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Abstract Finding optimal data for inpainting is a key problem for image-
compression with partial differential equations. Not only the location of
important pixels but also their values should be optimal to maximise
the quality gain. The position of important data is usually encoded in a
binary mask. Recent studies have shown that allowing non-binary masks
may lead to tremendous speedups but comes at the expense of higher
storage costs and yields prohibitive memory requirements for the design of
competitive image compression codecs. We show that a recently suggested
heuristic to eliminate the additional storage costs of the non-binary mask
has a strong theoretical foundation in finite dimension. Binary and non-
binary masks are equivalent in the sense that they can both give the same
reconstruction error if the binary mask is supplemented with optimal
data which does not increase the memory footprint. Further, we suggest
two fast numerical schemes to obtain this optimised data. This provides a
significant building block in the conception of efficient data compression
schemes with partial differential equations.
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1 Introduction

A major challenge in data analysis is the reconstruction of a function, for example
a 1D signal or an image, from a few data points. In image processing this
interpolation problem is called inpainting [?,?]. Often one has no influence on
the given data and thus improvements can only be made by introducing more
powerful reconstruction models. In some interesting applications however, one
has the freedom to choose the data used for the reconstruction. For instance, in
recent approaches related to image compression [?,?,?,?,?,?,?,?,?,?] the authors



selected suitable interpolation data for reconstructions via partial differential
equations (PDEs). Köstler et al. demonstrated in [?] that PDEs can also be used
to compress video sequences. Let us emphasise that finding good data sets for
interpolation is by no means a simple task. Choosing for example 5% of the pixels
from a 256× 256 pixel large image offers more than 105000 possible combinations.

Besides a good selection for the position of the interpolation data, one can
also consider an optimisation of corresponding data values in the co-domain.
Schmaltz et al. [?] used direct searching strategies to find good tonal values
for the reconstruction of their nonlinear diffusion process. Mainberger et al. [?]
presented a solid mathematical foundation of tonal optimisation and emphasised
the benefits of a good spatial and tonal data selection. Since their inpainting was
based on the Laplace equation, the optimal grey values could be found by solving
a least squares approach. A related optimal control based model to find good
inpainting masks was considered by Hoeltgen et al. [?]. This model, however,
uses a regularised formulation that does not require the mask to be binary. It
reduces an unfeasible combinatorial problem to a series of convex optimisation
problems that can be solved in an highly efficient way. Similar models were also
discussed in [?] by Chen et al., whereas Ochs et al. suggested fast numerics in
[?,?]. The approaches of Mainberger et al. [?], Hoeltgen et al. [?], and Chen
et al. [?] achieve a similar high level of reconstruction quality. The benefits of
the control based approach of Hoeltgen et al. [?] over the Mainberger method
[?] is its significantly lower runtime. Unfortunately, storing non-binary masks is
expensive in terms of memory requirements, especially in the context of image
compression. As a remedy, Hoeltgen et al. [?] suggested a heuristic to reduce
the storage requirements. They proposed to binarise the mask and to apply the
tonal optimisation of Mainberger et al. [?] as a postprocessing step. Interestingly
this heuristic yielded a intriguing phenomenon: The error with optimal mask
values and original data were almost identical to the errors with binary masks
and optimised grey values.

Our Contribution. The goal of our paper is to show that the similarity in
the error measures discovered in [?] is no coincidence. We show that in a finite
dimensional setting the reconstruction error with an optimal non-binary mask and
original image data is always identical to the error with a binary mask combined
with tonal optimisation. Thus, we provide a mathematically sound foundation
for the development of a image compression codec based on the Laplace equation.
Furthermore, we also propose two highly efficient algorithms to handle the latter
tonal value optimisation on the CPU and the GPU.

Structure of the Paper. Our paper is organised as follows. In Section 2
we briefly introduce the underlying inpainting scheme as well as the related
optimisation tasks that will be analysed in this paper. Section 3 shows the main
result of this work, namely the equivalence between the optimisation problems
from the first section. Next, Section 4 demonstrates two new numerical schemes
that allow a fast and efficient optimisation on both the CPU and GPU. Finally,



the paper is closed in Section 5 with a summary and an outlook on future
challenges.

2 Inpainting with Homogeneous Diffusion

Inpainting with homogeneous diffusion (sometimes also called Laplace interpo-
lation) is a rather simple reconstruction method that is well suited for highly
scattered data in arbitrary dimensional settings. It can be modelled as follows.
Let f : Ω → IR be a smooth function on some bounded domain Ω ⊂ IRn with a
sufficiently regular boundary ∂Ω. Throughout this work, we will restrict ourselves
to the case n = 2 (grey value images) even though many of the results hold for
arbitrary n > 1. Moreover, let us assume that there exists a closed nonempty set
of known data ΩK $ Ω that will be interpolated by the underlying diffusion pro-
cess. Homogeneous diffusion inpainting considers the following partial differential
equation with mixed boundary conditions.

−∆u = 0,

u = f,

∂nu = 0,

on Ω \ΩK

on ∂ΩK

on ∂Ω \ ∂ΩK

(1)

where ∂nu denotes the derivative of u in the outer normal direction. We assume
that both boundary sets ∂ΩK and ∂Ω \ ∂ΩK are non-empty. Equations of this
type are commonly referred to as mixed boundary value problems and sometimes
also as Zaremba’s problem named after Stanislaw Zaremba who studied such
equations already in 1910 [?]. The existence and uniqueness of solutions has
been extensively studied during the last century. Showing that (1) is indeed
solvable is by no means a trivial feat. We refer to [?] for an extensive study of
linear elliptic partial differential equations. A particularly easy case is the 1-D
setting, where the solution can obviously be expressed using piecewise linear
splines interpolating data on ∂ΩK .

Following [?], we introduce the confidence function c : Ω → IR which states
whether a point is known or not. It is defined by

c (x) :=

{
1 for x ∈ ΩK ,

0 for x ∈ Ω \ΩK .
(2)

The confidence function lets us rewrite (1) as a more compact functional equation
of the form

c (x) (u (x)− f (x))− (1− c (x))∆u (x) = 0, on Ω

∂nu (x) = 0, on ∂Ω \ ∂ΩK .
(3)

As shown in [?,?], the choice of c has a substantial influence on the solution.
For most parts of this text we will prefer the formulation (3), as it is more
comfortable to work with. Further, this formulation also makes sense when c is
not binary-valued but takes arbitrary values. This observation was also exploited



in [?] where the authors complemented (3) by a convex energy to obtain a sparse
set of optimal values for c.

A discrete framework corresponding to (3) is easily obtained by a straightfor-
ward discretisation of the functions c, u and f on a regular grid of size n1 × n2
and by placing the corresponding entries in vectors c, u and f respectively. If A
represents the symmetric N ×N matrix (N being the total numbers of pixels on
our grid, e.g. N = n1n2) of the discrete Laplace operator ∆ with homogeneous
Neumann boundary conditions on ∂Ω \ ∂ΩK we obtain

diag (c) (u− f) + (I − diag (c)) (−A)u = 0 (4)

where I is the identity matrix, diag (c) is a diagonal matrix with the sampled
values from c as its entries on the main diagonal. By a simple reordering of the
terms, (4) can be rewritten as the following linear system,(

diag (c) +

(
I − diag (c)

)
(−A)

)
u = diag (c)f (5)

If the vector c contains as its entries only the values 0 or 1 and if it is not the
zero vector, then it has been shown in [?] that this linear system of equations
has a unique solution and that it can be solved efficiently by using bidirectional
multigrid methods. Further, Mainberger et al. demonstrated in [?] that a careful
tuning of the data f can lead to large quality gains in the reconstruction, e.g.
one seeks data g such that solutions of(

diag (c) +

(
I − diag (c)

)
(−A)

)
u = diag (c) g (6)

are as close to our desired output f as possible. Related investigations can also
be found in [?], where the authors present subdivision strategies that exploit
non-linear PDEs. If the underlying diffusion process is based on a linear operator,
then the optimisation can be formulated as a linear least squares problem by
considering

g = arg min
x∈IRN

1

2

∥∥∥∥∥
(

diag (c) +

(
I − diag (c)

)
(−A)

)−1
diag (c)x− f

∥∥∥∥∥
2

2

 (7)

We refer to [?] for the original presentation of this model. In the context of
nonlinear diffusion it is not possible to consider such a convex optimisation
problem. Schmaltz et al. suggested in [?] to use clever searching strategies in this
case.

To alleviate the upcoming discussion we introduce two definitions related to
the just mentioned linear system needed for the reconstruction and the least
squares problem required for the optimisation. We call inpainting matrix the
following N ×N matrix

B (c) := diag(c) + (I − diag(c)) (−A) .



Further, if we have a mask c to our avail for which the inpainting matrix is
invertible, then we call the following N ×N matrix reconstruction matrix

M(c) := B−1(c) diag(c) .

The exact requirements for the existence of B−1(c) will be covered in future
work. For the moment we simply assume that this matrix exists. Using these
definitions, we can rewrite the linear system (5) as

B (c)u = diag(c)f ⇔ u = M(c)f (8)

and the grey value optimisation problem from (7) takes the form

g = arg min
x∈IRN

{
1

2
‖M(c)x− f‖22

}
(9)

In order to quantify the quality of the results obtained from the inpainting we
introduce the reconstruction error which simply measures the `2 distance between
the reconstruction and the initially specified data. We denote it by

E (c, g) :=
1

2
‖M(c) g − f‖22 (10)

Note that the reconstruction error is simply a rescaled variant of the popular mean
square error frequently used for error measures. We will use the reconstruction
error as it is more directly related to the optimisation problem to be analysed in
this paper.

3 Optimisation in the Co-Domain

Let us introduce some further notations and definitions relevant for the forth-
coming paragraphs. For the sake of simplicity we assume that all N pixels in our
image have been labelled by a single index. Thus, the individual pixel locations
are given by the set J := {1, . . . , N}. Further, we assume that the mask positions
have been fixed beforehand and cannot be altered anymore. Also we require that
the mask is not empty. We denote the set of mask positions by K ⊆ J . Clearly, it
follows that ci = 0 for all i ∈ J \K. For i ∈ K we are left with three possibilities.
Either we fix the mask value ci for all i ∈ K and manipulate the pixel value gi
to improve the reconstruction, or we fix gi and optimise the value of ci. Lastly
we could also try to optimise both gi and ci for all i ∈ K. In this paper we
are interested in the first two special cases. Setting ci = 1 for all i ∈ K and
optimising g yields the tonal optimisation problem described in [?]. Fixing g = f
and optimising c is related to the strategies from [?], even though the approach
there did not require the support of c to be specified beforehand. The question
arises which of these two frameworks yields the smaller error. Both methods
can only influence the reconstruction at locations indicated by the set K. Both
optimisation strategies can be reduced to a system of |K| equations although



these are only linear if we optimise g. In order to analyse these problems let us
denote by c the following mask:

ci :=

{
1, i ∈ K
0, i 6∈ K

(11)

Then we can reformulate the two previously described settings as the following
optimisation problems.

g = arg min
x∈IRN

{E (c,x)} and c̃ = arg min
ci,i∈K

{E (c,f)} (12)

Let us emphasise, that the optimisation is always to be understood as uncon-
strained. We do not restrict the range of values that the mask or the data takes.
The necessary conditions for a minimum of E with respect to g (resp. c) are
given by

∂

∂gi
E (c, g) = 0, ∀i ∈ J resp.

∂

∂ci
E (c,f) = 0, ∀i ∈ K (13)

In order to analyse the potential benefits of optimising the mask values or the
grey values we need analytic representations of the gradient of E with respect to
each of its variables. To this end we adapt a result from Ochs et al. [?] (Lemma 9).
There, the authors stated it for the case x = f . We refer to the original work for
the proof.

Proposition 1 (Gradients of the Reconstruction Error). The gradients
of the reconstruction error with respect to its two arguments are given by

∇cE (c,x) = diag
(
x− (I + A)M (c)x

)
B−>(c)

(
M(c)x− f

)
, (14)

∇xE (c,x) = M>(c) (M(c)x− f) . (15)

Note that both gradients of E have a certain similarity. If we denote

T := B−>(c)
(
B−1(c) diag(c)x− f

)
, (16)

then we have

∇cE (c,x) = diag
(
x− (I + A)B−1 (c) diag(c)x

)
T , (17)

∇xE (c,x) = diag(c)T . (18)

Assume now that for fixed mask positions K we have found the optimal mask
values c̃ for the reconstruction with respect to the original data f . This means
we have (

∇cE (c,f)
∣∣
c=c̃

)
i

= 0 ∀i ∈ K . (19)

Inserting the expression from (14) into (19) yields(
diag

(
f − (I + A)M (c̃)f

)
B−>(c̃)

(
M (c̃)f − f

))
i

= 0 ∀i ∈ K . (20)



The previous equation is a product between a diagonal matrix and a vector. This
comes down to a componentwise multiplication between the diagonal entries of
the matrix and the vectors entries. Therefore, at least one of the two following
equations must hold:

(f − (I + A)M (c̃)f)i∈K = 0 , (21)(
B−>(c̃) (M (c̃)f − f)

)
i∈K = 0 . (22)

Our goal is to show that the second equation actually always holds for all i ∈ K.
If for a certain entry i ∈ K, the first equation equation differs from 0, then the
second one must be 0. Thus, we only need to show that the first equation can
never hold. To his end, note that u := M(c̃)f solves by definition the equation

diag (c̃) (u− f)− (I − diag (c̃))Au = 0 (23)

and that (21) is equivalent to

diag(c̃) (f − (I + A)M (c̃)f) = 0 . (24)

From (23) it follows that

diag(c̃) (u− f + Au) = Au . (25)

Plugging (25) into (24) yields the requirement −Au = 0. Thus, if (21) would
hold, then the reconstruction u = M (c̃)f would also solve Au = 0. This would
contradict our assumption that the inpainting mask c̃ is nonempty. Therefore,
(21) can never hold.

Similarly as for (24), we note that (22) can be extended to all indices i ∈ K
by multiplying it from the left with diag(c̃). This gives us

diag(c̃)B−> (c̃) (M (c̃)f − f) = 0

which implies that
∇xE (c̃,x)

∣∣
x=f

= 0 . (26)

The previous equation implies that if we have found optimal mask values, then
all necessary optimality conditions with respect to the mask values and with
respect to the data values are fulfilled.

Conversely, we could also set ci = 1 for all i ∈ K to obtain a mask c and
optimise the grey values for reconstruction. This yields the requirement

∇xE (c,x) = 0

⇔ diag(c)B−> (c)
(
B−1 (c) diag(c)x− f

)
= 0,

⇔
(
B−> (c)

(
B−1 (c) diag(c)x− f

))
i

= 0, ∀i ∈ K (27)

Assume that we are in possession of optimal data g for given c such that (27)
holds. In combination with (16), it follows then that we have(

∇cE(c, g)
∣∣
c=c

)
i

= 0 ∀i ∈ K



Thus, if we have a binary mask to our avail with optimised tonal values, then it
follows again that all necessary optimality conditions are fulfilled. We summarise
the previous results in the following theorem.

Theorem 1 (Fulfilment of Optimality Conditions). Non-binary optimisa-
tion of the mask values while keeping the grey values fixed at the original data
yields a pair of data that fulfils all necessary optimality conditions for minimising
the error of the reconstruction. Similarly, fixing a binary sparsity pattern for
the inpainting mask and optimising the grey values also returns a pair of data
that fulfils all necessary optimality conditions for minimising the error of the
reconstruction.

Ultimately we would like to show that the reconstruction error is the same
regardless of whether we optimise the mask c and keep the data fixed or whether
we optimise the data and enforce a binary inpainting mask. In order to show this,
we need to prove that

E (c̃,f) = E (c, g) . (28)

To this end let an optimal mask c̃, such that E (c̃,f) is minimal, be given and
assume that there exists a vector g such that the reconstruction is the same with
the binary mask c̄ corresponding to c̃. Thus, we have

M(c) g = M(c̃)f . (29)

By applying the definition of M(c) we obtain the following analytic expression
for g:

g = diag(c)B(c)M(c̃)f (30)

For a given mask c̃ the right-hand side can always be computed provided that
B−1(c̃) exists. In order to show that grey value optimisation comes with no loss
compared to mask optimisation we have to show that the pair (c, g) from (30)
satisfies the normal equations (15). Thus, we have to show that

M>(c) (M (c) g − f) = 0 (31)

An essential observation in the verification of (31) is that c and c̃ have the
same sparsity pattern, i.e. ci = 1 ⇔ c̃i 6= 0 and ci = 0 ⇔ c̃i = 0. This
implies that for the kernels we obtain ker (diag(c)) = ker (diag(c̃)) and thus
ker (M (c)) = ker (M (c̃)), too. Further, we note that for any linear operator K

from IRn to IRn we have ker
(
K>

)
= ran (K)

⊥
, where ran denotes the range of

the operator. Combining this identity with the first isomorphism theorem yields

ker
(
M> (c)

)
= (ran (M (c)))

⊥ ' (IRn/ ker (M (c)))
⊥

= (IRn/ ker (M (c̃)))
⊥ ' (ran (M (c̃)))

⊥
= ker

(
M>(c̃)

) (32)

The importance of this identity will become clear in a moment. By assumption,
c̃ was chosen optimal. This implies ∇cE (c̃,f) = 0. Because of Theorem 1 it



follows that ∇xE (c̃,f) = 0 is also true. Expanding this equation and using (29)
gives us

M>(c̃) (M (c) g − f) = 0 . (33)

Two possibilities exist. Either M (c) g − f = 0 in which case (31) holds trivially,
or 0 6= M (c) g − f ∈ ker

(
M> (c̃)

)
. From (32) it follows that M (c) g − f ∈

ker
(
M> (c)

)
and thus (31) is fulfilled, too. We conclude that our vector g

contains the optimal grey values for a binary mask. We summarise our findings
in the following theorem.

Theorem 2 (Equivalence between Tonal and Spatial Optimisation).
Let c̃ be a solution of

min
ci,i∈K

{E (c,f)} (34)

and assume that B−1 (c̃) exists. Then the vector g given by (30) solves

min
x
{E (c,x)} (35)

where c is the binary mask corresponding to c̃ and E (c̃,f) = E (c, g), i.e. the
reconstruction error is the same in each case.

We note that the preceding theory also gives us an analytic expression for the
optimal grey values in (30) in terms of optimal mask values.

4 Fast and Efficient Tonal Optimisation

In the previous section we have shown that a tonal optimisation comes with no
loss compared to non-binary mask optimisation. Nevertheless, finding the best
mask values is a tedious non-convex optimisation task whereas the grey value
optimisation problem is a convex least squares problem. The latter family of
problems is well studied and many highly efficient strategies exist. In this section
we present two fast methods that allow an efficient computation of the perfect
tonal values without having to resort to (30) and optimal mask values. Let us
remark that our cost function E (c, ·) is convex but not strictly convex. Indeed
the reconstruction matrix M (c) is only invertible if ci = 1 for all i. Further, it
is easy to see that usually there exist infinitely many minimisers of E (c, ·). If g
is a minimiser, than we can arbitrarily change any entry i of g where ci = 0.

In the following we present two strategies. The first one is well suited for im-
plementations on a CPU, whereas the second one exploits the massive parallelism
provided by modern GPUs.

4.1 LSQR Approach

The venerable LSQR algorithm [?,?] is a highly efficient method to solve general
least squares problems of the form

arg min
x∈IRn

{‖Kx− b‖2} (36)



with a large, sparse and unsymmetric matrix K. The underlying iterative process
applies the bidiagonalisation process of Golub and Kahan [?] and decreases the
norm of the residual in each step. Although the algorithm generates a sequence of
iterates that has the same properties as those from standard conjugate gradient
methods it tends to behave much better in numerically ill-posed situations.
Further, it is easy to implement, and it only requires the matrix K for computing
matrix vector products of the form Ku and K>v for various vectors u and
v. In presence of routines capable of computing these products efficiently, it is
not even necessary to know the matrix explicitly. This fact makes the algorithm
attractive for solving (12). The adaptation is straightforward. It suffices to to set
K = M (c) in (36). For our setting we have

y = M (c)x ⇔ B (c)y = diag(c)x ,

y = M>(c)x ⇔ B>(c) z = x, y = diag(c) z .
(37)

The linear systems B (c)y = diag(c)x and B>(c) z = x can be solved in a highly
efficient manner with either the multigrid methods from [?] or the multifrontal
sparse LU decomposition from [?,?,?]. For the sparse LU solver the decomposition
of the matrix B (c) needs only be done once during the first iteration of the
LSQR algorithm. Forthcoming iterations can then be computed at almost no
additional cost. This yields an extremely fast strategy. The complete algorithm
is depicted in Algorithm 1.

Algorithm 1: Tonal optimisation with the LSQR Algorithm.

Input : Reconstruction matrix M (c), data f , number of iteration N
Output : Solution of the least squares problem (12) xN

Initialise : ū1 = b, β1 = ‖ū1‖, u1 = β−1
1 ū1, v̄1 = M>(c)u1, α1 = ‖v̄1‖,

v1 = α−1
1 v̄1, w1 = v1, x0 = 0, φ̄1 = β1, ρ̄1 = α1

1 for k from 1 to N do
2 ūk+1 = M (c)vk − αkuk, βk+1 = ‖ūk+1‖, uk+1 = β−1

k+1ūk+1

3 v̄k+1 = M (c)>uk+1 − βk+1vk, αk+1 = ‖v̄k+1‖, vk+1 = α−1
k+1v̄k+1

4 ρk =
√
ρ̄2k + β2

k+1, ck = ρ̄k/ρk, sk = βk+1/ρk

5 θk+1 = skαk+1, ρ̄k+1 = −ckαk+1, φk = ckφ̄k, φ̄k+1 = skφ̄k

6 xk+1 = xk−1 + φk/ρkwk

7 wk+1 = vk+1 − θk+1/ρkwk

8 end

4.2 Primal Dual Method

Alternatively to the LSQR algorithm, we may also apply primal dual approaches
that have enjoyed an increasing popularity in the previous years, especially in
the domain of image processing. Starting from (12) we rewrite the optimisation



problem by introducing a dummy variable d and enforce that d coincides with
our reconstruction M (c)x. Using the indicator function ι{0} defined as

ι{0}(x) :=

{
0, x = 0

∞, x 6= 0
(38)

we can reformulate our task in the following way:

arg min
x,d∈IRN

{
1

2
‖d− f‖22 + ι{0} (d−M (c)x)

}
. (39)

Note that d = M(c)x if and only if B(c)d = diag(c)x. Thus, (39) is equivalent
to

arg min
x,d∈IRN

{
1

2
‖d− f‖22 + ι{0} (B(c)d− diag(c)x)

}
. (40)

The benefit of the latter equation is that we have eliminated the inverse B−1 (c)
by introducing B (c) at another position. Equation (40) can be efficiently handled
with the algorithm presented in [?]. Applying the primal dual method from [?]
only requires the evaluation of B (c)u and B> (c)v for vectors u and v. Since
the matrix B (c) is structured and extremely sparse, these computations can
be handled in an efficient manner, leading to a high performing grey value
optimisation strategy. A straightforward application of Algorithm 1 from [?] with

G (x) := 1
2 ‖x− f‖2 and F (x) = ι{0} (x) gives us the simple iterative strategy

shown in Algorithm 2.

Algorithm 2: Tonal optimisation with primal dual methods.

Input :N the number of iterations.
Output : Vectors xN+1 and dN+1 solving (40)
Initialise : τ , σ > 0 such that στ‖

(
B (c) −diag(c)

)
‖22 < 1, θ ∈ [0, 1],

u0, c0, y0 arbitrary, û0 = u0 and ĉ0 = c0

1 for k from 1 to N do

2 yk+1 = yk + σ
(
B (c) d̂

k
− diag(c) x̂k

)
3 dk+1 = (1 + τ)−1

(
dk − τ

(
B (c)>yk+1 − f

))
4 xk+1 = xk + τ diag(c)yk+1

5 d̂
k+1

= dk+1 + θ
(
dk+1 − dk

)
6 x̂k+1 = xk+1 + θ

(
xk+1 − xk

)
7 end

This algorithm is better suited for parallel implementations than Algorithm 1
since almost all operations are pointwise and do not depend on each other. Further
it does not have to solve any linear systems of equations. Let us also remark that
additional optimisations like preconditioning strategies, as presented in [?], could
further improve the performance of Algorithm 2.



Table 1. Speed comparison between the different algorithms for tonal optimisation on
the CPU and GPU. The approach of Mainberger et al. from [?] performs worst on every
image size and its runtime increases much faster for larger images than for the other
two algorithms. The LSQR approach has the best runtimes on the CPU whereas the
primal dual method excels on the GPU. The runtime for computing the mask positions
is not included as it is the same for every method.

Image Size
Runtime CPU (seconds) Runtime GPU

Method from [?] Algorithm 1 Algorithm 2 Algorithm 2

32× 32 7.99 0.44 1.37 1.04
48× 48 32.57 1.23 2.90 1.35
64× 64 156.33 2.69 5.82 1.28
80× 80 360.42 4.63 8.50 1.47
96× 96 783.87 7.72 14.89 2.30

112× 112 1633.82 12.02 35.86 2.60
128× 128 3116.70 18.73 52.57 3.33
256× 256 95832.64 113.07 260.26 9.02

4.3 Performance Comparison

We compare the performance with respect to speed of our LSQR solver, the
primal dual solver and the stochastic tonal optimisation method from [?]. The
algorithms were implemented in Fortran and C and all the tests were done on
a standard desktop PC with an Intel Xeon processor (3.2GHz) and 24GB of
memory. We also used a Nvidia GeForce GTX 460 for the GPU experiments.
The runtimes are depicted in Table 1. The represented timings are the averages
of three runs for each test case. We used different sizes of the trui test image (see
Figure 1). Due to spatial constraints we only give results for a single image. The
performance for other images are analogous. For each image size we computed a
binary inpainting mask using the optimal control framework from [?]. All masks
have a density within the range of 5.0± 0.1%. We used the algorithm from [?] as
a reference method and compared how our algorithms perform in terms of speed.
All algorithms converged towards the same solution. The method from [?] uses a
multigrid solver for the computation of the inpainting echos. It stopped when
the error between two iterates dropped below 10−3. Algorithm 1 stopped when
the increment in the solution dropped in norm below 10−10 whereas Algorithm 2
halted its execution when the update in any variable was smaller than 10−15

in norm. These tolerances were chosen such that the resulting images always
had the same reconstruction error. The exceptional performance of the LSQR
algorithm stems from the fact that it reached a convergent state within 10 to 30
iterations which implies that it requires less than 100 inpaintings, whereas the
method from [?] has to compute an inpainting for every mask pixel during each
iteration. While Algorithm 1 is well suited for CPU implementations, the fact



that most of the computations in Algorithm 2 can be done in parallel and that
no linear systems must be solved render this algorithm attractive for GPUs.

Figure 1. Data used for the experimental setup with a corresponding reconstruction.
Left: original (256 × 256), Center: binary mask, Right: reconstruction after tonal
optimisation.

5 Summary and Conclusions

We have shown an equivalence result for inpainting with the Laplace equation
when the data positions are fixed: Grey value optimisation with binary masks is
equivalent to non-binary mask optimisation. This finding justifies the postpro-
cessing step proposed in [?] where the optimal mask values were exchanged with
optimal data values. Our results show that this strategy comes with no loss in
the reconstruction quality. Further, it significantly reduces the amount of data
to be stored for compression purposes and marks a significant step towards a
fast PDE based data compression codec. Finally, we have suggested two efficient
algorithms to solve the tonal optimisation problem on the CPU and on the GPU.

It remains an open question whether a combined and simultaneous optimisa-
tion of the mask and the interpolation data can yield an even better reconstruction.
The analysis of this problem as well as the development of a competitive image
compression codec will be the subject of future work.


