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Abstract. Recent research has shown that inpainting with the Laplace
or biharmonic operator has a high potential for image compression, if the
stored data is optimised and sufficiently sparse. The goal of our paper
is to connect these linear inpainting methods to sparsity concepts. To
understand these relations, we explore the theory of Green’s functions.
In contrast to most work in the mathematical literature, we derive our
Green’s functions in a discrete setting and on a rectangular image do-
main with homogeneous Neumann boundary conditions. These discrete
Green’s functions can be interpreted as columns of the Moore—Penrose
inverse of the discretised differential operator. More importantly, they
serve as atoms in a dictionary that allows a sparse representation of the
inpainting solution. Apart from offering novel theoretical insights, this
representation is also simple to implement and computationally efficient
if the inpainting data is sparse.

Keywords: inpainting, sparsity, discrete Green’s functions, Laplace op-
erator, biharmonic operator.

1 Introduction

Image inpainting with partial differential equations (PDEs) is becoming increas-
ingly important for image compression. For this problem, nonlinear anisotropic
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diffusion processes have been introduced by Gali¢ et al. in 2005 [7] and have
been improved later in [8]. In the meantime, a more sophisticated variant is able
to outperform JPEG2000 [19]. Even with a conceptually simpler linear process
based e.g. on the Laplace equation, one can achieve remarkable results [15, 12, 17]
and beat the quality of state-of-the-art methods for specific types of images [14,
9, 13]. Also the biharmonic equation has been reported to yield very good results
8, 3].

In the present paper, we want to gain theoretical insights on inpainting meth-
ods with linear selfadjoint differential operators such as the Laplacian or the bi-
harmonic operator. In particular, we analyse their relation to a very popular idea
in modern signal and image analysis, namely sparsity. To this end, we make use
of the concept of discrete Green’s functions [1,4]. Green’s functions are mainly
known from the continuous theory of partial differential equations (PDEs) as a
tool to describe the solution of boundary value problems [16]. Most publications
on Green’s functions focus on continuous differential operators. Digital images,
however, reveal a natural discretisation on a regular grid. Moreover, they are
given on a rectangular image domain, and it is fairly common to extend image
processing operators at the boundaries by mirroring. This motivates us to inves-
tigate discrete Green’s functions for linear differential operators on a rectangular
image domain with homogeneous Neumann boundary conditions. Moreover, we
will give an interpretation of the obtained discrete Green’s functions in terms of
linear algebra. More precisely, we will elaborate the connection to the Moore—
Penrose inverse of the discretised differential operator.

The discrete Green’s functions that we derive will serve as atoms in a dictio-
nary for inpainting. There is a one-to-one correspondence between each pixel and
its corresponding Green’s function. Hence, if only a sparse set of pixels is kept,
the solution of the discrete inpainting problem can be expressed in a compact
way in terms of their Green’s functions. We will show that this representation
does not only offer novel theoretical insights into the connections between in-
painting and sparsity, but also has algorithmic benefits. The main focus of the
present paper, however, will be on the theoretical aspect.

The outline of our paper is as follows. First we sketch the continuous and
discrete formulations of inpainting with the Laplace and biharmonic equation in
Section 2. In the subsequent section we explain the concept of discrete Green’s
functions and their use for a sparse representation of the solution of the in-
painting problems. Numerical advantages of our Green’s function framework are
discussed in Section 4. Our paper is concluded with a summary in Section 5.

2 Laplace and Biharmonic Inpainting

2.1 Continuous Inpainting Models

Let 2 C R? denote a rectangular image domain and f : 2 — R a greyscale
image. If this image is only known at some subset {2x C 2, one can try to fill
in the missing information by solving the Laplace equation

—Au=0 on 2\ Nk (1)
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with homogeneous Neumann boundary conditions:
Opu=0 on 012, (2)

where 0,, denotes the derivative normal to the boundaries. Moreover, the known
data set provides Dirichlet boundary conditions:

u=f on 2. (3)

As an alternative to the Laplace equation, one can also consider higher-order
differential operators leading e.g. to the biharmonic equation:

A%y =0 on 2\ Nk. (4)

Both models have in common that they use linear selfadjoint differential oper-
ators. These properties will be useful for our later analysis. From a practical
viewpoint they are attractive, since they are parameter-free and give rise to
relatively easy implementations.

2.2 Discrete Inpainting Models

Digital images reveal a discretisation on an equispaced rectangular grid. Thus,
it is natural to use finite difference discretisations of the beforementioned con-
tinuous inpainting processes. We consider a regular two-dimensional grid I" =
{0,...,.M—1} x{0,..., N—1} with grid size h. The value of a discrete image
f at a grid point (i,7) € I' is denoted by f; ;. The subset K C I' denotes the
grid points where the discrete inpainting data is known. We call them mask
points. At the locations I'\ K where the data is unknown, we seek the inpainting
solution u by solving a discrete problem of type

(Du);; =0 for (i,j) € IN\K, (5)
Us 5 = fi,j for (’L,]) eK. (6)

Here, D can be seen as an inpainting operator. We mainly focus on the following
two choices. On the one hand, we consider D = —L, where L is the discrete
Laplace operator (harmonic operator) on I fulfilling homogeneous Neumann
boundary conditions at the image boundaries. For the inner grid points its stencil
notation is given by

of[1]o0
2z 1]-4]1
of[1]o0

The homogeneous Neumann boundary conditions are incorporated by mirroring
the image at the boundaries and by using the above stencil also for the boundary
grid points. The resulting inpainting process is also known as homogeneous dif-
fusion inpainting. In [14], the existence and uniqueness of the discrete inpainting
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solution for the Laplace operator has been shown. On the other hand, we will
also consider the biharmonic operator, i.e. D = B := L2.

Typically, the inpainting solution is found by solving the discrete problem
directly. This can be done with iterative methods such as a fast explicit diffusion
(FED) scheme [11] or bidirectional multigrid approaches [14]. In the present
paper we want to study how the solution can be obtained in a noniterative way
by means of discrete Green’s functions.

2.3 Eigenvalues and Eigenvectors of the Discrete Operators

For our later analysis it is useful to represent the discrete differential operators
—L and B in terms of their eigenvalues and eigenvectors. The following theorem
provides the required information. It extends 1D results that can be found for
example in [20] to the two-dimensional setting.

Theorem 1 (Eigenvalues and Eigenvectors of the Discrete Operators).
The orthonormal set of eigenvectors of —L as well as of B is given by

ity i =n=0

(Vmn)ig = \/ 52 - COS (u{) - COS (1/}) if eitherm =0 orn=0, (7)

TiN €08 (/ﬁ) - oS (V}) if m >0 and n > 0,
with (m,n) € I', p:= 5F, v:=5F, i=(i+ ), and j = (j + 3)-
The corresponding eigenvalues for —L are
4
o (3) 0 (2) .
The eigenalues of the discrete biharmonic operator B read as
Mo = ()’ ©)

Proof. While this eigenstructure may not appear obvious, proving its correct-
ness is fairly straightforward: One has to check that —Lwv,,, = )\T_n’?nvm,n and
Bv,, , = )\gn'vmm hold true for all (m,n) € I' and that the homogeneous
Neumann boundary conditions are fulfilled. Additionally, one has to show the
orthonormality of the set of eigenvectors. ad

We observe that both operators are singular, since the eigenvalues \; é and
A, vanish. This will complicate some of our discussions on discrete Green’s
functions in the next section.

3 Discrete Green’s Functions

After the preceding discussions we are in a position to introduce the concept of
discrete Green’s functions. First, we discuss the basic structure before we sketch
relations to linear algebra and specific applications to our inpainting problem.
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3.1 Basic Structure
Let us study a general discrete problem of the following type:
Du = a. (10)

RMXN RJWXN

Thereby u € is the unknown image, a € is a prescribed right
hand side, and D € RMXNXXN) 5 oiven symmetric discrete linear differential
operator incorporating homogeneous Neumann boundary conditions.

The solvability of this problem can be investigated with the so called Fred-
holm alternative, which is known from the theory of differential equations; see
e.g. [5]:

Theorem 2 (Fredholm Alternative). If D is invertible, then the solution u
of the discrete problem (10) exists and is unique. Otherwise, assuming that DT
possesses the single eigenvalue O with the corresponding eigenvector v € RM*N
there exist infinitely many solutions if

(v,a) =0, (11)
and there exists no solution at all if

(v,a) # 0. (12)

Here, the Euclidean inner product is defined as (a,b) = >_(; ;cp @i jbi;.
Let us assume that a in (10) is chosen such that there exists a solution uw. A
standard approach to find this solution is to solve the linear system of equations
directly. Instead, another promising approach is to express the solution by means
of Green’s functions. The Green’s function can be considered as the influence
of an impulse at a point (k,¢) on the complete image. Assuming that D is
invertible, the discrete Green’s function gy ¢ corresponding to a point (k,¢) € I'
for a given discrete problem is defined as the solution of

(Dgr.0)ij = O(k,0),(i,5) for (i,7) € I, (13)

where the Kronecker delta function is defined as
s 1 i) = k),
EOED =0 (i,5) # (k. 0).
Otherwise, if D possesses the single eigenvalue 0 and if v is the corresponding
eigenvector of DT, we can still obtain Green’s functions by the following mod-

ification. The infinitely many discrete Green’s functions for a point (k,¢) € I'
are now defined as solutions of

(14)

Vi,5 " Vku
(v,v)
Indeed, the right hand side of (15) (in vector notation) now satisfies the
solvability condition (11):

(Dgr.0)ij = Ok,e),(6,5) — for (i,75) € I. (15)

v,
<'v, 5k,£ - <vk’f)>v> = Vgt — Vg = 0. (16)
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3.2 Interpretation as Moore—Penrose Inverse

The Fredholm alternative can also be expressed in terms of linear algebra. To
this end, we reshape the image matrices u, a to vectors of length M N using
the operation col : RN — R™Y and D to a symmetric (MN x MN)-
matrix Dpsn. Then, (10) transfers to a linear system Djsy col (u) = col(a)
of size M N. This system is uniquely solvable, if and only if D,y is invert-
ible. If rank(Dpn) = MN — 1, then (10) possesses either infinitely many so-
lutions if rank(Djsn) = rank(Dpsn,col(a)), or no solution if rank(Dyn) <
rank(Djsn, col (a)).

Assuming that D,y is invertible, the discrete Green’s function defined
in (13) can be expressed as the solution of

Dyny Gun = Iyn, (17)

where I,y denotes the identity matrix of size M N xMN and Gy € RMNXMN
the matrix that contains the discrete Green’s functions gi ¢ as columns.

If rank(Djpsn) = M N —1 then there exist infinitely many Green’s functions,
and (15) leads to:

DynyGun =Iyn — <’U>71'U>(001 (v))(col (v)) . (18)

In the following theorem, we introduce a useful additional constraint that
creates a unique solution and allows to relate discrete Green’s functions to the
Moore—Penrose inverse of their discrete differential operator. The Moore—Penrose
inverse aims at generalising the inverse of a matrix such that it is also applicable
to singular matrices [10].

Theorem 3 (Discrete Green’s Functions and Moore—Penrose Inverse).
Let col (v) denote the eigenvector to the singular eigenvalue of Dyrn. If the
discrete Green’s functions g ¢ satisfy the additional constraint

(v,9k0) =0 for all (k,£) e T, (19)
then they are given by the columns of the Moore—Penrose inverse of Dy -

Proof. To verify that G sy is the Moore—Penrose inverse of D)y, we have to
check the following properties (cf. [10]):

(i) DunGunDyn = Dyn
(i) GuNDunGun = Gun
(iil) Dy nGarn is symmetric.
(iv) GpunDyyn is symmetric.

Since col (v) is an eigenvector of Dy to the eigenvalue 0, we have

(col (v)) "Dy =07, (20)
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Thus, together with (18), it follows that

1
(v,v)

DMNGJVINDMN = (IMN — (CO] (v))(col ('U))T> DMN = DJV[N (21)

and

GunDynNGyny =GN — ﬁGMN(COI (’U))(COI (’U))T. (22)

The condition (v, gx.¢) = 0 implies Gy (col (v)) = 0, and hence
GunDunGun = Gun- (23)

From (18) it is evident that Dy, nG v is symmetric. Let us now show that also
G nDyyy is symmetric. Due to the symmetry of Dy, we can diagonalise it
and write

Dyy=VSV' (24)

with a diagonal matrix S and an orthogonal matrix V. Since D,y contains a
singular eigenvalue, we obtain the Moore—Penrose inverse G,y as

Gun =Diy=VSTVT’ (25)

The matrix St contains the reciprocal of the eigenvalues except for the zero
eigenvalue that remains 0. Furthermore, as V' is orthogonal, we obtain

GunDyn = (VSTVT) (VSVT)=vStsvT (26)
as well as
T T\ v Ty
(GunDyn) = (VSV') (VSTVT) (27)
— VST (sH)' VI =vStsVT (28)
=GunDyn. (29)
Thus, Gy Dy is symmetric, too. O

3.3 Representing Solutions with Green’s Functions

Knowing the Green’s functions for all (k,¢) € I', the following theorem can be
formulated [6]:

Theorem 4 (Analytic Solution). The solution u of the discrete problem (10)
s given by

u = Z a0 Gk (30)

(k,0)er

where in case of a singular operator D the solvability condition (11) is assumed to
be satisfied, and the solution based on the Green’s functions is no longer unique.
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In practice, it is often not straightforward to determine the Green’s functions,
since they depend on the domain as well as on the boundary conditions. There
exist some designated approaches for specific problem settings [16]. The probably
most promising technique is the so-called method of eigenfunction expansion [16]
for the continuous case. In the discrete setting, the discrete Green’s functions
are expressed in terms of the eigenvectors and corresponding eigenvalues of D
(cf. [1]). Let us now study this approach in detail.

3.4 Constructing Discrete Green’s Functions for our Operators

Let us now apply our theory on the discrete Laplace or biharmonic operator. To
this end, we recall that both operators —L and B have a zero eigenvalue g . It

belongs to the constant eigenvector vy o with entries 1/v/ M N. Thus, we know
from Section 3 that in a point (k,¢) € I', the Green’s function gy, for both
operators is not unique. It satisfies the following system of equations:

1
MN
with D = —L or D = B, respectively. The theorem below states the solution
in a closed form:

(Dgre)i; = O(,0), i) — for (i,j) e I’ (31)

Theorem 5 (Discrete Green’s Functions). In a point (k,£) € I' the discrete

Green’s functions for the matric D = —L or D = B are given by
M—-1N-1 1
0= 3 3 [ omdie s+ 32)

m=0 n=0

(m,n)#(0,0)

where Ay, , are the eigenvalues corresponding to the eigenvectors vn, n of D, and
the constant ¢ € R can be chosen arbitrarily.

Proof. Following [1], we express the Green’s function in terms of the orthonormal
eigenvectors:

M—-1N-1

9k = Z Z Cm,nUm,n (33)

m=0 n=0
with coefficients ¢, , € R. Plugging this into (31) yields

M—-1N-1
1

Z Z Cm,n)\m,n('vm,n)i,j = 5(k,€)7(i,j) - m (34)

m=0 n=0

After multiplying both sides with (v, n); ; for fixed (m/,n’) € I', and summing
up over all pixels (i,7) € I', we have

1
le)n/)\m/7n/ = (vm’,n’)k:,f_m Z ('Um’;n’)i,j' (35)
(¢,5)el’



Discrete Green’s Functions for Inpainting with Sparse Atoms 9

Fig. 1. Example of discrete Green’s functions for the negative Laplacian with homo-
geneous Neumann boundary conditions on an image with 50 x 60 pixels. Left: 935,30.
Right: 925,10
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Fig. 2. Example of discrete Green’s functions for the biharmonic operator with homo-
geneous Neumann boundary conditions on an image with 50 x 60 pixels. Left: 935,30.
Right: 925,10

For m’ = n’ = 0, the eigenvalue Ao as well as the right hand side become 0
by (7). Thus, ¢g,0 can be chosen arbitrarily. This means that the Green’s function
is unique up to a constant c. For m’ > 0 or n’ > 0, we obtain

1
Cm,n = )\7 ('Um,n)k’g . (36)

m,n

This concludes the proof. a

We specify a canonic representative 927 ¢ by setting the constant ¢ := 0. As the
eigenvectors vy, , with (m,n) # (0,0) of the discrete operator are orthogonal
to wg,0, this is equivalent to assuming (g%g,vo,o) = 0. This shows that the
obtained Green’s functions g%z have mean value zero. Moreover, we can apply
Theorem 3 and see that they build the Moore—Penrose inverse of D. Example
plots of Green’s functions are depicted in Figure 1 and 2.
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In practice, we can exploit the symmetry of the rectangular image domain
to reduce the effort for computing all discrete Green’s functions by a factor of 4:
Once the Green’s function is computed for a specific source point (k, ¢) € I', the
Green’s functions for the source points (M —k,¥), (k, N —£), and (M —k, N —{)
can be obtained by mirroring g,gj along the z axis, the y axis and both axes.

3.5 Inpainting with Green’s Functions

We want to use the Green’s functions to find an exact solution of the discrete
inpainting problem. Therefore, the trick is to rewrite the problem such that it
has the form as in (10). We construct a right hand side @ such that it is zero
at all non-mask points, while its values at all mask points (i,7) € K must be
determined later. As a result, the problem reads as

Du=a (37)
subject to
Ui 5 = fiyj if (l,j) S K, (38)

Assuming that (vg 9, @) = 0 we can write the solution u of (37) as

wij = Y ke (ghe)iytc (40)
(k,0)er

with the discrete canonic Green’s functions g%e ((k,€) € I') and an unknown
constant ¢, comprising all constants of the individual Green’s functions. As by
(39) the entries of @ vanish at all non-mask points, (40) can be simplified to

wij= Y are(gheij+c. (41)
(kL) eK

This representation shows that the inpainting solution can be composed by a
small number of atoms, namely the discrete Green’s functions corresponding
to the mask pixels. Thus, the discrete Green’s functions g%z corresponding to
(k,£) € K can be seen as a generating system for the space of all inpainting
solutions on I' \ K (with mean value zero on I).

It remains to find the unknown coefficients ¢ and age, (k,¢) € K. They
are determined by (38). Together with the solvability condition (11) within the
Fredholm alternative,

(vo,,a) =0 = Z ag,e =0, (42)
(k,0)eK

we can specify the inpainting result uniquely. Denoting the 2D pixel indices of
the mask points by my,...,mp, with L := |K|, we can formulate the linear
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Algorithm 1. Inpainting with Green’s functions.

Input: Image f at specified mask K.

1. For all (k,¢) € K, compute the corresponding canonic Green’s function g%e
using Theorem 5.

2. Compute the unknown coefficients of @ and ¢ by solving (43).

3. Obtain the solution w as the superposition given in (41).

Output: Inpainting solution w.

system of equations for finding the unknown values of a and c:

(g%1>m1 (g'gnZ)ml (grgnL)ml 1 Am, Jma
(gml)mz (gmg)ﬂw (gmL)’mz 1 a’mz fmz

: : . : : : = : (43)
(g’l[”)l’Ll)mL (g?nz)mL (ggnL)mL 1 Amy, fmy

1 1 ... 1 0 c 0

For solving this system of equations, we recommend the QR algorithm since it
does not create error accumulations [18]. Once the values for ¢ and @y, , ..., am,
are computed, the inpainting solution w is represented exactly with (41). For
the reader’s convenience, Algorithm 1. summarises the full workflow.

A decisive advantage of our inpainting algorithm with Green’s functions is
that it reveals the influence of each mask point on the overall inpainting result:
This influence is described by the respective Green’s function. It is clear that
the complexity for finding a solution increases with the number of mask points.
Interestingly, this is different to the standard approach of solving the discrete
inpainting problem iteratively, where it is computationally more expensive to find
a solution for a sparse mask: In the latter case, it typically takes more time to
diffuse the information at the mask points over the complete image. In contrast,
our new approach can compute the solution much faster if the specified data is
sparse. For image compression applications this can be a relevant scenario.

4 Experiments

Although the main goal of our paper is to emphasise the theoretical advantages
of Green’s functions as a tool to understand the connections between PDE-
based inpainting and sparsity, our framework can also offer practical advantages.
This shall be illustrated by an application in the context of image compression
with PDEs. In order to reconstruct an image in the decoding step, we have to
solve inpainting problems. If they use the Laplacian or biharmonic operator, we
propose to refrain from storing the greyvalues at all mask pixels and rather store
the coefficients ¢ and am,, ..., am,_, instead. Note that the missing coefficient
Gm, can be recovered from these coefficients with the help of the solvability
condition (42). The computation of the Green’s functions can be performed
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Table 1. Runtime comparison for inpainting with the Laplace operator. The CPU
time is given in seconds.

mask density 10.01% 05% 1% 2% 4% 8%  16%
multigrid (max. error 0.5) 0.425 0.306 0.305 0.305 0.264 0.263 0.216
multigrid (max. error 0.05) 0.777 0.855 0.581 0.579 0.263 0.263 0.216
multigrid (max. error 0.005) |11.331 2.238 1.685 0.857 0.742 0.502 0.216
our approach 0.001 0.037 0.073 0.143 0.293 0.585 1.179

Table 2. Runtime comparison for inpainting with the biharmonic operator. The CPU
time is given in seconds.

mask density [0.01% 05% 1% 2% 4% 8%  16%
multigrid (max. error 0.5) 0.691 0.463 0.464 0.462 0.382 0.382 0.305
multigrid (max. error 0.05) 0.688 0.876 0.875 0.874 0.382 0.383 0.305
multigrid (max. error 0.005) | 5.312 2.114 1.287 1.306 0.725 0.382 0.305
our approach 0.001 0.037 0.074 0.148 0.298 0.597 1.181

offline before storing them on the hard disk. This has the advantage that they
do not have to be recomputed every time they are needed. As a result, we obtain
a very efficient decoding for sparse masks where the inpainting result is computed
by a simple superposition of Green’s functions.

To evaluate this algorithm for inpainting with the Laplace or biharmonic op-
erator, we compare it with bidirectional multigrid methods. These sophisticated
numerical algorithms belong to the most efficient techniques that are used for
this purpose; see e.g. [14]. As a model problem, we consider an image of size
256 x 256 pixels with greyvalues in the range between 0 and 255. Moreover, we
use randomly sampled mask points with varying density. Table 1 juxtaposes the
runtimes of our Green’s function algorithm and bidirectional multigrid meth-
ods with two different accuracy levels for the Laplace operator. Corresponding
comparisons for the biharmonic operator are presented in Table 2. We use C
implementations on an Intel Xeon quadcore architecture with 3.2 GHz and 24
GB memory. For more details on the multigrid implementation, we refer to [14].

We observe that our Green’s function approach gives favourable results if the
mask density is low and high accuracy is needed. In the context of depth map
compression for example, one usually deals with very sparse masks as only few
data points suffice to represent smooth transitions [13]. This shows the practical
relevance of the presented algorithm. Note that in contrast to the bidirectional
multigrid approach, the Green’s function algorithm solves the discrete inpainting
problem exactly (up to machine precision). Thus, there is no need for devising
appropriate stopping criteria and making decisions on the numerous parameters
that are characteristic for multigrid methods. Last but not least, it should be
emphasised that the runtime of the Green’s function method does not deteriorate
when one replaces the Laplace operator by the biharmonic operator (or even
higher order linear differential operators). It remains a simple superposition of
Green’s functions.
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5 Conclusion

Since one decade, the paradigms of sparse signal processing and inpainting meth-
ods for compact image representations have been enjoying a successful develop-
ment. Although they often pursue similar goals, it is surprising that this has
happened without any interaction. With our paper, we have paved the way for
a mutual exchange of ideas.

The key concept for understanding this relation was the notion of discrete
Green’s functions. They serve as atoms in a dictionary. Only a single atom
is needed to describe the global influence of one mask pixel. This allows to
reinterpret successful inpainting methods with linear differential operators in
terms of sparsity. Moreover, discrete Green’s functions also offer an interesting
interpretation as columns of the Moore—Penrose pseudoinverse of the discretised
(singular) differential operator.

Our framework is fairly general: It is directly applicable to any linear selfad-
joint differential operator with a known eigendecomposition. We have illustrated
this by means of the Laplace operator with homogeneous Neumann boundary
conditions and its biharmonic counterpart.

One important result of our Green’s function research is the fact that it allows
us to have direct access to the exact solution of the discrete inpainting problem.
This may also have practical advantages for PDE-based decoding with sparse
inpainting masks. In our ongoing research, we are also exploring applications of
Green’s functions within the encoding step.

It is worth mentioning that our representation of PDE-based inpainting in
terms of Green’s functions also connects PDE-based image compression to scat-
tered data interpolation with radial basis functions [2]. Many of these basis
functions are given as continuous Green’s functions on an unbounded domain.
With our research we have taken into account the discreteness of digital images
and have incorporated image boundaries in a natural way.

Acknowledgements. We gratefuly acknowledge the partial funding by the
Deutsche Forschungsgemeinschaft (DFG) through a Gottfried Wilhelm Leibniz
Prize for Joachim Weickert.
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