with periodic boundary conditions. They
can be written for the 2D setting in the following form [179]:

Theorem 3.2 (Eigenvalues and Eigenvectors of the Discrete Operators with Periodic
Boundary Conditions). The orthonormal set of eigenvectors of AP as well as of BP

is given for all (m,n) ∈ Γ by

(vPm,n)i,j = (xm)i · (yn)j (3.4)

with the vectors xm and yn defined as

(xm)i =



√
1
M

if m = 0,√
2
M

cos
(
mπ(i+ 1

2)
M

)
if m even and m > 0,√

2
M

sin
(

(m+1)π(i+ 1
2)

M

)
if m odd, m > 0 and m+ 1 < M,√

1
M

sin
(

(m+1)π(i+ 1
2)

M

)
if m odd, m > 0 and m+ 1 = M,

(3.5)

and

(yn)j =



√
1
N

if n = 0,√
2
N

cos
(
nπ(j+ 1

2)
N

)
if n even and n > 0,√

2
N

sin
(

(n+1)π(j+ 1
2)

N

)
if n odd, n > 0 and n+ 1 < N,√

1
N

sin
(

(n+1)π(j+ 1
2)

N

)
if n odd, n > 0 and n+ 1 = N.

(3.6)

The corresponding eigenvalues for the discrete Laplace operator AP are

λAP
m,n =



− 4
h2

(
sin2

(
mπ
2M

)
+ sin2

(
nπ
2N

))
if m,n even,

− 4
h2

(
sin2

(
mπ
2M

)
+ sin2

(
(n+1)π

2N

))
if m even, n odd,

− 4
h2

(
sin2

(
(m+1)π

2M

)
+ sin2

(
nπ
2N

))
if m odd, n even,

− 4
h2

(
sin2

(
(m+1)π

2M

)
+ sin2

(
(n+1)π

2N

))
if m,n odd.

(3.7)
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The eigenvalues of the discrete biharmonic operator BP read as

λBP
m,n = −

(
λAP
m,n

)2
. (3.8)

Proof. The proof is analogous to the previous proof for the operators with homoge-
neous Neumann boundary conditions.

Similar to before, this set of eigenvectors can be interpreted as the real and complex
parts of the well known discrete Fourier transform [180, 185, 32]. In contrast to these
real eigenvectors, one can also choose the eigenvectors in the complex domain. The
eigenvalues, however, remain real, as the following theorem shows:

Theorem 3.3 (Eigenvalues and Complex Eigenvectors of the Discrete Operators with
Periodic Boundary Conditions). The orthonormal set of complex eigenvectors of AP

as well as of BP is given for all (m,n) ∈ Γ by the discrete Fourier basis:

(vPm,n)i,j =

√
1

MN
· e−

2ιπmi
M · e−

2ιπnj
N , (3.9)

where ι denotes the imaginary unit. The eigenvalues for the discrete Laplace operator
AP are given as

λAP
m,n = − 4

h2

(
sin2

(mπ
M

)
+ sin2

(nπ
N

))
, (3.10)

and for the discrete biharmonic operator BP as

λBP
m,n = −

(
λAP
m,n

)2
. (3.11)

A proof can for example be found in [86].

3.3 Discrete Green’s Functions

In this section, we introduce discrete Green’s functions, and discuss important prop-
erties of them. This will be very useful for describing, understanding, analysing as
well as solving discrete inpainting problems.

3.3.1 Definition and Properties

Let us consider a general discrete problem of the following type:

Lu = a. (3.12)

Thereby, u ∈ RM×N is the unknown image, a ∈ RM×N is a prescribed right hand
side, and L : RM×N → RM×N a given symmetric self-adjoint discrete linear differential

44



3.3. Discrete Green’s Functions

operator incorporating some specific boundary conditions.
Usually, the solution to the discrete problem (3.12) is found by solving a linear

system of equations. As we will see, discrete Green’s functions represent a very useful
tool to obtain direct access to the solution. Besides this property, they are also
important to understand and analyse discrete problems as we will see later. Their
definition is given as follows:

Definition 3.4 (Discrete Green’s Functions). If L is invertible, the discrete Green’s
function gk,` corresponding to a source point (k, `) ∈ Γ is defined as the solution of

(Lgk,`)i,j = (δk,`)i,j for (i, j) ∈ Γ, (3.13)

with the Kronecker delta function

(δk,`)i,j =

{
1 if (i, j) = (k, `),
0 if (i, j) 6= (k, `).

(3.14)

Otherwise, if v is the eigenvector of L> corresponding to a single eigenvalue 0, the
infinitely many discrete Green’s functions for a point (k, `) ∈ Γ are defined as solutions
of

(Lgk,`)i,j = (δk,`)i,j −
vi,j · vk,`
〈v,v〉

for (i, j) ∈ Γ. (3.15)

Here, the Euclidean inner product 〈a, b〉 :=
∑

(i,j)∈Γ ai,jbi,j between two images a
and b is defined in a standard way. As an intuition, the Green’s function can be
considered as the influence of an impulse at a point (k, `) on the complete image.

Interestingly, the solution of the discrete problem (3.12) is obtained as a simple
superposition of these discrete Green’s functions (cf. [68]):

Theorem 3.5 (Analytic Solution). Let gk,` denote the discrete Green’s functions at
positions (k, `) ∈ Γ. Then, the solution u of the discrete problem (3.12) is given by

u =
∑

(k,`)∈Γ

ak,` gk,`. (3.16)

Hence, once the Green’s functions are known, we are able to write down the solution
directly. However, finding them is not always a trivial task as they depend on the
domain as well as on the boundary conditions. This aspect is discussed in more detail
in Section 3.3.3.

The case distinction in the definition of the discrete Green’s functions ensures the
existence of the Green’s functions. This can be seen with the so called Fredholm
alternative, which states under which conditions a discrete problem has a solution
(cf. [55]).
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Theorem 3.6 (Fredholm Alternative). If L is invertible, then the solution u of the
discrete problem (3.12) exists and is unique. Otherwise, assuming that L> possesses
the single eigenvalue 0 with the corresponding eigenvector v ∈ RM×N , there exist
infinitely many solutions if

〈v,a〉 = 0, (3.17)

and there exists no solution at all if

〈v,a〉 6= 0. (3.18)

With this theorem it is straightforward to verify the existence of the Green’s func-
tions given in Definition 3.4. In particular, note that there are infinitely many Green’s
functions in case of a singular operator L. A nice property of the discrete Green’s
function is their symmetry, which will become important in later sections:

Theorem 3.7 (Symmetry of Discrete Green’s Functions). Let (i, j), (k, `) ∈ Γ. Then,
the discrete Green’s functions fulfill

(gk,`)i,j = (gi,j)k,` . (3.19)

Proof. The symmetry follows directly from the definition of the discrete Green’s func-
tions and from the symmetry of the Kronecker delta function.

3.3.2 Interpretation as Moore–Penrose Inverse

The Fredholm alternative can also be expressed in terms of linear algebra. For this
analysis, make use of the alternative matrix vector notation as in Section 2.3. This
means, u and a are considered as vectors of length MN , and L becomes a symmetric
(MN ×MN)-matrix. Then, (3.12) transfers to a linear system Lu = a of size MN .
This system is uniquely solvable, if and only if L is invertible. If rank(L) = MN − 1,
then (3.12) possesses either infinitely many solutions if rank(L) = rank(L,a), or no
solution if rank(L) < rank(L,a).

Assuming that L is invertible, the discrete Green’s function defined in (3.13) can
be expressed as the solution of

LG = I, (3.20)

where I again denotes the identity matrix of size MN ×MN and G ∈ RMN×MN the
matrix that contains the discrete Green’s functions gk,` as columns.

If rank(L) = MN−1 then there exist infinitely many Green’s functions, and (3.15)
leads to:

LG = I − 1

〈v,v〉
(v)(v)>, (3.21)
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3.3. Discrete Green’s Functions

with v ∈ RMN . In the following theorem, a useful additional constraint is introduced
that creates a unique solution and allows to relate discrete Green’s functions to the
Moore–Penrose inverse of their discrete differential operator. The Moore–Penrose
inverse aims at generalising the inverse of a matrix such that it is also applicable to
singular matrices [83].

Theorem 3.8 (Discrete Green’s Functions and Moore–Penrose Inverse). Let v denote
the eigenvector to the singular eigenvalue of L. If the discrete Green’s functions gk,`
satisfy the additional constraint

〈v, gk,`〉 = 0 for all (k, `) ∈ Γ, (3.22)

then they are given by the columns of the Moore–Penrose inverse of L.

Proof. To verify that G is the Moore–Penrose inverse of L, we have to check the
following properties (cf. [83]):

(i) LGL = L

(ii) GLG = G

(iii) LG is symmetric.

(iv) GL is symmetric.

Since v is an eigenvector of L to the eigenvalue 0, we have

v>L = 0>. (3.23)

Thus, together with (3.21), it follows that

LGL =

(
I − 1

〈v,v〉
(v)(v)>

)
L = L (3.24)

and

GLG = G− 1

〈v,v〉
G(v)(v)>. (3.25)

The condition 〈v, gk,`〉 = 0 implies G(v) = 0, and hence

GLG = G. (3.26)

From (3.21) it is evident that LG is symmetric. We further compute:

GL = (L>G>)> = (LG)> = LG = (G>L>)> = (GL)> (3.27)
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Chapter 3. Discrete Green’s Functions for PDE-based Inpainting

Here, the symmetry of L and G is used, as well as property (iii) which has already
be proven. Thus, GL is symmetric, too.

Remark 3.9. Note that in [3], where Theorem 3.8 has been presented, there is a
mistake in the proof of property (iv): The hypothesis of the theorem has been used
to verify the symmetry of GL, which is not valid. Hence, an adapted correct proof is
presented above.

3.3.3 Construction of Discrete Green’s Functions

After getting to know the theory behind discrete Green’s functions, we will investigate
how to practically construct them for the inpainting operators presented in Section 2.3.
To this end, it is important to stress that all the operators AN ,BN ,AP and BP have
a zero eigenvalue λ0,0 belonging to the constant eigenvector v0,0 with entries 1/

√
MN .

Thus, we know from Definition 3.4 that in a point (k, `) ∈ Γ, the Green’s function
gk,` for all operators are not unique. It satisfies the following system of equations:

(Lgk,`)i,j = (δk,`)i,j −
1

MN
for (i, j) ∈ Γ, (3.28)

with L ∈ {AN ,BN ,AP ,BP}.
Obviously, one possibility to find the discrete Green’s function is to solve the linear

system of equations directly. However, this is very cumbersome, especially when
one wants to seek a large number of discrete Green’s functions. Even an iterative
scheme does not allow to compute a sufficiently accurate discrete Green’s function in
a reasonable amount of time for our purposes.

For this reason, it would be nice to have a closed form solution of the discrete Green’s
functions. In this context, there exist some designated approaches for specific problem
settings [135]. However, as the Green’s functions themselves, most of these techniques
are considered in a continuous setting. The probably most promising technique is the
so-called method of eigenfunction expansion [135] which can also be applied in the
discrete setting [24]. The idea is to express the discrete Green’s functions in terms of
the eigenvectors and corresponding eigenvalues of the discrete operator L. With this
strategy we can obtain the following result:

Theorem 3.10 (Closed Form Solution of Discrete Green’s Functions). In a point
(k, `) ∈ Γ the discrete Green’s functions for the matrix L ∈ {AN ,BN ,AP ,BP} are
given by

(gck,`)i,j =
M−1∑
m=0

N−1∑
n=0

(m,n)6=(0,0)

[
1

λm,n
· (vm,n)k,` · (vm,n)i,j

]
+ c, (3.29)

where λm,n are the eigenvalues corresponding to the eigenvectors vm,n of the respective
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3.3. Discrete Green’s Functions

operator L, and the constant c ∈ R can be chosen arbitrarily.

Proof. Following [24], we express the Green’s function in terms of the orthonormal
eigenvectors:

gk,` =
M−1∑
m=0

N−1∑
n=0

cm,nvm,n (3.30)

with coefficients cm,n ∈ R. Plugging this into (3.28) yields

M−1∑
m=0

N−1∑
n=0

cm,nλm,n(vm,n)i,j = (δk,`)i,j −
1

MN
. (3.31)

After multiplying both sides with (vm′,n′)i,j for fixed (m′, n′) ∈ Γ, and summing up
over all pixels (i, j) ∈ Γ, we have

cm′,n′λm′,n′ = (vm′,n′)k,` −
1

MN

∑
(i,j)∈Γ

(vm′,n′)i,j. (3.32)

For m′ = n′ = 0, the eigenvalue λ0,0 as well as the right hand side become 0. Thus,
c0,0 can be chosen arbitrarily. This means that the Green’s function is unique up to
a constant c. For m′ > 0 or n′ > 0, we notice that the sum vanishes due to the fact
that the eigenvectors are orthogonal to the constant eigenvector. Thus, we obtain

cm,n =
1

λm,n
(vm,n)k,` . (3.33)

This concludes the proof.

We specify a canonic representative g0
k,` by setting the constant c := 0. As the

eigenvectors vm,n with (m,n) 6= (0, 0) of the discrete operator are orthogonal to v0,0,
this is equivalent to assuming 〈g0

k,`,v0,0〉 = 0. This shows that the obtained Green’s
functions g0

k,` have mean value zero. Example plots of Green’s functions are depicted
in Figure 3.1 and 3.2.

3.3.4 Efficient Computation of Inner Products

In many practical applications, it is necessary to compute the inner products of the
discrete Green’s functions with a fixed image. For example, this becomes obvious
with the following Theorem:

Theorem 3.11 (Solution of Discrete Problem via Inner Products). The solution of
the discrete problem Lu = a is given at a position (i, j) ∈ Γ by ui,j =

〈
g0
i,j,a

〉
.
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Figure 3.1. Example discrete Green’s functions for Laplacian AP on an image of
size 50×60. Left column: g025,30. Right column: g045,10. Top row: Homogeneous
Neumann boundary conditions. Bottom row: Periodic boundary conditions.

Proof. Recall from Section 3.3 that the solution of the discrete problem Lu = a is
given at a position (i, j) ∈ Γ by

ui,j =
∑

(k,`)∈Γ

ak,` (g0
k,`)i,j. (3.34)

We can reformulate this by employing the symmetry of the discrete Green’s functions,
see Theorem 3.7, and obtain:

ui,j =
∑

(k,`)∈Γ

ak,` (g0
i,j)k,` =

〈
g0
i,j,a

〉
. (3.35)

The preceding theorem shows that an efficient computation of the inner products is
very important as it directly leads to the solution of the Poisson equation for example.
In the following, we will thus investigate how the inner products can be obtained in a
fast way. The findings in the present Section are based on unpublished ideas and notes
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Figure 3.2. Example discrete Green’s functions for the biharmonic operator BP on
an image of size 50 × 60. Left column: g025,30. Right column: g045,10. Top row:
Homogeneous Neumann boundary conditions. Bottom row: Periodic boundary
conditions.

of Prof. Gerlind Plonka-Hoch, for which I explicitly want to express my gratitude.
Considering the inner product

〈
g0
i,j,a

〉
, we can insert the analytic expression of the

Green’s functions (cf. Theorem 3.10) and obtain:〈
g0
i,j,a

〉
=
∑

(k,`)∈Γ

ak,` (g0
i,j)k,`

=
∑

(k,`)∈Γ

ak,` ·

 M−1∑
m=0

N−1∑
n=0

(m,n)6=(0,0)

(
1

λm,n
· (vm,n)k,` · (vm,n)i,j

)

=
M−1∑
m=0

N−1∑
n=0

(m,n)6=(0,0)

(vm,n)i,j ·
1

λm,n
·
∑

(k,`)∈Γ

(
ak,` · (vm,n)k,`

)
︸ ︷︷ ︸

:=âm,n

 . (3.36)
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Algorithm 3.1. Fast Computation of Inner Products and Solution of Discrete Prob-
lem

Input: Image a.

Compute:

1. Transform a to frequency domain using the appropriate basis functions given
by the eigenvectors of the operator to obtain â.

2. Obtain â′ with Equation 3.37.

3. Apply the inverse frequency transform on â′.

Output: Inner products and solution u of discrete problem Lu = a as ui,j =
〈
g0
i,j,a

〉
for all (i, j) ∈ Γ.

As one can see, the expression âm,n only has to be computed once for all (m,n). The
resulting image â can then be reused to obtain the inner products for all (i, j) ∈ Γ.
Recall that the eigenvectors of the operators with homogeneous Neumann boundary
conditions are given by the basis vectors of the discrete cosine transform. Thus,
the term â can be interpreted as a basis transform into the cosine frequency domain.
There exist several methods to efficiently compute this discrete cosine transform [159].
Similarly, for periodic boundary conditions, the Fast Fourier Transform (FFT) can
be employed to efficiently compute the transform of a to the frequency domain [57].
Especially when we have an image grid which has a size of powers of 2, the FFT
algorithm performs very fast.

Based on â, we define a modified version â′ of it:

â′m,n =

{ 1
λm,n

âm,n if (m,n) 6= (0, 0),

0 if (m,n) = (0, 0).
(3.37)

This new term allows to write the inner product as〈
g0
i,j,a

〉
=

∑
(m,n)∈Γ

(vm,n)i,j · â′m,n =
∑

(m,n)∈Γ

(vi,j)m,n · â′m,n . (3.38)

Analogously, this can be interpreted as a back transformation from the frequency
domain to the spatial domain using the same basis vectors as before. To this end, the
same methods as for example the FFT can be employed to efficiently obtain the inner
products of all discrete Green’s functions with a. Besides these inner products, we
know from Theorem 3.11 that the very same procedure leads to the solution of the
discrete problem Lu = a. Algorithm 3.1 summarises the overall procedure.

Related Fourier approaches without discrete Green’s functions are known in the
literature from the field of numerical partial differential equations under the name
Fast Poisson Solvers [184, 193]. Thereby, the strategy is to express the solution u
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directly in terms of the corresponding eigenvectors.

3.3.5 Efficient Computation of Green’s Functions

In Section 3.3.3, we have found a nice representation of the discrete Green’s functions.
However, computing the double summation for obtaining the Green’s functions is very
time consuming. Especially when one is interested in computing the Green’s functions
for a large number of points or even all grid points - which is often the case in practical
scenarios - this can take several hours or even days depending on the image size. To
tackle this issue, we propose different strategies in the following which allow us to
obtain the individual Green’s functions in a much faster way.

Symmetry of Image Domain

First of all, we can exploit the symmetry of the rectangular image domain to reduce the
effort for computing all discrete Green’s functions by a factor of 4: Once the Green’s
function is computed for a specific source point (k, `) ∈ Γ, the Green’s functions for
the source points (M − k, `), (k,N − `), and (M − k,N − `) can be obtained by
mirroring g0

k,` along the x axis, the y axis and both axes, respectively.

Symmetry of Discrete Green’s Functions

Secondly, we can derive another speed-up strategy from the symmetry of the discrete
Green’s functions, cf. Theorem 3.7: After having computed one Green’s function for
a specific source point (k, `) ∈ Γ, we know the value of all Green’s functions at the
position (k, `). This allows to further reduce the computational effort. For example,
when one wants to obtain all discrete Green’s functions for MN pixel locations, one
does not have to compute the values for (MN)2 pixels, but only for (MN)·(MN+1)

2

pixels. This means we gain a speed-up factor of around 2.

Green’s Function in Frequency Domain

The considerations in Section 3.3.4 allow to come up with a very efficient way to
compute a discrete Green’s function. To this end, let us write the Green’s function as
an inner product with the Kronecker delta function:

(g0
k,`)i,j =

〈
g0
k,`, δi,j

〉
=
〈
g0
i,j, δk,`

〉
. (3.39)

From (3.36) we know that the inner product can be obtained by a transformation
of δk,` into a frequency domain. This frequency domain depends on the eigenvectors

vm,n of the operator. This leads to the transformed Kronecker delta function δ̂k,`:

(δ̂k,`)m,n =
∑

(i,j)∈Γ

(δk,`)i,j(vm,n)i,j = (vm,n)k,`. (3.40)
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Algorithm 3.2. Generation of Discrete Green’s Function from Frequency Domain

Input: Source point (k, `) ∈ Γ.

Compute:

1. Obtain δ̂′k,` given in (3.41).

2. Compute back transformation of δ̂′k,` from frequency domain to spatial domain.

Output: Discrete Green’s functions g0
k,`.

As a result, the modified version δ̂′k,` of δ̂k,` as described in Equation 3.37 can be
written down explicitly:

(δ̂′k,`)m,n =

{ 1
λm,n

(vm,n)k,` if (m,n) 6= (0, 0),

0 if (m,n) = (0, 0).
(3.41)

Note that δ̂′k,` can be considered as the discrete Green’s function in the frequency
domain. The sought discrete Green’s function is thus simply given as a back trans-
formation of δ̂′k,` to the spatial domain:

g0
k,` =

∑
(m,n)∈Γ

(vi,j)m,n · (δ̂′k,`)m,n . (3.42)

As discussed in Section 3.3.4, there are very fast algorithms such as the FFT to
perform this back transformation. Thus, we are able to compute a discrete Green’s
function in an efficient way. An overview over the complete procedure is given in
Algorithm 3.2. As an example, for an image of size 512×512, the computation of one
Green’s function in a naive way by computing the double summation in Section 3.3.3
requires 60 seconds. The presented new approach only needs 0.03 seconds. This shows
that we have gained a speed-up by a factor of 2000. Although 0.03 seconds might seem
as a very short time, note that the computation of a large number of discrete Green’s
functions still requires a lot of time. In practice it is common that one has to compute
tens of thousands of Green’s functions, leading to runtimes of several minutes.

Generation of Discrete Green’s Functions

A further strategy is to generate all discrete Green’s functions from only one precom-
puted reference Green’s function. Thereby, the boundary conditions play an important
role. I would like to thank Prof. Joachim Weickert for contributing this significant
idea which is responsible for additional tremendous accelerations.

For the moment, let us consider periodic boundary conditions. We will see that
Green’s functions for this type of boundaries allow to come up with an efficient strat-
egy to generate Green’s functions with homogeneous Neumann boundary conditions.
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Periodic boundary conditions have the advantage that they inherently possess a re-
curring extension that allows for a simple trick: Given a reference Green’s function
g0

0,0 at the pixel position (0, 0) ∈ Γ, one can generate all other Green’s functions with
periodic boundary conditions by simply shifting the reference Green’s function to the
respective source points:

Theorem 3.12 (Generation of Discrete Green’s Functions for Periodic Boundary
Conditions). Let g0

0,0 be the discrete Green’s function for an operator with periodic
boundary conditions and the source point (0, 0). Then the discrete Green’s function
g0
k,` for this operator at a position (i, j) ∈ Γ is given by

(g0
k,`)i,j = (g0

0,0)(k−i) modM, (`−j) modN . (3.43)

Proof. Assuming a periodic extension of g0
0,0, we can write

(g0
0,0)(k−i) modM, (`−j) modN = (g0

0,0)k−i, `−j . (3.44)

Shifting the grid by i and j in x and y direction again leads to a periodic Green’s
function on Γ, with a source point now being at (k, `).

This theorem allows us to instantly access all discrete Green’s functions for an oper-
ator with periodic boundary conditions from only one precomputed Green’s function.
Of course, choosing the source point (0, 0) for the reference Green’s function is arbi-
trary. We could also select any other point for this purpose and adapt the shifting
accordingly.

When it comes to homogeneous Neumann boundary conditions, we cannot obtain
the discrete Green’s function by a pure shift. However, we can utilise the periodic
Green’s functions for this purpose. Thereby, a specific periodic discrete Green’s func-
tion again serves a reference function. We call this key ingredient of the strategy the
Green’s mother function. This name is inspired by the well known wavelet transforms,
where the basis functions are obtained as rescaled and shifted versions of a so called
mother wavelet [128]. Before we can define the Green’s mother function, a so called
extended operator has to be defined:

Definition 3.13 (Extended Operator). Let an image grid of size M ×N and an op-
erator L incorporating homogeneous Neumann boundary conditions be given. Then,
the extended operator Lext of L is defined as the operator which implements the same
differential operator as L, with the difference that it incorporates periodic boundary
conditions and is defined on a larger grid Γext of size 2M × 2N .

We can now introduce the definition of the Green’s mother function (GMF):

Definition 3.14 (Green’s Mother Function (GMF)). The Green’s mother function
G of an operator L is the discrete Green’s function g0

0,0 of the extended operator Lext
of L.
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Figure 3.3. Sketch of generation of a discrete Green’s function gk,` for homogeneous
Neumann boundary conditions from a Green’s function Gk,` with periodic boundary
conditions on a larger grid.

With the help of the GMF we can generate all discrete Green’s functions for an
operator L with homogeneous Neumann boundary conditions with only a few basic
operations. This works as follows. In a first step, we employ Theorem 3.12 to obtain
the discrete Green’s function Gk,` of the extended operator Lext of L for the source
point (k, `) ∈ Γ. Note that Gk,` is defined on the large grid Γext. This Green’s
function is processed further to obtain the sought Green’s function. A sketch of this
generation procedure is depicted in Figure 3.3. On the left, the image containing
the discrete Green’s function Gk,` is shown. The image domain is split into 4 parts,
yielding the smaller images u1, . . . ,u4. By mirroring these images along the centre
in x and y direction, respectively, one can obtain an alignment of the four depicted
points corresponding to the point (i, j). This leads to the four new images ũ1, . . . , ũ4

which live on the original grid Γ. After a pixelwise summation over these four images
one obtains a final image g0

k,`. More precisely, this image is computed at a position
(i, j) ∈ Γ as

(g0
k,`)i,j := (ũ1)i,j + (ũ2)i,j + (ũ3)i,j + (ũ4)i,j

= (u1)i,j + (u2)M−1−i,j + (u3)i,N−1−j + (u4)M−1−i,N−1−j

= (Gk,l)i,j + (Gk,l)2M−1−i,j + (Gk,l)i,2N−1−j + (Gk,l)2M−1−i,2N−1−j . (3.45)

As it turns out, this image gk,` is the desired discrete Green’s function for the oper-
ator L with homogeneous Neumann boundary conditions. This will be shown in the
following theorem.

Theorem 3.15 (Generation of Discrete Green’s Functions for Homogeneous Neu-
mann Boundary Conditions). The obtained image g0

k,` in Equation 3.45 is the dis-
crete Green’s function corresponding to the operator L with homogeneous Neumann
boundary conditions.

Proof. We have to check that g0
k,` fulfils Equation 3.28. We know that Gk,` is the
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discrete Green’s function of the extended operator Lext of L on the large grid Γext.
Thus, we know from (3.28) that the following holds true for (i, j) ∈ Γext:

(LextGk,`)i,j = (δk,`)i,j −
1

2M · 2N
. (3.46)

With this, we compute for (i, j) ∈ Γ:

(Lg0
k,`)i,j = (L(ũ1 + ũ2 + ũ3 + ũ4))i,j

= (Lũ1)i,j + (Lũ2)i,j + (Lũ3)i,j + (Lũ4)i,j

= (Lu1)i,j + (Lu2)M−1−i,j + (Lu3)i,N−1−j + (Lu4)M−1−i,N−1−j . (3.47)

The individual images u1, . . . ,u4 can be extended to the large grid Γext by mirroring
them along the two axes similar to the sketch in Figure 3.3. Let us denote the resulting
extended images by U1, . . . ,U4. Note that by construction these extended images
inherently fulfil both homogeneous Neumann boundary conditions at the mirror axes
as well as periodic boundary conditions at the boundaries of the extended grid. Thus,
we can replace the operator L by its extended variant and compute:

(Lg0
k,`)i,j = (LextU1)i,j + (LextU2)i,j + (LextU3)i,j + (LextU4)i,j

= (LextGk,`)i,j + (LextGk,`)2M−1−i,j

+ (LextGk,`)i,2N−1−j + (LextGk,`)2M−1−i,2N−1−j

= (δk,`)i,j + (δk,`)2M−1−i,j + (δk,`)i,2N−1−j

+ (δk,`)2M−1−i,2N−1−j −
4

4MN
. (3.48)

We know that (k, `) ∈ Γ. Thus, the Kronecker delta function can only be non-zero
for one Kronecker delta function, which leads to:

(Lg0
k,`)i,j = (δk,`)i,j −

1

MN
(3.49)

As we can see, the generated image g0
k,` fulfils the desired linear system of equations.

Thus, it is the desired discrete Green’s function.

To summarise, all the discrete Green’s functions for homogeneous Neumann bound-
ary conditions can be generated from the GMF - the Green’s mother function. This
is achieved with a few basic operations which can be performed very fast. The GMF
only has to be computed once in the beginning, which can be done with the strategy
presented in Section 3.3.5.

A summary over all individual steps on how to obtain the discrete Green’s func-
tions for homogeneous Neumann boundary conditions from the GMF is shown in
Algorithm 3.3. With this strategy, one can generate the discrete Green’s functions for
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Algorithm 3.3. Generation of Discrete Green’s Function for Homogeneous Neumann
Boundary Conditions from the GMF

Input: Source point (k, `) ∈ Γ, Green’s mother function G.

Compute:

1. Generate Gk,` by shifting G to the position (k, `) using Theorem 3.12.

2. Compute g0
k,` from Gk,` with (3.45).

Output: Discrete Green’s functions g0
k,`.

all pixels in a matter of seconds.

3.4 Inpainting with Green’s Functions

Using the presented theory, it is possible to describe the solution of the discrete
inpainting problem in terms of the discrete Green’s functions. To do so, we rewrite
the inpainting problem in Equations (2.10) and (2.11) such that it has the form as
in (3.12). Thereby, the right hand side a is constructed such that it is zero at all
non-mask points, while its values at all mask points (i, j) ∈ K are unknown and have
to be determined later. The new inpainting problem reads as

Lu = a , (3.50)

subject to

ui,j = fi,j if (i, j) ∈ K , (3.51)

ai,j = 0 if (i, j) ∈ Γ\K . (3.52)

We know that the operator L has a singular eigenvalue with corresponding constant
eigenvector v0,0. Thus, we know from the Fredholm alternative that the solutions
of (3.50) only exist if the solvability condition (3.17) is fulfilled:

〈v0,0, a〉 = 0 ⇐⇒
∑

(k,`)∈K

ak,` = 0, (3.53)

If this is the case, the solutions are given as

ui,j =
∑

(k,`)∈Γ

ak,` · (g0
k,`)i,j + c , (3.54)

with an unknown constant c ∈ R, comprising all constants of the individual Green’s
functions. The constraint (3.52) leads to vanishing entries of a at all non-mask points.
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The solution can thus be restricted to the set of all mask points:

ui,j =
∑

(k,`)∈K

ak,` · (g0
k,`)i,j + c . (3.55)

This representation shows that the inpainting solution can be composed by a small
number of atoms, namely the discrete Green’s functions corresponding to the mask
pixels. In other words, the discrete Green’s functions g0

k,` corresponding to (k, `) ∈ K
can be seen as a generating system for the space of all inpainting solutions on Γ with
zero mean. This enables us to connect PDE based inpainting ideas with the concept
of sparsity.

Together with the solvability condition (3.53), Equation 3.51 specifies the remaining
unknown coefficients c and ak,`, (k, `) ∈ K, and hence the inpainting result uniquely.
Denoting the 2D pixel indices of the mask points by m1, . . . ,mL, with L := |K|, we
can set up the linear system of equations for finding the unknown values of a and c:

(g0
m1

)m1 (g0
m2

)m1 . . . (g0
mL

)m1 1
(g0
m1

)m2 (g0
m2

)m2 . . . (g0
mL

)m2 1
...

...
. . .

...
...

(g0
m1

)mL (g0
m2

)mL . . . (g0
mL

)mL 1
1 1 . . . 1 0




am1

am2

...
amL
c

 =


fm1

fm2

...
fmL

0

 . (3.56)

For solving this system of equations, we recommend the QR algorithm since it
does not create error accumulations [165]. Once the values for c and am1 , . . . , amL
are computed, the inpainting solution u is given exactly by (3.55). For this purpose,
the discrete Green’s functions can be obtained with the help of the Green’s mother
function and Theorem 3.15. As an alternative to the superposition, Algorithm 3.1
can be employed to obtain the solution of the reformulated discrete problem (3.50).
Subsequently adding the constant c yields the inpainting solution. This approach
has the advantage that it avoids evaluating the discrete Green’s functions at non-
mask locations. For the reader’s convenience, Algorithm 3.4 summarises the complete
procedure of the presented inpainting strategy.

As a remark, the mean value of the final inpainting is given by c, because the mean
value of the discrete Green’s functions equals 0 as shown earlier. Moreover, note that
the coefficients am1 , . . . , amL directly correspond to the derivative information Lu of
the inpainting. From Equation (3.54) we know that these coefficients together with
the mean value c uniquely specify the inpainting. On the other hand, we know that
we can uniquely describe an inpainting by prescribing tonal values at the mask points.
Thus, we have found two fundamentally distinct possibilities to describe the very same
inpainting by specifying different information at the mask locations.

A decisive advantage of our inpainting algorithm with Green’s functions is that
it reveals the influence of each mask point on the overall inpainting result as it is
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Algorithm 3.4. Inpainting with Green’s functions.

Input: Image f at specified mask K.

Compute:

1. Obtain the Green’s mother function as described in Section 3.3.5.

2. Compute the Green’s functions g0
k,` for all (k, `) ∈ K from the Green’s mother

function with Algorithm 3.3.

3. Solve (3.56) to find the unknown coefficients of a and c .

4. Obtain the solution u as the superposition given in (3.55), or by employing
Algorithm 3.1 and subsequently adding c.

Output: Inpainting solution u.

described by the respective Green’s function. Obviously, the complexity for finding a
solution increases with the number of mask points. This means that this approach is
faster if the specified mask becomes sparser. Interestingly, this is contrary to standard
iterative approaches for solving the discrete inpainting problem. Here, a sparser mask
usually leads to increased runtimes, because the diffusion of the prescribed data over
larger parts of the image takes more time. Since one typically deals with sparse
masks in image compression scenarios, Green’s functions can thus help to improve
the efficiency. As a remark, one has to mention that the discrete Green’s functions so
far are only defined for linear operators, and consequently the preceding reformulation
of the inpainting problem is only valid for such inpainting operators.

3.5 Runtime Comparison

To evaluate the performance of the inpainting strategy with discrete Green’s functions,
the following experiment is conducted with a C implementation on a desktop PC
with Intel Xeon processor (3.2GHz). For different masks of densities ranging from
0.01% to 16%, we compute the corresponding inpainting solutions for harmonic and
biharmonic inpainting. Thereby, the grey values of the image trui are prescribed at
the mask locations. The masks are the same as the ones in Section 2.5, i.e. they are
obtained with the approach of Belhachmi et al.. For some density values those masks
have already been shown in Figure 2.4. The runtimes for the full inpainting with
discrete Green’s functions is shown in Figure 3.4. Note that the required seconds for
the inpaintings are plotted on a logarithmic scale. It is not surprising that the runtime
is larger the more mask points are present as the system matrix for determining the
coefficients of the discrete Green’s functions becomes larger. Note however that the
runtime is independent of the chosen inpainting operator.

For the sake of comparison the inpainting is also computed with a bidirectional
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multigrid method. However, one has to keep in mind one major difference between
the two approaches: While the discrete Green’s functions allow to obtain an analytic
inpainting solution, the multigrid solver only yields an approximate solution. By
choosing appropriate numbers of outer cycles and inner iterations in the multigrid
approach, it is possible to steer the precision of the solution. However, the very
exact solution can hardly be obtained by using such a numerical solver. Thus, in
this experiment, the runtimes for different precisions are evaluated. Unfortunately,
is is not obvious how to choose the optimal number of cycles and inner iterations
automatically. In particular, it is hard to say if more cycles and less inner iterations
are better than less cycles with more inner iterations. Thus, for this experiment,
the parameters are optimised in the following way. Given a prescribed allowed MSE
value e, the inpaintings for many different combinations of inner and outer cycles are
computed. Then, it is checked for each inpainting u if it achieves the desired precision
compared to the reference ground truth inpainting uref obtained by inpainting with
the discrete Green’s functions. This test is passed if MSE(u,uref) ≤ e and at the same
time

∣∣MSE(f ,u)−MSE(f ,uref)
∣∣ ≤ e, with f being the original image. Both tests are

necessary to guarantee for a meaningful judgement of the inpainting quality. Among
all the inpaintings which successfully pass the test, one chooses the corresponding
parameter combination which allows the fastest inpainting. This procedure allows to
select the optimal parameters of the multigrid algorithm for a certain precision. The
resulting multigrid parameters is given in Table 3.1 for the harmonic inpainting and
the corresponding results for the biharmonic operator are shown in Table 3.2.

The corresponding runtime results with the multigrid approach are also plotted in
Figure 3.4. As one can see, the full inpainting relying on discrete Green’s functions is
faster compared to the multigrid approaches only for smaller mask densities and if high
accuracies are desired. While the inpainting with discrete Green’s functions is much
faster for smaller densities, the multigrid approaches perform better for larger densities
in general. For both harmonic and biharmonic inpainting, the multigrid approaches
are able to yield an approximate solution very fast, assuming the inner and outer
cycles are optimally chosen. While the Green’s approach requires the same amount
of time for both inpainting operators, the multigrid approach needs different times.
In particular, especially for smaller densities and higher precisions, the multigrid is
faster with the biharmonic operator compared to the harmonic operator, while less
time is needed with the harmonic operator for lower precisions. In other words, the
standard deviation of the inpainting time for different precisions with the multigrid
approach is smaller for the biharmonic operator than for the harmonic operator.

In the full inpainting with the discrete Green’s functions, the coefficients for the
individual discrete Green’s functions have to be computed first by solving (3.56) before
the inpainting is obtained as the superposition of the discrete Green’s functions. This
first step is very time-consuming. Hence, it would be beneficial if one could leave this
step away by assuming that the coefficients c and am1 , . . . , amL−1

are already given.
This could for instance be the case in a compression framework where those values are

61



Chapter 3. Discrete Green’s Functions for PDE-based Inpainting

Table 3.1. Number of cycles / inner iterations of fastest multigrid performances for
homogeneous diffusion inpainting with different mask densities and precisions.

MSE
density 0.01 0.5 1 2 4 8 16

1 3 / 5 3 / 2 3 / 2 3 / 2 2 / 2 1 / 3 1 / 2

0.1 4 / 8 4 / 2 4 / 3 4 / 2 4 / 2 3 / 2 1 / 3

0.01 5 / 11 4 / 14 5 / 5 4 / 14 5 / 2 4 / 2 3 / 2

0.001 5 / 88 6 / 5 5 / 21 5 / 17 5 / 8 5 / 3 3 / 5

0.0001 6 / 99 6 / 18 6 / 23 7 / 9 5 / 20 5 / 9 3 / 12

Table 3.2. Number of cycles / inner iterations of fastest multigrid performances for
biharmonic inpainting with different mask densities and precisions.

MSE
density 0.01 0.5 1 2 4 8 16

1 4 / 6 2 / 5 3 / 3 2 / 3 2 / 3 1 / 5 1 / 3

0.1 4 / 9 2 / 17 5 / 3 2 / 15 2 / 6 2 / 3 1 / 5

0.01 5 / 9 2 / 86 6 / 3 2 / 20 4 / 5 2 / 5 2 / 5

0.001 5 / 14 4 / 17 6 / 5 4 / 5 4 / 8 2 / 15 2 / 8

0.0001 5 / 21 4 / 52 6 / 8 3 / 30 4 / 11 3 / 8 4 / 3

stored instead of the tonal data. As we know from Section 3.4 both representations
allow to recover the very same inpainting solution. Note that the amount of data
which needs to be stored is the same. In particular, the missing coefficient amL can
be recovered with the help of the solvability condition (3.53).

Then, the inpainting is directly given as the solution of the discrete problem (3.50),
which can be obtained in two different ways. The most straightforward way is to
assemble it as superposition of the discrete Green’s functions according to Equa-
tion (3.55). In Figure 3.4 this approach is denoted as the ‘assembled Green’s func-
tions’. As one can see, the time for the näıve computation of the superposition linearly
depends on the density.

An alternative way to obtain the solution from the coefficients without explicitly
accessing any Green’s function is to employ Algorithm 3.1. This allows to obtain the
inpainting in constant time with the help of the fast computation of the inner products
in the frequency domain. This is also demonstrated in Figure 3.4: Independent of the
mask density, it constantly requires only around 0.05 seconds to yield the inpainting
solution, thus allowing for a real-time decoding on the CPU. If one is interested in
at least a small amount of accuracy, this approach the most preferable one from all
presented algorithms, assuming one is free to choose the data to be stored.
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Figure 3.4. Runtime comparison of different inpainting strategies for various mask
densities. Left: Harmonic inpainting. Right: Biharmonic inpainting.

In summary, there are two decisive advantages of the inpainting with discrete Green’s
functions compared to the multigrid approach. First of all, the complete approach
is parameter-free. In particular, no adaptations need to be done for different mask
densities or operators. The multigrid approach is only performing well when those
parameters are chosen in a good way. One could think of learning those parameters,
but this is very cumbersome. In practice, one thus often fixes them to some values
which perform good in most applications. Another benefit of the approach with the
discrete Green’s functions lies in its enormous speed if one is free to store the coef-
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ficients instead of the tonal data. In that case, it yields the precise solution up to
machine precision in constant time independent of the mask density or the inpainting
operator. In particular, it is able to outperform the multigrid approach for small
densities and even for larger densities if a higher accuracy is desired. Moreover, it
is straightforward to extend the inpainting with discrete Green’s functions for higher
order inpainting operators by adapting the power of the eigenvalues accordingly. Ev-
erything else remains the same. In contrast, it requires much more effort to enable
higher order operators in the multigrid approach.

3.6 Conclusion

Since one decade, the paradigms of sparse signal processing and inpainting methods
for compact image representations have been enjoying a successful development. Al-
though they often pursue similar goals, it is surprising that this has happened without
any interaction.

The key concept for understanding this relation was the notion of discrete Green’s
functions. They serve as atoms in a dictionary. Only a single atom is needed to
describe the global influence of one mask pixel. This allows to reinterpret successful
inpainting methods with linear differential operators in terms of sparsity. Moreover,
discrete Green’s functions also offer an interesting interpretation as columns of the
Moore–Penrose pseudo-inverse of the discretised (singular) differential operator.

The framework is fairly general: It is directly applicable to any linear self-adjoint
differential operator with a known eigendecomposition. We have illustrated this by
means of the Laplace operator with homogeneous Neumann boundary conditions and
its biharmonic counterpart.

An important result of our Green’s function research is the fact that it allows to
have a fast access to the exact solution of the discrete inpainting problem, in particular
when the coefficients of the discrete Green’s functions are already known. For this
purpose, we have derived several efficient strategies for performing various tasks. In
Chapter 6, we will exploit this property to obtain a fast decoding within an image
compression application. Moreover, we will see in the next chapters that the presented
theory will also lead to practical advantages within the encoding step, as for example
for the tonal or spatial optimisation tasks.

It is worth mentioning that the representation of PDE-based inpainting in terms
of Green’s functions also connects PDE-based image compression to scattered data
interpolation with radial basis functions [38]. Many of these basis functions are given
as continuous Green’s functions on an unbounded domain. In the presented framework
we have taken into account the discreteness of digital images and have incorporated
image boundaries in a natural way.
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Chapter 4

Tonal Optimisation

4.1 Motivation

In PDE-based compression, it is possible to freely choose the mask points and the
corresponding tonal values for the inpainting. This enables us to optimise this data
in a way such that we obtain the best possible inpainting result. In other words, the
reconstruction given by the selected data should be as close as possible to the original
image. In particular, instead of relying on the tonal values of the original image, we
are free to prescribe modified values at the mask locations. Obviously, this introduces
a small local error at the mask points, but hopefully leads to an improved overall
approximation.

As mentioned in Section 1.2.2, it would be best to optimise the tonal values in
combination with other components such as the mask. However, this chapter mainly
focuses on a pure tonal optimisation with a fixed prescribed mask. In the end, it will
also be discussed how quantisation can be incorporated into the optimisation process.
Based on those results, we will thoroughly discuss the problem of finding a mask in
Chapter 5.

Formally, one can describe the tonal optimisation problem for a greyscale image
as follows. Colour images can be treated analogously by considering each channel
separately. Let c be a fixed mask and L a given linear inpainting operator. Our goal
is to find optimal grey values g at the mask positions such that the inpainting result
is as close as possible to a prescribed original image f . As described in Section 2.3,
the function r (c, g) is defined as the function yielding the inpainting solution for a
given mask and some tonal values. The optimised grey-values g are then given as the
solution of the least squares problem

arg min
g∈R|Γ|

1

2
‖r (c, g)− f‖2

2 . (4.1)

Obviously, the values of g at all non-mask points do not influence the inpainting result
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and can thus be chosen freely. For the sake of simplicity, we typically set gi = 0 for
i ∈ Γ\K and only care about the values at the mask locations K. In the following,
different strategies to find a solution of the least-squares problem (4.1) are presented
and compared.

The outline of this chapter is as follows. First, we consider an approach relying on
inpainting echoes in Section 4.2. A gradient descent strategy for the purpose of tonal
optimisation is presented in Section 4.3. Afterwards, two approaches relying on con-
jugate gradients and primal dual methods are discussed in Sections 4.4 and 4.5. Last
but not least, Section 4.5 demonstrates the usefulness of discrete Green’s functions to
find optimised tonal values. Experiments are conducted in Section 4.7. In the subse-
quent Sections 4.8 and 4.9, we consider how the tonal optimisation can be performed
for a nonlinear inpainting operator or with incorporated quantisation. Finally, the
chapter is concluded in Section 4.10.

4.2 Tonal Optimisation with Inpainting Echoes

Historically, this approach has been the first to be proposed for the purpose of tonal
optimisation in PDE-based inpainting, and is published in [4]. It bases on the so-
called inpainting echoes which are defined as follows. Let ei be the i-th canonical
basis vector in R|Γ|, i.e. (ei)j = 1 for i = j and (ei)j = 0 for i 6= j. Then, the
inpainting echo bi for a mask point i ∈ K is defined as bi := r (c, ei). With the help
of the inpainting echoes, the solution u of the inpainting problem can be rewritten by
employing the linearity of r:

r (c, g) = r

(
c,
∑
i∈Γ

giei

)
=
∑
i∈Γ

gir (c, ei) =
∑
i∈Γ

gibi. (4.2)

As already mentioned, we are only interested in the values of g at the mask location,
and can ignore the vanishing contribution of the non-mask points:

r (c, g) =
∑
i∈K

gibi. (4.3)

Writing the inpainting echoes at the mask location into the columns of a matrix B,
and defining gK ∈ R|K| as the vector g restricted to K, one can write

r (c, g) = BgK , (4.4)

which leads to a reformulation of (4.1):

arg min
gK∈R|K|

1

2
‖BgK − f‖2

2 . (4.5)
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The solution of this least-squares problem is given by solving the corresponding normal
equations:

B>BgK = B>f . (4.6)

In [1], it is shown that the matrix B>B is invertible. Hence, there exists a unique
solution to this problem. To find the solution, one possibility is to solve the linear
system of equations (4.6) with direct methods such as LU or QR decomposition [90].
Unfortunately, this is not the best idea as one first has to set up the large system
matrixB>B of size |K|×|K|. This requires a high computational effort for computing
the individual entries given by inner products. Alternatively, iterative solvers have
been shown to be much more efficient for solving the normal equations. In [4] for
example, we proposed a randomised Gauß–Seidel scheme for this purpose, which works
as follows. Starting with the original values of the original image, i.e. g0 = Cf , the
grey values at the individual mask points are repeatedly updated one after another
until convergence. Given the intermediate values gk at step k, the value at a mask
point i is updated via the Gauß–Seidel step

gk+1
i = gki +

b>i
(
f − uk

)
‖bi‖2

2

, (4.7)

with the Euclidean norm of an image a defined as ‖a‖2 :=
√
〈a, a〉. As the inpainting

echoes are needed in each and every iteration step, it makes sense to precompute them
once in the beginning to avoid unnecessary redundant calculations. An attenuation
factor ωk can be added for each iteration to prevent over- or under-shoots during the
optimisation. This can be seen as a variant of a successive over-relaxation scheme
(SOR) [164] with under-relaxation instead of over-relaxation. It makes sense to only
activate the attenuation in the beginning, while avoiding it after a few iterations such
that it does not slow down the convergence. Thus, a value of ωk = 0.8 for k ∈ {1, 2},
and ωk = 1 for k ≥ 2 turns out to give a good performance. The complete algorithm
for the tonal optimisation with inpainting echoes is presented in Algorithm 4.1.

Unlike for the discrete Green’s functions, there exists no analytic representation of
the inpainting echoes. For this reason, the above method suffers from a relatively high
computational cost to obtain the individual echoes. Although one can precompute and
reuse them for the subsequent iteration steps, they still need to be computed at least
once. This is particularly inefficient when a large amount of mask points is present.
On an image of size 256×256 for example, the computation of the inpainting echoes for
a mask with a density of 4% requires to compute 2621 echoes. This can last several
minutes on a modern computer. Moreover, precomputing inpainting echoes leads
to high memory requirements. Thus, alternative more efficient tonal optimisation
strategies will be discussed in the next Sections.

Despite the aforementioned drawbacks, the inpainting echoes still offer great advan-
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Algorithm 4.1. Tonal Optimisation with Inpainting Echoes.

Input: Original image f , mask c, mask indices K.

Initialisation: Inpainting u = r (c,f), grey values g0 = Cf , ε > 0.

Compute:

For all i ∈ K:

Compute the inpainting echo bi = r (c, ei).

Repeat for k ≥ 0:

For all i ∈ K:

1. Compute the correction term αk =
b>i (f−uk)
|bi|2 .

2. Update the grey value gk+1
i = gki + ωk · α.

3. Update inpainting uk+1 = uk + ωk · α · bi.

until the stopping criterion ‖uk+1 − uk‖2
2 < ε is fulfilled.

Output: Optimised grey values g and corresponding inpainting u.

tages. For instance, they allow to incorporate a quantisation into the tonal optimisa-
tion as we will see in Section 4.9. Moreover, inpainting echoes are very useful when
it comes to the optimisation of parameters such as the number of quantisation levels:
Once the echoes are computed, all further steps can be performed very fast. Last but
not least, it is important to mention that once the inpainting echoes are computed,
finding optimal tonal values becomes very easy. The reason for this is that the system
matrix B of the associated linear least squares problem has a low complexity. This
fact becomes obvious when considering its condition numbers in Table 4.1.

Table 4.1. Condition number of matrix B containing inpainting echoes as columns.
The echoes locations are given by different masks with varying density.

mask density 0.01 0.5 1 2 4 8 16

harmonic 10.36 12.11 11.56 10.99 9.37 7.70 5.68

biharmonic 4.11 14.20 14.38 12.91 14.37 11.78 7.87

Obviously, these numbers show that it is not hard to solve the arising linear system
of equations once the inpainting echoes are computed. This is a major difference
to the condition number of the inpainting matrix itself which we have considered
in Section 2.5. Thus, all standard numerical solvers should be able to handle this
problem easily.
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4.2. Tonal Optimisation with Inpainting Echoes

4.2.1 Examples

We are now in a position to evaluate the benefits of the tonal optimisation. To
this end, we consider the example results in Figures 4.1 for homogeneous diffusion
inpainting. Examples for biharmonic inpainting are depicted in Figure 4.2. In both
cases, the original image trui shall be approximated by using different prescribed
masks. Besides a random mask and a mask given on a regular grid, also optimised
masks for the respective inpainting operators are considered. The latter masks result
from probabilistic optimisation strategies [1] which will be discussed in more detail
in Chapter 5. All masks contain the same amount of mask points, which is 4% of all
pixels. For the given masks, the inpainting results with both the grey values of the
original image as well as the optimised grey values are depicted. Note that the focus
of this experiment purely lies in the analysis of the tonal optimisation itself, and not
in evaluating the influence of the mask or inpainting operator on the reconstructions.
This will be the topic of Chapter 5.

As a general observation, it always pays off to perform a tonal optimisation as it
helps to tremendously improve the quality of the reconstructions. There is a huge
quality gain for all mask configurations and for both inpainting operators. This be-
comes obvious both from a visual inspection as well as from the error values. One can
observe that the error is reduced more the worse the original inpainting is. Never-
theless, even though the inpainting with the original grey values is already very good
for the optimised masks, the tonal optimisation is able to further improve the results.
This shows that a tonal optimisation is an essential tool for image compression.

4.2.2 Inpainting Echoes vs. Discrete Green’s Functions

Similar to the discrete Green’s functions, the inpainting echoes can be considered as
atoms in a dictionary which allow to assemble the inpainting result. However, there is
one major difference: Besides the inpainting operator, boundary conditions and image
size, the discrete Green’s functions only depend on the sole location of the respective
mask point. Thus, they can be considered as the single influence of a mask point on
the overall inpainting result. In contrast, the inpainting echoes additionally depend
on the complete mask configuration. In particular, the neighbouring mask points
have a large impact on the echoes as they represent homogeneous Dirichlet boundary
conditions.

To obtain an impression of this effect, Figure 4.3 shows some example inpainting
echoes for two different mask configurations. As expected, the inpainting echoes have
a peak at the mask point for which they are computed. This mask point will be called
the ‘main mask point’ in the following. Moreover, there is a clear difference between
the harmonic and biharmonic inpainting echo. While the harmonic echo fulfils the
maximum-minimum principle, the biharmonic echo clearly exceeds the range of [0,1].
Similar to the discrete Green’s functions, the harmonic echo shows a visible peak at
the centre, while the biharmonic echo reveals a higher smoothness at all locations.
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random mask MSE: 262.19 MSE: 148.26

regular mask MSE: 185.75 MSE: 102.92

optimised mask for MSE: 41.92 MSE: 27.24
harmonic inpainting

Figure 4.1. Examples of tonal optimisation with harmonic inpainting. Left col-
umn: Different masks with the same density of 4%. Centre column: Inpainting
with original grey values as Dirichlet conditions. Right column: Inpainting after
tonal optimisation.
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random mask MSE: 173.61 MSE: 86.04

regular mask MSE: 109.63 MSE: 74.21

optimised mask for MSE: 20.89 MSE: 16.73
biharmonic inpainting

Figure 4.2. Examples of tonal optimisation with biharmonic inpainting. Left col-
umn: Different masks with the same density of 4%. Centre column: Inpainting
with original grey values as Dirichlet conditions. Right column: Inpainting after
tonal optimisation.
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Figure 4.3. Example of inpainting echoes for the mask point (25, 30) in an image
of size 50 × 60. Top row: Given masks. Centre row: Corresponding echoes with
harmonic inpainting. Right row: Same with biharmonic inpainting.

For both the harmonic and biharmonic inpainting one can clearly see the influence
of the surrounding mask points where the inpainting echoes are equal to zero. They
apparently try to tear the echoes down towards zero. The echoes decay more or less
depending on the distance of the mask points. For instance, when there is a large
gap between the main mask point and the surrounding points, the echoes can be very
broad. On the other hand, the decay can also be very rapid when the mask is dense
around the main mask point. This shows an interesting property of the inpainting.
On the one hand, the mask points have in theory a global influence on the inpainting
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4.2. Tonal Optimisation with Inpainting Echoes

given by the discrete Green’s functions. On the other hand, the actual influence of
a grey value on the final inpainting result can be considered very local in practice.
The surrounding points of the main mask point seemingly represent an artificial soft
boundary of the influence.

4.2.3 Local Approximation of Inpainting Echoes

We have seen in Section 4.2.2 that the influence of a main mask point is restricted
by the surrounding mask points. This observation suggests the following strategy to
speed up the computation of the inpainting echoes. Instead of computing the echoes
at all image pixels, it might be a good idea to restrict them to their respective main
region of influence. This avoids the effort to compute the echoes at locations where
the main mask point does not have a notable influence at all: The value of the echo
can directly be set to zero at those locations.

To identify the support of an inpainting echo, we rely on the well-known Voronoi
diagram named after Georgy Voronoi [200]. This diagram allows to find the main
region of influence for each mask point by partitioning the image domain into dis-
joint parts. Thereby, each region is assigned all locations which are closer to the
corresponding mask point than to any other mask point. These individual areas are
also called Voronoi cells in the literature. An example of such a Vornonoi diagram is
depicted in Figure 4.4. Note that the computation of the Voronoi diagram is not very
time consuming 1.

Intuitively, an inpainting echo is most dominant within the Voronoi cell of its main
mask point. The influence is then reduced in the neighbouring Voronoi cells as the
corresponding mask points have a higher influence. By recursively following this
reasoning, the influence becomes smaller and smaller the more cells have to be passed.
Thus, it seems to be a straightforward idea to restrict the domain for computing an
inpainting echo to a certain neighbourhood determined by the Voronoi cells.

It is clear that the restriction of the inpainting echo computation to a smaller
region leads to an approximation. If one is interested in the full precision, the echoes
have to be computed on the complete image domain. Nevertheless, the hope is to
find a good trade-off between quality and performance. This is evaluated in the
following experiment. For the original image trui and the optimised masks shown in
Figures 4.1 and 4.2, a tonal optimisation is performed using approximated inpainting
echoes. Both the harmonic as well as the biharmonic inpainting are considered. For
a given neighbourhood size d, each individual echo is computed within the region
given by joining all Voronoi cells that can be reached without crossing more than
d cell boundaries. Thereby, homogeneous Dirichlet boundary conditions are used at
all boundaries of the neighbourhood which do not coincide with the actual image
boundaries. At the image boundaries, homogeneous Neumann boundary conditions
are chosen as usual. Note that the locally approximated inpainting echoes also allow

1Implementation of Voronoi diagram courtesy of Dr. Markus Mainberger.
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Figure 4.4. Left: Example of Voronoi diagram for optimised mask in Figure 4.1.
The red lines show the boundaries of the Voronoi cells, and mask points are depicted
in black. Right: Zoom-in at the right eye.

to accelerate the actual optimisation of the tonal values in Algorithm 4.1 because only
the pixel locations in the individual neighbourhoods have to be evaluated.

The final results are shown in Figure 4.5. Without any local approximation, the
computation of the inpainting echoes requires approximately 10 minutes for homo-
geneous diffusion inpainting, and 29 minutes for biharmonic inpainting. Those refer-
ence times and the corresponding final errors are shown as reference. As expected, for
smaller neighbourhood sizes d, the quality of the final inpainting decreases, while hav-
ing a large gain in speed. Conversely, the reconstruction and required time approach
more and more the shown original performance for larger values of d. Depending
on the desired accuracy, one could for instance use a neighbourhood size of 40 and
obtain a good approximation. The MSE values then differ only by 0.07 and 0.13 for
harmonic and biharmonic inpainting, respectively. However, this only requires 13%
of the original time, which represents an enormous gain. Thus, this strategy is very
useful to speed up the approach relying on inpainting echoes when no high accuracy
is desired. Nevertheless, we will see in the following that it is possible to obtain both
fast and highly accurate results.

74



4.3. Gradient Descent Approach
15

20

25

30

35

40

45

50

55

60

0 20 40 60 80 100 120

M
S
E

neighbourhood size

approximated tonal optimisation with harmonic operator

reference tonal optimisation with harmonic operator

approximated tonal optimisation with biharmonic operator

reference tonal optimisation with biharmonic operator

15

20

25

30

35

40

45

50

55

60

0 20 40 60 80 100 120

M
S
E

neighbourhood size

0

200

400

600

800

1000

1200

1400

1600

1800

0 20 40 60 80 100 120

ti
m
e
[s
]

neighbourhood size

Figure 4.5. Tonal optimisation with locally approximated inpainting echoes based on
Voronoi cells. Left: Resulting error values for varying neighbourhood sizes. Right:
Corresponding required times.

4.3 Gradient Descent Approach

In the following approach, we do not want to rely on inpainting echoes to obtain
a faster method with smaller memory requirements. To this end, we employ an
accelerated gradient descent strategy to find optimal tonal data. We have presented
this approach in [1]. For the derivation, let us consider the energy from the original
optimisation problem (4.1) which is supposed to be minimised:

E(g) =
1

2
‖r (c, g)− f‖2

2 . (4.8)

Starting with an initialisation g0 = Cf , a gradient descent scheme minimises the
energy E by iteratively updating the current grey values for k > 0 as

gk+1 = gk − α∇E(gk), (4.9)
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with a step size α and the gradient ∇E(gk) depending on the iterates gk. Denoting
the inpainting solution at iteration step k by uk, i.e. uk := r

(
c, gk

)
, the gradient can

be written as

∇E(gk) = J>
(
uk − f

)
, (4.10)

where J is the Jacobian of r
(
c, gk

)
with respect to the second component. By

exploiting the symmetries of the matrices C and L, one obtains

J> =
(
(C − (I −C)L)−1C

)>
= C (C −L(I −C))−1 . (4.11)

Computing the iterates uk and the gradient ∇E(gk) means to solve a linear system of
equations for each of them. This can be done efficiently with a bidirectional multigrid
solver as suggested in [125]. As stopping criterion, we consider the relative norm of
the gradient, which should approach zero at the optimum. In other words, we stop as
soon as

‖∇E(gk)‖2
2 ≤ ε ‖∇E(g0)‖2

2, (4.12)

with some small number ε > 0.
The main parameter that needs to be specified is the step size α. In the following,

two different approaches are presented. First, the classical gradient method with exact
line search is explained. Afterwards, we present a novel variant that benefits from an
acceleration with a fast explicit diffusion scheme in the sense of Grewenig et al. [87].

4.3.1 Exact Line Search

One possibility to select the step size is to optimise it for obtaining the largest possible
decay of the energy in each step. This comes down to the least squares problem

arg min
α∈R+

1

2

∥∥f − r (c, gk−α∇E(gk)
)∥∥2

2
. (4.13)

Exploiting the linearity of r in the second component allows to obtain the minimiser
in closed form:

α =
(f − uk)>r

(
c,∇E(gk)

)
‖r (c,∇E(gk)) ‖2

2

. (4.14)

This strategy is also known as exact line search. It guarantees that the sequence
(gk)k=0,...,∞ converges to the minimum of the energy [31]. An algorithmic overview of
the classical gradient descent method with exact line search is shown in Algorithm 4.2.
It serves as our baseline method.
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Algorithm 4.2. Tonal Optimisation with Gradient Descent and Exact Line Search.

Input: Original image f , pixel mask c.

Initialisation: g0 = Cf .

Compute:

Repeat for k ≥ 0:

1. Compute the gradient ∇E(gk) = J>
(
r
(
c, gk

)
− f

)
.

2. Determine the step size α with Equation (4.14).

3. Update the tonal data gk+1 = gk − α∇E(gk).

until the stopping criterion (4.12) is fulfilled.

Output: Optimised grey values g.

4.3.2 Cyclic Acceleration

In order to speed up the gradient descent approach, an accelerated algorithm based
on a so-called fast explicit diffusion (FED) scheme can be used. First applications
of FED to image processing problems go back to Grewenig et al. [87]. FED allows
to speed up any explicit diffusion-like algorithm that involves a symmetric matrix.
While classical explicit schemes employ a constant time step size that has to satisfy a
restrictive stability limit, FED schemes involve cycles of time step sizes where up to
50% of them can violate this stability limit. Nevertheless, at the end of each cycle,
stability in the Euclidean norm can be guaranteed. In contrast to classical explicit
schemes that reach a stopping time of order O(T ) in T steps, FED schemes with cycle
length T progress to O(T 2). This allows a substantial acceleration.

Since the gradient descent scheme can be seen as an explicit scheme with a sym-
metric matrix, FED is applicable: If α∗ denotes a fixed step size for which (4.9) is
stable in the Euclidean norm, one replaces it by the cyclically varying step sizes

αi = α∗ · 1

2 cos2
(
π · 2i+1

4T+2

) (i = 0, ..., T−1). (4.15)

For large cycle lengths T , one should permute the order of the step sizes to reduce
rounding errors; see [208] for more details on this and an exhaustive explanation
of the FED framework in general. The FED cycles should be iterated until the
stopping criterion (4.12) is fulfilled. A related cyclic optimisation strategy has also
been investigated in [177].

In order to determine the individual step sizes within each cycle, we have to find a
step size α∗ that is within the stability limit. The following result is well-known in op-
timisation theory [144]: If E(g) is continuous and its gradient is Lipschitz continuous,
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i.e. there is a constant L such that

|∇E(g1)−∇E(g2)| ≤ L · |g1 − g2| (4.16)

for all g1 and g2, then the gradient descent scheme is stable for all step sizes α∗

fulfilling

0 < α∗ <
2

L
. (4.17)

It is straightforward to verify that in our case L can be chosen as the squared spectral
norm of the reconstruction matrix R := M−1C, i.e.

L = |R|2 := ρ(R>R), (4.18)

where ρ(R>R) denotes the spectral radius of the symmetric matrix R>R. One pos-
sibility to estimate the spectral radius is to use Gershgorin’s circle theorem. However,
this may give a too pessimistic estimate. Instead, we propose to use the power method
to determine the maximum eigenvalue of R>R, see e.g. [11]. The convergence of this
method turns out to be relatively fast, such that one obtains already a reasonable
estimate of the spectral radius after 5 iterations.

Although it may appear tempting to choose α∗ close to the stability limit 2
L

, this
can result in a suboptimal convergence speed, since high frequent error components
are damped too slowly. Our experiments suggest that a good choice for α∗ is two
third of the stability limit:

α∗ =
4

3L
. (4.19)

Similar strategies are also common e.g. in multigrid approaches that use a damped
Jacobi method with damping factor 2

3
as a baseline solver [35].

An overview over all steps to perform tonal optimisation with FED-accelerated
gradient descent is given in Algorithm 4.3. Considering the cycle length, one faces
the following trade-off. If T is chosen too small, the acceleration given by the larger
time step sizes is restricted as they cannot be too large. On the other hand, it is also
not good to choose a very large T , as one always has to perform all inner cycle steps
within each outer iteration step. Thus, it can happen that even though one has almost
reached a solution fulfilling the stopping criterion, another full cycle is performed. This
can lead to a much higher precision and a consequently higher runtime.

To get an impression of realistic runtimes of both gradient descent algorithms for
tonal optimisation, let us consider the following experiment. We consider the in-
painting problem with the original image trui along with the optimised mask from
Figure 4.1 having a density of 4%. The tonal optimisation shall be performed for
homogeneous diffusion inpainting. The stopping parameter is set to ε := 0.001 for all
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Algorithm 4.3. Tonal Optimisation with Gradient Descent and Cyclic Acceleration.

Input: Original image f , pixel mask c, FED cycle length T .

Initialisation:

1. Set g0 = Cf .

2. Estimate L in (4.18) with the power method.

3. Determine the FED time steps α0, . . . , αT−1 according to (4.15) with α∗ = 4
3L

.
If necessary, permute them.

Compute:

Repeat for k ≥ 0:

1. gk,0 := gk

2. For i = 0, . . . , T − 1 do

i. Compute the gradient ∇E(gk,i) = J>
(
r
(
c, gk,i

)
− f

)
.

ii. Update the tonal data: gk,i+1 = gk,i − αi∇E(gk,i).

3. Set gk+1 = gk,T .

until the stopping criterion (4.12) is fulfilled.

Output: Optimised grey values g.

our experiments. As a result, the exact line search algorithm requires 458 seconds to
perform 262 iterations. A corresponding FED accelerated algorithm with α∗ = 0.01
needs only 77 seconds to compute 4 cycles of length M = 15. This illustrates the
favourable performance of the FED-accelerated gradient descent method.

Since the FED algorithm is based on an explicit scheme, it is also well-suited for
implementations on parallel hardware such as GPUs. Unfortunately, the multigrid
solver which is used for computing an inpainting solution or to compute the Jacobian
in (4.11) in every iteration step is not perfectly suited for a GPU implementation:
Especially on coarser scales, only few pixels are left such that the full capacity of
all processing units on a GPU might not be exploited. Instead, it makes sense to
rely on an FED algorithm here which is perfectly suited for the GPU. Altogether,
the GPU variant can lead to very substantial additional accelerations compared to
the CPU implementation. For instance, the tonal optimisation example above only
requires 6 seconds on a GPU, which is approximately 13 times faster compared to the
77 seconds on a CPU. Further evaluations of the performance will will be performed
in Section 4.7.
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4.4 Conjugate Gradient Approach

Instead of performing a gradient descent of the energy (4.1), it is also possible to
find the minimiser as solution of the associated normal equations. For the tonal
optimisation problem, they read as

R>Rg = R>f , (4.20)

withR := M−1C. Setting up the system matrixR>R would again involve computing
the inpainting echoes. As discussed earlier, this is not efficient. A better idea is to
rely on a numerical solver which uses an iterative scheme to find the solution. The
advantage of such a strategy is that it does not require to set up or even invert the
matrix explicitly. The gradient descent strategy in Section 4.3 can be interpreted as
one specific example in this context. In particular, we have seen that subsequently
applying the matrices R and R> can be efficiently done.

In the literature, there exist many alternative approaches, see [164, 165] for ex-
ample. Among them, the conjugate gradient strategy turns out to be a promising
technique as it optimises the search direction in every iteration. In contrast to a pure
gradient descent strategy, the current residuum as well as the previous search direc-
tions influence the search strategy in each step. Since the system matrix is positive
semi-definite and symmetric, the conjugate gradient approach can be applied. For
more details on the algorithm, please see [164]. Unfortunately, the inner products
within the optimisation procedure complicate parallel processing of the individual
pixels. Thus, a GPU implementation is not as easy to realise as the gradient descent
scheme.

4.5 Primal-Dual Algorithm

Primal-dual approaches have become more and more popular in recent years for solv-
ing minimisation problems in the context of image processing [42]. They rely on
performing a gradient descent on the primal variable, and at the same time a gradient
ascent on the dual variable. The promising performance of those primal-dual ap-
proaches inspired Hoeltgen and Weickert to use them also for the purpose of tonal op-
timisation with homogeneous diffusion inpainting [93]. The proposed method showed
a good performance and a tremendous speed-up compared to the method relying on
inpainting echoes.

In the following, we revisit the method presented in [93], and incorporate several
improvements and extensions. In contrast to the original method, the introduction of
an extra variable is avoided which simplifies the algorithm and reduces the memory
requirements. Moreover, a diagonal preconditioning of the system matrix is employed
as proposed in [156]. This drastically improves the convergence of the algorithm.
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While the focus in [93] is on the harmonic inpainting operator, we consider a general
linear inpainting operator L in the following. This also allows to perform a tonal
optimisation for the biharmonic operator for example. Moreover, besides a CPU
implementation, the performance of the method will also be evaluated on a GPU as
the algorithm is perfectly suited for such a parallel hardware. Some of the performance
results of this GPU implementation have already been presented in [93].

Let us reconsider the minimisation problem (4.1). By defining the inpainting solu-
tion u := r (c, g) = M−1Cg for some grey values g, one can rewrite the objective:

arg min
u,g∈R|Γ|

1

2
‖u− f‖2

2 subject to u = M−1Cg. (4.21)

Due to the fact that the mask is binary, the inpainting solution u is identical to the
prescribed tonal values g at the mask locations, i.e. Cg = Cu, because it is an
interpolation of the prescribed data. For this reason, one can decrease the number of
unknowns, and the constraint becomes:

u = M−1Cg ⇔ u = M−1Cu (4.22)

⇔ Mu = Cu (4.23)

⇔ Ru = 0, (4.24)

with R := M −C = −(I −C)L. By defining the indicator function ι0 as

ιa(x) :=

{
0 if x = a,
∞ if x 6= a,

(4.25)

we can reformulate Equation (4.21) to:

arg min
u∈R|Γ|

{
1

2
‖u− f‖2

2 + ι0(Ru)

}
. (4.26)

The advantage of this minimisation problem is that it does not involve the inverse
of the inpainting matrix anymore. To find a solution and hence the tonal optimised
grey values at the mask locations, the primal-dual method from [42] can be used.
It iteratively updates the primal and dual variables, and only incorporates matrix
vector multiplications as computationally most demanding operations. As already
mentioned, we additionally use the diagonal preconditioning proposed in [156] to
improve the convergence. This is achieved by adapting the step sizes T := diag(τ )
and Σ := diag(σ) to the pixel locations and to the operator R. As suggested in [156],
the step sizes can be computed by collecting the rows and columns of R, respectively:

τj =
1∑|Γ|

i=0 |Ri,j|2−α
, σi =

1∑|Γ|
j=0 |Ri,j|α

. (4.27)
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Algorithm 4.4. Tonal Optimisation with Prima-Dual Algorithm.

Input: Original image f , pixel mask c.

Initialisation:

1. Calculate precondition matrices T and Σ given by (4.27).

2. Set u0 = f , û0 = f , y0 = 0, theta ∈ [0, 1], ε > 0.

Compute:

Repeat for k ≥ 0:

1. yk+1 = yk + ΣRûk.

2. uk+1 = (I + T )−1(uk − T (R>yk+1 − f).

3. ûk+1 = ûk+1 + θ(uk+1 − uk).

until stopping criterion ‖uk+1 − uk‖2
2 < ε is fulfilled.

Output: Inpainting u containing the optimised grey values at the mask locations.

We choose the parameter α ∈ [0, 2] to be 1 as this yields good results. An overview
of the primal-dual solver is presented in Algorithm 4.4. The parameter θ steers the
amount of over-relaxation and is usually fixed to 1. Note that the computation of the
inverse of I + T , with I being the unit matrix, is straightforward as it is a diagonal
matrix.

Besides a primal-dual solver, also different strategies to find a minimiser of (4.21)
have been employed in the literature. In [51] for example, the authors rely on
the memory-limited version of the Broyden-Fletcher-Goldfarb-Shanno algorithm (L-
BFGS), which is an approximation of the Newton’s method. Another possibility is the
LSQR method [149], which is used in [93] for the purpose of performing a tonal opti-
misation. However, we will stick to the primal-dual strategy as it is easy to implement
and hence no additional sophisticated mathematical library is required. Moreover, it
is very well suited for parallel computations on a GPU.

4.6 Tonal Optimisation with Discrete Green’s
Functions

We know from Section 3.4 that the inpainting result for a specific mask is given as
superposition of the discrete Green’s functions at those locations. A natural question
is if we can use this knowledge for the tonal optimisation problem. Luckily, we are able
to do so by transferring the problem of finding tonal data to the equivalent problem
of finding optimal coefficients of the corresponding discrete Green’s functions. This
idea is elaborated in the following.
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We assume a fixed mask K ∈ Γ to be given with L := |K| number of points. Moreover,
we define H ∈ R|Γ|×(L+1) as the matrix containing the discrete Green’s functions at
all mask locations in its columns, with an additional column 1 ∈ R|Γ| consisting of 1’s
in all entries for the constant value:

H :=
(
g0
m1
, . . . , g0

mL
,1
)
. (4.28)

As in Section 3.4, m0, . . . ,mL represent the indices of the mask points. Additionally,
let x := (a1, . . . , aL, c)

> ∈ RL+1 be the vector consisting of the coefficients of the
individual Green’s functions as well as of the constant c. Note that any inpainting
solution u can be expressed as Hx, since the Green’s functions are a generating
system of all inpainting solutions for this specific mask, cf. Section 3.4. We further
know from the solvability condition (3.53) that

L∑
k=1

amk = 0 ⇐⇒ aL = −
L−1∑
k=1

ak. (4.29)

By defining

H̃ :=
(
g0
m1
− g0

mL
, . . . , g0

mL−1
− g0

mL
,1
)
∈ R|Γ|×L, (4.30)

and accordingly

x̃ := (am1 , . . . , amL−1
, c)> ∈ RL, (4.31)

we obtain that H̃x̃ is a valid inpainting solution for all x̃ ∈ RL. Thus, we propose to
perform a tonal optimisation by finding the optimal coefficients as

arg min
x̃∈RL

1

2

∥∥∥H̃x̃− f∥∥∥2

2
. (4.32)

It is clear that this linear least squares problem has a unique solution as it represents
a minimisation of a strictly convex energy which is bounded form below. Theorem 4.1
shows that this novel strategy in terms of discrete Green’s functions is in fact equiv-
alent to the standard tonal optimisation formulation (4.1).

Theorem 4.1 (Equivalence of Tonal Optimisation Strategies). Let g∗ be the min-
imiser of (4.1), and x̃∗ the minimiser of (4.32). Then the resulting tonal optimised
inpainting solutions are identical, i.e.

r (c, g∗) = H̃x̃∗. (4.33)

Proof. From Section 3.4 we know that for the inpainting result r (c, g∗) we can find
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a vector x̃ such that r (c, g∗) = H̃x̃. Thus, we have

1

2
‖r (c, g∗)− f‖2

2 ≥
1

2

∥∥∥H̃x̃∗ − f∥∥∥2

2
. (4.34)

On the other hand, H̃x̃∗ represent an inpainting result which consists of some tonal
values g at the mask points, and therefore

1

2
‖r (c, g∗)− f‖2

2 ≤
1

2

∥∥∥H̃x̃∗ − f∥∥∥2

2
. (4.35)

Hence, the energies for both minimisers are the same. We know that both linear
least squares problems have a unique solution. Thus, the one-to-one correspondence
between the inpainting solutions tells us that they are identical. This proofs the
claim.

It is known that the minimiser of the energy in (4.32) is given as solution of the normal
equations

H̃>H̃x̃∗ = H̃>f , (4.36)

see for example [165]. The big advantage of this new approach is that the theory on

discrete Green’s functions allows to efficiently set up the system matrix H̃>H̃ ∈ RL×L

directly. More specifically, the entries are given for i, j = 1, . . . , L− 1 as(
H̃>H̃

)
i,j

=
〈
g0
mi
− g0

mL
, g0

mj
− g0

mL

〉
=
〈
g0
mi
, g0

mj

〉
−
〈
g0
mi
, g0

mL

〉
−
〈
g0
mj
, g0

mL

〉
+
〈
g0
mL
, g0

mL

〉
. (4.37)

As we have seen in Section 3.3.4 and Section 3.3.5, we are able to compute the Green’s
functions as well as the inner products in a very efficient way. Note that all inner prod-
ucts with g0

mL
can be precomputed to further speed up the computations. Moreover,

we can exploit the symmetry of the matrix, which means that the lower triangular
part can be obtained directly after having computed the upper triangular part. In a
similar fashion, the right hand side of the normal equations can be constructed with
the help of the fast inner products.

Due to the the fact that all canonical Green’s functions have zero mean, the last
row and last column of H̃>H̃ only consist of zeros except for the entry at i = j = L
which is equal to |Γ|. Thus, we directly obtain the constant c:

c =
1

|Γ|
〈f ,1〉 . (4.38)

We know from Section 3.4 that c represents the mean value of the tonal optimised
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inpainting solution. Thus, (4.38) shows that the optimal mean of the inpainting
is identical to the mean value of the original image. This is a nice new observa-
tion which results from interpreting the tonal optimisation problem in terms of the
discrete Green’s functions. For finding the remaining coefficients as solution of the
normal equations, we employ a very efficient numerical solver based on a Cholesky
factorisation, which is particularly well suited as it exploits the positive definiteness
of the system matrix. For more details, see [90]. The proof of this property is given
in Theorem 4.2.

Theorem 4.2 (Positive Definiteness of System Matrix). The matrix H̃>H̃ is positive
definite.

Proof. We have to show that x>H̃>H̃x > 0 for all x ∈ RL\{0}. It is easy to see

that x>H̃>H̃x = ‖H̃x‖2
2 ≥ 0 and hence the positive semi-definiteness of the matrix

follows directly. To show that 0 is excluded, we employ the solvability condition and
obtain:

H̃x =
L−1∑
k=1

[
ak
(
g0
mk
− g0

mL

)]
+ c · 1 =

L∑
k=1

ak g
0
mk

+ c1 . (4.39)

With the help of the representation of the discrete Green’s functions from Theo-
rem 3.10, we can rewrite this expression:

H̃x =
L∑
k=1

ak

M−1∑
m=0

N−1∑
n=0

(m,n)6=(0,0)

[
1

λm,n
(gm,n)mk · gm,n

]
+ c · 1

=
M−1∑
m=0

N−1∑
n=0

(m,n)6=(0,0)

[(
1

λm,n

L∑
k=1

ak · (gm,n)mk

)
gm,n

]
+
√
|Γ| · c · g0,0 . (4.40)

We know that the gm,n form an orthogonal set of eigenvectors and that the eigenvalues
λm,n are non-zero for all (m,n) 6= (0, 0). Thus, in order for (4.40) to be the zero vector,
we must have c = 0 as well as for all m,n:

0 =
1

λm,n

L∑
k=1

ak · (gm,n)mk =
1

λm,n

L∑
k=1

ak · (gmk)m,n . (4.41)

Again, we know that the gmk are orthogonal, and consequently, all entries of x̃ have

to be zero. Thus, there is no non-trivial vector x̃ such that ‖H̃x‖2
2 = 0, which shows

the positive definiteness.

An overview over all steps to perform a tonal optimisation is given in Algorithm 4.5.
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Algorithm 4.5. Tonal Optimisation with Discrete Green’s Functions.

Input: Original image f , mask indices K.

Compute:

1. Obtain the Green’s mother function as described in Section 3.3.5.

2. Calculate the Green’s functions g0
k,` for all (k, `) ∈ K from the Green’s mother

function with Algorithm 3.3.

3. Set up the system matrix H̃>H̃ and H̃>f with fast inner products, see Sec-
tion 3.3.4.

4. Solve (4.36) with the help of a Cholesky factorisation to find optimal coeffi-
cients a1, .., aL−1 and c.

5. Compute aL with solvability condition, see Equation (4.29).

6. Obtain the inpainting u with Algorithm 3.1 and subsequently adding c.

Output: Inpainting solution u with optimised grey values at the mask locations.

Compared to other methods for the tonal optimisation which use the standard formu-
lation (4.1), this new approach has several advantages. First of all, the new method
does not entail any parameters which need to be chosen. In other approaches, one
typically has to choose appropriate stopping criteria for the numerical solvers of the
inpainting process as well as for the tonal optimisation. This can be very cumber-
some. Moreover, the iterative solvers of other approaches only lead to approximate
solutions. With the help of the Green’s functions, we directly arrive at the exact solu-
tion up to machine precision, because the problem is solved analytically after setting
up the normal equations directly. Last but not least, it is straightforward to extend
this approach to higher powers of the Laplacian as inpainting operator by adapting
the powers of the eigenvalues. In contrast, all other approaches require more sophis-
ticated adaptations for this purpose or even a redesign of the underlying numerical
algorithm.

As for the inpainting echoes, one can also have a look at the condition number of
the system matrix H̃ arising in the approach using the discrete Green’s functions.
The results are shown in Table 4.2.

Table 4.2. Condition number of matrix H̃ containing discrete Green’s functions for
the Laplacian as columns. The echoes locations are given by different masks with
varying density.

mask density 0.01 0.5 1 2 4 8 16

harmonic 11 627 1207 2558 5872 10158 20491

biharmonic 127 1035127 4310728 19169138 117196309 300948395 944357153
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Compared to the condition numbers in Table 4.1 with the inpainting echoes, the
discrete Green’s functions are apparently more linear dependent, hence leading to a
harder problem. This becomes more obvious in particular for higher mask densities
and higher orders of the operator. Nevertheless, the Cholesky factorisation is able to
cope with this issue in practical scenarios.

4.7 Runtime Comparison

In the following, the performance of the individual tonal optimisation approaches is
evaluated. Again, the image trui is used as original image, and the same masks based
on the approach of Belhachmi et al. with densities varying from 0.01% to 16% are
used. The tonal optimisation is performed for the harmonic as well as the biharmonic
operator. First, we will consider a pure CPU implementation. Afterwards, the per-
formance of some tonal optimisation strategies implemented on a GPU hardware is
compared. Note that the grey value optimisation problem is strictly convex which
means that all convergent algorithms yield the same minimiser and are therefore
qualitatively equivalent. Thus, they are graded only by their respective runtimes.

As discussed in Section 4.2, the approach relying on inpainting echoes already re-
quires a lot of time due to the computation of the inpainting echoes. Even relying
on a parallel computation of their local approximation using the Voronoi diagram is
still too slow and suffers from low precise results. For these reasons, we will focus on
the remaining more efficient methods, namely the cyclic accelerated gradient descent,
the conjugate gradient approach, the primal-dual approach as well as the tonal opti-
misation relying on discrete Green’s functions. Whenever an algorithm runs for more
than one hour the program is aborted and the result is not considered, because such
a long runtime is far from being acceptable.

4.7.1 CPU Performance

Similar to Section 3.5, the experiments are performed with C implementations on a
desktop CPU with Intel Xeon processor (3.2GHz). All results are depicted in Fig-
ure 4.6. Note that the time axis is plotted on a logarithmic scale for a better visibility.

Considering the approach with Green’s functions, one observes that the algorithm
almost needs no time for smaller mask densities. For higher densities, the time increase
approximately linearly. An important aspect is that the runtime is independent of
the employed inpainting operator. Moreover, note that the result is highly accurate
up to machine precision as the tonal values are optimised analytically. All other
methods rely on iterative solvers which are only able to approximate the solution.
Nevertheless, the Green’s approach outperforms all other methods for masks with
densities of up to 4%. This demonstrates the advantage of expressing the inpainting
solution in terms of those atomic components. The reason clearly lies in the fact
that the complexity of the method decreases with a smaller number of mask points.
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Figure 4.6. Runtime comparison of different tonal optimisation strategies for various
mask densities on a CPU. Left: Harmonic inpainting operator. Right: Biharmonic
inpainting operator.

Similar to the pure inpainting, this is converse to the original inpainting formulation
which is more efficient for higher mask densities. Additionally, one can observe that
the runtime is independent of the inpainting operator. In particular, one can even use
an arbitrary power of the Laplacian with the same runtime.

The analytic approach only has problems for the biharmonic operator and very
large mask densities where numerical inaccuracies occur even with double precision
which prevents to compute a solution. As seen in Table 4.2, the condition numbers
of the system matrix can become very large. This means that smallest eigenvalue
becomes closer and closer to zero. The Cholesky factorisation is not able to handle
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this numerically at some point as it relies on the positive definiteness of the matrix.
The gradient descent approach seems to have a comparably more stable runtime

over all tested mask densities, even though one can recognise an improved performance
the more mask points are present. Furthermore, one can observe a slightly higher
runtime for the biharmonic operator compared to the harmonic one. Considering the
FED cycle length, it seems that a value of 10 gives good performance. For some
densities, a cycle length of 15 can be slightly better. The experiment shows that
smaller or higher values do not yield better runtimes.

Interestingly, one can observe that the gradient descent outperforms the conjugate
gradient method in most cases. In particular for the biharmonic operator, conjugate
gradient needs slightly more time for all masks. Nevertheless, the difference between
those two approaches is rather small.

Obviously, the primal-dual approach has a completely different runtime behaviour
than the other approaches. For the harmonic operator, it performs bad for smaller
mask densities. For a density of 1% or less, it even took more than one hour to per-
form a single tonal optimisation. However, its strength lies in the tonal optimisation
for denser masks. With densities of 10% or higher, the primal-dual approach can
outperform the other methods, at least for homogeneous diffusion inpainting. When
it comes to the biharmonic operator, the primal-dual approach is a complete failure
considering its runtimes. Here, the algorithm even had to be aborted after an hour
for densities smaller than 4%. For all other densities, the performance is not much
better.

In summary, the following results arise from this experiment. For mask densities
up to 4%, the method relying on discrete Green’s functions is the preferred one. For
larger densities, gradient descent is better suited. Only for the harmonic operator and
densities larger than 10%, the primal-dual approach should be chosen instead of the
gradient descent.

4.7.2 GPU Performance

Unfortunately, the conjugate gradient approach and the approach relying on discrete
Green’s functions are not perfectly suited for parallel computations on the GPU.
Considering the Green’s approach, it typically needs more memory than available on a
graphics card to store the large system matrix. Moreover, the sophisticated numerical
algorithms require being computed with double precision. However, the graphics card
is mainly designed for float precision, so one would have to find a good way to handle
higher precisions. Lastly, both the Green’s approach as well as the conjugate gradient
approach rely on computing inner products. A straightforward way to evaluate these
inner products would be to use a regression scheme, but this requires more elaborate
implementations to obtain an efficient algorithm on such a hardware. Thus, it remains
an open point to come up with an efficient GPU implementation of these two methods.

Nevertheless, we are able to compare the gradient descent algorithm and the primal-
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Figure 4.7. Runtime comparison of tonal optimisation strategies for various mask
densities with gradient-descent and primal-dual approach on a GPU. Left: Harmonic
inpainting operator. Right: Biharmonic inpainting operator.

dual approach. Both of them are perfectly suited for an implementation on the GPU.
The gradient descent scheme uses an outer FED cycle length of 15. For solving the
inpainting problem and for computing the Jacobian in the intermediate steps, an
inner FED cycle length of 10 yields the best performance. As stopping criterion the
residuum is considered for each pixel individually, allowing for an efficient evaluation
on the GPU. The iterations are stopped when there is no pixel with an absolute
residuum larger than 10−5. On the other hand, the primal-dual algorithm stops
whenever the update for any pixel has a smaller absolute value than 10−5, as suggested
in [93]. These tolerances allow to obtain precise results for all tested masks and the
same MSE value with both approaches. The final results are depicted in Figure 4.7.
Thereby, a Nvidia R© GeForce GTX 460 graphics card is used. Note that the time axis
is again plotted on a logarithmic scale.

Considering the primal-dual approach, the runtime is much better compared to the
CPU variant. For the harmonic operator and mask densities larger than 8%, it only
needs around 1 second, which is extremely fast. For less mask points, the runtime
increases very fast as already seen in the CPU version. For the biharmonic inpainting
operator, the performance of the primal-dual approach is much worse compared to
the harmonic counterpart, and even exceeds reasonable runtimes for very small mask
densities on a GPU.

The gradient descent approach on the other hand is very fast for both operators, and
in particular for higher densities. It clearly outperforms the primal-dual approach for
the biharmonic operator. For the harmonic operator, the gradient descent approach
is better for mask densities smaller than 2%. Thus, it is the preferred method for
those cases. Another observation of the gradient descent method is that for low mask
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densities, the acceleration of the GPU version compared to the CPU variant is not as
large as for higher mask densities. The reason for this is that an FED solver is used
for solving the inner linear systems of equations instead of a multigrid solver. This
means that lower frequencies in the error spectrum are not removed as fast as with
the multigrid solver, leading to a higher runtime in such cases where this behaviour
is beneficial.

4.8 Tonal Optimisation for Nonlinear Inpainting
Operators

Interestingly, we can also apply the gradient descent approach for the tonal optimisa-
tion with nonlinear inpainting operators such as EED. Here, specific challenges arise
when extending it to EED-based inpainting. The nonlinearity of the EED inpainting
scheme prevents closed form expressions such as (4.10) and (4.11). This is caused by
the fact that the inpainting matrix M (u) is now a function depending on the inpaint-
ing uk, which itself depends on the tonal data gk in the specified pixels. Although
this concatenated mapping is formally smooth, one should keep in mind that EED
has the ability to create edge-like structures. This means that in practice the problem
is fairly ill-conditioned: Small local changes in gk may have a strong global impact on
uk, on A(uk), and on the Jacobian of the error function (4.8). Unfortunately, discrete
Green’s functions also do not help in this nonlinear scenario as they are currently only
available for the linear case. In the future, one might think of employing them for the
nonlinear case as well.

Moreover, there is no guarantee anymore that the tonal optimisation problem is
strictly convex. Thus, it may have many local minimisers. It is therefore not surpris-
ing that different algorithms and even different parameter settings within the same
algorithm may end up in different minimisers. Since it is difficult to design practi-
cally feasible algorithms that guarantee to find the global minimiser, we focus on a
transparent and conceptually simple local optimisation strategy such as the gradient
descent method. We have done a number of experiments with several variants of
gradient descent approaches for tonal optimisation in EED-based inpainting. Below,
the method with the best results in terms of reconstruction quality is described. Note
that we have presented this approach in [1], based on first results of Mainberger using
inpainting echoes [124].

We suggest to modify the gradient descent approach for (4.8) as follows. While we
keep the basic structure of (4.9) with the Jacobian given in (4.10), we lack a closed
form solution of type (4.11) for the Jacobian J(gk) that is now an unknown function
of the evolving grey value data gk. As a remedy, we approximate the Jacobian by

91



Chapter 4. Tonal Optimisation

numerical differentiation:

(J(gk))i,j :=
r
(
c, gk+ η ej

)
i
− r

(
c, gk

)
i

η
, (4.42)

where i denotes the pixel index, j is the index of an individual mask point, and the
parameter η > 0 represents a small grey value perturbation at the mask point j. As
before, ej is the canonical basis vector with a unit impulse in pixel j. Note that the
grey values at all non-mask points do not have any influence on the inpainting result.
Thus, the Jacobian does not have to be computed for those locations.

In contrast to the linear grey value optimisation strategies, we abstain from adapting
the gradient descent step size α by means of exact line search or cyclic FED-based
variations: We have experienced that the high sensitivity of the Jacobian w.r.t. gk

suggests to keep the gradient descent step size α fairly small to capture this dynamics
in an adequate way. On the other hand, too small values for α can also result in a
convergence towards a fairly poor local minimiser. Thus, in practice, we fix α to some
small value.

Similar considerations apply to the parameter η in (4.42): The nonlinear dynamics
of the Jacobian suggests to use small values for η in order to approximate the derivative
well. On the other side, if η is too small, numerical problems can arise, since both the
numerator and the denominator in (4.42) approach zero.

To show the effectiveness of tonal optimisation for EED inpainting, we perform the
following experiment. We consider the original image trui (see Figure 2.2) and a fixed
mask shown in Figure 4.8 on the left. The mask is optimised with a sophisticated
method for the purpose of EED inpainting. More details on how to obtain the mask is
presented in Chapter 5. First, the inpainting with the grey values of the original image
at the mask points is computed. The result is shown in the middle of Figure 4.8. In
the whole experiment, the EED parameters are fixed to λ = 0.8 and σ = 0.7, since this
gives reconstructions of high quality. Then, a tonal optimisation is performed with
different values for the parameters α and η. The resulting MSE values are presented
in Table 4.3.

The best result with the parameters α = 0.01 and η = 1.0 is shown in Figure 4.8
on the right. Although the quality of the inpainting with original grey values is
already very convincing, it is possible to further improve the reconstruction by a
significant amount: The MSE can be lowered from 12.62 to 10.79, which represents
an error reduction of 15%. On the negative side, one has to state that the tonal
optimisation in the nonlinear case can last more than a week due to the enormous
effort for recomputing the Jacobian after each iteration.
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Figure 4.8. Tonal optimisation for EED inpainting. Left: Prescribed inpainting
mask (density: 4%). Centre: EED inpainting with tonal values from original image
trui (MSE: 12.62). Parameters: λ = 0.8, σ = 0.7. Right: Inpainting with optimised
grey values (MSE: 10.79).

Table 4.3. MSE after a tonal optimisation for the EED inpainting approach with the
mask from Figure 4.8. The parameter α denotes the fixed step size in each gradient
descent iteration, and η is the step size used for the computation of the derivatives
by means of finite differences.

η

α

10−3 10−2

1.0 10.86 10.79
1.5 10.93 10.80
2.0 10.88 10.80
3.0 10.88 10.81

4.9 Quantisation-aware Tonal Optimisation

After the tonal optimisation step, continuous values with floating point precision are
typically obtained at the mask locations. Storing this data directly requires a lot
of memory and is not very efficient. Alternatively, a better strategy is to apply a
quantisation which restricts the tonal values to a finite set Q of possible values. It
is clear that the inpainting quality suffers from those less optimal values at the mask
points. Thus, one often has to find a good compromise between coding cost and
reconstruction quality. To do so, the quantisation parameter q := |Q| representing
the number of admissible values allows to steer this trade-off. Since the human visual
system is only able to distinguish around 40 different grey-scales, the hope is that
a small q can be chosen without degrading the quality of the inpainting too much.
Instead of storing the quantised tonal values directly after the quantisation, it is more
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efficient to encode their respective indices 1, . . . , q.
Uniform quantisation is the most common type of quantisation. Here, the values

in Q are obtained by an equidistant sub-sampling of the range [0, 255]. Thereby, one
can distinguish between the so-called midtread and midrise quantisations: While the
midtread quantisation includes the border values 0 and 255, the midrise quantisation
chooses the centres of q equally distributed intervals between 0 and 255. Thus, the
midrise quantisation has a reduced range compared to the midtread quantisation.
Since one is often interested in capturing the full range of an image in [0, 255], the
midtread quantisation will be employed in the following.

Let us now consider how the quantisation can be realised given some fixed Q. One
straightforward approach is to perform the quantisation after the tonal optimisation
step. This means that an optimised grey value gi at a mask point i is projected onto
the set Q by looking for the closest value. More formally, the quantised value g′i is
given by

g′i = arg min
g∈Q

|g − gi|. (4.43)

The drawback of this approach is that it does not yield the optimal combination of
quantised grey values. As proposed in [170], one can thus additionally perform a
brute-force optimisation. Thereby, the tonal data are initially projected on the set Q.
Then, the individual tonal values at the mask points are iteratively shifted to the next
higher or lower values in Q. The individual changes are kept whenever it improves
the reconstruction quality measured in terms of the MSE. Although one obtains very
good results with this approach, the näıve search strategy is not very efficient and
leads to a suboptimal performance.

In order to find optimised quantised grey values in a more efficient and more elegant
way, a novel improved strategy is shown in the following. It has been published in [6].
While yielding comparable results to the brute-force search, the new approach bases
on the well-founded theoretical framework presented in Section 4.2, i.e. it relies on
the inpainting echoes. In order to incorporate the quantisation into the optimisation
algorithm, the idea is to quantise the individual grey values directly after having
optimised each of them. It is clear that for the quantisation of a single tonal value,
the quantised grey value given by formula (4.43) is the optimal one. The adapted
algorithm is shown in Algorithm 4.6.

As we have seen in Section 4.2, the computation of the inpainting echoes requires
some time. Thus, performing one quantisation-aware tonal optimisation is not very
efficient. However, one can reuse the inpainting echoes for an arbitrary quantisation
parameter q due to the fact that the mask remains constant. This will allow for a
thorough and efficient optimisation of q, as we will see in Chapter 6.

As an example, let us consider the tonal optimisation with different values of the
quantisation parameter q. We consider the image trui and the optimised masks which
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Algorithm 4.6. Quantisation-aware Tonal Optimisation with Inpainting Echoes.

Input: Original image f , mask c, mask indices K, set of quantisation values Q.

Initialisation: Inpainting u = r (c,f), grey values g0 = Cf , ε > 0.

Compute:

For all i ∈ K:

Compute the inpainting echo bi = r (c, ei).

Repeat for k ≥ 0:

For all i ∈ K:

1. Compute the correction term αk =
b>i (f−uk)
|bi|2 .

2. Update the grey value gk+1
i = gki + ωk · α.

3. Apply quantisation: g′i = arg min
g∈Q

|g − gk+1
i |.

4. Update inpainting uk+1 = uk + α′ · bi with α′ = g′i − gki .

until the stopping criterion ‖uk+1 − uk‖2
2 < ε is fulfilled.

Output: Inpainting u containing optimised quantised grey values at the mask loca-
tions.

have been depicted in Figure 4.1 for the harmonic inpainting operator and in Figure 4.2
for the biharmonic one. Without any quantisation, the MSE of the tonal optimised
inpainting for those masks is 27.24 and 16.73, respectively. In Figure 4.9, the result
of tonal optimisation with quantisation is shown. The blue line represents the MSE
of the inpainting which arises from a subsequent quantisation of the continuous tonal
optimised values. The red line shows the MSE obtained by the quantisation-aware
tonal optimisation. For a reference, the black line indicates the lower bound inpainting
error given by a tonal optimised inpainting without quantisation.

In the plots, one can nicely see the influence of the quantisation on the inpainting
quality. For larger values of q, the MSE is very close to the one of the continuous
result. On the other hand, for smaller choices of the quantisation parameter, the
error exponentially increases for both quantisation strategies. It is also obvious that
it pays off to incorporate the quantisation into the optimisation process. Especially
for smaller values of the quantisation parameter, the final MSE is much smaller with
this more sophisticated approach.

To get a visual impression on the influence of a quantisation, Figure 4.10 shows
the results with a quantisation parameter q = 16. Also here, one can see the supe-
rior result given by the quantisation-aware tonal optimisation compared to the näıve
approach with a subsequent quantisation of the continuous values. It is hard to see
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Figure 4.9. Different tonal optimisation strategies with varying quantisation param-
eter q. Left: Harmonic inpainting operator. Right: Biharmonic inpainting operator.

the difference between the inpainting without quantisation and the inpainting with
quantised values obtained with the quantisation-aware approach. This quality is re-
markable when considering that only 16 different grey values are used at the mask
points for computing the inpainting. In contrast, the inpainting with subsequently
quantised values reveals obvious degradations.
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MSE: 49.68 MSE: 31.17 MSE: 27.24

MSE: 38.64 MSE: 30.49 MSE: 16.73

Figure 4.10. Tonal optimisation with quantisation (q = 16). Top row: Harmonic
inpainting for optimised mask shown in Figure 4.1. Bottom row: Biharmonic in-
painting for optimised mask shown in Figure 4.2. Left: Inpainting after quantising
continuous tonal optimised values. Centre: Quantisation-aware tonal optimisation.
Right: Tonal optimised inpainting without quantisation.

4.10 Conclusion

Tonal optimisation is a central part of PDE-based image compression, and it is im-
portant to have efficient methods to perform this task. Considering the presented
strategies, we have seen that there is no best method, but they all have advantages
in certain scenarios.

The approach relying on inpainting echoes has the drawback that the computation
of the echoes is a relatively large overhead. Moreover, the echoes also lead to rather
high memory requirements. Nevertheless, this approach also has advantages. Firstly,
it allows to incorporate a quantisation in the optimisation process leading to better
results compared to a näıve subsequent quantisation of the continuous optimal val-
ues. Secondly, the echoes can be reused whenever a tonal optimisation needs to be
performed many times for the same mask. If no high accuracy is needed, the echoes
can be approximated due to their limited local influence.

If continuous optimal values are desired, recall that there is a unique solution of
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the convex tonal optimisation problem with linear inpainting operators. In this case,
the runtime is the most important criterion to judge the performance of a method.
To select the best approach, we have seen that this choice highly depends on several
factors such as the mask density, the inpainting operator and the hardware.

The gradient descent approach has a very stable performance, and does not depend
much on the mask density. Compared to the other methods, it performs best with
the harmonic operator for medium densities, and is the favoured choice with the
biharmonic operator for densities larger than 4%. Moreover, it is the only method
which enables a tonal optimisation for nonlinear inpainting operators as well, and is
well suited for a GPU implementation. The conjugate gradient approach has a similar
performance as the gradient descent for the linear operators, but is slightly slower and
only has a limited potential for a parallel processing.

The primal-dual approach is very fast for harmonic inpainting and higher mask
densities. However, it has a slow convergence for smaller mask densities or other
operators, which makes it impracticable in some cases. It also allows for a GPU
implementation, leading to very fast results for homogeneous diffusion inpainting and
larger densities.

Lastly, the approach with the discrete Green’s functions bases on the theory from
Chapter 3. Due to the close connection to the sparsity, it is is the favoured choice
for small mask densities. A pleasant property is that the runtime does not depend on
the inpainting operator, and can easily be extended to even higher orders by simply
using the appropriate power of the eigenvalues. Unfortunately, especially for higher
order operators, numerical inaccuracies may occur for large mask densities.
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Spatial Optimisation

5.1 Motivation

In Chapter 4, we have seen that a clever selection of the tonal values tremendously
increases the reconstruction quality. We have observed in Section 2.4 that the inpaint-
ing also highly depends on the selected mask locations. Consequently, the following
question naturally arises: Given a certain prescribed density of points, how does an
optimal mask configuration look like? As for the tonal values, the quality of a mask
is judged by the quality of the corresponding inpainting, measured in terms of the
MSE.

Due to the discrete nature of the problem, it seems tempting to try all different
combinations for finding the best mask, and choose the one yielding the best recon-
struction. Unfortunately, this is not feasible in practice due to the enormous amount of
possible mask configurations, as already mentioned in Section 1.2.2. In fact, choosing
a good mask is an even harder optimisation problem compared to the tonal optimi-
sation problem. The reason for this is that there is a nonlinear dependency of the
inpainting on the mask.

The joint influence of the mask and the tonal values make it indispensable to treat
those two ingredients together. In particular, we judge the quality of a mask by
evaluating its overall potential to reconstruct an image, including tonal optimised
values at the selected mask locations. If we only relied on the values of the original
images at the mask points when computing the inpainting, the real reconstruction
potential of a mask would not be considered.

In this chapter, we will discuss different approaches to find an optimised mask. We
mainly focus on the linear inpainting operators, but also focus on nonlinear operators
later. To compare the individual methods, we consider the following sample problem
for all of them: For the image trui from Figure 2.2, we seek a mask containing 4% of
all pixels.

This chapter is structured as follows. We start by reviewing an existing approach
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which bases on an optimal control framework in Section 5.2. Afterwards in Section 5.3,
probabilistic approaches are considered. We discuss an analytic approach relying on
the continuous theory of Belhachmi et al. in Section 5.5. Afterwards, strategies using
the theory of discrete Green’s functions are presented in Section 5.6. Section 5.7
considers the problem of finding optimal masks for nonlinear inpainting operators.
Finally, a conclusion is given in Section 5.8.

5.2 Optimal Control

For homogeneous diffusion inpainting, an optimal control framework has been pro-
posed for the purpose of finding a mask in [92]. This is achieved by searching for a
suitable minimiser of the following energy:

arg min
c,u∈R|Γ|

1
2
‖u− f‖2

2 + λ‖c‖1 + ε
2
‖c‖2

2 ,

subject to: C(u− f)− (I −C)ANu = 0.
(5.1)

By minimising this energy, a compromise is found between inpainting quality and
mask sparsity. While the quality of the inpainting u is measured by the Euclidean
distance to the original image f , the sparsity of the mask c is approximated by its `1-
norm. With the help of the parameter λ, the density of the mask can be steered. The
linkage between the mask and the inpainting is achieved by enforcing the inpainting
equation to hold true in a side constraint. The additional term ε

2
‖c‖2

2 only exists
for technical reasons, and can as well be left out without having an influence on the
solution [51].

Instead of a binary mask, the constraint is relaxed to allow a real-valued mask. We
have already discussed this in Section 2.6, and as it turned out, one has to ensure that
the mask values stay within the range [0, 8

7
] to guarantee that there exists a solution of

the inpainting problem. To obtain the desired binary mask in the end, the continuous
mask has to be thresholded.

The main issue for finding a minimiser of (5.1) is that the constraint makes the
energy non-convex. As proposed in [92], the minimiser can be found by replacing the
energy with a series of convex problems. This is achieved by linearising the constraint
with respect to the unknowns u and c. Each of the convex problems is then solved
with the primal-dual approach. For more details, please see [92].

In this optimal control approach, it seems that the mask is optimised without
paying attention to a potential tonal optimisation. In particular, after thresholding
the continuous mask c resulting from the optimisation problem (5.1), a subsequent
optimisation of the tonal values is usually done in practice. Thus, it seems that the
spatial and tonal optimisation is treated independently. It could be shown in [93] that
the optimisation of the continuous mask values c is equivalent to a tonal optimisation.
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Thus, the grey values are inherently optimised within the optimal control framework,
too. This explains the very good quality of the resulting masks.

Besides inpainting with the harmonic operator, the optimal control approach can
also be extended to biharmonic inpainting in a straightforward way. Therefore, one
mainly has to replace the inpainting operator AN by its biharmonic counterpart BN .
Additionally, it is possible to incorporate the diagonal preconditioning into the primal-
dual solver, similar to what we have done for the tonal optimisation in Section 4.5.
This leads to a remarkable acceleration. Both extensions have been presented in Chen
et al. [51]. In this work, the method is also applied for finding a mask for inpainting
with TV regularisation, and the iPiano method proposed in [148] is considered as
numerical solver.

There is one major problem of this approach: Due to the intransparent dependency
of the parameter λ to the final mask density, it is not possible to specify a desired
number of mask points from the beginning. Since the final mask density for the same
λ changes for two different images, it is also not possible to set up a look-up-table
once. One possibility to obtain a desired density is to perform a so-called grid search.
Thereby, it is assumed that the relation between λ and the mask density is a convex
function. The grid search algorithm then works as follows. First, for a fixed number
of uniformly distributed values of λ within some larger range, the minimisers of the
optimisation problem (5.1) are computed. One has to make sure that the unknown λ
leading to the desired density lies within this initial range, so it makes sense to choose
the range generously. Then, one chooses the two values of λ whose corresponding
mask densities are closest to the desired one. This defines a new smaller search range,
and one continues by performing the optimisation with updated samples of λ. This
procedure is repeated iteratively until the desired mask density is obtained.

It is clear that the grid search procedure is rather inefficient due to the large num-
ber of optimisations that need to be done until a desired mask density is found.
Furthermore, experiments show that the method converges much slower the larger λ
is chosen. Altogether, it can take days until a mask with a specific density is found.
Thus, for speeding things up, we implemented the optimal control approach on a
graphics hardware. This helps to reduce the computation time from days to minutes
or hours, depending on the mask density and how fast the unknown parameter λ can
be found to match the desired mask density.

Let us consider some example results for the image trui. For both harmonic and
biharmonic inpainting, the masks with a prescribed density of 4% are depicted in
Figure 5.1. On the GPU, they can be obtained within some minutes when knowing
the actual parameter λ. Obviously, the mask points tend towards the image edges.
This can be explained with the continuous theory of Belhachmi et al. [23] which we
will consider in more detail in Section 5.5.
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Figure 5.1. Spatial optimisation with optimal control approach. Top row: Opti-
mised mask (density: 4%) and corresponding tonal optimised inpainting for harmonic
inpainting (λ = 0.006). MSE: 22.41. Bottom row: Same for biharmonic inpainting
(λ = 0.0042). MSE: 16.14.

5.3 Probabilistic Approaches

Probabilistic sparsification and densification are strategies which rely on a greedy
strategy to find a good mask. In contrast to the optimal control approach, they have
the advantage that they can be used for any inpainting operator. In particular, one is
not restricted to linear inpainting operators. Moreover, the probabilistic approaches
benefit from the possibility that the desired mask density can be specified explicitly.
Thus, there is no need for tuning any parameter to obtain a certain amount of mask
points. The sparsification has first been proposed in [4], and a more thorough analysis
is carried out in [1]. The densification, on the other hand, has first been introduced
in [2], Section 3.2. Is has been further extended and investigated in the context of
tree-like mask structures in [5, 6]. In the following, the probabilistic sparsification is
presented first, and the densification afterwards.

102



5.3. Probabilistic Approaches

Algorithm 5.1. Probabilistic Sparsification.

Input: Original image f , fraction p of mask pixels used as candidates, fraction q of
candidate pixels that are removed in each iteration, desired mask density d.

Initialisation: Set c = 1, K = Γ.

Compute:

Do:

1. Choose a random candidate set T containing p · |K| pixel indices from K.

2. For all i ∈ T set ci = 0.

3. Compute the inpainting u = r (c,f).

4. For all i ∈ T compute the local error ei = (ui − fi)2.

5. Remove all i with the (1− q) · |T | largest errors from T and reassign ci = 1.

6. Remove the remaining indices i ∈ T from K and clear T .

until |K| = d · |Γ|.
Output: Optimised mask locations K.

5.3.1 Probabilistic Sparsification

Starting with a full mask, where every pixel is chosen as a mask point, probabilistic
sparsification iteratively removes the least significant mask pixels until a desired den-
sity d is reached. To do so, in each step, a fraction p of candidate pixels from the
current mask is selected. These pixels are removed from the mask, and an inpainting
with this updated mask is calculated. The significance of a candidate pixel is then
estimated by computing the local error, i.e. the squared grey value difference of the
inpainted and original image in this pixel. Then, the fraction q of the candidates
that exhibit the smallest local error are permanently removed from the mask, and
the remaining fraction (1 − q) of the candidates are inserted back again. A detailed
description of the method is given in Algorithm 5.1.

Note that depending on p, multiple points are removed at once. As a mask point
theoretically has a global influence on the inpainting result, the alleged measured sig-
nificance of a mask point also includes the influence of the other removed points. One
possible mitigation of this issue is to guarantee for some distance of the selected mask
points in each iteration, but this introduces a bias which could lead to suboptimal
local minimum. Moreover, it seems tempting to choose p very small to obtain only
the influence of some few mask points. However, there is a high chance that only
important points are selected, from which some are removed. In [1], the results with
different choices of the parameter have been considered in an experiment with several
original images. Thereby, a value of p between 0.1 and 0.3 gives the best results.
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Figure 5.2. Spatial optimisation with probabilistic sparsification. Top row: Opti-
mised mask (density: 4%) and corresponding tonal optimised inpainting for harmonic
inpainting (p = 0.3, q = 10−6). MSE: 36.04. Bottom row: Same for biharmonic
inpainting (p = 0.005, q = 10−6). MSE: 22.39.

Unfortunately, this choice highly depends on the image which makes it hard to uni-
versally fix this parameter to a specific value. When it comes to the parameter q, it
is clear that the best would be to choose a small value. This is also confirmed by the
experiments in [1]. The only drawback is that the whole process then becomes very
time-consuming.

Example results for the image trui are shown in Figure 5.2. Although the masks
look very similar to the ones obtained with the optimal control approach, the recon-
struction quality is worse with the probabilistic sparsification. After having a closer
look, one can see that the latter masks contain less points in homogeneous regions, as
for example at the upper right part of the image. In contrast, the masks of optimal
control have more points at those locations. This indicates that it might be good to
have points in such regions, too.
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Algorithm 5.2. Probabilistic Densification.

Input: Original image f , fraction p of mask pixels used as candidates, fraction q of
candidate pixels that are added in each iteration, desired mask density d.

Initialisation: Set c = 0, K = ∅ and u to the mean value of f .

Compute:

Do:

1. Choose a random candidate set T containing p · |K| pixel indices from K.

2. For all i ∈ T compute the local error ei = (ui − fi)2.

3. Insert all i ∈ T with the q · |T | largest errors into K and assign ci = 1.

4. Update the inpainting u = r (c,f), and clear T .

until |K| = d · |Γ|.
Output: Optimised mask locations K.

5.3.2 Probabilistic Densification

Probabilistic sparsification is designed to start with a full mask and gradually removes
points until the desired density is obtained. One can imagine that this requires more
time the sparser the final mask shall be. In particular in a compression framework,
typical mask densities range between 0 and 20 percent, which is a long way do go
for the sparsification. Alternatively, one can think of starting from the other end.
This is done in the probabilistic densification. Here, an empty mask is used in the
beginning, and points are iteratively inserted at locations where it is most urgent.
More precisely, in each step, a fraction p of candidate pixels from the current non-
mask points is selected. Then, the local error is computed at all those locations
by means of the squared difference in the grey values. Then, a fraction q all the
candidate pixels with the largest error are added to the mask, and an inpainting with
this updated mask is calculated. This procedure is repeated until the desired mask
density is reached. A complete overview of the method is given in Algorithm 5.2.

In contrast to the sparsification approach, the influence of a mask pixel on the
inpainting is only considered indirectly in the densification: After a mask point is
inserted and the inpainting is updated, the significance of a point becomes visible
when computing the error for neighbouring points in the next iterations. In the
sparsification, the significance is estimated before removing a mask point. However,
as already discussed, this is also only an approximation. In contrast to sparsification,
the danger of not including an important mask point is smaller as it will be inserted
with a very high probability in the beginning. Furthermore, a big advantage of the
densification is that smaller densities which are often desired in compression contexts
can be obtained much faster.
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Figure 5.3. Spatial optimisation with probabilistic densification. Top row: Opti-
mised mask (density: 4%) and corresponding tonal optimised inpainting for harmonic
inpainting (p = 0.2, q = 10−6). MSE: 29.92. Bottom row: Same for biharmonic
inpainting (p = 0.1, q = 10−6). MSE: 19.76.

Again, example results are in Figure 5.3. Although one can hardly see a difference
of the masks between the sparsification and densification, the reconstructions are
better for the densification. This however cannot be generalised as sparsification can
also give better results than densification for certain images. Nevertheless, one can
conclude that the probabilistic approaches give reasonably good results, while not
being optimal.

5.3.3 Limitations

There are several reasons why the probabilistic approaches cannot guarantee to yield
the optimal mask. As already indicated, one issue is that both methods only approxi-
mate the importance of a mask point on the inpainting. While probabilistic sparsifica-
tion checks how leaving out certain mask points influence the inpainting, probabilistic
densification seeks for missing points by considering the reconstruction error. It is
clear that this cannot yield the optimal result. Even incorporating a smoothing of the
image during the evolution does not improve the mask quality. Another reason is the
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Figure 5.4. Spatial optimisation with probabilistic densification incorporating tonal
optimisation after every mask point insertion. Top row: Optimised mask (density:
4%) and corresponding tonal optimised inpainting for harmonic inpainting (p = 0.1,
q = 10−6). MSE: 165.63. Bottom row: Same for biharmonic inpainting (p = 0.1,
q = 10−6). MSE: 69.63.

global interdependence between all mask pixels which is not completely accounted for
in these greedy approaches. Once a point is removed or inserted, there is no possi-
bility to revert this decision. Thus, especially at stages where only few mask pixels
are present, important points might be missed, so that one ends up in a suboptimal
local minimum. In this regard, the probabilistic component also plays a major role. If
exclusively important points are selected for the candidate set, only imperfect results
can be obtained.

Another potential issue of both approaches is that no tonal optimisation is respected
during the mask evolution. The methods only rely on the original tonal values at the
mask points for obtaining the intermediate inpainting results. However, due to a tonal
optimisation, a mask point could potentially be used at a different location when the
grey value can compensate for its absence. One straightforward idea would thus be to
perform a tonal optimisation step after each inpainting. This way, the grey value op-
timisation is directly incorporated into the mask optimisation process. Unfortunately,
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this strategy is not yielding good results at all. For example, Figure 5.4 shows the
result of probabilistic densification where the tonal optimisation is performed after
each step. The mask points are not distributed nicely over the image, but they are
gathered along some of the edges. The corresponding inpainting quality is hence not
good.

Even though this result surprises in the beginning, the bad performance can be ex-
plained easily. After inserting mask points at certain locations, the tonal optimisation
modifies the corresponding grey value such that the overall inpainting quality is best.
However, this global optimality is at the cost of having a bad local approximation.
Thus, instead of improving the local inpainting quality at those locations where the
mask points were intended for, the error is steadily large there. Consequently, new
mask points will be inserted close the the previous locations in subsequent iterations.
After repeating this procedure, one finally obtains a clustering of the mask points
along edges where the error remains large at all times.

This experiment shows that it does not necessarily pay off to optimise the tonal
values while selecting optimal mask locations. In particular in earlier stages, an
optimisation of the grey values hinders a good spatial optimisation. Instead, using the
original grey values at the mask points during the evolution seems to have a smoothing
effect which positively affects the spatial optimisation process. This observation has
also been confirmed in related experiments in that context.

5.4 Nonlocal Pixel Exchange

As discussed, both probabilistic sparsification and densification are not guaranteed to
find an optimal solution. Thus, a method called nonlocal pixel exchange that allows
to further improve the results of any previously obtained mask is presented in the
following. While this method has been proposed in [4], it has been further analysed
in [1]. The nonlocal pixel exchange starts with a sparse and possibly suboptimal mask
which already has the desired density. In each step, it randomly selects a set of m
non-mask points as candidates. The candidate that exhibits the largest local error is
then exchanged with a randomly chosen mask pixel. If the inpainting result with the
new mask is worse than before, the exchange is reverted. Otherwise the new mask is
kept. Algorithm 5.3 shows the details of the nonlocal pixel exchange method.

By construction, the nonlocal pixel exchange can only improve the result. This
algorithm always converges towards an optimal solution in terms of an exchange of
two pixels. Since we exchange at each iteration the same number of candidate pixels
it follows that this approach is not equivalent to an exhaustive search through all
possible combinations. Thus, one cannot guarantee convergence towards the global
minimum. Nevertheless, the algorithm is able to find very good results on the expense
of taking a very long time. As a result of the extensive experiments which have been
conducted in [1], choosing the parameter m between 20 and 30 gives the best results
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Algorithm 5.3. Nonlocal Pixel Exchange.

Input: Original image f , mask c, mask indices K, size m of candidate set.

Initialisation: Set u = r (c,f), cnew = c.

Compute:

Do:

1. Randomly select m pixel indices i from Γ \K.

2. For all i ∈ T compute the local error ei = (ui − fi)2.

3. Randomly choose one j ∈ K and set cnew
j = 0.

4. For the index i with the largest ei, set cnew
i = 1.

5. Compute unew = r (cnew,f).

6. If ‖unew − f‖2 < ‖u− f‖2

Set u = unew, c = cnew and update K accordingly.

else

Reset cnew = c.

until the maximum number of iterations is reached.

Output: Optimised mask locations K.

for the tested images. Of course, the optimal value can vary for different images.
Moreover, one can see in Figure 7 in [1] that the mask improves a lot during the first

5000 iterations. Afterwards, the error decreases less and less the more iterations are
performed. Nevertheless, one can still see improvements even after 500000 iterations.
Furthermore, it is shown that it pays off to have a better mask as initialisation, as
for example the one obtained with the probabilistic approaches. This increases the
convergence towards the optimum. Again, a tonal optimisation is not considered in
the optimisation process. This could also be achieved by optimising the grey values
when computing the inpainting in every iteration. Unfortunately, this is typically not
feasible due to the large runtime.

Starting with the mask obtained by the probabilistic sparsification, the nonlocal
pixel exchange yields the results in Figure 5.5. Obviously, the error can be reduced
enormously, and the reconstructions become closer to the ones of the optimal control
approach. Nevertheless, one can see that all the greedy approaches cannot compete
with the optimal control approach. Hence, theoretically more profound approaches
will be considered in the next Sections.
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Figure 5.5. Spatial optimisation with nonlocal pixel exchange. Initialisation is
mask from probabilistic sparsification. Top row: Optimised mask (density: 4%)
and corresponding tonal optimised inpainting for harmonic inpainting (m = 20).
MSE: 27.24. Bottom row: Same for biharmonic inpainting (m = 10). MSE: 16.73.

5.5 Analytic Approach

Belhachmi et al. relied on the mathematical theory of shape optimisation for finding
the optimal mask points for inpainting [23]. Thereby, the topological properties of
given objects are optimised. For homogeneous diffusion inpainting, the authors could
show that the density of the data points should be chosen as an increasing function
of the Laplacian magnitude of the original image f . However, this optimality result
returns a continuous density function instead of a discrete pixel mask. It is not obvious
how one can obtain a binary approximation of this continuous density function. This
problem is also discussed in [23]. Thus, different variants have been proposed in recent
years, and are commonly called the analytic approach. After presenting them in the
following, we will see that there is much more potential behind this theory.
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5.5.1 Previous Approaches

Belhachmi et al. themselves have suggested the following strategy to obtain a point
mask based on the Laplacian magnitude. First, a Gaussian presmoothing with a
standard deviation of σ is applied to f to obtain fσ. This is a common procedure
in image processing to ensure the differentiability of the data. Then one computes
the Laplacian magnitude |ANfσ| for all pixels, and obtains a density function µ =
c0|ANfσ| depending on the Laplacian magnitude and some scaling parameter c0 ∈ R.
Note that the scalar operations such as the absolute value and the multiplication are
meant component-wise. The value of c0 has to be determined such that µ represents
a probability density function, i.e. the mean of µ shall represent the desired mask
density d. Finally, the classical error diffusion method of Floyd and Steinberg [73] is
used to obtain a binary point mask from the density distribution.

In [4], it is proposed to employ the more sophisticated electrostatic halftoning [168]
instead of the Floyd and Steinberg dithering. In principle, any dithering algorithm
that preserves the average grey value can be applied to transfer the density function to
a binary mask. However, it could be demonstrated in [1] that preferring this approach
over simpler dithering approaches leads to superior results in terms of the inpainting
quality. Nevertheless, since any dithering method introduces errors, it remains an open
question if this is the most suitable approach to discretise the continuous optimality
result.

Moreover, the theory of Belhachmi et al. demands the data points to be chosen as
an increasing function of the Laplacian magnitude. However, the optimal increasing
function is not known, and depends on the details of the underlying model. One
possibility is to assume this function to be the identity function of the Laplacian
magnitude, as it is done in [23]. An alternative strategy is pursued in [1], where a
power function is assumed. To this end, an additional parameter p > 0 is introduced
which allows to tune the density of the selected points in homogeneous regions. This
variant can also be motivated from the original paper [23], and leads to the modified
density µ = c0|ANfσ|p.

An overview of the analytic approach including the electrostatic halftoning and the
modified density function is summarised in Algorithm 5.4. Unfortunately, there exists
no theory for higher order inpainting operators such as the biharmonic one so far.

In order to find good values for the parameters p and σ, a joint grid search can
be performed to obtain the best possible reconstruction. To this end, the grid search
explained for only one parameter is extended to multiple parameters in a straightfor-
ward way. In [1], this reconstruction is obtained by computing the inpainting with
the values of the original image f as Dirichlet condition. As a result, the analytic
approach is able to yield good masks. Although the quality of the inpainting with
these masks is slightly worse than the ones obtained with probabilistic sparsification,
the advantage of this approach is that it relies on a proper theoretical framework.
Additionally, it is much faster than all other mask optimisation approaches that we
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Algorithm 5.4. Analytic Approach.

Input: Original image f , Gaussian standard deviation σ, exponent p, desired pixel
density d.

Compute:

1. Perform Gaussian presmoothing with standard deviation σ: fσ = Kσ ∗ f .

2. Compute the the Laplacian magnitude a := |ANfσ|.
3. Calculate the constant c0 as

c0 =
d

mean(ap)
,

to obtain the probability density function µ = c0 · ap.
4. Apply electrostatic halftoning on µ to obtain c.

Output: Optimised mask c.

have discussed so far. In particular, the approach is even real-time capable if a fast
dithering method is used. However, rather than on speed, the focus of the present
work is to maximise the quality of the reconstruction. For this reason, we stick to the
electrostatic halftoning for the dithering. For speeding it up, a GPU implementation
is employed1.

In order to evaluate the performance of the discussed analytic approach, a mask is
found for the test image trui. Again, the target density is 4%. The parameters σ and
p which yield the smallest error are σ = 1.6 and p = 0.8. The resulting mask and the
corresponding tonal optimised inpainting is shown in Figure 5.6. Compared to the
results of the previous approaches the obtained MSE of 42.0 is not very convincing
yet. Luckily, there is much more potential behind the theory of Belhachmi et al. as
we will see in the following.

5.5.2 Improved Variants

Considering the analytic approach in more detail, one can observe that there are still
some aspects which can be improved. The hope is to obtain much better masks by a
better design and a tuning of all ingredients. Different possibilities in this regard are
presented in the following.

Incorporating Tonal Optimisation

In general, we are interested in finding a mask which is able to yield the best possible
inpainting. As mentioned before, this would include the potential given by the tonal
optimisation. Thus, it seems natural to take this into account when optimising the

1GPU implementation of electrostatic halftoning courtesy of Dr. Christian Schmaltz.
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parameters p and λ: Instead of evaluating the inpainting with the original grey values
in the grid search, it makes sense to consider the result of the tonal optimisation.
In other words, the parameters are chosen in a way such that they yield the best
reconstruction after a tonal optimisation. Although this increases the runtime, the
hope is to obtain a mask with higher overall reconstruction potential. Considering
the example, the MSE can be reduced from 41.51 to 35.68 after a tonal optimisation.
The optimal parameters changed to σ = 1.2 and p = 1.0. This shows that it pays off
to incorporate the tonal optimisation into the mask optimisation process.

Parameter Selection of Electrostatic Halftoning

The principle idea of the electrostatic halftoning is that a specified number of particles
(which correspond to the mask points) move around on a rectangular grid until a
steady state is reached. This steady state is described by two main forces that act on
the particles. On the one hand, there are repulsive forces between the particles which
leads to homogeneous distribution of the particles in flat areas. On the other hand,
there are attractive forces to the underlying force field. This force field is determined
by the density function which forces particles to be more likely at locations with a
larger density. If one has a closer look at the electrostatic halftoning method [168],
one can see that there are two parameters which are worth of being studied in more
detail:

First, there is the parameter α. In the electrostatic halftoning, the particles can
freely move to any (continuous) position on the rectangular image domain. In the end,
one is interested in particles lying on discrete grid locations. For this purpose, the
parameter α allows to steer the amount of force which enforces the particle positions
to be on the grid locations. The value for α is proposed to be 3.5, and is also adopted
for the dithering within the analytic approach. However, after experimenting with
this value, one can see that for the purpose of mask optimisation, it makes sense to
choose a smaller value of α. An explanation for this fact is that the particles can
then move more freely over the complete image domain, and are less likely to be stuck
in a local minimum. In all the experiments on different images, the best value was
α = 10−4, and can be fixed for future experiments. For the image trui, this means
that the MSE is lowered from 35.68 to 32.46.

Another parameter is τ which represents the artificial time step size for the evolution
of the particles. It inherently incorporates different constants such as the point charges
and the Coulomb’s constant. As in the original paper [168], a value of τ = 0.1 is
selected for the analytic approach so far. However, it is also a good idea to adapt this
parameter. For example, choosing a value of τ = 1.5 for the image trui yields a new
MSE of 29.2. This also adapts the optimal presmoothing parameter σ to 1.0.

Optimising these two parameters along with the parameters σ and p gives a tremen-
dous improvement of the mask quality. This could also be verified in other examples
including different images.

113



Chapter 5. Spatial Optimisation

Separation of Laplacian Sign

In the electrostatic halftoning, all particles are repelled by all others. This is also true
for points lying across edges of the original image. Consequently, in the final mask,
there is a minimum distance even between two adjacent mask points on either side
of an edge. However, one can imagine that it is necessary to have a small or even no
distance between two points such that they are able to recover very sharp edges. To
remedy this issue, it might be a good idea to avoid the repelling forces across edges
in the original image.

An important observation is that the sign of the Laplacian is different for locations
across edges, and equal for locations on the same side of edges. Thus, the modification
described above can be implemented by splitting the dithering into two parts. First,
the analytic approach is applied for only the positive values of the Laplacian. To do
so, Step 2 of Algorithm 5.4 is modified by computing the values of a for all pixels
i ∈ Γ as

ai =

{
|(ANfσ)i| if (ANfσ)i > 0,

0 otherwise.
(5.2)

Thereby only half of the desired mask points are used, i.e. one assumes the desired
mask density to be d/2. Afterwards, in a second step, the electrostatic halftoning is
accordingly performed for the negative values of the Laplacian, again by specifying
only half of the desired final points. More precisely, the values of a in Step 2 are now
given for all pixels i ∈ Γ by

ai =

{
|(ANfσ)i| if (ANfσ)i < 0,

0 otherwise.
(5.3)

In total, the electrostatic halftoning is performed twice with half of the points for the
two classes of the Laplacian. The two resulting two masks are then joined to obtain
a final mask. More specifically, a mask point is set whenever this point is chosen
in at least one of the two masks. As the two classes are disjoint, no mask point is
selected in both masks. Thus, the desired mask density should be obtained. Note
that the overall runtime of this modified version is smaller compared to the original
analytic approach. Due to the fact that the complexity of the electrostatic halftoning
grows quadratically with the number of points, it is more efficient to perform the
dithering twice with half of the points. As a result of this separation, the MSE for
the image trui can be reduced to 26.99. This is astonishing as this MSE is smaller
than the MSE of 27.24 obtained after probabilistic sparsification and nonlocal pixel
exchange. Moreover, the adapted analytic approach is extremely fast compared to the
other approaches. This shows that a clever designed algorithm based on a theoretical
framework with tuned parameters is able to outperform a greedy algorithm.
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Improved Density Function

The analytic approach bases on the result in [23] that the density of the mask points
should be chosen as an increasing function of the Laplacian magnitude. So far, this
increasing function is assumed to be a power function with exponent p. A closer look
into [23] reveals the following more precise relationship between the density µ and the
Laplacian magnitude:

µ2

|1− log(µ)|
≈ c0|∆f |2. (5.4)

In contrast to this formula, a simplified version was employed before which neglects
the denominator. However, it makes sense to include this information for obtaining
a more accurate density function. After introducing a presmoothing and a power
function as before, we thus assume the following discrete density:

µ2

|1− log(µ)|
= c0|ANfσ|2p. (5.5)

Unfortunately, it is not possible to analytically solve this equation for µ. For given
values of the Laplacian magnitude and a c0, one can instead use a numerical approx-
imation to evaluate µ(c0, |ANfσ|). For instance, a binary search algorithm can be
applied due to the monotonicity of the function. This allows to compute the constant
c0 such that the resulting µ becomes a probability density function. After tuning
all the parameters, the final MSE for the image trui can be reduced to 26.04 (with
σ = 0.9, p = 1.07, τ = 1.16).

Adapted Distance Function

As a last improvement, one can adapt the distance function in electrostatic halftoning.
In the original paper [168], the amount of force of a particles on each another decreases
quadratically depending on the distance. More precisely, the force is scaled by 1/r2,
with r being the distance between two points. The same decay is used for the influence
of the force on the particles by the density field. However, this choice of the model
design may not be the optimal one. To introduce more flexibility, one can thus assume
a distance dependent decay of the forces given by 1/(rq + ε). The small number ε > 0
is a small number which avoids singular values. In the experiments, it is fixed to
ε := 10−5. A smaller q leads to a slower decay of the mask points, and thus a more
homogeneous behaviour over the whole image. A larger q would imply a faster decay
depending on the distance, which leads to a localisation of the influences.

After incorporating also this final modification into the analytic approach, a final
MSE of 25.71 is obtained for the image trui with only 4% of mask pixels. The values
for the parameters are σ = 1.0, p = 0.98, τ = 1.55 and q = 2.51. As one can see,
a larger q and consequently a slightly more homogeneous distribution of the mask

115



Chapter 5. Spatial Optimisation

Algorithm 5.5. Analytic Approach - Improved Version.

Input: Original image f , Gaussian standard deviation σ, exponent p for Laplacian,
time step size τ , exponent q for distance function, desired pixel density d.

Compute:

1. Perform Gaussian presmoothing with standard deviation σ: fσ = Kσ ∗ f .

2. Optimise mask for positive Laplacian:

i. Compute the Laplacian magnitude with positive sign, see Equation (5.2).

ii. Determine the constant c0,1 to obtain the probability density function µ1,
assuming a mask density of d/2.

iii. Apply electrostatic halftoning on µ1 with the parameters τ and q to ob-
tain c1.

3. Optimise mask for negative Laplacian:

i. Compute the Laplacian magnitude with negative sign, see Equation (5.3).

ii. Determine the constant c0,2 to obtain the probability density function µ2,
assuming a mask density of d/2.

iii. Apply electrostatic halftoning on µ2 with the parameters τ and q to ob-
tain c2.

4. Obtain the final mask c of density d by a logical ‘or’ operation on c1 and c2.

Output: Optimised mask c.

points is preferred. Interestingly, the best power p is set to 1, which confirms the
result in [23].

Overview

As we have seen, there are a lot of modifications that help to qualitatively improve
the analytic approach. For convenience, Algorithm 5.5 gives an overview of the final
analytic approach. The individual parameters are determined using grid search to ob-
tain an optimised mask. The final best mask and the corresponding tonal optimised
inpainting for the image trui are depicted in Figure 5.7. Compared to the previous an-
alytic approach in Figure 5.6 the reconstruction quality is much better. The increased
tendency of the mask points towards the image edges seems to be the key factor for
the improved performance. Interestingly, the final mask even outperforms the one
obtained in a greedy way with the non-local pixel exchange. Although the analytic
approach can not quite offer the same quality as the optimal control method, it has
the clear advantage that the desired mask density can be chosen explicitly. However,
the drawback of the method is that there are a lot of parameters which need to be
optimised.
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Figure 5.6. Spatial optimisation for harmonic inpainting with recent analytic ap-
proach. Left: Optimised mask (density: 4%) with Algorithm 5.4 (parameters:
σ = 1.6, p = 0.8). Right: Corresponding tonal optimised inpainting (MSE: 42.00).

Figure 5.7. Spatial optimisation for harmonic inpainting with improved analytic
approach. Left: Optimised mask (density: 4%) with Algorithm 5.5 (parameters:
σ = 1.0, p = 0.98, τ = 1.55, q = 2.51). Right: Corresponding tonal optimised
inpainting (MSE: 25.71).

5.6 Spatial Optimisation with Discrete Green’s
Functions

As for the tonal optimisation, it is also possible to consider the problem of finding
a mask from a different perspective, namely by using discrete Green’s functions. It
was discussed in Chapter 3 that the inpainting solution can be expressed in terms
of discrete Green’s functions. Moreover, it was shown in Chapter 4 that a tonal
optimisation is equivalent to an optimisation of the coefficients of discrete Green’s
functions. Similarly, it is possible to reinterpret the problem of finding mask points
as seeking the source points of the individual discrete Green’s functions. The desired
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benefit of this strategy is that - in contrast to the probabilistic approaches - one has
direct access to the influence of a single mask point on the inpainting result.

One can formulate the problem as follows. All discrete Green’s functions on a rect-
angular domain given by the original image describe a dictionary. From this dictio-
nary, one is interested in selecting a predefined number of Green’s functions as atoms
which allow to approximate the original image as good as possible. This approxi-
mation is given as the superposition of those Green’s functions with corresponding
coefficients (cf. Equation 3.55). As usual, these coefficients are supposed to be optimal
for a given set of discrete Green’s functions to evaluate the true quality of the resulting
mask. More formally, we seek the source points (x1, y1), . . . , (xL, yL) ∈ Γ, where L is
the desired number of mask points, as well as the coefficients a1, . . . , aL ∈ R. These
source points are equivalent to the final mask locations. It has already been shown in
Section 4.6 that the optimal value of the constant c is given by the mean value of the
original image and is independent of the chosen mask configuration. Thus, one does
not have to care about this parameter. Additionally, the solvability condition (3.53)
has to be fulfilled to obtain a valid inpainting solution.

Let us define the following energy:

E
(
(xk, yk, ak)

L
k=1

)
:=

1

2

∥∥∥∥∥
L∑
k=1

ak g
0
xk,yk
− f

∥∥∥∥∥
2

2

, (5.6)

with f := f − µ being the original image compensated by its mean value µ. Then,
finding a mask can be formulated as the following optimisation problem.

arg min
(xk,yk)∈Γ, ak∈R,

k=1,...,L

E
(
(xk, yk, ak)

L
k=1

)
. (5.7)

After having found the best combination of coefficients and mask points, the final
approximation u is given by

u =
L∑
k=1

ak g
0
xk,yk

+ µ. (5.8)

In the literature, this problem is also known as sparse approximation problem [192,
195]. Here, the general task is to find a sparse subset of all atoms in a dictionary
which leads to the best approximation of the original signal or image. A very popular
method to find a minimiser is the so-called orthogonal matching pursuit [129]. In the
following, the standard OMP approach is presented first. Then, it is demonstrated
how one can improve the runtime performance of OMP with the help of an improved
numerical scheme. Afterwards, an improved variant of OMP is proposed. Last but not
least, a 3D optimisation approach relying on a gradient descent scheme is presented.
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5.6.1 Orthogonal Matching Pursuit

Standard Formulation

Orthogonal matching pursuit (OMP) is a greedy algorithm which is well suited to
find a sparse subset of atoms from a dictionary. Starting with an empty set, OMP
successively selects a discrete Green’s functions one after another by selecting the
most relevant one in each step. In iteration step k, a new source point is inserted
at that location where the corresponding Green’s function correlates most strongly
with the residuum. The residuum is given by rk := f − uk−1 between the original
image and the up-to-date approximation uk−1. The initial inpainting u0 is set to zero
everywhere. The k-th source point (xk, yk) is then determined as

arg max
(x,y)∈Γ

∣∣∣∣∣
〈
rk, g

0
x,y

〉〈
g0
x,y, g

0
x,y

〉∣∣∣∣∣ . (5.9)

After adding a new Green’s function in every step, the coefficients are optimised
to obtain an updated best approximation u of the original image. Thereby, the
solvability condition is not assumed in the intermediate steps to see the unveiled
influence of the selected Green’s functions. The condition is a restriction only on the
coefficients altogether and is required to obtain a valid inpainting solution in the end.
The intermediate optimisation of the coefficients has the following structure:

arg min
ak∈Rk

∥∥Hkak − f
∥∥2

2
, (5.10)

Here, Hk ∈ R|Γ|×k is the matrix containing the k already selected discrete Green’s
functions as columns, and ak ∈ Rk are the sought coefficients. Solving this problem
can for instance be done analogous to the approach discussed in Section 4.6. The
updated approximation is then obtained as uk = Hkak. In the end, the coefficients
are optimised respecting the solvability condition to obtain a valid inpainting solution.

Note that in contrast to the probabilistic densification, it makes sense in OMP to
perform an optimisation of the coefficients or equivalently the tonal data also within
the intermediate steps. The reason for this lies in the selection of the next mask points.
While the local error is considered in the densification, OMP considers the global
correlation of the discrete Green’s functions with the residuum. As a consequence,
the decision in OMP bases on the overall distribution of the error and not on the local
approximation quality.

Efficient Computation

Performing the OMP algorithm in a näıve way would require a lot of time. With the
help of some optimisations, it is possible to lower the required runtime. First of all,
one can precompute all the inner products

〈
g0
x,y, g

0
x,y

〉
in (5.9) of all discrete Green’s
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functions with themselves. In particular, as discussed in Section 3.3.4, these inner
products can be computed very efficiently. The latter fact is also valid for the inner
products of all discrete Green’s functions with the residuum. Including these changes
already leads to an immense reduction of the runtime.

Furthermore, one can accelerate the optimisation of the coefficients in each step by
relying on the information from the previous step. As a basis, a QR decomposition
is employed for solving the linear least-squares problem as suggested in [82]. Let
H = QR be the QR decomposition of a matrix H ∈ R|Γ|×L, with an orthogonal
matrix Q ∈ R|Γ|×|Γ| and an upper triangular matrix R ∈ R|Γ|×k. Then, the solution
of the least squares problem (5.10) is given by

a = R−1Q>f . (5.11)

Note that the inversion of R is nothing else than a simple backwards substitution,
making the computation of a very efficient once the QR decomposition is available.
Especially for larger matrices, performing a QR decomposition is computationally
expensive. Thus, instead of recomputing the QR decomposition in each step, a better
idea is to use the information from the decomposition in the previous step. To see how
this can be realised, a closer look at the QR decomposition algorithm is necessary.

Successful techniques for computing a QR decomposition of a matrix either rely
on a modified Gram-Schmidt algorithm or on a Householder transform [194]. It has
been noted in [82] that a Householder transform is numerically more robust and more
efficient compared to a modified Gram-Schmidt procedure on the expense of being
harder to implement. Thus, the Householder transform is employed here, and works
as follows.

The basic idea is to construct an orthogonal matrix Q such that Q>H results in
an upper triangular matrix R, i.e.

Q>H = R⇔H = QR. (5.12)

Thus, a QR decomposition is directly obtained after having found Q. To do so, the
columns of H are processed one after another from left to right. For each column
k ∈ {1, . . . , L}, a symmetric and orthogonal Householder matrix Mk is constructed,
which has the form

Mk := I − τk vk v>k , (5.13)

with the identity matrix I ∈ R|Γ|×|Γ|, and unknown τk ∈ R , vk ∈ R|Γ|. The structure
of vk is as follows:

vk =
(
0, . . . , 0, 1, vk+1, . . . , v|Γ|

)>
. (5.14)

The values of τk and the unknown values of vk are determined such that the follow-
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ing property is fulfilled: For an arbitrary vector b ∈ R|Γ|, the result of Mkb shall
be identical to zero for all entries with an index larger than k. All other entries
remain unmodified by construction. For more information on how the values of v
can be determined, please see [194]. Consecutively applying the Householder matri-
ces M1, . . . ,ML thus allows to bring all values of the lower triangular part to zero
from left to right. For instance, applying the k-th Householder transform leads to the
following outcome:

Mk

a1,1 a1,L

0

0 ak,k ak,k+1 ak,L
ak+1,k ak+1,k+1

0 0 aL,k aL,k+1 aL,L




=

a1,1 a1,L

0

? ? ?

0 ?

0 0 ? ?




(5.15)

The entries ai,j with i, j ≥ k might get modified, while the rest remains unchanged.
The matrix Q> is finally given by

Q> = ML · . . . ·M1. (5.16)

As a result, Q>H represents a triangular matrix R. The orthogonality of the matrix
Q = M1·. . .·ML is verified easily from the orthogonality of the individual Householder
matrices. Thus, the QR decomposition is complete, and the solution of the least
squares problem can be computed according to (5.11). Note that this only requires
to have the transpose of the matrix Q, so there is no need to compute Q.

One advantage of the Householder transform to obtain the QR decomposition is that
the large matrix Q respectively Q> does not have to be stored explicitly. In contrast,
all the necessary information for recovering these matrices is given by M1, . . . ,ML

which in turn are represented by the values of τ1, . . . , τL and v1, . . . ,vL. All relevant
operations can be performed from this data. In practice, one can even store the
complete information of Q in the free memory of R: The relevant information of the
vectors v1, . . . ,vL fit on the lower diagonal, while τ1, . . . , τL can be written on the
main diagonal of R. If it is not required to keep the matrix H , one can thus store its
QR decomposition in the same memory by replacing the columns one after another.

Let us now consider how one can reuse the QR decomposition within the OMP
algorithm. To this end, let a system matrix Hk−1 ∈ R|Γ|×(k−1) be given after having
selected k−1 discrete Green’s functions. Additionally, the QR decompositionHk−1 =
Qk−1Rk−1 is assumed, and let bk−1 := Q>k−1f be computed, such that the current
coefficients are given by the backwards substitution ak−1 = Rk−1bk−1 according to
Equation (5.11). Selecting a new Green’s function g0

xk,yk
in step k means that the
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system matrix Hk−1 is extended by one more column. This yields a new matrix
Hk ∈ R|Γ|×k by appending the additional column at the end:

Hk =
(
Hk−1 | g0

xk,yk

)
. (5.17)

Applying Q>k−1 from the existing QR decomposition yields

Q>k−1Hk =
(
Q>k−1Hk−1 | Q>k−1g

0
xk,yk

)
=
(
Rk−1 | Q>k−1g

0
xk,yk

)
. (5.18)

In order to obtain a valid QR decomposition of Hk, one has to transform this matrix
into an upper triangular matrix again. To achieve this, all one has to do is to compute
a Householder transform Mk for the last column. This yields the updated Q>k =
MkQ

>
k−1 and corresponding diagonal matrix

Rk =
(
Rk−1 | Q>k g0

xk,yk

)
. (5.19)

This in turn allows to update bk = Mkbk−1, the coefficients ak = R−1
k bk as well as

the approximation uk = Hkak. A detailed description of the complete OMP method
including all optimisations is shown in Algorithm 5.6.

Improved Variant

As we have seen, the standard OMP approach is not optimal. In order to improve
the result, the following conceptual issue can be made out. The selection of the mask
points and the corresponding coefficients are found without any interaction in each
step: First, a location is found, while the coefficients are optimised in a second step.
In contrast, a selection based on the joint information would be better. To remedy this
problem, we propose a modified orthogonal matching pursuit. The idea is to select
the Green’s function which allows for the highest improvement in the approximation.
This enables a coupling between positions and coefficients in each step. More formally,
instead of (5.9), we are looking for

arg min
(x,y)∈Γ

{
min
α

∥∥rk − α g0
x,y

∥∥2

2

}
. (5.20)

Interestingly, the inner minimisation problem can be computed explicitly, which allows
to simplify this best point selection to

arg max
(x,y)∈Γ

∣∣∣∣∣
〈
rk, g

0
x,y

〉2〈
g0
x,y, g

0
x,y

〉∣∣∣∣∣ . (5.21)

Compared to (5.9), the only difference is the square in the nominator. Thus, these
two approaches are of the same complexity. Besides this small change in Step (c) in
Algorithm 5.6, all other steps of the OMP remain the same.
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Algorithm 5.6. Orthogonal Matching Pursuit (OMP)

Input: Image f , desired number L of mask points.

Initialisation:

1. Initialise u0 := 0, compensated image f := f − µ by its mean, b0 = f , empty
matrices H0,R0, and Q0 = I ∈ R|Γ|×|Γ|.

2. Precompute inner products
〈
g0
x,y, g

0
x,y

〉
for all (x, y) ∈ Γ, see Section 3.3.4.

Compute:

1. Do for all k = 1, . . . , L:

(a) Compute residuum rk := f − uk.
(b) Employ Algorithm 3.1 to get inner products of all Green’s functions

with rk.

(c) Find best new pixel location (xk, yk) with (5.9).

(d) Append the discrete Green’s function g0
xk,yk

to system matrix and obtain
Hk, see (5.17).

(e) Obtain new coefficients using updated QR decomposition of Hk ∈ R|Γ|×k:
(i) Obtain Householder transform Mk based on Q>k−1g

0
xk,yk

.

(ii) With Q>k = MkQ
>
k−1, obtain Rk according to (5.19).

(iii) Update bk = Mkbk−1 and coefficients ak = R−1
k bk.

(f) Update approximation uk = Hkak.

2. Perform a tonal optimisation with all selected mask points and enabled solv-
ability condition to obtain final inpainting u, see Algorithm 4.5.

Output: Optimised mask locations (xk, yk), k = 1, . . . , L and corresponding tonal
optimised inpainting u.

Example Results

For the image trui, the results of both the standard OMP approach and its improved
variant can be found in Figure 5.8 and Figure 5.9. Again, the target mask density
was 4%. As expected, the improved variant clearly yields better masks than the
standard version of OMP. In contrast, the fact that both approaches yield comparable
qualities for harmonic and biharmonic inpainting is rather surprising. Unfortunately,
the reconstructions are not very convincing compared to previous approaches.

The mask points show an obvious tendency towards the centre of the image, and
there is another large amount of points along the image boundaries. The former
aspect can be explained from the fact that discrete Green’s functions with source
points close to the image centre have a larger region of influence compared to points
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MSE: 35.55

MSE: 35.53

Figure 5.8. Spatial optimisation with standard OMP. Top row: Harmonic in-
painting. Bottom row: Biharmonic inpainting. Left column: Optimised masks
(density: 4%). Right column: Corresponding tonal optimised inpaintings.

further away. Thus, more points are selected at the centre especially in earlier stages.
As a consequence, the errors within the regions further away tend to become larger at
some point. This results in boundary points being added because the corresponding
discrete Green’s functions are able to cover those regions best.

5.6.2 Gradient Descent

As for the stochastic approaches, it is clear that OMP and also its improved variant
cannot find the optimal mask. The fact that the points are inserted one after another
does not allow for a globally best result: Once a mask point is selected, it will be
kept forever. One can imagine that the mask points would benefit from a subsequent
rearrangement of their configuration to allow for an adaption to the local image struc-
ture. This is also the idea behind the nonlocal pixel exchange. While this approach
was primarily a brute force algorithm, discrete Green’s functions allow a much more
elaborated global optimisation strategy.

124



5.6. Spatial Optimisation with Discrete Green’s Functions

MSE: 31.29

MSE: 32.71

Figure 5.9. Spatial optimisation with improved variant of OMP. Top row: Har-
monic inpainting. Bottom row: Biharmonic inpainting. Left column: Optimised
masks (density: 4%). Right column: Corresponding tonal optimised inpaintings.

Assume we are given some mask which has been found by any previous optimisation
strategy, such as OMP for example. Then, it should be possible for the mask points
to move around within the spatial domain, while at the same time allowing to adapt
their coefficients, in order to improve the inpainting result. The hope is to get closer
to a global optimum of the energy in (5.7). This procedure can be considered as a 3D
optimisation strategy.

A gradient descent scheme helps to realise this abstract formulation, and works as
follows. Given an initial configuration w0 := (x0

k, y
0
k, a

0
k)
L
k=1 of the mask points and

corresponding coefficients, we obtain the following general update scheme for n ≥ 0:

wn+1 = wn − α∇E(wn), (5.22)

with a step size α ∈ R+. It is clear that during this evolution, the entries of w can
become real valued. In other words, the mask points do not necessarily have to lie at
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the discrete grid locations Γ. However, in contrast to circumventing this issue by a
projection step after each iteration, we allow this degree of freedom. In particular, as
the coefficients are also continuous, the mask points should possess the same liberty.
This can be seen as a relaxation of the problem. During the evolution, we only make
sure that no mask point leaves the image domain by a back projection. To asses a
discrete Green’s function g0

x,y at a continuous source point (x, y), we use a bilinear
interpolation of the discrete Green’s functions at the four surrounding grid points.
This procedure has the advantage that the Green’s function g0

x,y coincides with the
usual discrete Green’s function whenever (x, y) lies at a discrete grid location. This
means that these Green’s functions allow to retrieve an actual inpainting solution
whenever all mask points are located at grid locations. The computation of the
bilinear interpolation is not very time consuming due to the efficient construction
strategies discussed in Section 3.3.5. Concerning the gradient of E, it is possible to
write down an explicit formulation of the derivative with respect to a coefficient ak:

∂E

∂ak
(wn) =

〈
g0
xnk ,y

n
k
, un − f

〉
. (5.23)

Here, un =
∑L

k=1 a
n
k g

0
xnk ,y

n
k

is the current approximation at step n. Unfortunately, the
spatial derivatives cannot be derived as easy due to the nonlinear dependency of the
inpainting solution u on the mask locations. An important observation is that when
a single mask point moves to another location while leaving its coefficient unmodified,
it is easy to update the inpainting. All one has to do is remove the Green’s function
at the old position, and add a Green’s function at the new position. In particular, it is
not necessary to perform a complete inpainting. This allows to easily approximate the
effect of a small change in the mask location. For this reason, we can approximate the
inner derivatives with the help of finite differences, similar to the tonal optimisation for
nonlinear inpainting operators in Section 4.8. This leads to the following formulation
of the gradient at some location (xk, yk) ∈ Γ:

∂E

∂xk
(wn) ≈

〈
ank ·

g0
xnk+η,ynk

− g0
xnk ,y

n
k

η
, un − f

〉
, (5.24)

∂E

∂yk
(wn) ≈

〈
ank ·

g0
xnk ,y

n
k+η − g0

xnk ,y
n
k

η
, un − f

〉
, (5.25)

with η ∈ R+ representing a small perturbation in the location. Thus, it is possible to
obtain the gradient by a simple formula involving only a few discrete Green’s func-
tions. This is a major difference to the conventional inpainting formulation where the
computation of the gradient would only be possible by performing several inpaint-
ings. Unfortunately, this would suffer from a large runtime. The discrete Green’s
functions on the other hand lead to a huge performance gain. Moreover, the standard
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formulation would not support continuous mask locations.
An important aspect is that the overall goal is to find discrete mask locations. For

this reason, it is not desired to obtain a continuous mask where several points will be
mapped to the very same discrete grid point. To prevent this from happening, the
following countermeasure is performed after each gradient descent step. If two points
would potentially be mapped to the same discrete point, one of them is relocated to
another grid position with large reconstruction error. This allows to improve the qual-
ity in those regions while having no drawback from removing a practically superfluous
point. Furthermore, the following procedure allows to further improve the final mask.
After a certain amount of iterations, the coefficients of the discrete Green’s functions
are considered. Whenever the value is close to zero, the corresponding mask point
obviously has a negligible contribution on the inpainting result. Thus, one can easily
relocate those points to regions of higher error, too.

Figure 5.10 shows an example result of the gradient descent approach. Starting with
an initial mask obtained by OMP with a density of 4%, the method yields very good
results for the harmonic inpainting operator. With discrete mask locations, the MSE
of the reconstruction is 25.6. This is a very good result, only the optimal control
approach is able to yield a better mask. Keeping the continuous mask locations
the reconstruction with bilinear interpolated discrete Green’s functions even has a
final MSE of 16.81. This is much better than any method before could achieve for
harmonic inpainting. Since continuous tonal values are allowed, it is hard to argue
why continuous mask locations should not be permitted.

Considering the parameters, η = 0.1 was found to be a good value for computing
the finite differences. The step size of the gradient descent step has to be chosen
very small to obtain a stable process. Even for the harmonic operator, the maximum
value was α = 10−5, leading to a very long runtime. Interestingly, experiments showed
that choosing a different step size for the spatial and tonal direction improves the final
mask. In fact, a smaller value for the tonal direction typically gave better results. This
can be explained with the help of the previous observation in Section 5.3: If the tonal
values are optimised too early the mask points only have little motivation to move to
another location. Thus, a slower adaptation of the coefficients and consequently of the
tonal data enables a better spatial optimisation. Selecting a step size of 10−5 for the
tonal direction and a step size of around 1 in spatial direction leads to a stable process.
The method converges after performing approximately 1600 gradient descent steps for
all points. Unfortunately, for the biharmonic operator, the algorithm diverges even
with double precision no matter how small the step sizes are chosen. Apparently, the
very high condition number of the system matrix in (5.7) leads to an extremely hard
numerical problem (cf. Table 4.2 in Section 4.6).
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Figure 5.10. Spatial optimisation for homogeneous diffusion inpainting with gradient
descent using discrete Green’s functions and a mask density of 4%. Left: Final mask
with points at grid locations. Centre: Corresponding tonal optimised inpainting
(MSE: 25.6). Right: Optimised inpainting with continuous mask locations (MSE:
16.81).

5.7 Finding Masks for Nonlinear Inpainting Operators

It is clear that the promising inpainting performance of EED gives rise to find opti-
mised masks also for nonlinear inpainting operators. Unfortunately, most of the the
discussed methods are not applicable for performing a spatial optimisation for nonlin-
ear operators. The reasons for this are manifold. When it comes to the primal-dual
approach, one could try to incorporate the dependency of the nonlinear operator on
the inpainting by approximating the inner derivatives with finite differences. How-
ever, besides the much larger runtime, it is not obvious if the minimisation of the
highly non-convex energy would lead to a good local minimum. When it comes to the
discrete Green’s functions, they have only been considered for linear operators and it
is not easy to extend the theory to nonlinear operators. Also the analytic approach
of Belhachmi et al. only offers a theory for the harmonic operator. So far, there exist
no results for other operators. Those topics remain an open question for future work.

Luckily, the probabilistic approaches to not explicitly rely on any structure of the
inpainting operator. In contrast, the inpainting procedure can be seen as a black box
in these methods which can potentially be replaced by any other inpainting method.
Even though the probabilistic densification and sparsification as well as the nonlocal
pixel exchange did not yield the best masks, they include reliable procedures which
are applicable even in such complex scenarios.

In an experiment, a mask with a target density of 4% is supposed to be found for
EED inpainting. As usual, the the image trui represents the original image. To this
end, the parameters of the probabilistic sparsification and the subsequent nonlocal
pixel exchange are tuned to obtain the best reconstruction. The optimal values are
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given by p = 0.05, q = 10−6 and m = 30. They lead to the final mask which has
already been shown in Figure 4.8 of Section 4.8. It achieves a remarkable MSE of
12.62. As shown in that previous Section, it is even possible to obtain a MSE of 10.79
after applying the tonal optimisation designed for nonlinear operators.

To the best of my knowledge, such a reconstruction quality has never been achieved
before with PDE-based inpainting and a mask density of only 4% for the image trui.
In particular, one can come to the conclusion that EED inpainting outperforms the
linear counterparts when it comes to the reconstruction quality. However, one also has
to keep in mind the enormous amount of time needed for performing the spatial and
tonal optimisation with EED. For this reason, linear operators might be better suited
for practical applications. In particular, note that the MSE of 16.14 obtained with
optimal control and the biharmonic operator or the MSE of 16.81 with the harmonic
operator and continuous mask locations are even very close to the EED result. Thus,
it would be fatal to ignore the linear operators when designing compression codecs.

5.8 Conclusion

In this chapter, we have considered different methods for obtaining optimised mask
locations for PDE-based inpainting. Similar to the tonal optimisation problem, there
is no ultimate best method for the spatial optimisation as well. We have considered
different approaches which can be used depending on the specifications such as the
available runtime, the used inpainting operator, the hardware or the ability to specify
the mask density. As a result, it is possible to obtain remarkable reconstructions, even
with the conceptually simple linear inpainting operators such as the Laplacian or the
biharmonic operator.

To obtain the best possible masks for the harmonic or biharmonic operators, the
optimal control approach gives the best results. However, it has the clear disadvantage
that it is not possible to specify the mask density explicitly. Finding a parameter
which yields the desired number of points can thus be time-consuming. Moreover, it
is necessary to perform the computations on a parallel hardware such as a GPU to
reduce the runtime to a feasible amount.

The probabilistic approaches clearly have the advantage that the mask density
can be specified. Unfortunately, the final masks are not the optimal ones and the
runtime can be large. Nevertheless, the probabilistic approaches are straightforward
to implement and very generic: They are the only approaches which are suited for
any inpainting operator, in particular for nonlinear ones. Together with the tonal
optimisation strategy for nonlinear operators from Section 4.8, this allowed to come
up with a reconstruction of hitherto unparalleled quality with EED inpainting.

The analytic approach relying on the continuous theory of Belhachmi et al. is
a promising alternative approach for harmonic inpainting. Here, the density can be
specified explicitly. Depending on the used halftoning, the method can be very fast and
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even real-time capable. However, to obtain competitive results, a more sophisticated
halftoning approach is required. Even with a GPU implementation, this leads to a
higher runtime, which is also caused by the need to select the various parameters.
Of course, an extension of the results of Belhachmi et al. to the biharmonic or even
nonlinear operators are a topic for future work.

Both methods relying on the theory of discrete Green’s functions allow to specify
the desired density, too. Even though OMP has the advantage of being completely
parameter-free and relatively fast, even the improved variant could not yield quite
as good results as all other methods. However, the gradient descent strategy is able
to improve this result, and to find a better mask than the analytic or probabilistic
approaches for the harmonic operator. Unlike all other methods, it can even optimise
for continuous mask locations, leading to the best results when no restriction to dis-
crete grid locations are required. Unfortunately, no optimisation for the biharmonic
operator could be performed due to the numerically demanding problem.

An additional result of this chapter is that an early tonal optimisation can some-
times hinder a spatial optimisation: The tonal optimisation tries to compensate for
imperfect mask locations which reduces their desire to move to other locations. From
another perspective, one can also say that the risk of being stuck in a bad local
minimum is much higher due to a reduced smoothing effect.
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PDE-based Image Compression

In this chapter, we will focus on actual image compression applications. In the previ-
ous chapters, we have discussed various optimisation approaches for selecting the best
inpainting data for different scenarios. These methods will serve as building blocks
which we will use for designing three different compression algorithms in the follow-
ing. Thereby, we want to find out the potential of linear inpainting operators in a
compression context. As we have seen, even these conceptually simple operators have
a very promising reconstruction capability and allow for algorithmic benefits. This
gives rise to the hope that we can obtain well-performing compression methods with
these operators. In particular, our goal is to come up with codecs which are able to
compete with standard approaches such as JPEG, JPEG2000 or HEVC.

As described in Section 1.2.2, the optimal data might lead to good reconstructions,
but can be hard to stored efficiently. Thus, we will have to face the problem of finding
a good trade-off between data optimality and coding costs: While the reconstruction
quality was the only criterion to judge the individual optimisation strategies so far,
we now have to judge the selected data by taking into account the final file size as
well.

In the following, we will first consider a dedicated compression algorithm for depth
maps in Section 6.1. As we will see, an adapted linear inpainting is perfectly suited
for these specific images. Afterwards in Section 6.2, we will concentrate on general
images. Here, we will use the best possible inpainting data to obtain a competitive
image compression algorithm. While the first two compression methods mainly focus
on qualitative aspects, the design of the third compression framework in Section 6.3
will pay attention to both quality and decoding speed.

6.1 Compression of Depth Maps

In recent years, 3D cinema technology has become increasingly popular. In the cor-
responding so called multi-view video + depth (MVD) format, multiple images are
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captured from different perspectives along with their respective depth images. To cope
with the huge amount of data, an efficient compression is indispensable. Combined
compression methods have been presented (see e.g. [163]), where the correlated in-
formation between the colour images and the corresponding depth maps is exploited.
It is also possible to incorporate a temporal component into the compression frame-
work. In the following, however, we focus exclusively on the problem of depth map
compression.

In [125] the authors have presented a related method which encodes the grey or
colour values on both sides of image edges. In contrast to nonlinear anisotropic dif-
fusion processes, a basic homogeneous diffusion inpainting is sufficient to reconstruct
the image. For cartoon-like images the method could outperform JPEG2000. Indeed,
for depth map compression, extracting and storing edges is actually a natural idea as
they are crucial to obtain a good visual impression of the image. However, due to the
fact that the above codec cannot handle homogeneous variations, it turns out that its
application to depth maps leads to unsatisfactory results.

In [81, 119] modified versions of this edge-based approach have been suggested. The
main changes consist of adding grey values at regular mask points, exploiting different
edge detectors, and encoding parts of the extracted data with other methods. Simi-
larly, homogeneous diffusion can be incorporated in existing block-based approaches
where additional edge information is used to attain sharp edges [50]. However, all
these methods are either data intensive or lead to a fairly complex overall codec.

Other approaches try to split the depth image recursively into smaller parts, result-
ing in a tree structure, and recover the depth map on the lowest tree level by means
of linear interpolation [140, 201]. In [99], the depth map is approximated by linear
functions within segments. A similar method, also working on segments, has been
introduced in [218] where mainly bilinear interpolation of data on a regular grid has
been used to reconstruct the depth information. All these methods have the drawback
that a lot of information has to be stored to be sufficiently flexible.

In the following, the aforementioned problems are addressed by presenting a novel
approach which has partly been published in [2]. While it is also based on homoge-
neous diffusion inpainting, it differs from [125, 81, 119] by the fact that it replaces
edges by closed contours that result from a segmentation. This creates a decoupling
into sub-problems and allows to benefit from parallel implementations. More impor-
tantly, by assuming homogeneous Neumann boundary conditions between segments,
it is unnecessary to store grey values at contours. The corresponding grey values to
be stored are additionally optimised. In the end, we do not only achieve a codec
for depth maps that outperforms JPEG [150] and JPEG2000 [191], but even has the
potential to compete with the substantially more complex HEVC (High Efficiency
Video Coding), which is one of the most favourable methods to encode this type of
images [145]. Based on first results in [157], the complete approach has been published
in 2013 at the 4th International Conference on Scale Space and Variational Methods
in Computer Vision [2].
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The following sections are organised as follows. First, we introduce segment-based
homogeneous diffusion in Section 6.1.1. Based on this concept we describe our en-
coding process in Section 6.1.2 and discuss the corresponding decoding steps in Sec-
tion 6.1.3. A discussion on the parameter selection is given in Section 6.1.4, while an
extension to the biharmonic operator is the topic of Section 6.1.5. A comparison to
standard approaches will be presented in Section 6.1.6. A summary in Section 6.1.7
gives a conclusion and shows potential future work.

6.1.1 Segment-based Homogeneous Diffusion (SBHD)

Depth maps can be characterised by their piecewise smoothness. While PDE-based
inpainting methods with linear inpainting operators are perfectly suited to reconstruct
smooth areas, life becomes harder when it comes to recovering sharp edges. As done
in [125, 81, 119], one can address this issue by selecting mask points around the
contours which makes sense according to the theory of Belhachmi et al.. However,
the drawback is that a lot of additional information has to be stored only for the
edges. Thus, a natural idea is to explicitly store the relevant edges and use this
information within the inpainting process. By doing so, the mask points are mainly
supposed to describe smooth transitions in the image and hence to not have to be
selected around sharp edges anymore. To realise this strategy, the new so-called
segment-based homogeneous diffusion (SBHD) will be introduced in the following. It
represents the central feature of the novel compression approach.

SBHD relies on a segmentation of the image domain Ω into several sub-domains.
For each of the segments, we again assume the tonal values of an image f : Ω→ R to
be given at the mask points in ΩK ⊂ Ω. This information is then used to fill in the
respective segment. More precisely, the inpainting u is obtained by solving

−∆u = 0, (6.1)

subject to the following mixed boundary conditions :

u = f at mask points (Dirichlet boundary conditions),

∂nu = 0 at segment boundaries (homogeneous Neumann boundary conditions).

Thereby, n is the unit normal vector to the respective segment boundary, and ∂nu
denotes the partial derivative of u in this direction. As in Section 2.3, the discretisation
of this partial differential equation can be realised in a straightforward way using finite
differences [139]. Then, as long as there is at least one mask pixel in each segment,
there exists an unique solution of the discrete problem (cf. [4]).

As a result of SBHD we obtain an image containing (i) sharp edges at segment
boundaries and (ii) smooth transitions within segments steered by the values at the
mask points. These transitions can also represent unsharp edges. SBHD is therefore
well suited for the representation of depth images for example.
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An important advantage of this SBHD is the fact that, by construction, each mask
point does not have a global influence: Its impact is limited by the respective segment
boundaries. This allows a segment-wise parallel processing. In order to get a solution
of the diffusion equation we make use of the fast explicit diffusion (FED) scheme [87]
together with a CUDA implementation on the GPU. Similar to the tonal optimisation
experiments in Section 4.7, one can observe a substantial speedup compared to a pure
CPU implementation due to the parallelism. Another speedup is gained by reducing
the number of required iterations to reach a steady state. This is achieved with a
good initialisation of the inpainting solution: All unknown values at non-mask points
are initially set to the mean value of the known grey values within the individual
segments. In particular for segments with only one mask point this means that the
inpainting solution is directly obtained.

6.1.2 Data Extraction and Encoding

Given some segmentation as well as interpolation data, SBHD is able to recover an
image. Similar to the standard inpainting approaches the question is how the data
can be chosen to obtain the best inpainting. In the following, this problem is split into
three sub-problems. First, we seek for a good segmentation which allows for a good
inpainting with SBHD. Given this fixed segmentation, the mask points are selected
afterwards. Finally, the corresponding tonal values are optimised. The advantage of
this separate optimisation procedure is that the overall complexity of the problem is
reduced tremendously. Additionally, any joint optimisation strategy would not lead
to better results given the specific structure of the depth images. Besides extracting
the data for SBHD, we will also discuss in the following how to store it efficiently.

Segmentation

What we want to achieve is to split the image into disjoint regions such that homo-
geneous diffusion inpainting is able to recover its content as good as possible. This
means that the image within each of these regions should be smooth. At the same
time, the sharp edges in a depth map ideally coincide with the segment boundaries.

Due to the simplicity of the depth images, the following straightforward two-step
approach is sufficient to obtain the desired segmentation. In contrast to potentially
more sophisticated approaches, this method is much easier to implement and the
algorithm requires practically no runtime. First, a region growing algorithm is applied
to get four-connected segments. A threshold T1 thereby determines whether or not
a neighbouring pixel belongs to the same segment. Small values of T1 usually lead
to a slight over-segmentation. Therefore, in a second step, we consider a Gaussian
smoothed version of the original image with a standard deviation of σ. In this image
we compute the mean contrast between adjacent pixels along a contour separating
two neighbouring segments. Successively we remove the boundary with the lowest
average contrast. We repeat this as long as the lowest contrast is smaller than some
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Figure 6.1. Contour extraction example. Left: Original depth image breakdancers
(size: 1024× 768). Centre: Extracted closed contours between pixels gained by the
segmentation (T1 = 1, T2 = 5, σ = 0.5). Right: Zoom at the contour of one head
with better visibility of mask points.

Figure 6.2. Different types of edge crossings along with their respective reference
point (red dot).

threshold T2. This method yields very precise contours between adjacent segments
while allowing smooth transitions not to be split.

As already mentioned the segmentation yields closed contours at between-pixel
locations. An example depth image along with the extracted contours is depicted in
Figure 6.1. As desired, there is no contour around the two people on the right hand
side of the image because of the smooth transition to the background. It is the task
of data points within the segments to reconstruct such smooth transitions.

If one wants to use an existing codec like the JBIG (Joint Bi-level Image Experts
Group) standard [102] to encode the contour information we would have to store
two binary images, i.e., the edges in x- and y-direction, respectively. This however
would be a huge overhead. Alternatively, we store this information more efficiently
with a chain code. The advantage of between-pixel edges is that there are only three
possible directions, whereas we would have seven directions when considering pixel
chains. Thus, the chain code is highly efficient.

In the beginning we extract all T-junctions in the edge map, see Figure 6.2, types
i -iv. To store them, we have to save the respective reference point coordinates along
with the type number. Starting at these crossings we can build a chain code and stop
whenever we reach an edge that has already been visited. Not needed starting ele-
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ments can be removed afterwards. The only thing which remains are contours without
any crossing. Therefore, we add two more starting element types representing only
one edge, either in x- or in y-direction, respectively (see Fig. 6.2, types v and vi). The
corresponding chain code has to be stored as well. Afterwards we employ a sophisti-
cated lossless context-based entropy coder to encode the obtained edge information,
namely the PAQ compression [123], version PAQ8o6.

Mask Points

Besides the segment boundaries in the image, we also have to encode the Dirichlet
data for being able to reconstruct the image within the individual segments. As
discussed in Chapter 5, it makes sense to first choose the locations of the mask points
before selecting their tonal values for the selected optimisation strategy: An early
optimisation in the tonal direction can hinder the spatial optimisation. Thus, we first
concentrate on the mask locations. Here, we use a mixture of regularly sampled mask
points and points at freely chosen positions as described in the following. This allows
to obtain a trade-off between data optimality and coding costs. The overall amount
of selected mask pixels is a free parameter which has a major influence on the final
compression rate.

Initially, we choose points according to a specific fixed pattern as basis for the mask.
The important property of this pattern mask is that it has a negligible coding cost. For
instance, one possibility would be to uniformly sample random points over the whole
domain given a specific seed. A drawback of this method is that there are specific
areas where points are clustered, i.e. the distance between neighbouring points is not
equal. Another approach would be to use mask points at a regular grid as done in [81].
However, this is still not optimal. Ideally, we seek a mask where the minimum distance
between two distinct points is maximised. This allows to have a good covering of the
whole image domain. Assuming no image boundaries are present, it is known that the
hexagonal packing is the optimal one in the two-dimensional Euclidean plane, see [47].
Thus, we make use of such an hexagonal grid pattern. In order to make sure that
there is at least one mask point in each segment, we compute the hexagonal mask
separately for each individual segment. Thereby a certain density value determines
the number of points.

In addition to the hexagonal mask we store some more free mask points. The
larger coding costs of those points is justified by an expected large quality gain.
From the presented methods in Chapter 5, we employ the probabilistic densification
in combination with the nonlocal pixel exchange for selecting the additional points.
These methods have several advantages compared to the other methods. In contrast
to the method based on the theory of Belhachmi et al., the densification can handle
an existing mask in a straightforward way. Moreover, these two approaches allow to
directly specify the desired mask density, in contrast to the optimal control approach
for example. Methods relying on the discrete Green’s functions are not as easy to apply
here as they would have to be adapted to the arbitrarily shaped segment contours.
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Quantisation
Parameter

Percentage of
regular mask

Size of
mask data

Size of
edge data

1 byte 4 bytes 4 bytes 4 bytes

Irregular mask data
(JBIG encoded)

Edge data
(PAQ encoded)
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Figure 6.3. File structure of the proposed codec.

The nonlocal pixel exchange already yields very satisfactory results already after
only 1000 iterations. Since only a very small amount of mask points are required in
typical compression scenarios (between 0% and 2%), one obtains a very fast method.
The pixel exchange part can even be left out if one is interested in a faster encoding
method with lower quality. While only having to store one density parameter for the
hexagonal mask, we encode the location of the additional free mask points with the
JBIG encoder [102].

Tonal Values

After the determination of the mask locations it clearly makes sense to optimise the
tonal values at those positions. To allow for an efficient encoding, a quantisation to
q different values is incorporated. To this end, we rely on the method presented in
Section 4.9. As we have seen, it is possible to efficiently obtain the tonal optimised
values for all different values of the quantisation parameter by precomputing the
inpainting echoes once in the beginning. Note that, as we are using SBHD, the
computations can be sped up by computing the optimal grey values for the individual
segments in parallel.

The resulting optimised and quantised values at mask locations are then sorted in
a list. The values for mask points belonging to the same segment are supposed to be
next to each other. This has the advantage that subsequent values in are more likely to
be similar due to the design of our segmentation, leading to a more efficient encoding.
Finally, we again use the PAQ encoder to obtain a very compact representation.

Overview of File Structure

We are now able to write all the gathered information into one file having the structure
as depicted in Figure 6.3. Note that we do not have to store the image dimensions in
the header since they are already contained in the JBIG mask data.
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6.1.3 Decoding

In the decoding phase we can follow a straightforward process chain. First of all
we scan the stored header information and split the main data into the edge data,
the additional mask, and the tonal information. Segment contours can be restored by
placing the starting points and following the individual contour chains. Afterwards, we
compute the hexagonal mask and add the irregular mask points to it. The grey values
are placed at the corresponding locations, and we finally obtain the reconstruction
via SBHD.

6.1.4 Parameter Selection

The presented SBHD compression algorithm incorporates many degrees of freedom
given by the individual parameters. There are the thresholds T1, T2 and smoothing
parameter σ for the segmentation, the percentage of overall mask points, the corre-
sponding fraction of hexagonal mask points as well as the quantisation parameter for
the tonal values. All of these parameters are ideally chosen such that the resulting
data can be stored efficiently while at the same time giving qualitatively good recon-
structions. Unfortunately, the influence of the chosen data on the final performance of
the entropy coders is not obvious due to their non-transparent behaviour. Moreover,
the mutual influence of the ingredients even requires to find a good balance between
the individual parameters. For instance, assume we have two different configurations
of the data which both yield the same reconstruction quality in terms of some error
measure: On the one hand, we have a denser mask along with a very coarse quan-
tisation, and on the other hand a sparser mask with more precise tonal values. It is
hard to tell which one can be stored more efficiently given the unpredictable encoder
performance.

We can remedy this issue of finding suitable parameters with the following strategy.
First, we identify parameters which can be fixed a priori. This helps to reduce the
amount of freedom. For example, we can compute the segmentation first without
considering the following chain by manually checking if the contours seem to be rea-
sonable. For the remaining parameters, the best we can do is to actually perform the
complete compression with many different parameter combinations. For each combi-
nation we obtain a certain compression rate which is typically measured in bits per
pixel (bpp), as well as the corresponding PSNR error value which tells us how good
the reconstructed depth map is. The parameters which yield the best reconstruction
quality for a desired compression rate is then selected. This strategy also allows us
to have a closer look at the individual parameters. By fixing a certain parameter, the
remaining parameters are then chosen to obtain the best reconstruction quality for a
certain compression rate. This is done in the following for the fraction of hexagonal
mask points and the quantisation parameter. Thereby, we consider the depth map
called breakdancers from the MVD sequences in [224] depicted in Figure 6.1.

An overview of using different percentages of the hexagonal grid points is shown
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Figure 6.4. Compression with SBHD: Comparison of different percentage of hexag-
onal mask.

in Figure 6.4. As one can observe, higher percentages of the fixed mask should be
chosen for smaller compression rates. This is clear, because the very precise location
is not important when only a few mask points are present. In this scenario, no
local details can be recovered anyways, so a slightly suboptimal mask is favoured.
This allows to have extremely low coding costs for the mask, such that very small
compression rates are feasible. On the other hand, smaller percentages are better
for higher compression rates. This also makes sense: At some point, the hexagonal
grid has sufficiently captured the image domain. In order to recover fine details, it is
necessary to have specifically chosen mask points for those features. Between these
two extremes, a continuous transition explains the plot. In total, this shows that the
percentage of the hexagonal mask points cannot be determined a priori, but depends
on the actual compression rate.

The results concerning the quantisation parameter are depicted in Figure 6.5. Here,
it is obvious that smaller quantisation values do not yield a good trade-off between
coding cost and quality gain. Especially for q = 20, the amount of different tonal
values are apparently not sufficient to represent the smooth transitions in the image.
Again, it seems that the best quantisation value again depends on the compression
rate. If one wants to fix it a priori, a value between 60 and 80 seems to be a good
choice.

6.1.5 Extension to Biharmonic Operator

A straightforward modification of SBHD is to use the biharmonic operator instead of
the Laplacian. This means that the Equation (6.1) is replaced by

∆2u = 0. (6.2)
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Figure 6.5. Compression with SBHD: Comparison of different quantisation values.

As a result, one obtains the so-called segment-based biharmonic diffusion (SBBD).
From Chapter 5, we know that the biharmonic operator has a much higher recon-
struction capability compared to the harmonic counterpart, given the same amount
of mask points. Thus, it makes sense to evaluate the performance of this operator in
a compression framework as well. This modification can be incorporated in the whole
compression algorithm in a straightforward way: Every time SBHD would be used,
the SBBD is used instead.

Given the best possible parameters for each compression rate, Figure 6.6 depicts the
resulting performance of both variants. Interestingly, this comparison clearly shows
that the harmonic operator is the favoured one compared to the biharmonic operator
when it comes to the compression performance. Even though the biharmonic operator
has a higher reconstruction capability, it suffers much more from the suboptimal
Dirichlet data which arise from the hexagonal mask and the quantisation of the tonal
data. This will also be confirmed by the more extensive analysis in Section 6.2. Thus,
we will not consider the biharmonic operator any further in the present compression
algorithm.

6.1.6 Comparison to Standard Approaches

Now, we want to see how good the SBHD method performs compared to standard
methods such as the well-established standard JPEG or its successor JPEG2000.
Further, we will also conduct a comparison to the designated future standard HEVC
(High Efficiency Video Coding), version HM-8.2. Although this codec is designed for
the purpose of video coding, it also provides an intra-coding mode for the efficient
compression of still images [145]. Besides the image breakdancers we further consider
the test image ballet from the MVD sequences in [224].

Figure 6.7 depicts the qualitative results for a compression rate of 0.045 bits per
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Figure 6.6. Compression with SBHD and SBBD: Comparison of harmonic and
biharmonic operator.

pixel (bpp), which roughly corresponds to a compression ratio of 180 : 1. The overall
mask density in this case is 0.3% and 0.45% for the images breakdancers and ballet,
respectively.

The transform-based methods JPEG and JPEG2000 often perform well when it
comes to the compression of standard natural images. However, both methods suffer
from artefacts around edges. When it comes to depth images, these block or ringing
artefacts around object boundaries are visually perceived much more unpleasant than
in smooth image regions. HEVC seems to overcome these problems, but tends to
smooth out some of the edges, which can lead also to a distorted geometric perception.
With our SBHD method it is hard to notice any difference between the original image
and the reconstruction.

A quantitative comparison is shown in in Figure 6.8. Note that for JPEG it is not
possible to reach very high compression rates. One can see that our method clearly
outperforms JPEG and JPEG2000. Our codec is even able to exceed the quality of
HEVC for some compression rates.

Furthermore, we also evaluate the results considering a more perceptual error mea-
sure like the structural similarity index (SSIM) [203]. We use the available MatLab
version with standard parameters from [203]. Figure 6.9 depicts the results. Note
that a SSIM closer to 1 denotes a better visual similarity. Compared to JPEG or
JPEG2000, it is visible that our proposed method reaches better results for almost
all tested compression rates. HEVC and SBHD give reconstructions of comparable
quality. This result is remarkable since, in contrast to HEVC, our algorithm makes
use of relatively simple and straightforward concepts. We thus believe that it has
potential for further improvement.

In our current proof-of-concept implementation, it takes several minutes for an
image to be encoded, depending on its size and the number of mask points. The

141



Chapter 6. PDE-based Image Compression

breakdancers breakdancers (close-up) ballet ballet (close-up)

J
P
E
G

J
P
E
G
20

00
H
E
V
C

S
B
H
D

o
ri
gi
n
al

Figure 6.7. Comparison of different compression methods for two depth images
using a compression rate of 0.045 bpp. The boxes denote the area of the respective
close-ups.

decoding of a depth image of size 1024 × 768 can be done within a second on a
modern PC. It is important to mention that there is a lot of potential for accelerating
this process. For example, one can incorporate the bidirectional multigrid strategies
into SBHD [125]. In this way, we expect that real-time decoding becomes feasible for
practical applications, depending on the runtime of the entropy coders.
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Figure 6.8. Quantitative comparison to JPEG, JPEG2000 and HEVC. Left: Image
breakdancers. Right: Image ballet.
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Figure 6.9. Perceptual comparison to JPEG, JPEG2000 and HEVC using the SSIM
measure. Left: Image breakdancers. Right: Image ballet.

6.1.7 Conclusion and Outlook

We have shown that a combination of two relatively elementary concepts can lead
to a remarkable compression quality of depth maps: a region-growing segmentation
method as well as a homogeneous diffusion inpainting with carefully selected data
points. Thereby, an interesting result is that the biharmonic operator does not lead
to a better compression performance than the harmonic operator, even though it
gives favoured reconstructions when no quantisation is used. In our evaluation, the
segment-based homogeneous diffusion (SBHD) codec clearly outperforms JPEG and
JPEG2000. Moreover, it performs competitively with HEVC, especially in terms of
perceptual quality.

In the future, one can think about more sophisticated ways to find the optimal data
to be encoded. For instance, it is possible to use an appropriate energy functional to
obtain a good trade-off between segment boundaries and mask points. To this end, a
combination of the well-known Potts model and the optimal control approach seems
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promising. While the presented separate optimisation yielded very good results for
the test images, such a joint model could especially be helpful for noisy depth images.
As discussed in Section 6.1.4, it would be good to know the actual coding costs of the
individual ingredients given some entropy coder. This could be beneficial in choosing
the right balance between the amount of contours, mask points and quantisation levels.
Finally, instead of solely compression the depth images, the compression algorithm
could benefit from additional information such as multiple views, combined colour /
depth images, and their temporal extensions.

6.2 High Quality Compression of General Images

After focusing on a dedicated compression algorithm for depth images, we also want to
consider arbitrary images. As mentioned in Section 1.2.3, there already exist successful
PDE-based image compression algorithms for that purpose. In particular, the R-EED
algorithm by Schmaltz et al. [170] marks the current state-of-the-art and is capable
of outperforming JPEG and even JPEG2000. However, all successful PDE-based
compression methods in that field rely on EED inpainting. Linear inpainting operators
are mainly used for dedicated image types such as cartoon-like images or depth maps
so far and did not achieve a breakthrough for general image compression yet.

In Chapter 5, we have seen that there exist various techniques to optimise data
for image inpainting. Their main objective is to find a mask of a certain density
along with continuous tonal values, and do not take into account any kind of coding
costs. Thus, despite the promising performance of those optimisation approaches, it
is not clear if their results can be exploited for an actual competitive compression
framework.

In the following, we want to evaluate the potential of linear inpainting operators
as well as EED inpainting in a compression context. To this end, we combine the
sophisticated data optimisation strategies with efficient entropy coding methods. For
linear inpainting, we rely on the best masks given by the optimal control approach
presented in Section 5.2. When it comes to EED inpainting, the probabilistic spar-
sification approach along with the nonlocal pixel exchange is employed to optimise
the spatial data, see Section 5.7. While an initial version of this new compression
framework has been presented at the Pacific Rim Symposium in 2016 [5], an extended
version including EED inpainting was published in 2016 [6].

In the following, the compression algorithm is presented. First, the encoding and de-
coding procedure is explained in Sections 6.2.1 and 6.2.2. Afterwards in Section 6.2.3,
we will evaluate the proposed compression method, and also compare it to other
approaches. In the end, a conclusion and outlook is given in Section 6.2.4.
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6.2.1 Data Extraction and Encoding

Based on the aforementioned idea, the new compression algorithm is presented in the
following.

Mask Points

In a first step, we obtain an optimised mask that contains a certain percentage of
mask points. For linear inpainting, we use the optimal control approach from Sec-
tion 5.2, and for EED inpainting the probabilistic sparsification approach followed by
the nonlocal pixel exchange, see Section 5.7. The mask density is used to steer the
compression rate. In the end, a binary image needs to be encoded. In [6], several
entropy coders have been tested for that purpose. It could be experimentally shown
that PAQ [123] in combination with a block coding scheme [220] leads to a more ef-
ficient coding compared to other methods like JBIG [102], JBIG2 or DjVu [28]. This
block coding proposed by Zeng and Ahmed is specifically designed for sparse binary
patterns. It decomposes the signal into blocks of a certain length, and encodes the
relative position of each occurring 1-bit.

Tonal Values

Secondly, we have to find optimised tonal values at the fixed mask points. As in the
depth map compression, we incorporate a quantisation to obtain an efficient com-
pression scheme. Again, a quantisation parameter q specifies the number of different
grey-values. For the linear inpainting operators, the quantisation-aware tonal opti-
misation is performed with the presented algorithm in Section 4.9. This again allows
to efficiently test various values of the quantisation parameter with the help of the
inpainting echoes. Unfortunately, this algorithm is not applicable for the tonal opti-
misation with EED inpainting. As a remedy, a simplistic approach from the R-EED
method is used. It visits all mask points in a random order and checks if increasing
or decreasing the tonal value to the next quantised values yields an improvement. If
so, the new pixel value is kept, otherwise the value is reverted to the original one.
This procedure is iterated several times until convergence. Even though this method
is rather slow, it is in principle applicable to any inpainting operator.

To ease the issue of selecting the appropriate quantisation value, the following
strategy is followed. The entropy coding of the grey values becomes more efficient
for smaller numbers of different grey values. Thus, a smaller q leads to a smaller
file size in general. At the same time, the error increases due to less accurate tonal
values. Hence, the best trade-off between file size and reconstruction quality must be
found, i.e. the inpainting error and the file size have to be minimised simultaneously.
For a given quantisation q, let S : {0, ..., 255} → N be the file size in byte and
MSE : {0, ..., 255} → R the corresponding error. By normalising both quantities to
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the range [0, 1] and combining them additively, we define the trade-off coefficient µ:

µ :=
S(q)

S(255)
+

MSE(q)

MSE(255)
. (6.3)

The smaller this coefficient, the better the trade-off for a given q. Thus, for each
mask, we pick the q which yields the smallest µ.

Overview of File Structure

In total, the final compressed image file is created as follows. Besides the header
containing the image dimensions and the quantisation parameter, the block coded
mask as well as the tonal data information are written into a file. Finally, the complete
data is encoded using the PAQ coder.

6.2.2 Decoding

The decoding is very straightforward. After applying the PAQ decoder, the header
information is parsed. Then, the mask information is decoded and the tonal data is
assigned at the corresponding mask points. Finally, an inpainting is performed with
the appropriate inpainting operator.

6.2.3 Experiments

We are now in a position to evaluate the performance of the three different inpainting
strategies in a compression framework, namely the harmonic, biharmonic and EED
inpainting. First of all, we will investigate which of the individual inpainting operators
is best suited in a compression context. Additionally, we have a closer look at the
optimised inpainting data and investigate how quantisation artefacts influence the
reconstruction quality. Afterwards, the compression algorithm is compared to other
methods such as the JPEG, JPEG2000 and the R-EED algorithm.

Compression Results

In the beginning, we have a look at the best possible result which can be obtained
by the optimisation approaches. To this end, we find masks of varying density for
the individual inpainting operators, and perform a tonal optimisation afterwards.
Thereby, no quantisation is used initially. All the initial experiments are performed
on the test image peppers of size 256× 256. The left graph in Figure 6.10 shows the
corresponding error values of the reconstructed images by the individual inpainting
methods. As already found out in Chapter 5, the biharmonic operator has a higher
reconstruction capability than the harmonic one, while EED inpainting surpasses both
linear counterparts. This observation is consistent throughout all mask densities.
Note that when the mask becomes more dense, the differences between the operators
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Figure 6.10. Experimental results for image peppers. Left: Error values inpainting
after optimising spatial and tonal optimisation for different inpainting operators and
mask densities. Right: Resulting compression performance based on optimised data.

become smaller. To obtain a visual impression, Figure 6.11 depicts the results of the
masks with a density of 5%.

In a next step, we consider the actual compression performance with the individual
inpainting operators. The resulting graph is shown on the right in Figure 6.10. It
is visible that compression with EED inpainting (EED approach) cannot be outper-
formed by a compression routine relying on a linear inpainting operator (harmonic or
biharmonic approach). In particular for higher compression ratios, EED inpainting
benefits from the advantageous edge-enhancing behaviour which enables to recon-
struct fine structures even in the presence of only a few data points. Thus, it is the
preferred choice in those situations. Nevertheless, the harmonic approach performs
equally good as the EED approach for smaller compression ratios below approximately
15:1. In those scenarios, one can thus prefer the conceptually simpler harmonic in-
painting which offers many advantages: For instance, its linearity allows a faster
processing and enables to perform a well-defined tonal optimisation with the help
of inpainting echoes. Moreover, it enables to apply the complete theory of discrete
Green’s functions from Chapter 3. Last but not least, the linear inpainting operators
are completely parameter-free.

As another interesting observation, the harmonic approach has a much lower error
compared to the biharmonic approach at the same compression ratio. Even though
this seems counter-intuitive, there is a simple explanation for this observation. The
quantisation leads to suboptimal tonal values at the mask points. Obviously, harmonic
inpainting can handle this situation much better than its biharmonic counterpart.
Apparently, biharmonic inpainting is much more sensitive to changes in the Dirichlet
data. To support this explanation, let us consider the experiment in Figure 6.12.
Here, the reconstructions with different quantisation values are computed for the
different inpainting operators. As Dirichlet data, we use the optimised masks from
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Figure 6.11. Example results of data optimisation strategies for image peppers. The
optimised masks have a density of 5%.

Figure 6.11, and the corresponding grey-values are obtained by the quantisation-aware
tonal optimisation. While the biharmonic inpainting outperforms the harmonic one
when no quantisation is used, it shows a much more severe quality drop the coarser
the quantisation becomes. On the other hand, the harmonic inpainting and the EED
inpainting are clearly less sensitive against imperfect tonal data. Hence, we do not
consider the biharmonic operator any further in the following.

Note that the same effect also occurred in the depth map compression (cf. Sec-
tion 6.1.5). Here, not only the quantisation of the tonal values, but also the hexag-
onal mask locations lead to suboptimal Dirichlet data. This prevents the sensitive
biharmonic operator from allowing any good compression performance.

Comparison to other Compression Algorithms

In the following , we compare the new algorithm to existing compression algorithms,
namely JPEG, JPEG2000 and R-EED. Figure 6.13 shows the results for the image
peppers. As one can see, the harmonic approach is able to outperform the standard
methods JPEG and JPEG2000 and even the R-EED approach for low to medium
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Figure 6.12. Influence of quantisation on inpainting result for different operators.
The reconstructions are based on the masks shown in Figure 6.11 and the respective
quantisation-aware tonal optimisation strategies.

compression ratios of up to 15:1. This is an astonishing result: It is possible to beat
JPEG2000 and even R-EED for a general image with a compression method based
on a linear PDE. The EED approach performs equally good in that range, and can
even beat all other methods up to a compression ratio of almost 20:1. For higher
compression ratios, the R-EED method takes over the lead.

Figure 6.14 gives a qualitative comparison of the methods for a compression ratio
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Figure 6.13. Quantitative comparison of different image compression approaches for
the image peppers.

of 8:1. While JPEG and JPEG2000 show obvious artefacts at the edges, harmonic
inpainting does not show such obvious effects. Compared to R-EED, it is much
smoother in homogeneous regions. While EED inpainting tries to preserve some
undesired edges, homogeneous diffusion inpainting gives smooth transitions by design.

The following Table 6.1 shows the potential of the harmonic approach for different
images. For all images, the harmonic approach is able to beat JPEG, and is able to
compete with R-EED and JPEG2000.

Table 6.1. Comparison of different compression approaches on several test images.
A compression rate of 15:1 is used. The table shows the MSE of the respective
reconstructions.

Image elaine lena trui walter

JPEG 34.69 20.06 16.24 6.73

JPEG2000 31.23 14.73 12.27 5.70

R-EED 35.48 16.56 11.27 5.48

Harmonic approach 31.38 17.00 10.48 4.53

A variant of the discussed approach is also presented in [6]. The main modification
is that the mask is represented by a tree-subdivision structure like in R-EED. It
allows a more efficient encoding at the cost of having less optimal mask locations. A
newly proposed probabilistic tree densification and nonlocal node exchange are used to
optimise the mask. In the end, the approach allows to outperform all other approaches
for higher compression ratios of more than 30:1 with a biharmonic inpainting operator.
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Figure 6.14. Qualitative comparison of different compression approaches for the
image peppers. The compression ratio for all methods is 8:1. The images on the
bottom show magnifications.

6.2.4 Conclusion and Outlook

We have seen that advanced data optimisation techniques play a major role for design-
ing competitive compression algorithms. A remarkable result is that a conceptually
simple linear PDE is able to yield the same compression performance as EED in-
painting for medium to low compression ratios. Moreover, it can even outperform
the standard method JPEG and JPEG2000 as well as the current state-of-the-art in
PDE-based compression. For general images, this has never been achieved before.
Considering all the advantages of linear inpainting operators, this opens whole new
possibilities.

Despite these qualitatively very good results, the runtime of PDE-based compres-
sion algorithms typically remains an issue. Even though the inpainting step can be
achieved in real-time with GPU support or even on the CPU for smaller images, the
decoding speed of JPEG or JPEG2000 cannot be reached, yet. Thus, as a next step,
we will try to become competitive to standard approaches in terms of both quality
and speed in Section 6.3. Another aspect for future work is to extend the presented
method to colour images.
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6.3 Efficient Compression with Block Inpainting

In Sections 6.1 and 6.2 the power of linear PDEs in an image compression context
was shown. We have seen that it is even possible to outperform standard methods
such as JPEG, JPEG2000 or HEVC when it comes to the compression quality. The
only major drawback of PDE-based compression algorithms is the runtime which is
often used as main argument against them. In the following, we want to address this
remaining issue by presenting a PDE-based compression algorithm which is able to
compete with standard approaches in terms of both decoding runtime and quality.

To reach this goal, we adopt some basic strategies from JPEG. For instance, a
central idea here is to decompose the image into smaller blocks. In combination with
the powerful theory of discrete Green’s functions, the hope is to obtain a huge speedup
while at the same time yielding promising reconstructions. Moreover, we will analyse
the influence of exchanging individual ingredients on the compression performance.
For example, we consider different inpainting operators, different strategies to find
the masks, different entropy coders, different representations of the tonal data and
different quantisation strategies.

In the following, we will first introduce the concept of a block-based inpainting
in Section 6.3.1. In this context, new optimisation strategies will be presented for
this new inpainting strategy. This will allow to analyse its potential in more detail.
Afterwards in Section 6.3.2, a first compression method based on the block inpainting
is presented. In Section 6.3.3, an improved variant of this algorithm is proposed. Since
we are interested in a fast decoding, acceleration strategies are shown in Section 6.3.4.
An extension to colour images is done in Section 6.3.5. Finally, a conclusion and
outlook is given in Section 6.3.6.

6.3.1 PDE-based Block Inpainting

First, we study the inpainting based on a block decomposition in more detail. After
introducing this new inpainting technique, we will see that it allows perform various
tasks such as inpainting or data optimisation in a very efficient way. Besides the
improvement in terms of speed, we also consider the reconstruction capabilities as
well.

Description

Let us start by introducing the new block inpainting. To this end, we assume the
image domain to be decomposed into blocks of size H×H. In our case, we set H = 8
for efficiency reasons, as we will see soon. If the image size does not equal a multiple
of H, we extend the image to the next larger multiple of H for processing purposes
by naturally mirroring the image. This allows to handle arbitrary image sizes. Note
however that all comparisons are performed on the targeted original image domain
by cropping the obtained image in the end.
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For a given mask and corresponding tonal values at those locations, the block in-
painting is performed in a straightforward way by performing an inpainting within
the individual blocks, separately. Thereby, homogeneous Neumann boundary condi-
tions are assumed at the block boundaries. Hence, the overall inpainting is strongly
localised, and the influence of the Dirichlet data is restricted to the individual blocks.
Further, we only consider the linear inpainting operators given by the powers of the
Laplacian in the following. Note that this block inpainting can be seen as a special
case of the segment-based inpainting presented in 6.1.1 where the segment boundaries
are given on a regular grid.

Efficient and Accurate Inpainting

Obviously, the block decomposition has the advantage that the inpainting problem can
be computed in parallel for all blocks. For each block, any aforementioned strategy
can be employed for finding the inpainting solution, such as a bidirectional multigrid
solver or a FED scheme. However, due to the limited amount of mask points per
block, a better way is to rely on the approach using discrete Green’s functions. This
has two major advantages: First of all, the solution is found much faster due to the
very small linear systems of equations that need to be solved. Secondly, the obtained
solution is highly precise up to machine precision. In particular, it does not depend
on some stopping criteria which in addition would have to be specified. Consequently,
we find the overall inpainting solution by executing Algorithm 3.4 for all blocks. As a
matter of fact, the algorithm can even be accelerated tremendously by exploiting the
block decomposition as described in the following.

Due to the fixed block size of H ×H, we can use this knowledge as a prior. First
of all, note that the Greens mother function (GMF) is the same for all blocks. Thus,
it is possible to reuse it for all blocks once it is obtained. In the beginning, one can
either compute it once, or directly hardcode it into the program. This allows a fast
setup of the linear system of equations.

After solving it for the coefficients of the discrete Green’s functions and the mean
value constant, the inpainting is obtained with the help of the frequency transform
as described in Algorithm 3.1. Since we assume homogeneous Neumann boundary
conditions at the block boundaries, we have to use the discrete cosine transform
(DCT). In particular, the choice of H = 8 allows to use the frequently used 8 × 8
DCT. For example, this specific transform represents the core part of JPEG. Due to
its popularity, many work has been done in the past to optimise the 8 × 8 DCT to
an extreme: By minimising the number of basic operations such as multiplications
or additions, very time-efficient schemes have been proposed over the years. A very
good overview is presented in [159]. In this work, we use the 8×8 DCT algorithm and
its inverse of Vetterli and Ligtenberg [199] due to its favourable performance. Note
that the 2D-DCT is separable, meaning that one can split it into two steps: First
one computes the 1D-DCT for every row, and afterwards performs a 1D-DCT of the
result along every column. Thus, a 2D extension is straightforward given a 1D-DCT.
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Figure 6.15. Runtime of block inpainting strategies compared to the original in-
painting strategies for different mask densities. All strategies rely on discrete Green’s
functions, and use the tonal values of the image trui and masks given by the ana-
lytic approach of Belhachmi et al. as input. Left: Harmonic inpainting. Right:
Biharmonic inpainting.
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The beneficial performance of the new block inpainting is demonstrated in the
following experiment. For the test image trui, we again consider different masks of
varying densities obtained with the analytic approach of Belhachmi et al. These are
the same masks as originally used for comparing different inpainting strategies in
Section 3.5. Then we measure the runtime needed for performing a block inpainting
and compare it to the required time for performing the original full inpainting with
the same strategy relying on discrete Green’s functions. Moreover, we also consider
the sole runtime of Algorithm 3.1 to obtain the respective inpaintings from prescribed
coefficients and constant. The results are shown in Figure 6.15.

Compared to the original inpainting strategies, the runtime improvement given
by the block decomposition is remarkable. For smaller mask densities, one gains a
speedup of approximately 100 for performing an inpainting from tonal values. For
larger mask densities, one can even observe a speedup of 10000. The reconstruction
from the coefficients is again obtained in constant time, but more or less 100 times
faster than the original approach. It is clear that the runtimes do not depend on
the order of the inpainting operator, and that the results are highly accurate up to
machine precision. Given these very fast inpainting approaches, real-time decoding
seems to be feasible.
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6.3. Efficient Compression with Block Inpainting

Efficient Tonal Optimisation

Besides the inpainting, it is also possible to speed up the tonal optimisation by ex-
ploiting the block decomposition. Clearly, the individual blocks can be processed in
parallel. For each block, we favour the approach relying on discrete Green’s functions
due to the small number of mask points per block, see Algorithm 4.5. In this algo-
rithm, we again exploit the fact that H = 8 in the following way. First of all, we see
that all possible entries of the matrix H̃>H̃ can be precomputed and hardcoded for
the desired operators. This allows to quickly set up the system matrix. The right hand
side of the normal equations equations is obtained with Algorithm 3.1 together with
the fast 8× 8 DCT. The same algorithm finally allows to obtain the tonal optimised
inpainting.

As for the block inpainting, the following experiment demonstrates how fast the
tonal optimisation can be computed. For the image trui and the same masks as
before, the corresponding results are shown in Figure 6.16. Compared to the runtimes
of the tonal optimisation strategies for the original inpainting, the tonal optimisation
for the block inpainting is enormously faster. For example for a mask with a density
of 4%, the new approach only takes around 0.01 seconds, while any other algorithm
lasted more than 30 seconds. It is astonishing that the tonal optimisation is so fast
that it could even be done in real-time, independent of the order of the inpainting
operator. Since the tonal optimisation needs more or less the same runtime as an
inpainting on a block decomposition, this offers completely new possibilities for the
spatial optimisation as we will see in the following.

Efficient Spatial Optimisation

It is clear that all the performance gains with the block decomposition are only helpful
if one can actually obtain a comparable reconstruction quality as with the original
inpainting formulation. Hence, we try to find the best possible masks for block in-
painting in the following. This way, we are able to judge the reconstruction capabilities
of the block inpainting.

For finding the mask, we use modified versions of the probabilistic densification and
nonlocal pixel exchange strategies. Besides their advantage of being able to specify
the mask density explicitly, the block decomposition allows a very fast processing of
the individual steps. In particular, this means that we are able to obtain a much
higher optimised result due to an interleaved optimisation strategy.

Considering the probabilistic densification in Algorithm 5.2, the update of the in-
painting is clearly the most time-consuming part. Fortunately, we can perform this
step very efficiently in case of the block inpainting: After adding some points within
a few blocks, we only need to update the inpainting in these blocks. The block in-
painting remains the same for all other blocks. This is an enormous gain in speed.
The same improvement can be applied to the nonlocal pixel exchange (NLPE) in
Algorithm 5.3: After an exchange, the block inpainting has to be updated only in
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Figure 6.16. Runtime of tonal optimisation for block inpainting compared to the
original tonal optimisation strategies for different mask densities. The image trui and
masks given by the analytic approach of Belhachmi et al. are used as input. Left:
Harmonic inpainting. Right: Biharmonic inpainting.

the blocks where the mask has changed. Moreover, the ability of performing a very
fast tonal optimisation enables us to integrate it into the optimisation process of the
densification or the NLPE, respectively. Thereby, instead of a block inpainting, a
tonal optimisation is performed for all blocks where the mask has changed. We call
these variants tonal optimised densification and tonal optimised NLPE. As a last vari-
ant, we perform all three parts interleaved, that is, a tonal optimised NLPE runs for
several iterations after each densification step. Here, it suffices to perform 300 NLPE
iterations after every densification step.

For the image trui, the results of the different variants are depicted in Figure 6.17.
For all approaches, the PSNR value is shown after a tonal optimisation on the final
masks for the sake of a fair comparison. First of all, we note that the ranking of the
individual variants is identical for the harmonic and biharmonic operator. As already
observed in Section 5.3, the tonal optimised densification does not yield good results:
The optimisation process gets stuck in a bad local minimum due to the hopeless at-
tempt of the tonal values to globally compensate for bad mask locations. Obviously, a
subsequent tonal optimised NLPE helps to improve the result, but is still not able to
get the mask completely out of the bad local minimum. Similar to before, performing
a densification with a block inpainting instead of a tonal optimisation already gives
much better results due to the smoothing effect. Interestingly, applying a NLPE after
the densification does not necessarily lead to better results: The optimisation aims
at the best mask given the original tonal values, and does not consider any tonal
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Figure 6.17. Spatial optimisation strategies for block inpainting. Masks of varying
densities are found for the image trui. The PSNR is shown after performing a tonal
optimisation on the respective final masks. Left: Harmonic inpainting. Right:
Biharmonic inpainting.

optimisation. Thus, performing a tonal optimised NLPE after the densification helps
to improve the mask. Finally, we see that the best result by far is obtained by a
interleaved tonal optimised densification and NLPE. Obviously, it pays off to have a
highly coupled optimisation process to avoid being stuck in a local minimum. Fortu-
nately, the fast processing obtained by the block decomposition makes this approach
feasible: Even for a density of 16%, the mask is obtained within some minutes. With
the original inpainting formulation, this strategy would last several weeks.

Figure 6.18 shows an example of the best mask for the block inpainting obtained
with an interleaved tonal optimised densification and NLPE. Compared to the results
with the original inpainting from Chapter 5, the block based inpainting is able to
offer a similar reconstruction capability. The optimal control approach is able to
yield a better mask for a reconstruction with the original inpainting. Nevertheless,
compared to the original densification and NLPE, the obtained mask for the block
inpainting even leads to a higher quality reconstruction for the harmonic operator,
and a comparable quality for the biharmonic operator. On a first glance, it is hard
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Figure 6.18. Spatial optimisation with interleaved tonal optimised densification
and NLPE. Top row: Optimised mask (density: 4%) for harmonic block inpainting,
corresponding tonal optimised block inpainting with zoom-in at left eye (MSE: 25.57).
Bottom row: Same with biharmonic block inpainting (MSE: 17.77).

to recognise the block boundaries in the reconstructions. They only become clearly
visible when considering the magnification.

Comparison of Inpainting Operators

Given the harmonic, biharmonic, triharmonic and quadharmonic operator, a natural
question is which operator is best suited within a compression framework. To this end,
we optimise the spatial and tonal data for all of these operators as good as possible
for varying mask densities, and consider the resulting reconstruction qualities. Note
that the theory of discrete Green’s functions allows to switch between these operators
by simply changing the power of the eigenvalues. Furthermore, we evaluate how a
quantisation affects this quality for the individual operators. To this end, the optimal
tonal data is found with the quantisation-aware tonal optimisation, see Algorithm 4.6.

The results are shown in Figure 6.19. If continuous values are used, i.e. without a
quantisation, the harmonic operator consistently performs worst, and the biharmonic
operator performs best. Interestingly, going from the biharmonic to the triharmonic
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Figure 6.19. Comparison of best reconstructions obtained with different operators
and quantisation levels. Left: No quantisation. Centre: Quantisation with q = 64.
Right: Quantisation with q = 32.

operator does not improve the result. Instead, the quality of the reconstruction is
comparable to the one of the biharmonic operator. The quadharmonic operator is
even giving worse results than the triharmonic operator. Obviously, the higher order
of the biharmonic operator compared to the harmonic one allows for a certain degree
of flexibility. An even higher order seems not to be necessary for practical applications,
and even leads to worse reconstructions due to the extreme over- and undershoots.

When quantisation is used, it seems that the quality deteriorates more for higher
inpainting operator orders. This confirms the results in Section 6.2.3. In this ex-
periment, we see that this observation also holds true for the tri- and quadharmonic
operators. Those two operators are extremely sensitive to differences in the tonal
data, especially for smaller values of the quantisation parameter. For this reason, we
mainly focus on the harmonic and biharmonic operators in the following as they turn
out to give the best reconstructions when quantisation is present.

6.3.2 Compression with Optimal Masks

The promising results of the block inpainting give rise to the hope to obtain an efficient
PDE-based compression method in terms of decoding speed and quality. To this end,
we use the highly optimised masks for a first compression algorithm. The structure of
the compression algorithm is then straightforward: In the encoding phase, the header
information including the image dimensions and a certain quantisation value is written
into a file. Afterwards, the relative position of the mask points within all blocks are
added to the file. An additional bit in the beginning of each block indicates if the
block contains any mask point or not. Then, a quantisation-aware tonal optimisation
is performed with the given quantisation parameter, and the tonal information is

159



Chapter 6. PDE-based Image Compression

20

25

30

35

40

45

10:1 40:1 70:1 100:1 130:1 160:1

P
S
N
R

[d
B
]

compression ratio

PDE (harmonic operator)
PDE (biharmonic operator)
JPEG2000
JPEG

Figure 6.20. Compression performance results with block inpainting and optimal
masks for different compression ratios for the image trui.

added to the file. Whenever there is no mask point within a block, the quantised
mean value of the original image is stored. Finally, the PAQ entropy coder [123] is
employed to reduce the file size. To find the best trade-off between quality and coding
costs, the quantisation parameter is optimised as presented in Section 6.2.1.

In the decoding, PAQ retrieves the file content first. Then, the image with the mask
points and corresponding tonal values is set up. The reconstructed image is then
obtained by performing the block inpainting. Note that this compression algorithm
is very similar to the approach presented in Section 6.2, with the major difference
that the block inpainting is employed instead of the original inpainting formulation
in combination with appropriate optimisation strategies.

The resulting compression performance for the image trui is shown in Figure 6.20.
The varying mask densities lead to different compression ratios. We compare our PDE-
based approaches with the harmonic and biharmonic inpainting operator to JPEG and
JPEG2000. Unfortunately, we are not able to outperform these standard methods,
except for their respective highest compression ratios. In contrast to the previous
results in Section 6.2.1, the reconstructions given by the optimal control masks and
the original inpainting are slightly better so that the compression performance of
JPEG or JPEG2000 can be obtained. Thus, we have to find a more efficient way to
perform the compression.

6.3.3 Compression with Subdivision Tree Masks

Since it does not pay off to store the highly optimised masks, we alternatively encode
the masks with the help of an adaptive binary tree representation. This idea is very
close to the strategy used in [6]. However, there are some important differences. First
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Figure 6.21. Binary tree structure for encoding the mask on a 8× 8 block. The red
points denote the corresponding mask points which are represent the corresponding
node.

of all, we use individual trees for all blocks which enforces a certain structure in the
mask points and thus leads to a more efficient encoding. Moreover, we will use an
adaptive quantisation strategy which is also used in JPEG. These two modification
will allow to obtain a more efficient compression algorithm.

Adaptive Binary Subdivision Tree Mask

A tree encodes a mask in the following way. All nodes of the tree represent a certain
rectangular area of the block, and encode the 4 corner points as mask points. One
starts with the root node representing the complete block. Whenever a node has two
children, the domain is split into smaller parts. This splitting is repeated until only a
2× 2 pixel area is left. If a node is not split further, it is denoted as leaf node. Given
a tree representation, the overall mask is obtained by collecting the mask points from
all leaf nodes. Thus, the mask contains more points in regions where the tree is split
more often. This allows to insert more mask points in certain areas if it is required
and hence to adapt to local image structures. Given the block size of 8 × 8, each
tree thus has a relatively small number of possible configurations and hence 5 is the
maximum number of levels. An overview of the tree structure for a 8 × 8 block is
depicted in Figure 6.21. As an alternative, one can also make the rectangles slightly
overlapping by one pixel when splitting a node. This avoids a clustering of the points
along the split line. Since this was found to be more efficient [170], we will use this
slight modification, too.

The tree representation of the mask can be encoded very efficiently as a bit sequence.
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Starting at the root node on the top, each split decision is recursively encoded by a
bit. Thus, if a node is split, a 1 is added to the sequence. Otherwise, if a node is a leaf
node, a 0 is added. For some blocks, we also allow for blocks with no mask points.
In this case an initial bit indicates if there is a mask and consequently a tree or not.
Then, only the mean value of the original image will be encoded for this block.

For optimising the trees within the individual blocks, we again make use of the
joint tonal optimised densification and NLPE. To this end, we adopt the stochastic
tree densification and nonlocal node exchange strategies presented in [6]. Since we
are dealing with a separate tree for every block, we make the following adaptation. In
both algorithms, the nodes of all trees are considered together within one big set of
nodes. If there is not yet a tree within a block, the whole block is considered as a leaf
node and the corresponding error is computed for the whole block. If such a block
is then selected for a splitting, a new tree consisting only of a root node is created.
As before, this interleaved densification and node exchange in combination with an
inherent tonal optimisation can be performed very fast with the block decomposition:
We can rely on the discrete Green’s functions to perform an efficient tonal optimisation
within the blocks where the tree and consequently the mask has changed.

Adaptive Tree Quantisation

When one compares the compression algorithm to JPEG [150], one can observe that
they have a lot in common. Not only do both approaches use a decomposition of the
image domain into 8 × 8 blocks, they both make use of a frequency decomposition
for each block. In JPEG, this frequency decomposition is obtained with the DCT,
and the resulting DCT coefficients are used to encode the image. Interestingly, the
binary tree subdivision mask of the PDE-based compression can also be interpreted
as a frequency decomposition.

For instance, if no mask is present within a block, we only encode the mean value
of the image. This obviously corresponds to the lowest frequency in the DCT. As
another example, consider a block with a mask given by only the root node of a tree.
This means that the inpainting only depends on the tonal values prescribed at the 4
corner points of the block. This means that there are very little fluctuations in the
inpainting of that block. Hence, we can see this as the counterpart of the next higher
frequency in the DCT. The more one descents in the tree, the better finer details can
be represented, just as in the higher frequencies in the DCT.

In JPEG, coefficients corresponding to lower frequencies are quantised rather finely
to obtain a more precise representation of the coarse image. In contrast, the coef-
ficients for the higher frequencies are quantised much more coarsely as the human
visual system is not very sensitive to errors here. The surprising similarity between
the PDE-based compression approach and JPEG directly leads to the idea of adopt-
ing this adaptive quantisation. Thus, we make the quantisation dependent on the
tree level and mimic the quantisation matrix of JPEG. To this end, we compute an
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individual quantisation parameter q at all mask points given by the formula

q = round

(
Q

λl

)
. (6.4)

As in JPEG, the quality parameter Q ∈ {1, . . . , 256} allows to steer the trade-off
between the quality and the coding costs. Instead of the quantisation parameter q,
we now store this quality parameter in the file header. Moreover, the quantisation
parameter depends on the level l of the tree. In particular, we set l = 0 whenever
there is no tree within a block. This means that the mean value is stored with a
quantisation parameter of q = Q. The root node corresponds to the level l = 1 and is
increased recursively by 1 for the children. A smaller value of l thus leads to a larger
quantisation value, and vice versa. The fixed parameter λ ≥ 1 determines the decay
of the quantisation parameter from level to level. Experiments showed that λ = 1.2
gives good results.

Results

With the mask based on the binary subdivision tree and the adaptive quantisation,
we perform the experiment with the new compression algorithm. Note that besides
these two adaptations, everything else remains as described in Section 6.3.2. The
corresponding results are depicted in Figure 6.22. Considering the compression quality
in the left graph, one directly recognises that the difference between the different
compression methods is rather small.

The PDE-based approach with the harmonic operator performs not very well for
low compression ratios. With the biharmonic operator however, the compression
quality is tremendously improved. The algorithm is able to outperform JPEG for
all compression ratios larger than 40:1, and has the same performance for smaller
compression ratios. This underlines the conceptual similarity of the two approaches.
Due to the large improvement when using the biharmonic operator instead of the har-
monic operator, the triharmonic operator is also tested. As it turns out, the resulting
performance is almost identical to the one with the biharmonic operator. The higher
sensitivity with respect to the quantisation apparently eliminates all benefits gained
by the higher flexibility. As with the optimal masks, the PDE-based compression only
surpasses JPEG2000 for very high compression ratios of at least 100:1.

For a visual impression, example results for a compression ratio of 55:1 are depicted
in Figure 6.23. Also here, the PDE-based approach appears much more pleasant
compared to the JPEG image. The main reason for this is that smooth transitions are
better handled with the PDE-based approach, which leads to less differences at block
boundaries in homogeneous areas. JPEG mainly represents the individual blocks in
such smooth regions by the mean value, leading to unpleasant jumps between blocks.
This effect is best visible at the right cheek. JPEG2000 overcomes the block artefacts
by performing a discrete wavelet transform, which leads to a better overall impression.
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Figure 6.22. Compression results with block inpainting for different compression
ratios for the image trui. Binary subdivision tree masks and an adaptive tree quan-
tisation are used. Left: Compression performance comparison. Right: Comparison
of decoding time.

However, the image seems to be more blurry, especially around the eyes.
Given the very promising results of the PDE-based compression, let us consider

the resulting decoding times of the different methods shown in Figure 6.22 on the
right. Unfortunately, despite the very fast processing of the blocks, the PDE-based
approaches cannot achieve the very small runtime of JPEG or JPEG2000. This will
be addressed in the following. Note the different decoding times for the three inpaint-
ing operators, which solely comes from the entropy coder. Apparently, higher order
operators lead to less structured data which requires more effort to obtain an efficient
entropy coding.

6.3.4 Accelerated Decoding

After having found a very good and fast PDE-based compression algorithm, we now
want to focus on improving the decoding time. To this end, we will address two major
bottlenecks in the following.

Entropy Coding

Despite its very good results, the PAQ entropy coder is very slow. JPEG and
JPEG2000 rely on Huffman coding [96] and arithmetic coding [160, 161], respectively.
Both entropy coders have a much better runtime performance compared to PAQ on
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PDE (PSNR: 28.0 dB) JPEG (PSNR: 27.4 dB) JPEG2000 (PSNR: 28.7 dB)

Figure 6.23. Example result of the PDE-based compression with subdivision tree
strategies and comparable results of JPEG and JPEG2000 at the same compression
ratio of 55:1.

the expense of being less efficient in terms of file size reduction. Thus, we replace
the PAQ entropy coder by arithmetic coding or Huffman coding in our PDE-based
compression.

Figure 6.24 shows the resulting compression performance. Both entropy coders lead
to a tremendous speed up compared to the results with PAQ in Figure 6.22. For all
compression ratios of approximately 30:1 and more, the PDE-based method is even
faster than JPEG2000. The quality of the PDE-based compression suffers from the
less efficient entropy coders. The best result is obtained with arithmetic coding and
the biharmonic operator for all compression ratios. Due to the very similar runtime
of both entropy coders, it makes sense to choose arithmetic coding as the favoured
one.

Encoding Coefficients

A second bottleneck is the inpainting process itself: Solving the linear system of
equations to obtain the coefficients of the discrete Green’s functions requires some
time, especially for larger mask densities. It is obvious from Figure 6.15 that this can
last almost as long as the complete JPEG2000 decoding. Hence, we further speed up
the algorithm by storing the coefficients and the mean value constant of the discrete
Green’s functions directly instead of the tonal values. This allows to obtain the
inpainting within approximately 1ms independent of the operator or the mask density.
As discussed in Section 3.4, these coefficients of the discrete Green’s functions can also
be considered as derivative information which is now prescribed at the mask points
instead of the tonal information. Note that the PDE-based approach still needs to
perform a cosine transform of the coefficients and an inverse transform of the modified
values to obtain the reconstruction (cf. Algorithm 3.1). In contrast, JPEG only needs
to perform the inverse transform of the already stored DCT coefficients. This means
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Figure 6.24. Accelerated compression results with different entropy coders for vary-
ing compression ratios for the image trui. Harmonic and biharmonic inpainting oper-
ators are tested.

that despite this enormous gain in time, we still have double the effort compared to
JPEG.

For storing this new data efficiently, it has to be quantised, too. The mean value
constant can be quantised in the same way as the tonal values. Unfortunately, the
coefficients have a completely different range and scale compared to the tonal values:
While the tonal values usually lie in [0, 255], the coefficients lie within some interval
[−a, a], with some constant a depending on the inpainting operator. Thus, the coeffi-
cients are transferred to a different range by multiplying them with a certain constant
s ∈ (0, 2]. Then, we apply a uniform quantisation on these values within the interval
[−127, 127]. For reconstructing the coefficients, they are divided by s again. Besides
the quality parameter, we also store the scale parameter s in a header with a precision
of one byte. Both parameters are again optimised with a grid search to yield the best
possible trade-off between file size and reconstruction quality. To find the best quan-
tised coefficients for a specific quality and scale parameter, the quantisation-aware
tonal optimisation method in Algorithm 4.6 is modified in a straightforward way.
Thereby, besides adapting the quantisation itself, the inpainting echoes are replaced
by the discrete Green’s functions.

Similar to the experiment with the tonal values, we can check the influence of a
quantisation on the coefficients. Again, the mask as well as the (quantised) coefficients
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Figure 6.25. Comparison of best reconstructions from prescribed coefficients ob-
tained with different operators and quantisation levels. Left: No quantisation. Cen-
tre: Quantisation with q = 64. Right: Quantisation with q = 32.

and constant are tuned to yield the best possible reconstruction for a given operator
and quantisation value. The scaling parameter s is set to 1 which leaves the values
unchanged. The result is shown in Figure 6.25. Recall that for continuous coefficients,
the reconstruction is identical to the ones obtained from continuous tonal values. The
quantisation of the coefficients has a much more severe influence on the reconstruction
quality than a quantisation of the tonal values. This demonstrates that precision is
very crucial when prescribing derivative information at mask locations, especially for
higher order operators. In particular, note that the reconstructions even become
worse when more points are present: An error in additional coefficients has a very
bad influence on the inpainting result. This effect is even slightly visible for the
biharmonic operator and q = 32, and much more severe for higher orders. Due to
the very bad reconstructions given by the triharmonic or quadharmonic operators, we
will only focus on the lower order operators when encoding coefficients.

In Figure 6.26, the new approach relying on the coefficients is compared to the
previous compression results. Both rely on arithmetic coding as entropy coder. The
reconstruction quality obtained by storing tonal values in combination with the bihar-
monic operator is the best among the PDE-based methods. Storing the coefficients
leads to slightly worse results. The biharmonic operator also seems to be the best
choice here, at least for smaller compression ratios. Considering the runtime, we have
found a compression algorithm with a very small decoding time. We are able to out-
perform JPEG2000 for all compression ratios. Even though JPEG is still a bit more
efficient, the maximum decoding time for the image trui is approximately 5ms, which
is extremely fast. In total, one can say that any gain in time is on the cost of the
quality.

To get a visual impression of the fast compression method, an example result is
depicted in Figure 6.27. At a compression ratio of 55:1, the decoding time of 1.8ms
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Figure 6.26. Comparison of compression with two different approaches for the
image trui : Encoding coefficients of the discrete Green’s functions on the one hand,
and encoding tonal values on the other hand. Both variants are tested with harmonic
and biharmonic inpainting, and rely on arithmetic coding.

is very fast. Similar to JPEG, the PDE-based approach shows block artefacts. Even
though the JPEG image shows more texture, it suffers from drastic jumps between
blocks, especially at the cheek. In contrast, the PDE-based approach has smoother
transitions, but also shows less details. While both approaches yield images of com-
parable quality, the JPEG2000 image is clearly better.

6.3.5 Extension to Colour Images

In a final step, we want to extend the PDE-based compression algorithm such that it
can also handle colour images. To this end, the image is initially transformed from
the RGB colour space into the YCbCr colour space. This idea has already been
successfully used in related compression methods such as JPEG or even PDE-based
approaches relying on EED-inpainting [154, 152]. It exploits the following fact: The
human visual system is much more sensitive to the luma channel Y compared to the
chroma channels Cb and Cr. Thus, it is possible to allow for a lower quality in the
Cb and Cr channels, while encoding the Y channel in a higher quality.

In our compression algorithm, we also mainly consider the Y channel. As before, we
first optimise the spatial and tonal data to obtain the best reconstruction for only this
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PDE (PSNR: 26.0 dB) JPEG (PSNR: 27.4 dB) JPEG2000 (PSNR: 28.7 dB)

Figure 6.27. Example result of the PDE-based compression, using coefficients to
be stored, arithmetic coding and biharmonic operator. The decoding time is 1.8ms.
Comparable results of JPEG and JPEG2000 at the same compression ratio of 55:1
are shown, too.

specific channel. Then, this mask is reused for the chroma channels as well, because
all structural information is already represented in the Y channel. This allows to
store only one mask for all three channels which is very efficient. Moreover, we follow
the idea of JPEG and store the chroma values much coarser than the luma values.
This is achieved by always using only half as many quantisation levels in these two
channels than in the Y channel. In particular, this channel dependent quantisation
is also integrated into the process of finding optimal tonal data. Note that for all
optimisation steps, the error is considered in the YCbCr space. In the decoding step,
the individual channels are inpainted separately as before, and the final image is given
by a back-transformation from the YCbCr colour space to the RGB colour space.

With this extension to colour images, we perform some experiments with the very
fast PDE-based image compression including the arithmetic coding and direct encod-
ing of coefficients. For the image peppers in Figure 6.28, the fast PDE-compression
is able to beat JPEG for a compression ratio of 7:1. This is a remarkable result as
we did not mainly aim to obtain the best quality. We rather prioritised the method
which is very efficient in terms of decoding speed. Therefore, the decoding with the
PDE approach on the 512× 512 colour image only takes 80ms.

More results on different images and compression ratios are shown in Figures 6.29
and 6.30. Here, the JPEG image achieves a higher quality in terms of the PNSR error
measure. These images contain more texture compared to the peppers images which
are easier to handle for JPEG. Nevertheless, the PDE approach is still able to yield a
convincing image with no major details missing.

Thanks to the very fast processing, we are even able to process a very large HD
image of size 2560 × 1920, see Figure 6.31. The decoding of the image took only
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Figure 6.28. Example with a compression ratio of 7:1. Left: Original image peppers
(size: 512× 512). Centre: PDE approach (PSNR: 33.40 dB). Right: JPEG (PSNR:
32.93 dB).

0.81 seconds. For a comparison, JPEG needs around 0.24s and JPEG2000 even takes
0.93s, so the PDE runtime is very good. This shows that the presented approach is
also capable to process very large colour images efficiently, even though it incorporates
solving partial differential equations. This has never been achieved before on a CPU.
Despite the worse PSNR value of the PDE approach, one cannot see a large visual
difference to JPEG or JPEG2000. In particular, the overall impression of all three
methods compared to the original image is very positive.

6.3.6 Conclusion and Outlook

In this Section, we have seen that linear PDEs are a powerful tool for obtaining fast
and high quality compression algorithms. The key for success is a clever combination
and tuning of the individual ingredients: The block subdivision allows a fast inpaint-
ing and associated data optimisation, which yields very good reconstructions even
with linear PDEs. Thereby, the theory of discrete Green’s functions allows a fast and
accurate processing. Together with efficient encoding strategies such as tree subdivi-
sion masks, fast entropy coders or processing in a different colour space, we obtain a
very good compression algorithm. Despite its similarity to JPEG in various regards,
the underlying inpainting process as a core ingredient represents a major conceptual
difference. In total, it could be demonstrated for the first time that a PDE based
approach is able to compete with JPEG in terms of both quality and decoding time.

In the future, a more efficient entropy coding for the extracted spatial and tonal data
could help to boost the compression performance. Even though the fast arithmetic
coding already yields good results, the experiments with the slower PAQ showed that
there is still a lot of potential. In particular, a designated adaption to the specific
structure of the data could help to reduce the final file size.
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Figure 6.29. Example with a compression ratio of 13:1. Top left: Original image
kodim15 from the Kodak image database [56] (size: 768 × 512). Top right: PDE
approach (PSNR: 33.02 dB). Bottom left: JPEG (PSNR: 37.88 dB). Bottom right:
JPEG2000 (PSNR: 41.02 dB).

Figure 6.30. Example with a compression ratio of 25:1. Left: Original image baboon
(size: 512× 512). Centre: PDE approach (PSNR: 20.36 dB). Right: JPEG (PSNR:
23.58 dB).
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Chapter 7

Conclusion and Outlook

7.1 Summary and Conclusion

In the present thesis, we have analysed the potential of linear partial differential
equations for image compression. Chapter 1 started by giving a general introduction
to image compression. Then, the general idea of PDE-based inpainting and its usage
in a compression context have been presented. Further, there has been an overview
over related methods in the respective fields.

In Chapter 2, the inpainting problem itself has been discussed. Based on diffusion
processes, we have introduced the standard continuous formulation of PDE-based
inpainting. The corresponding discrete analogue has been presented and analysed
afterwards. On the one hand, we have considered general known properties of the
inpainting solution such as the maximum-minimum principle for homogeneous diffu-
sion inpainting. On the other hand, we have seen that the condition number and
consequently the complexity of solving the inpainting problem using the standard for-
mulation is typically inversely proportional to the mask density. In particular when
there are big gaps between mask points, filling in information in the larger unknown
areas becomes expensive. This explains the success of bidirectional multigrid methods
to solve the inpainting problem as they reduce the distance between mask points on
coarser levels.

With the help of discrete Green’s functions, we were able to reformulate the origi-
nal inpainting formulation in terms of sparsity in Chapter 3. This allowed to rewrite
the inpainting solution as superposition of atomic components given by the discrete
Green’s functions. Besides gaining theoretical insights, we have seen that this theory
also led to many practical advantages. Compared to the standard formulation of the
inpainting problem, we can consider this reformulated problem as a dual problem:
Operations become less expensive the less mask points are present, which is the op-
posite to the standard inpainting. In this duality, discrete Green’s functions can be
related to inpainting echoes.
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The tonal optimisation problem is considered in Chapter 4. While there is a unique
solution of the problem for linear operators, we have seen that the fastest method
highly depends on the mask density and the order of the operator. Again, the duality
of the two inpainting formulations becomes apparent: While the approach relying on
discrete Green’s functions allows a fast processing for low mask densities, the gradient
descent approach using the standard formulation is faster for larger mask densities.
The primal-dual method is a very fast alternative for the harmonic operator and
denser masks. Moreover, a quantisation-aware tonal optimisation is possible with
inpainting echoes, and a gradient descent scheme is even able to cope with nonlinear
inpainting operators.

Chapter 5 discussed the spatial optimisation in detail. We considered different
methods, and found that again different methods are suited for specific scenarios.
When time is not an issue, the best results for the linear operators are obtained
with the optimal control approach. However, it is the only method where the mask
density cannot be specified explicitly. The analytic approach relying on the theory of
Belhachmi et al. is a promising fast alternative for homogeneous diffusion inpainting
with slightly worse results. A very good trade-off between runtime and quality is
given by the gradient descent with discrete Green’s function. It allows to find a very
good masks with the harmonic operator for discrete and even for continuous mask
locations. The probabilistic methods are able to yield reliable results for arbitrary
operators, in particular for nonlinear operators.

The actual performance of PDE-based inpainting with linear operators within a
compression context is evaluated in Chapter 6. The first method uses a segment-
based inpainting for the purpose of depth map compression. By combining a mask on
a regular hexagonal structure with optimised free mask points, very good compression
results could be achieved. Due to the dedicated design for this type of images, the
codec was able to outperform JPEG and JPEG2000, while competing with HEVC.
The second approach encodes the highly optimised masks from the optimal control
approach and achieves remarkable results on general images. Even with the linear
PDEs it is possible to outperform JPEG, JPEG2000 or R-EED. The third compression
approach demonstrated that PDE-based image compression can not only convince
qualitatively, but can also be very fast when it comes to the decoding. The key to
success was to use a block-based inpainting which makes all operations very efficient.
This allowed to incorporate a tonal optimisation into the spatial optimisation process,
leading to very good inpainting data. By encoding the coefficients of the discrete
Green’s functions, the decoding turned out to be very fast. In the end, we were able
to compete with JPEG in terms of quality and decoding time.

To summarise, we could demonstrate that linear PDEs are a very powerful tool for
image compression. The high quality reconstructions do not only allow to compete
with related compression approaches in terms of quality. Against all prejudices, the
linear operators even allow to be in the same league as JPEG or JPEG2000 when it
comes to decoding time. To reach this goal, we exploited the derived insights on the
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inpainting process, in particular the duality between the standard and reformulated
inpainting formulation using discrete Green’s functions. This demonstrates that it
always pays off to put effort into the analysis and understanding of the underlying
method.

We have seen that there are several crucial ingredients to obtain a successful codec
with PDEs. First of all, it is important to incorporate as much a priori information
of the images as possible. For instance, we did this when using the segment-based
inpainting to recover the characteristic sharp edges and smooth transitions of the
depth maps. Moreover, it makes sense to optimise the inpainting data as good as
possible on the encoding side, while at the same time including the final entropy
coding into the optimisation process. To obtain a fast decoding, a localisation along
with fast algorithmic realisations is very important. In particular, it makes sense to
make certain sacrifices in the quality to obtain a faster decoding as we have done it
by encoding the coefficients directly instead of the tonal data.

7.2 Outlook

Despite its maturity, it is clear that PDE-based compression has not reached a final
stage yet. There is still room for improvement in various aspects.

In Section 6.3.1, we have seen that it pays off to jointly optimise the tonal and spatial
data. Moreover, we have seen in Section 4.9 that incorporating the quantisation into
the tonal optimisation process is better compared to a subsequent quantisation of
the continuous optimal values. In the PDE-based image compression, we have many
more dependencies. For instance, depending on the entropy coder, one could think
about choosing the mask points more likely at those positions which can be encoded
more efficiently. Clearly, the quantisation also has an influence on the chosen mask
points. This suggests to have a joint optimisation of all ingredients of the compression
algorithm.

In this context, a better understanding of the entropy coding is crucial. Ideally, we
would know the actual coding costs of the individual components such as the mask
points, segment boundaries or the quantisation levels. This could then be incorporated
into a variational framework, where an appropriate energy functional is minimised to
find the best ratio between the ingredients. In particular, this would avoid the need to
perform brute force search strategies as we have done it for the quantisation parameter
in Section 6.2.1.

In contrast to encoding the tonal values, we have seen in Section 6.3.4 that it is also
possible to encode higher order derivative information. In [36], it is demonstrated that
it is possible to obtain very good reconstructions from sparse gradient information.
Even though the reconstruction quality is very good, we have recently shown that this
strategy is not perfectly suited for image compression [8]. The main reason for this is
the high sensitivity of the gradient data to a quantisation. In the future, an improved
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entropy coder could potentially allow to store this data in a higher precision and lead
to better compression results. Moreover, one could think of using even other kinds of
sparse features such as the diffusivity information or to reconstruct an image from a
combination of different features.

Of course, an improved and faster encoding is desired in the future. To this end,
one could for example try to find fast alternatives for the discussed data optimisation
strategies. Especially when it comes to finding the mask, faster methods would clearly
help PDE-based codecs to further advance. Perhaps, making small sacrifices on the
quality would even lead to tremendous accelerations, which in turn would allow for
compression of large amounts of data. In this context, a fast GPU implementation
of the tonal optimisation with discrete Green’s functions could help to speed up the
computations. Moreover, improved entropy coders which are specifically designed
for the purpose of PDE-based image compression could help to further improve the
coding performance.

The theoretical insights on the inpainting with the help of the Green’s functions
can also be extended. In [7], we have already considered one-dimensional discrete
Green’s functions for sparse signal approximation. We have shown that the theory
is also valid for this setting, and derived simple closed-form expressions for the 1D
discrete Green’s functions. In the future, one can think of considering discrete Green’s
functions in higher dimensions or even for nonlinear operators. Perhaps, this would
enable to find a connection between EED inpainting and sparsity.

As demonstrated in [153], PDE-based methods are perfectly suited fo progressive
modes. Also the presented compression algorithms within this thesis can potentially
be extended to support this feature. In particular, we could for instance first select the
inpainting data such that the coarse image structure is represented. Then, more and
more points are added to include detail information, which is successively transferred
to the recipient. In particular, the discrete Green’s functions are very well suited
for this task: Adding additional points simply means adding further discrete Green’s
functions. In particular, there is no need to perform a complete inpainting after
sending more data.

Clearly, one can employ or adapt the presented methods for any type of data.
For example, the efficient storage of MRI images is still an open issue in medical
imaging, and encoding high-dynamic range (HDR) images is becoming more and
more important.

Besides all the other work in the field of PDE-based image compression, this thesis
is another small step towards a unified and powerful PDE-based codec, which will
maybe succeed to be a future standard for image compression tasks someday.
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[18] R. Bajcsy and S. Kovačič. Multiresolution elastic matching. Computer Vision,
Graphics and Image Processing, 46(1):1–21, April 1989.

[19] V. Bastani, M. S. Helfroush, and K. Kasiri. Image compression based on spatial
redundancy removal and image inpainting. Journal of Zhejiang University –
Science C (Computers & Electronics), 11(2):92–100, 2010.

[20] S. Battiato, G. Gallo, and F. Stanco. Smart interpolation by anisotropic diffu-
sion. In Proc. Twelvth International Conference on Image Analysis and Process-
ing, pages 572–577, Montova, Italy, September 2003. IEEE Computer Society
Press.

[21] K. Baum. GPU supported diffusion-based naive video compression. Master the-
sis, Department of Computer Science, Saarland University, Saarbrücken, Ger-
many, 2013.

[22] A. Belahmidi and F. Guichard. A partial differential equation approach to
image zoom. In Proc. 2004 IEEE International Conference on Image Processing,
volume 1, pages 649–652, Singapore, October 2004.

[23] Z. Belhachmi, D. Bucur, B. Burgeth, and J. Weickert. How to choose interpo-
lation data in images. SIAM Journal on Applied Mathematics, 70(1):333–352,
2009.

[24] J. M. Berger and G. J. Lasher. The use of discrete Green’s functions in
the numerical solution of Poisson’s equation. Illinois Journal of Mathematics,
2(4A):593–607, November 1958.

[25] M. Bertalmı́o, G. Sapiro, V. Caselles, and C. Ballester. Image inpainting. In
Proc. SIGGRAPH 2000, pages 417–424, New Orleans, LI, July 2000.

[26] F. Bornemann and T. März. Fast image inpainting based on coherence trans-
port. Journal of Mathematical Imaging and Vision, 28(3):259–278, July 2007.

[27] A. Borz̀ı, H. Grossauer, and O. Scherzer. Analysis of iterative methods for
solving a ginzburg-landau equation. International Journal of Computer Vision,
64(2–3):203–219, 2005.

[28] L. Bottou, P. Haffner, P. G. Howard, P. Simard, Y. Bengio, and Y. LeCun. High
quality document image compression with DjVu. Journal of Electronic Imaging,
7(3):410–425, July 1998.
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Constrained anisotropic diffusion and some applications. In Proc. 2006 British
Machine Vision Conference, volume 3, pages 1049–1058, Edinburgh, Scotland,
September 2006.

[71] F. Faille and M. Petrou. Invariant image reconstruction from irregular samples
and hexagonal grid splines. Image and Vision Computing, 28(8):1173–1183,
August 2010.

[72] D. S. Feingold and R. S. Varga. Block diagonally dominant matrices and gen-
eralizations of the gerschgorin circle theorem. Pacific Journal of Mathematics
12, pages 1241–1250, 1962.

[73] R. W. Floyd and L. Steinberg. An adaptive algorithm for spatial grey scale.
Proceedings of the Society of Information Display, 17:75–77, 1976.

[74] G. E. Ford. Application of inhomogeneous diffusion to image and video cod-
ing. In Proc. 13th Asilomar Conference on Signals, Systems and Computers,
volume 2, pages 926–930, Asilomar, CA, November 1996.

[75] G. E. Ford, R. R. Estes, and H. Chen. Scale-space analysis for image sampling
and interpolation. In Proc. IEEE International Conference on Acoustics, Speech
and Signal Processing, volume 3, pages 165–168, San Francisco, CA, March 1992.

[76] R. Franke. Scattered data interpolation: Tests of some methods. Mathematics
of Computation, 38:181–200, 1982.
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[181] A. Solé, V. Caselles, G. Sapiro, and F. Arandiga. Morse description and geomet-
ric encoding of digital elevation maps. IEEE Transactions on Image Processing,
13(9):1245–1262, September 2004.

[182] P. Solin and D. Andrs. On scientific data and image compression based on
adaptive higher-order FEM. Advances in Applied Mathematics and Mechanics,
1(1):56–68, February 2009.

[183] J. Steil. Shape coding with nonapoles. Bachelor thesis, Department of Computer
Science, Saarland University, Saarbrücken, Germany, 2013.

[184] G. Strang. Introduction to Applied Mathematics. Wellesley-Cambridge Press,
Wellesley, 1986.

[185] G. Strang. The discrete cosine transform. SIAM Review, 41(1):135–147, 1999.

[186] G. Strang and S. MacNamara. Functions of difference matrices are Toeplitz
plus Hankel. SIAM Review, 56(3):525–546, 2014.

[187] P. Strobach. Quadtree-structured recursive plane decomposition coding of im-
ages. IEEE Transactions on Signal Processing, 39(6):1380–1397, June 1991.

[188] G. J. Sullivan and R. J. Baker. Efficient quadtree coding of images and video.
IEEE Transactions on Image Processing, 3(3):327–331, May 1994.

[189] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand. Overview of the high
efficiency video coding (HEVC) standard. IEEE Transactions on Circuits and
Systems for Video Technology, 22(12):1649–1668, December 2012.
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