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Abstract. Finding optimal data for inpainting is a key problem in the
context of partial differential equation-based image compression. We
present a new model for optimising the data used for the reconstruction
by the underlying homogeneous diffusion process. Our approach is based
on an optimal control framework with a strictly convex cost functional
containing an L; term to enforce sparsity of the data and non-convex
constraints. We propose a numerical approach that solves a series of
convex optimisation problems with linear constraints. Our numerical
examples show that it outperforms existing methods with respect to
quality and computation time.
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1 Introduction

A major challenge in data analysis is to reconstruct a function, for example a 1-D
signal or an image from a few data points. In image processing this interpolation
problem is called inpainting [2,18]. In most applications one has no influence on
the given data and thus improvements can only be made by introducing more
powerful reconstruction models. In some interesting applications however, one has
the freedom to choose the interpolation data. For instance, in recent approaches
to image compression [12,16,22] the authors choose suitable interpolation data
for reconstructions via partial differential equations (PDEs). A related approach
can also be found in [8,9].

In this paper we present an energy-based approach to optimise the interpola-
tion data. Since this is a very challenging task, we restrict ourselves to a simple
reconstruction method, namely homogeneous diffusion inpainting [1,17] which is



also called Laplace interpolation. Further, we will solely focus on the optimisation
with respect to its reconstruction quality. Whether the methods presented herein
are competitive to other image compression algorithms will be the subject of
future work. Homogeneous diffusion inpainting is a fast and very flexible way to
reconstruct large scattered datasets, especially in higher dimensions. It considers
the following boundary value problem:

—Au=0, on 2\ N2k
u=f, on 2 (1)
Opu =0, ondN\ 0Nk

where f is a smooth function on some bounded domain 2 C R™ with a sufficiently
regular boundary 0f2. The set 2k is assumed to be a subset of {2 with positive
measure. It represents the known data that will be interpolated by the underlying
diffusion process. Finally 0,,u denotes the derivative of u in outer normal direction.
Following [17], we use a binary valued mask ¢ to rewrite (1) in the form

¢(@) (u(@) = f (2)) = (1 ¢ () Au(z) =0, on 2

Opu(xz) =0, on 0N\ 02k @)

where c¢ is the characteristic function of the set 2, i.e. ¢(z) =1 if z € 2k and
0 otherwise. It was shown in [17] that a careful tuning of the data can lead to
tremendous quality gains in the reconstruction. Related investigations can also
be found in [12], where the authors present subdivision strategies that exploit
non-linear PDEs. We also note that the problem considered in this paper is
closely related to the domain of shape, or more generally, topology optimisation.
We refer to [14,23] for general introductions to this topic and to [1] for a more
specific analysis in the context of image inpainting with homogeneous inpainting.

We will use (2) as a starting point and relax the restrictions placed upon
the function ¢ by allowing it to take a continuous range of values. Secondly, we
will add a strictly convex energy to the PDE to penalise poor reconstructions
and non-sparse sets of interpolation data. Our complete framework can then be
regarded as an optimal control problem and presents a large-scale optimisation
task with a strictly convex but non-differentiable objective and non-convex
constraints. The concrete formulation of the model will be derived in Section 2.
In Section 3 we will present a strategy to handle the occurring difficulties in this
optimisation problem. The underlying idea of our solver will be to replace the
original problem by a series of simpler convex optimisation problems that can be
solved efficiently. Section 4 will provide some insight in our framework by stating
optimality conditions and requirements for a monotonic convergence towards a
solution. Finally, in Section 5, we will present experiments that show the general
usefulness of our model both in the 1-D and 2-D setting.

2 A New Model for Finding Optimal Interpolation Data

If ¢(z) € {0,1} for all z € £2, then (1) and (2) represent equivalent formulations
of the same boundary value problem. Interestingly, the latter equation makes also



sense if ¢ is allowed to take a continuous range of values such as R. One may regard
continuously-valued functions ¢ as a relaxation of the initial formulation which is
much easier to handle. Our goal will be to optimise such masks ¢ with respect to
the accuracy of the reconstruction and to the sparsity of the interpolation data.
Note that these two objectives cannot be perfectly fulfilled at the same time.
If ¢ () = 1, then the reconstruction obtained by solving (2) is perfect. On the
other hand, the sparsest possible choice would be ¢ (z) = 0 which does not allow
any reconstruction at all. Therefore, we suggest to complement (2) by an energy
that reflects exactly this trade-off between the quality of the reconstruction and
the amount of interpolation data. The constrained optimisation problem that we
will consider is

ar%r(r:lin Ex . (u,c) := /Q % (u(x) — f(2)* + Xe(x)] + gc(yc)2 da
such that: c¢(z) (u(z) — f(z)) — (1 —c(z)) Au(x) =0 on 2 3)

Opu=0 ondR\ ok

with positive parameters A and e. The first term of the energy penalises devia-
tions of the reconstruction from the original data f. As in many other imaging
applications such as image segmentation [20], we encourage a sparse mask by
penalising the L; norm of c. The choice of A lets us steer the sparsity of the mask.
For A =0, ¢(x) =1 is the optimal solution. If A increases, the mask will become
sparser. Finally, A — oo will require ¢(x) = 0.

As we will see in the forthcoming section, our numerical solver will require us
to solve intermediate problems with a linear instead of non-convex constraint.
These problems are related to optimal control problems of the form

1

argu,rzlin /Q 5 (u(z) —g(x)*+ e ()] + %c (z)* dx

such that: Lu= f+c

(4)

with a second-order elliptic and linear differential operator L, a state u, a control
variable ¢ and given data g and f. Existence and regularity of such formulations
is analysed in [7,24,26]. The problem in (4) may not necessarily have a solution
¢ if € = 0, unless one resorts to measures [7]. In order to avoid such ill-posed
formulations, one has to fix £ at a small positive value. A convergence analysis
for ¢ — 0 is presented in [26]. Although the analytical discussion of our model in
(3) is out of the scope of this paper, we remark that we include the penaliser on
the squared Lo norm of ¢ for the same regularity reasons. Alternatively one could
also introduce box constraints of the form a < u(z) < b on u as discussed in [24].

3 A Solution Strategy

Our optimal control model proposed in (3) is challenging for two reasons. First
of all, the energy contains a non-differentiable term and secondly, the occurring



mixed products c¢(x)u(z) and c(z)Au(z) render the set of points (u,c) that
fulfil the PDE non-convex. In order to devise a solution strategy, we opt for a
discretise-first-then-optimise approach. We discretise the data on a regular grid
and reorder it into a vector of length n. The discrete analogue of (3) is given by

. 1 €
argmin  =|ju — f||2 4+ Nlc|li + = lcll3
(u,c)ER™ XR™ 2 2

such that: diag (¢) (u— f) — (I — diag(¢)) Du =0

()

where the vectors u, f and ¢ from R™ denote our reconstruction, the initial data
and the corresponding discretisation of the confidence function, respectively. The
operator diag(-) represents the diagonal matrix in R™"*™ with its argument as
the main diagonal. Finally, I is the identity matrix and D the discrete version of
the Laplace operator with Neumann boundary conditions.

In order to tackle (5) numerically, we will replace it by a series of simpler
conver optimisation problems. This idea is related to several well-known methods
from the literature. One of the simplest strategies is known as sequential linear
programming (SLP) [13]. SLP methods replace a single nonlinear optimisation
problem by a sequence of linear programs. These linear programs are obtained
through a first-order Taylor approximation of the objective and the constraints.
Even though this method sounds appealing because it significantly reduces the
complexity of the problem, it has a major drawback. In order to achieve an
accurate result, the solution must lie at a vertex of the linearised constraint space.
This requirement is usually not fulfilled. As an alternative, one may consider
linearly constrained Lagrangian methods (LCL) [11,19]. They differ from SLP
formulations by the fact that they do not linearise the objective function. They
only consider a linear approximation of the constraints and try to minimise
the (augmented) Lagrangian of the original problem. In [21] it is shown that
under suitable conditions one can achieve quadratic convergence rates with LCL
methods.

The main difference between these methods and ours will be the treatment of
the objective function. We keep the original energy and merely augment it by an
additional penalty term. This way we can circumvent the need to differentiate the
objective and provide an alternative approach to LCL methods that often require
the involved data to be differentiable. A similar strategy to ours is also briefly
mentioned in [25] as a possibility to derive optimality conditions for nonlinear
optimal control problems. Furthermore, similar approaches that exploit a partial
linearisation of the considered optimisation problem have recently been analysed
in [27].

As already mentioned, our goal is to replace the problem in (5) by a series of
convex problems that are easier to solve. Therefore, we will replace the constraints
by linear counterparts that approximate the original conditions. We define a
mapping T which evaluates the constraints for given vectors u and c.

T:R"xR"—=>R" (u,c)— diag(c)(u— f)— (I —diag(c))Du  (6)



Its first order approximation around some point (%, ¢) can be written as
T (u,¢) =T (@,¢) + D, T (w,¢) (u—a) + DT (4,c) (c — ) (7)
where D, T (@,¢) and D.T (@,c) describe the Jacobi matrices for the differentia-
tion with respect to u and c¢ at position (u,c). It is easy to check that
D,T (u,c) = diag (¢) — (I — diag(¢)) D (8)
D.T (u,¢) = diag (u — f + Du) (9)

If (@, ) is a feasible solution of the constraints in (5), then 7' (@, ¢) = 0 and our
initial problem is approximated by

. 1 €
arg min §||u—f||§+>\||0||1 +§||CH§
(u,c)ER™ xR™

such that: D, T (@,¢) (u — @) + DT (4,¢) (c—¢) =0

(10)

However, the previous formulation is only reliable for pairs (u,c) in a neighbour-
hood of (@, ¢). Therefore, we additionally penalise large deviations from (@, c) by
adding an additional proximal term &||c — ¢||3 with a positive weight .

1 € w,
arg min §Hu—f\\§+)\||CH1+§HC||§+§||C—CH§
(u,c) ER™ XR™

such that: D, T (4,¢) (u — @) + DT (4,¢) (c—¢) =0

(11)

Note that u depends continuously on c. Therefore, there is no need to intro-
duce an additional proximal term for this variable. For the sake of brevity,
we define A := D, T (4,¢) and B := D.T (4, ¢). A simple computation yields
Au+ B¢ = diag (¢) (I + D) u =: g. This leads us to the final form of our discrete
approximation of (3):

, 1 € m _
argmin — flu— f[5 + Alefs + Sllell3 + Slle —ell3
(u,c) ER™ XR™ (12>

such that: Au+ Bc=g

Equation (12) is a constrained optimisation problem with a strictly convex
cost and linear constraints. Such problems are well studied and many highly
efficient algorithms exist. Note that A is the system matrix one would obtain by
discretising (2) with known and fixed ¢ and sought u. In [16] it was shown that
this matrix is invertible if all the ¢; take only the values 0 or 1 with at least one
¢; = 1. However, it is easy to see that the same argument carries over to our case
with the requirement that ¢; > 0 for at least one 1.

In order to solve the problem occurring in (12), we use a primal-dual algorithm
for convex problems from Esser et al. [10] and Chambolle and Pock [5] where it
is referred to as PDHGMu and Algorithm 1, respectively. For convex functions
F, G and a linear operator K this algorithm solves

arg;nin G (z) + F (Kx) (13)



by computing iteratively
1 = argmin 5|y = (4 + oK) [+ o o)

k+1 (14)

1
2"t = argmin §Hx — (2F = 7K Ty" (3 + 7G(2)

GRHL gkl g (xk-s-l _ xk)
where F* is the Fenchel conjugate of F. It was shown in [5] that if 70|/ K3 < 1,
6 € [0,1] and if the primal problem from (13) as well as its dual have a solution,
the sequences (%), (y*)r generated by the above algorithm converge to a
solution of the primal and dual problem, respectively. We apply this algorithm

with
1 13 1% _

Glu,e) = g Ju— fI3+ Nelh + Slel3 + e~z (19)
F(Au+ Bc) := 14(Au + Be) (16)

where the indicator function ¢, is given by

@uw{“ =g, (17)

oo, else.

We note that F*(z) = (z, g). This gives us the algorithm depicted in Algorithm 1.
Note that the updates of y* and u* only require matrix-vector products and can
be carried out in a very fast way. The update of ¢¥ can also be expressed in

Algorithm 1: Minimisation strategy for solving (12).

Input : N number of iterations.
Output: Vectors u and ¢ solving (12)

1 Choose ™o > 0 such that o7||(A B)||5 < 1 and 6 E [0 1].
2 Set v, ¢°, y° arbitrary and set 4° = «° and &® = ¢°
3 for k from 1 to N do
4 yhtt = argmin, %Hz— ( —I—U(Aﬁk—&-Bék))H%-f—J(z,g)
5 | WM =argmin, gflz - (u* —7ATY )3+ )2 - FI3
6 | M=argmin, gllz— (" =BTy + 7 (51213 + 5llz =3 + All=ll)
7 G = Rt 4 (uk+1 - ulc)
s P A S (Ck+1 k)
9 end

10 Set ¢ + ¢V and u + u”.

11 Return Optimal solutions ¢ and w.

closed form using the soft shrinkage operator shrink, given by

shrink, (z) := sgn (x) - max (|z| — «, 0) (18)



For vector-valued arguments, the shrinkage is performed componentwise. With
this definition, updating ¢ comes down to computing

c— 1B Ty + rue
1+1e+T710

Pt = shrink __.»
ifretrn

(19)

which again consists only of matrix vector multiplications and can be carried out
in a very fast way.

It is important to note that the pair (u,c) obtained from Algorithm 1 is in
general not a feasible point for the problem stated in (3). It only represents a
solution of (12). Therefore, we discard the vector u and plug ¢ into the constraint
of (3) to obtain a linear system of equations which can be solved to obtain
a new feasible pair (4, ¢). Using these vectors, we compute a new first-order
approximation of the previously defined function 7' and repeat all the steps. This
iterative scheme is repeated until convergence. The complete algorithm to solve
(5) is given in Algorithm 2. Let us remark at this point that matrix factorisation

Algorithm 2: Minimisation strategy for solving (5).

Input : Initial mask ¢, parameters A, €, 4 and N the number of iterations.
Output: Vectors u and ¢ solving (5)
for k£ from 1 to N do
Set & « c.
Solve (diag(e”) — (I — diag(c*)) D) u"* = diag(e") f for u".
Compute first order approximation of T" (u, c) around the (ﬂk, Ek).
Obtain ¢ by solving (12) with Algorithm 1.
end
Compute u from c.
Return Optimal solutions ¢ and u.

® N O s W N

and completion problems have a similar non-convex structure as the problems
presented in this work. Hence, similar methods as ours were recently proposed in
[15,27,28].

4 Theoretical Properties of Our New Scheme

4.1 Optimality Conditions

The linearised problem from (12) seeks the minimiser of a strictly convex energy
under linear constraints. It is a well known fact that for such problems the Karush-
Kuhn-Tucker conditions yield necessary and sufficient optimality conditions. They
are given by the following lemma.

Lemma 1. The Lagrangian associated with the optimisation problem from (12)
s given by

1 € o _
L(u,¢p) = 5llu— FIZ+Alells + §HCII§ +5lle— &3+ (p, Au+ Be —g) . (20)



The corresponding first-order optimality conditions are given by
u—f+ATp=0
A0 (IIh) () +ec+pu(c—e)+BTp>0 (21)
Au+Bc—g=0
where O (||-]|11) (¢) denotes the subdifferential of ||-||1 at point c.

In a similar manner, one can also derive necessary optimality conditions for (5).
We refer to [3,6,25] for more details.

Lemma 2. The following system of equations yields necessary optimality condi-
tions for (5). For a solution (u,c) € R" x R™ of (5) there must exist a p € R"
such that the following relations are fulfilled.
uferDuT(u,c)Tp: 0
A0 (|I11) (c)—l—ac—i—DcT(u,c)TpB 0 (22)
T (u,c) =0
Using the previous two lemmas we are able to show that fixed points of our

Algorithm 2 fulfil the necessary optimality conditions.

Proposition 1. If Algorithm 1 has reached a fixed point with respect to its input
(e.g. u=u" and c = ¢ in lines 5 and 7 of Algorithm 2), then u and c also fulfil
the necessary optimality conditions from Lemma 2.

Proof. By construction, u and ¢ fulfil the optimality conditions from (21). Since
c=2¢c" and uw = a", it follows that

A=D,T (d*,&)=D,T (u,c) and B=D.T (a¥e")=D.T (u,c) (23)

and hence, the first two equations from (21) and (22) coincide. Further, u* and
c are by construction feasible, thus it follows that T (u,c) = T (ﬂk, Ek) =0.
(|

The following proposition states under which condition the iterates of Algorithm 2
will monotonically decrease the energy.

Proposition 2. If we denote the solutions obtained from Algorithm 1 by (u,c)
and let @ fulfil T (@,c) = 0, then (@, c) will be feasible iterates that decrease the
energy in every iteration as long as the following condition is valid.

1. _ _ € _ €
S £ 1~ FIB) < M+ I3 — (Mell + Slel)  28)
Proof. By definition of (4, c) and (u*,*) we have
1, . € 1, . € o’ _
L= F13 4+ Allells + Slel < i — 713+ Al + 5 el + £lle - 213
1, _ €
< Sl = I3+ X2 + SIS

Replacing 4 by u and reordering the terms yields the sought expression. O



Equation (24) allows an interesting interpretation. The left-hand side can be
seen as the loss in accuracy whereas the right-hand side can be considered as the
gain in sparseness. Thus, the energy will be decreasing as long as the gain in
sparseness outweighs the loss in precision.

5 Experiments

5.1 Signals in 1-D

To demonstrate the performance of our approach we have chosen the piecewise
polynomial and non-continuous signal Piece-Polynomial from the WAVELAB
850 Toolbox [4] and normalised it to the interval [0, 1] to ease the simultaneous
visualisation of signal, reconstruction and mask. The result is shown in Figure 1.
Note that the obtained mask is sparse and the non-zero entries are placed at
positions where one would naturally expect them, e.g. two mask points are used to
encode a step in the signal. Also note the excellent quality of the reconstruction.

We initialise our method with u being the original signal and a full mask,
i.e. ¢; = 1 for all 4, and use the parameters ¢ = 1077, ¢ = 1.0, A = 0.02.
For Algorithm 1 we set # = 1 and 7 = 0.25. In order to fulfil the step length
constraint 70L? < 1 where L = ||(A B)|| we approximate L through power

iterations and set o = ((L2 + 0.1) T)_l. The method aborted when the distance
between two consecutive iterates dropped below 3 - 10716, In order to reach this
precision we required about 225000 iterations of Algorithm 1. After 630 iterations
of Algorithm 2 the distance between two consecutive iterates ¢ had dropped
below 107! at which point the algorithm stopped. The whole algorithm was
implemented Matlab with Algorithm 1 as a mex function written in ANSI C.
All the tests were done on a desktop PC with an Intel Xeon processor (3.2GHz)
and 24GB of memory. The total runtime was roughly 10 minutes. The squared
Euclidean distance between the input signal and the reconstruction is 0.0377.

5.2 Images in 2-D

To show that our approach performs as well on 2-D data sets as it does on 1-D
signals, we apply our algorithm to three different test images and compare our
method to the state-of-the-art approach from [17]. In [17] the authors proposed
a greedy method, called stochastic sparsification, that iteratively selects a set
of candidate points and discards those pixels that yield the smallest increase in
the error when removed from the mask. This step is repeated until a desired
density is reached. In a second step, called non-local pixel exchange, mask and
non-mask pixels are swapped. If the reconstruction error increases, the swap is
undone, otherwise it is kept. This latter step is repeated until the desired error
or the maximal number of swaps is reached.

The results of our method are depicted in Fig. 2 and a summary with a
comparison to the approach from [17] is given in Tab. 1. As an error measure we



Fig. 1. The original signal (dashed line), the reconstruction (solid line) as well as
the used mask (grey dots). As expected, the mask is sparse (17 non-zero entries out
of 128) and not binary-valued. The mask point in the middle of the signal with the
smallest value allows to better adapt to the curvature of the input signal by blending
the diffusion result with the data. Also note that the mask entries neatly align with the
discontinuities of the signal.

use the mean squared error (MSE) which is computed by

MSE (f,u) 1= = 3 (i~ wi)? (26)

where the two images f and u to be compared have been reshaped into vectors
of length n. For the computation of the MSE we assume that the image values
lie in the interval [0, 255].

The third column in Tab. 1 represents the MSE by using the data as it
is returned by Algorithm 2. Binarising the mask by thresholding it at 0.01
significantly increases the reconstruction error as we can see in the fourth column
of Tab. 1. In [17] an additional optimisation step on the interpolation data was
presented. The idea is to decrease the reconstruction error by optimising the
image values for a fixed mask. This so called grey value optimisation (GVO) can
clearly be used as a postprocessing step in combination with our masks.

The GVO is a least squares formulation to minimise the reconstruction error.
It solves

argmin |lu— f||3 such that diag(c) (u—g) — (I —diag(c)) Du =0 (27)
(u,g) ER™ XR™
with a fixed ¢ and known image f. Let us define the matrix M := diag (¢) —
(I — diag (c)) D. Note that this matrix is identical to D, T (@,¢) given in (8) for
which we know that it is an invertible matrix as long as at least one entry in
¢ is non-zero. Using that u = M ~!diag(c)g, it follows that the GVO can be
formulated as

1
g = argmin — | M~ diag (¢) z — f||3 . (28)
zeR™ 2



Fig. 2. First row (from left to right): Test image Tru: (256 x 256), mask with
the locations of the interpolation points (marked in black) with 4.95% of non-zero
entries, reconstruction with grey-value optimisation and binarised mask (MSE = 16.95).
Note that the bright spots visible in the face are an artifact stemming from the fact
that the Laplace operator is used. Parameters: A = 0.0036, u = 1.25, ¢ = 1074, 3600
outer iterations and 25000 iterations of Algorithm 1. The parameter choices for the
Algorithm 1 are identical to those mentioned in the caption of Figure 1. As initialisation
we used u = f and ¢ = 1. Second row (from left to right): Test image Peppers
(256 x 256), mask with the locations of the interpolation points (marked in black) with
5.02% of non-zero entries, reconstruction with grey-value optimisation and binarised
mask (MSE = 18.44). Parameters: A = 0.0034, p = 0.01, ¢ = 107°, 130 outer iterations
and 100000 iterations of Algorithm 1. The remaining parameters are identical as in the
experiment with Trui. Third row (from left to right): Test image Walter (256 x 256),
mask with the locations of the interpolation points (marked in black) with 5.00% of
non-zero entries, reconstruction with grey-value optimisation and binary mask (MSE =
7.59). Parameters: A = 0.0018, 430 outer iterations and 100000 iterations of Algorithm 1.
All the other parameters are identical to those used for the Peppers experiment.



Table 1. MSE for our experimental results. If combined with a grey value optimisation,
our binarised mask is always better than the one obtained in [17]. Note that the mask
density in [17] was exactly 5% for each image. For our experiments we had a density
of 4.95% for Trui, 5.02% for Peppers and 5.00% for Walter. The best results for each
image are marked in boldface. Unavailable results are marked with a —.

. . . Continuous ¢ Binary ¢

Image Algorithm Continuous ¢ Binary ¢ with GVO with GVO
Trui Our method 17.41 47.89 16.98 16.95
v Method of [17] — 23.21 — 17.17
Peppers Our method 18.91 30.51 18.44 18.44
PP Method of [17] — — — 19.38
Walter Our method 07.81 19.61 07.59 07.59
Method of [17] — — — 08.14

Applying the GVO to the continuous masks only yields minimal gains. However,
it completely compensates for the loss of accuracy by binarising the mask. This
is a remarkable observation and greatly increases the potential usefulness of this
method for image compression tasks since it cuts the necessary amount of data
to be stored for the reconstruction in half. Let us emphasise that neither the
binarised nor the results with additional GVO represent solutions of our optimal
control formulation. Even though the binarised mask fulfils the constraints of
our minimisation problem it yields a higher energy. The results with GVO do
not, in general, fulfil the constraints of (5). The results from Tab. 1 clearly show
the superiority of our approach. Except for Trui, our continuous mask already
improves the quality from [17]. With the additional GVO we can further reduce
our error measures and are able to outperform the results from [17] in every test
case.

A Greedy Speed-Up Strategy. In the above experiments we used very large
numbers of iterations in order to find the optimal error. This results in com-
putation times of several hours, similarly as the methods in [17]. For practical
purposes one can significantly reduce the number of iterations in Algorithm 1.
Moreover, the results from Tab. 1 suggest an interesting heuristic to further
speed up the computation of the mask. Our algorithm, as it is presented in this
paper, starts with a full mask which is made gradually sparser. Since the smallest
errors are obtained with a binarised mask combined with a GVO, it is not really
necessary to know the exact value of the mask at every position. Only if it will
be 0 or not. Therefore, one can threshold the mask during the iterations and
check whether this thresholded version differs significantly from the thresholded
mask of the previous iterate. If not, one aborts the iteration. Using this heuristic
with A = 0.00325, = 0.01, e = 1079, 1250 iterations of Algorithm 1 and 50
outer iterations we obtain a binary mask with a density of 5.01%. In combination
with GVO, the MSE for the Peppers image was 19.38, which is identical to the



result from [17]. The total runtime was 272 seconds. Even though the obtained
mask yields a slightly larger error when compared to the results from Tab. 1, the
runtime was reduced from 15 hours down to less than 5 minutes. This corresponds
to a speed-up factor of 180.

6 Conclusion

We present a new model for the determination of optimal interpolation data
for homogeneous diffusion inpainting. The formulation contains basically only a
single parameter with a very intuitive meaning. An iterative strategy to solve the
corresponding discrete optimisation problem is also derived. Numerical experi-
ments show the usefulness of the suggested method. We note that the our method
is not restricted to the Laplacian as differential operator. An extension using
more powerful operators is possible. Therefore, a thorough theoretical analysis of
the framework presented in this work as well as the extension to other PDE-based
interpolation methods for image compression tasks will be the subject of future
work. We also note that our method is capable of handling non-differentiable
penalties on the reconstruction, for example the L; norm. This will also be the
topic of future work.
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