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Abstract. In this work a marker-controlled and regularized watershed
segmentation is proposed. Only a few previous studies address the task
of regularizing the obtained watershed lines from the traditional marker-
controlled watershed segmentation. In the present formulation, the to-
pographical distance function is applied in a level set formulation to per-
form the segmentation, and the regularization is easily accomplished by
regularizing the level set functions. Based on the well-known Four-Color
theorem, a mathematical model is developed for the proposed ideas. With
this model, it is possible to segment any 2D image with arbitrary number
of phases with as few as one or two level set functions. The algorithm
has been tested on real 2D fluorescence microscopy images displaying
rat cancer cells, and the algorithm has also been compared to a standard
watershed segmentation as it is implemented in MATLAB. For a fixed
set of markers and a fixed set of challenging images, the comparison of
these two methods shows that the present level set formulation performs
better than a standard watershed segmentation.

1 Introduction

Segmentation is a major challenge in image analysis, referring to the task of
detecting boundaries of objects of interest in an image. Several approaches have
been proposed and many of them belong to one of the following categories:
energy-driven segmentation [1–7] and watershed-based [8–10]. Energy-driven
segmentation normally consists of two parts, the data term and the regular-
izer. The data term assures a solution which is sufficiently close to the desired
boundaries and the regularizer controls the smoothness of the boundaries. A
smoothing is often required due to noise and artifacts in real images. Water-
shed segmentation [8–10] is a region growing technique belonging to the class
of morphological operations. Traditionally, the watershed techniques have been



conducted without a smoothing term, but recent progress has resulted in energy-
based watershed segmentations that contain regularizers [11]. In the following
the two main approaches for segmentation are treated more carefully.

The energy-driven segmentation methods are mainly divided into two classes,
contour-based (snakes) and region-based. The contour based methods rely on
strong edges or ridges as a stopping term in a curve evolution which is balanced
between a data term and a smoothness term. One of the most well-known region-
based method is the Mumford and Shah model[12]. In Chan-Vese [5, 13], the
Osher-Sethian level set idea [14] was combined with the Mumford-Shal model
to solve the region-based segmentation. Recently, some variants of the Osher-
Sethian level set idea was proposed by Tai et al. [15, 4]. In this work, we shall
extend these ideas to watershed segmentation.

The watershed segmentation has proven to be a powerful and fast technique
for both contour detection and region-based segmentation. In principal, water-
shed segmentation depends on ridges to perform a proper segmentation, a prop-
erty which is often fulfilled in contour detection where the boundaries of the
objects are expressed as ridges. For region-based segmentation it is possible to
convert the edges of the objects into ridges by calculating an edge map of the
image. Watershed is normally implemented by region growing based on a set of
markers to avoid severe over-segmentation[10,16]. Different watershed methods
use slightly different distance measures, but they all share the property that the
watershed lines appear as the points of equidistance between two adjacent min-
ima. Meyer [9] use the topographical distance function for segmenting images
using watershed segmentation, while Najman and Schmitt [8] present the water-
shed differences with classical edge detectors. Felkel et al. [16] use the shortest
path cost between two nodes which is defined as the smallest lexiographic cost
of all paths between two points, which reflects the flooding process when the
water reaches a plateau.

The success of a watershed segmentation relies on a situation where the de-
sired boundaries are ridges. Unfortunately, the standard watershed framework
has a very limited flexibility on optimization parameters. As an example, there
exists no possibility to smooth the boundaries. However, recent progress allows
a regularization of the watershed lines [11] with an energy-based watershed algo-
rithm (watersnakes). In contrast to the standard watershed and the watersnakes,
our work is based on partial differential equations which easily allow a regular-
ization of the watersheds. Moreover, the method is flexible with regard to several
optimization parameters. As an example, it could allow optimization on the Eu-
ler number to avoid internal holes inside the phases.

2 Marker-controlled watershed segmentation by level set

2.1 Creating markers

The marker-controlled watershed segmentation has been shown to be a robust
and flexible method for segmentation of objects with closed contours where the



boundaries are expressed as ridges. The marker image used for watershed seg-
mentation is a binary image consisting of either single marker points or larger
marker regions where each connected marker is placed inside an object of in-
terest. Each initial marker has a one-to-one relationship to a specific watershed
region. The resulting output is very depending on the markers, both for the
proposed watershed by level set and for the standard watershed, through the
one-to-one relationship and the size and position of the markers. Marker regions
generally create results of higher quality than point-markers since they are close
to the desired boundaries and therefore there will be a smaller probability of the
flooding converging too early. The markers can be manually or automatically se-
lected, but high throughput experiments often require automatically generated
markers to save human time and resources. After segmentation, the boundaries
of the watershed regions are arranged on the ridges, thus separating each ob-
ject from its neighbors. In the present work, an adaptive thresholding [17] and
filling of closed objects were used to automatically create markers. A similar
combination of these operators was used in [18]. First, an adaptive thresholding
was performed on the image f to label locally high intensity-valued pixels. In
contrast to global thresholding, an adaptive thresholding demonstrates a much
higher ability to deal with uneven scene illumination. A binary image fb was
thus constructed, where high intensity pixels are given the value 1 and the oth-
ers 0. Then, all small objects in fb were removed since they were considered to be
insignificant due to their size. To be able to close minor gaps in the binary struc-
tures outlining the approximate boundaries, an iterative morphological closing
was conducted. For each iterative closing step, a larger structural element was
applied to facilitate the closing of incrementally larger gaps. Directly after each
closing step a morphological filling was performed to fill all holes in fb that were
not accessed from the image boundary. All filled regions that had no intersection
with earlier filled regions were then assigned to the marker image as a marker.
The closing was performed iteratively in order to obtain markers that were as
close as possible to the desired boundaries, and it was repeated a predefined
number of steps which applied for all cell images in our experiments. Figure 1
demonstrates the process of creating markers from adaptive thresholding and
filling, where the image in (a) was used to create a binary image (b) from adap-
tive thresholding. The smallest objects were removed and iterative closing and
filling were applied to (b) to obtain the final binary marker image (c) where the
marker regions are labeled white (value 1) and the background is black (value
0).

2.2 Topographical distance function

The watershed transform relies on the computation of the topographical distance
function, closely related to the framework of minima paths [19]. Following [9],
we apply the topographical distance function to obtain a watershed segmenta-
tion which is formulated within the level set theory. The topographical distance
function between two points x and y is according to [11] defined as:
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Fig. 1. Creating markers for watershed segmentation with level sets. Adaptive thresh-
olding was applied to the image in (a) to construct a binary image (b). Thereafter,
morphological closing and filling was applied to achieve the final marker image (c)
which was used in the watershed segmentation.

Definition 1. For a smooth function f(x) : R
n → R the topographical distance

between two points x and y is defined as the geodesic distance weighted by the
gradient |∇f |, i.e.

L(x,y) = inf
γ∈[x→y]

∫

γ

|∇f(γ(s))|ds (1)

where [x → y] denotes all possible paths from x to y .

In 1D the topographical distance function is straightforward to compute since
there is only one possible path between any two points x and y. For 2D and
3D, the topographical distance function can be calculated using the iterative
forest transform (IFT) [16] which computes the shortest path energy between
two points. The algorithm has a low time complexity of O(m + n logn) where
n = n1n2 is the number of pixels in the image and m = n1(n2 − 1)+ (n1 − 1)n2,
defined by a 4-connectivity neighborhood. For the present study, we have used
the IFT algorithm to calculate the topographical distance function. To exemplify,
see the synthetic image in Figure 2 (a) resembling a real cell image. Let L1 and
L2 be the topographical distance functions from point markers outside (c, top)
and inside (c, bottom) the cell, respectively. For more complex images, the ridge
is given as locations where Li = Lj for the topographical distance functions Li

and Lj associated with adjacent markers. The plot in (b) shows an intensity
profile of the image along the dashed line in (a) together with the corresponding
intensity profile of the topographical distance functions L1 (dashed line) and L2

(dotted line). Clearly, the ridge in (a) is obtained where L1 = L2.

2.3 Four-Color theorem

The Four-Color theorem will be applied in the watershed segmentation by level
set to distinguish between objects inside the same phase. Using the Four-Color
theorem, adjacent objects can be labeled among four colors and they are thus
uniquely distinguishable. Chan and Vese [5] note that the Four-Color theorem
can be used in image segmentation in the piecewise smooth case to distinguish
between any number of objects with as few as four phases. The Four-Color
theorem was proven first by Appel and Haken in 1976 [20], and it has been
validated again by different approaches in recent years [21]. The Four-Color
theorem states the following: Define a graph G consisting of a finite set V (G) of
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Fig. 2. Topographical distance function. The synthetic cell image (a) was used for
calculating the topographical distance functions L1 (c, top) and L2 (c, bottom) from
a point marker outside and inside the cell, respectively. The intensity profiles of the
topographical distance functions L1 (dashed line) and L2 (dotted line) are plotted in
(b). It is evident that the desired ridge from the original image is at the spatial locations
where the two topographical distance functions are equal.

vertices and a finite set E(G) of edges. Every edge is connected to two vertices,
called the ends, whereas an edge with equal ends is called a loop. Each vertex is
an arbitrary point associated to one region, such that each region has one vertex.

Theorem 1. Every loopless plane graph G can be divided into 4 colors, that is
a mapping c : V (G) → {1, 2, 3, 4} such that c(u) 6= c(v) for every edge of G with
ends u and v[21].

3 The algorithm

Given a set of k markers, it is possible to divide the image into k regions ac-
cording to the four-color theorem. This partition must be completed such that
no objects belonging to the same color are adjacent after segmentation. If the
markers are merely points or small regions this can be demanding since the
boundaries of the objects are unknown prior to segmentation. Therefore, mark-
ers are preferrably automatically constructed as large marker regions with a
certain extent, to allow an approximation of the influence zone of each marker
which in turn enables a reliable partitioning of the markers according to the
four-color theorem. In principle, this partitioning may fall short of success and
turn out to be inconsistent, but in practical applications it is possible to achieve
a reliable four-color partitioning prior to segmentation.

3.1 Euclidean influence zones

Given k markers, an influence zone is calculated around each marker which for all
markers will divide the image into k influence zones. Label all markers {Ki}

k
i=1,

then calculate the Euclidean distance function di(x) = dist(x,Ki) around each
marker Ki. Thus, k distance functions are obtained, {di(x)}k

i=1. The Euclidean
influence zone image fIZ is a function such that

fIZ(x) = argmini{di(x)}k
i=1 = {i| dist(x,Ki) ≤ dist(x,Kj), ∀j}. (2)



This representation is fast to compute and it divides the image into k disjoint
regions suitable for a further labeling within the four-color theorem. See Figure 3
as an example where the given markers were automatically generated by the
method described in Section 2.1, and the Euclidean influence zones fIZ were
obtained from Equation 2. Thus, the piecewise constant image fIZ is constructed
where each region i is uniquely labeled by an integer from {1, 2, · · · , k}.

Fig. 3. The Euclidean influence zones fIZ . The image in Figure 1(a) was used to create
the marker image in Figure 1(c) where the three markers are uniquely labeled. Based on
the distance transform, the Euclidean influence zones fIZ were calculated to obtain an
approximation on the boundaries of the finally segmented image. The influence zones
are then later painted with at most four colors.

3.2 The Four-Color theorem and the topographical distance

functions

The four-color theorem was applied to the Euclidean influence zones fIZ function
which contains an approximation to the final boundaries after segmentation.
For the images in this paper the painting of the regions were done by hand.
Thus, a final partitioning fc was obtained where adjacent zones in fIZ and their
corresponding markers are always assigned different colors. Empty colors will
not influence the performance of the algorithm.

Once the markers have been painted with one of the four colors, we can group
the marker into four groups, i.e. we define Ci = ∪fc(Kj)=iKj, i = 1, 2, 3, 4.
We then use the method of [16] to compute up to four topographical distance
functions from the marker groups Ci, Li(x) = infy∈Ci

L(x,y), i = 1, 2, 3, 4. As
was proven in [11], a partition {Ωi}

k
i=1 minimizes the functional

E(Ω1, . . . , Ωk) =

k
∑

i=1

∫

Ωi

{αi + Li(x)}dx (3)

if and if it is a watershed segmentation. In our calculations, αi is the minimum
value of f on the boundary of marker i. In the following, we propose a level set
method to solve the above watershed segmentation problem.

3.3 Level set formulation

We shall use three different variants of the level set idea to perform the watershed
segmentation based on the function αi + Li, i = 1, 2, 3, 4. First, we propose to



use the level set idea [22, 14] as in Chan-Vese [13] for the segmentation. Let
φ1(x), φ2(x) : R

2 → R be two level set functions defined on the domain Ω.
These functions will partition the domain into four (possibly disconnected) sub-
regions. The characteristic functions for these sub-regions are ψi, i = {1, 2, 3, 4}
given as

ψ1(φ1, φ2) = H(φ1)H(φ2), ψ2(φ1, φ2) = (1 −H(φ1))H(φ2),

ψ3(φ1, φ2) = H(φ1)(1 −H(φ2)), ψ4(φ1, φ2) = (1 −H(φ1))(1 −H(φ2)).

The sub-regions are Ωi = {x| ψi(x) = 1}, i = 1, 2, 3, 4. This partition of the do-
main has no vacuum and no overlaps. In the above, H(·) denotes the Heaviside
function, i.e. H(x) = 1 if x ≥ 0, H(x) = 0 if x < 0. For the numerical exper-
iments, a regularized Heaviside was used, Hǫ(x) = 1

2

(

1 + 2
π

arctan(x
ǫ
)
)

where
ǫ > 0 is small, see [13]. Using Eq. 3 within the level set formulation, the desired
watershed lines can be obtained by minimizing the following functional

F =

∫

Ω

4
∑

i=1

{αi + Li(x)}ψidx + β

∫

Ω

4
∑

i=1

|∇ψi|dx. (4)

The first term is the data term providing the watershed segmentation and the
second term is the regularization.

The second level set method we propose to use is the so-called Binary Level
Set Method [4, 2]. For this method, we need to find two functions φ1(x), φ2(x) :
R

2 → R satisfying φi(x)2 = 1, i = 1, 2. The characteristic functions for the
sub-regions partitioned by φi are given by

ψi+1+2∗j =
1

4

(

1 + (−1)i φ1

|φ1|

)(

1 + (−1)j φ2

|φ2|

)

, i, j = 0, 1.

This will give us the characteristic functions ψk, k = 1, 2, 3, 4 for the four sub-
regions. In our experiments, φ/|φ| are replaced by φ/

√

|φ|2 + ǫ with a small
ǫ > 0. The watershed segmentation for this level set method is obtained by
minimizing:

F =

∫

Ω

4
∑

i=1

{αi + Li(x)}ψidx + β

∫

Ω

4
∑

i=1

|∇ψi|dx +
1

σ

2
∑

i=1

∫

Ω

(φ2
i − 1)2dx. (5)

The constant σ > 0 is a penalization constant to enforce φ2
i = 1. Due to the

special constructions of the characteristic functions ψi, we can choose any σ > 0
in the above minimization functional.

The third level set method we propose to use is the ”Piecewise Constant
Level Set Methods (PCLSM)” [15]. For this method, we just need to use one
level set function φ : R

2 → R satisfying κ(φ) = (φ− 1)(φ− 2)(φ− 3)(φ− 4) = 0
in Ω. Associated with this φ, the characteristic functions for the sub-regions are
given by

ψi =
1

λi

4
∏

j=1
j 6=i

(φ− j) and λi =

4
∏

k=1
k 6=i

(i− k).



In order to use this method for the watershed segmentation, we need to solve
the following constrained minimization problem:

min
φ, κ(φ)=0

∫

Ω

4
∑

i=1

{αi + Li(x)}ψidx + β

∫

Ω

4
∑

i=1

|∇ψi|dx. (6)

As in [15, 3], Augmented Lagrangian or penalization methods can be used to
solve the above constrained minimization problem.

For minimization problem (4), the Euler-Lagrange equations for φ1 and φ2

are:

4
∑

i=1

{αi + Li(x)}
∂ψi

∂φ1
+ β

4
∑

i=1

∇ ·

(

∇ψi

|∇ψi|

)

∂ψi

∂φ1
= 0,

4
∑

i=1

{αi + Li(x)}
∂ψi

∂φ2
+ β

4
∑

i=1

∇ ·

(

∇ψi

|∇ψi|

)

∂ψi

∂φ2
= 0.

As usual, the explicit gradient flow problem must be solved to steady state:

φn+1
1 − φn

1

τ
=

4
∑

i=1

{αi + Li(x)}
∂ψn

i

∂φn
1

+ β

4
∑

i=1

∇ ·

(

∇ψn
i

|∇ψn
i |

)

∂ψn
i

∂φn
1

φn+1
2 − φn

2

τ
=

4
∑

i=1

{αi + Li(x)}
∂ψn

i

∂φn
2

+ β

4
∑

i=1

∇ ·

(

∇ψn
i

|∇ψn
i |

)

∂ψn
i

∂φn
2

,

where the differentiation of |∇ · | with respect to φ is in detail explained in [13],
and ψn = ψ(φn

1 , φ
n
2 ). The relation H ′(x) = δ(x) was used for differentiation of

ψi, and a smooth δǫ(x) was used in the numerical experiments by calculating the
derivative of the smooth Heaviside. For minimization problems (5) and (6), the
Euler-Lagrange equations equation can be obtained in a similar way. We shall
omit the details.

Here, we have proposed three different level set methods with different ad-
vantages and weak points, producing slightly different results which are com-
plementary to each other. The connection between the data term of our three
minization methods and the traditional watershed transform can be proven by
considering the minimization of

F =

∫

Ω

4
∑

i=1

{αi + Li(x)}ψidx. (7)

In contrast to the traditional watershed, minimizing Eq. 7 provides the water-
shed lines around each color instead of each marker. As stated in [11], αi +
Li(x) ≥ f(x) for 1 ≤ i ≤ K where K is the number of markers and f(x) =
min1≤i≤K {αi + Li(x)}. In our formulation, the markers are grouped together
into a set of possible disconnected regions, and αi + Li(x) ≥ f(x) for 1 ≤ i ≤ 4



and for all x ∈ Ω. Therefore, due to the fact that ψi ≥ 0, we have

F =

∫

Ω

4
∑

i=1

{αi + Li(x)}ψidx ≥

∫

Ω

4
∑

i=1

f(x)ψidx.

From the definition of the watershed lines, the function φ corresponding to the
watershed lines satisfies

∫

Ω

∑4
i=1 {αi + Li(x) − f(x)}ψidx = 0, c.f. [11]. This

equality is correct if we replace Ω by any U ∈ Ω. Due to the properties of the
characteristic functions, ψi 6= 0 everywhere inΩ and therefore αi+Li(x)−f(x) =
0, which is exactly the requirement for a watershed partition around color i. The
obtained level set segmentation may not be a watershed partition around color
i if the regularization term is included in addition to the data term.

4 Experimental results of segmentation

This section contains experiments involving real cell images taken by fluores-
cence microscopy showing rat pheochromocytoma PC12 cells. The images are
optical planes extracted from 3D stacks, demonstrating the ability of the pro-
posed method. In all experiments values of β = 0.1 and a time-step of ∆t = 0.01
were chosen for the steepest descent method, and a standard watershed segmen-
tation as implemented in MATLAB [10] was also calculated for comparison of
performance between the two methods which used the same automatically gen-
erated markers. The images used for experimental testing point out important
limitations in the image quality, in the sense that the traditional additive noise
is not a serious question of matter, but rather internalized particles that appear
as bright spots inside the cells (Figure 4(a), arrows). These internalized particles
affect the segmentation negatively by causing more oscillatory watersheds (data
not shown).

4.1 Two objects

For this example, the image in Figure 4(a) was chosen for segmentation. It
shows one PC12 cell in addition to a background region. Based on the obtained
marker image in (b), the watersheds for the watershed by level set (c) and for
the standard watershed segmentation (d) were obtained. Note the smoothness
of the watersheds in (c) compared to (d).

4.2 Four objects

The image in Figure 5 (a) shows three cells in addition to background. This im-
age was used to automatically obtain a marker image (b). Based on the marker
image, the watersheds for the watershed by level set with (c) and without regu-
larization (d, β = 0) and the standard watershed segmentation (e) were obtained.
The image in (f) shows a hand-drawn solution. Comparing with the hand-drawn
solution, note that the watershed by level set captures more of the cells than the
standard watershed segmentation. The cells in the lower left corner of (a) were
omitted from the analysis since they are partially outside the image frame.



(a) (b) (c) (d)

Fig. 4. Watershed segmentation of one cell and a background region. The image in
(a) was used to automatically obtain markers (b) which were used for watershed seg-
mentation by the Chan-Vese level set (c) and for a standard watershed segmentation
(d). Note how the watershed by level set creates smoother boundaries (c) than the
standard watershed (d). The arrows in (a) point to internalized particles appearing
as bright spots inside fluorescently labeled cells. These can easily interfere with the
standard watershed segmentation such that the watershed lines become oscillatory.

(a) (b) (c)

(d) (e) (f)

Fig. 5. Watershed segmentation of three cells and a background region. The image
in (a) was used to automatically obtain markers (b) which were used for watershed
segmentation by the binary level set, with (c, β = 0.1) and without (d, β = 0) regu-
larization. The output from the standard watershed segmentation is displayed in (e)
together with a ground-truth created by hand-drawing (black lines) in (f). Compared
with the ground-truth, note how the watershed by level set captures more of the cells
than the standard watershed segmentation.



4.3 Multiple objects

The image in Figure 6 (a) shows six PC12 cells and background. Based upon
this image, a marker image (b) was automatically created and the watersheds
for the watershed by level set (c) and standard watershed segmentation (d) were
obtained. Compared to the standard watershed, the watershed by level set has
a higher capacity of detecting the weak boundaries of the cell.

(a) (b)

(c) (d)

Fig. 6. Watershed segmentation of multiple cells and a background region. The image
in (a) was used to automatically obtain markers (b) which were used for watershed
segmentation by the binary level set (c) and for a standard watershed segmentation
(d). Compared to the standard watershed, the watershed by level set has a higher
capacity of detecting the weak boundaries of the cell.

From all these studies, we have shown that the proposed watershed by level
set is able to segment real cell images containing severe irregularites in a better
way than the standard watershed segmentation. Our formulation is based on level
set theory which easily allows a regularization of the watersheds, and which is a
flexible approach for further optimization parameters.
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